WO2019003890A1 - 光学材料用樹脂組成物及び光学フィルム - Google Patents

光学材料用樹脂組成物及び光学フィルム Download PDF

Info

Publication number
WO2019003890A1
WO2019003890A1 PCT/JP2018/022353 JP2018022353W WO2019003890A1 WO 2019003890 A1 WO2019003890 A1 WO 2019003890A1 JP 2018022353 W JP2018022353 W JP 2018022353W WO 2019003890 A1 WO2019003890 A1 WO 2019003890A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resin composition
optical
resin
Prior art date
Application number
PCT/JP2018/022353
Other languages
English (en)
French (fr)
Inventor
鉄平 氏原
裕輔 田尻
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020197033941A priority Critical patent/KR102415014B1/ko
Priority to CN201880043336.2A priority patent/CN110832364B/zh
Priority to JP2019526768A priority patent/JP6642766B2/ja
Publication of WO2019003890A1 publication Critical patent/WO2019003890A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a resin composition for an optical material and an optical film.
  • Acrylic resin films are applied to various optical members because of their excellent transparency and design.
  • birefringence hardly appears even when stretching is performed, in recent years, it is widely used particularly for a polarizing plate protective film (inner) for IPS (In-Plane-Switching) liquid crystal.
  • the required performance as a polarizing plate protective film for IPS liquid crystal includes high toughness / low moisture permeability / high heat resistance as the outermost surface film (outer), and zero retardation / high heat resistance as the inner film (inner).
  • Be Acrylic resin manufacturers are aiming to develop and launch original special acrylic resins as well as general-purpose PMMA (Polymethyl methacrylate) resins (Patent Documents 1 and 2).
  • composition of the resin composition for optical materials is made into the combination of an acrylic resin + cellulose resin, although heat resistance improves, an effect can not be confirmed about the improvement of an optical characteristic (patent document 3).
  • composition of the resin composition for an optical material is a combination of an acrylic resin and a retardation control agent, although there is a certain effect in improving the optical characteristics, the problem is that the heat resistance is significantly lowered. (Patent Document 4).
  • An object of the present invention is to provide an optical film having both excellent heat resistance and optical properties, and a resin composition for an optical material for producing the optical film.
  • the present inventors maintain the heat resistance to some extent by making the composition of the resin composition for optical materials into a ternary blend system of acrylic resin + retardation control agent + cellulose resin, and more than each single blending. It has been found that the phase difference improvement effect is excellent. As a result, an optical film having both excellent heat resistance and optical properties, and a resin composition for an optical material for producing the optical film were successfully found.
  • the present invention relates to the following (1) to (16).
  • a resin composition for an optical material comprising (meth) acrylic resin (A), cellulose resin (B), and retardation control agent (C).
  • the resin composition for an optical material according to (1) which comprises 0.5 to 20 parts by mass of a cellulose resin (B) with respect to 100 parts by mass of a (meth) acrylic resin (A).
  • the resin for an optical material according to (1) or (2) which comprises 0.5 to 20 parts by mass of the retardation control agent (C) with respect to 100 parts by mass of the (meth) acrylic resin (A) Composition.
  • a 1 and A 2 each independently represent an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • R 1 to R 4 each independently represent 1 to 6 carbon atoms
  • X 1 and X 2 are each independently a divalent linking group.
  • B 1 is each independently an aryl monocarboxylic acid residue having 6 to 18 carbon atoms or an aliphatic monocarboxylic acid residue having 1 to 8 carbon atoms
  • B 2 is a fat having 1 to 12 carbon atoms
  • G is an alkylene glycol residue having 2 to 12 carbon atoms or an oxyalkylene glycol residue having 4 to 12 carbon atoms
  • A is an alkylene having 2 to 12 carbon atoms.
  • the retardation control agent (C) has the following general formula (1-1-1)
  • R 1 to R 4 each independently represent an alkyl group having 1 to 3 carbon atoms.
  • Z represents an aromatic group (a1) or an aliphatic group (a2), respectively; a1) is a phenyl group or a paratoluyl group, and the aliphatic group (a2) is a methyl group) Or a compound represented by the formula (C-1), or the following general formulas (2) to (4)
  • B 1 is each independently an aryl monocarboxylic acid residue having 6 to 18 carbon atoms or an aliphatic monocarboxylic acid residue having 1 to 8 carbon atoms
  • B 2 is a fat having 1 to 12 carbon atoms
  • G is an alkylene glycol residue having 2 to 12 carbon atoms or an oxyalkylene glycol residue having 4 to 12 carbon atoms
  • A is an alkylene having 2 to 12 carbon atoms.
  • the resin composition for optical materials according to any one of (1) to (6) which is a compound (C-2) represented by (10)
  • the average abundance ratio of the aromatic group (a1) to the aliphatic group (a2) [(a1) / (a2)] is 99.9 / 0.1 to 80/20 in molar ratio, 9)
  • (11) The resin composition for an optical material according to any one of (8) to (10), wherein A is an aryldicarboxylic acid residue having 6 to 18 carbon atoms.
  • an optical film having good heat resistance and optical characteristics and an optical film having the same composition by forming the resin composition for optical material into a ternary blend system of acrylic resin + retardation control agent + cellulose resin
  • the resin composition for optical materials for manufacturing a film can be provided.
  • the (meth) acrylic resin (A) used in the present invention is preferably obtained using a methacrylic acid ester unit. Specifically, it is preferable that the polymer is obtained by using a methacrylic acid ester unit in combination with another polymerizable monomer as needed.
  • the methacrylic acid ester include cyclohexyl methacrylate, t-butylcyclohexyl methacrylate, methyl methacrylate and the like.
  • (meth) acrylic resins (A) used in the present invention a polymer obtained using methyl methacrylate is preferable because a film having excellent optical properties is obtained, and the economy is also excellent.
  • Examples of the other polymerizable monomers include aromatic vinyl compounds such as styrene, vinyl toluene and ⁇ -methylstyrene; vinyl cyanides such as acrylonitrile and methacrylonitrile; N-phenyl maleimide, N-cyclohexyl Maleimides, such as maleimide, etc. are mentioned.
  • the methacrylic acid ester unit is polymerized to obtain a polymer to be used as the (meth) acrylic resin (A), as another monomer, an optical film having excellent heat resistance and economical efficiency of an aromatic vinyl compound is obtained.
  • styrene and ⁇ -methylstyrene are more preferable.
  • the amount of the aromatic vinyl compounds used is preferably 1 to 50 parts by mass, and more preferably 2 to 30 parts by mass with respect to 100 parts by mass of the methacrylic acid ester.
  • methacrylic acid ester for the (meth) acrylic resin (A) used in the present invention one may be used alone, or two or more may be used in combination. Moreover, also when using the said other monomer, you may use individually and may use 2 or more types together.
  • the weight average molecular weight of the (meth) acrylic resin (A) used in the present invention is 50,000 to 200,000, and a molded article such as a strong optical film is obtained, and the flowability is sufficient, and molding This is preferable because a resin composition excellent in processability can be obtained, and 70,000 to 150,000 is more preferable.
  • the number average molecular weight of the (meth) acrylic resin (A) used in the present invention is preferably 15,000 to 100,000, and more preferably 20,000 to 50,000.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values in terms of polystyrene based on gel permeation chromatography (GPC) measurement.
  • the measurement conditions of GPC are as follows.
  • the (meth) acrylic resin (A) used in the present invention for example, various polymerization methods such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, anion polymerization and the like may be used. It can. Among the production methods, bulk polymerization and solution polymerization are preferable because a polymer with little contamination of minute foreign matter can be obtained.
  • solution polymerization a solution prepared by dissolving a mixture of raw materials in a solvent of aromatic hydrocarbon such as toluene and ethylbenzene can be used.
  • polymerization by bulk polymerization polymerization can be initiated by irradiation of free radicals or ionizing radiation generated by heating as is commonly performed.
  • any initiator generally used in radical polymerization can be used.
  • azo compounds such as azobis isobutyl nitrile; benzoyl peroxide, lauroyl peroxide, t-butyl Organic peroxides such as peroxy-2-ethylhexanoate are used.
  • a solution polymerization is generally used, so a 10-hour half-life temperature is 80 ° C. or higher and a peroxide which is soluble in the organic solvent used.
  • azobis initiators are preferred.
  • 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, cyclohexane peroxide, 2,5-dimethyl-2,5-di examples include benzoylperoxy) hexane, 1,1-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) isobutyronitrile and the like. These initiators are used in the range of 0.005 to 5% by mass.
  • a molecular weight modifier may be used as needed.
  • any one used in general radical polymerization is used, and for example, mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate and the like are mentioned as particularly preferable ones.
  • mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate and the like are mentioned as particularly preferable ones.
  • These molecular weight modifiers are added in a concentration range such that the degree of polymerization is controlled within the above range.
  • the cellulose resin (B) used in the present invention preferably contains a cellulose ester.
  • the cellulose ester is not particularly limited, and examples thereof include aromatic carboxylic acid esters, fatty acid esters of cellulose and the like, and lower fatty acid esters of cellulose (for example, fatty acid esters having 1 to 5 carbon atoms) are particularly preferable.
  • fatty acid esters of cellulose include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose pivalate, cellulose acetate acylate, cellulose mixed acid ester [eg, cellulose acetate such as cellulose acetate propionate, cellulose acetate butyrate, etc. etc. acylate (such as cellulose acetate C 3-5 acylate)] and the like.
  • cellulose acetate C 3-5 acylate may be suitably used. One or more of these can be used.
  • the number average molecular weight (Mn) of the cellulose resin (B) is preferably 50,000 to 150,000, more preferably 55,000 to 120,000, and still more preferably 60,000 to 100,000.
  • the weight average molecular weight (Mw) / number average molecular weight (Mn) ratio of the cellulose resin (B) is preferably 1.3 to 5.5, more preferably 1.5 to 5.0, and 1.7 to 4.0 is more preferred, and 2.0 to 3.5 is most preferred.
  • Mw and Mn are values calculated by polystyrene conversion by GPC. If it is these ranges, since compatibility with a (meth) acrylic resin is favorable and it is excellent also in flexibility, it is preferable.
  • the degree of substitution of the cellulose resin (B) is not particularly limited, but may be, for example, about 2 to 3.
  • the degree of acetyl substitution is, for example, 0.1 to 2.0, preferably 0.1 to 1.0.
  • the degree of acyl substitution (for example, the degree of C 3-5 acyl group substitution) is, for example, 1.0 to 2.9, and preferably 2.0 to 2.9. In this case, the compatibility with the (meth) acrylic resin (A) is good.
  • the content of the cellulose resin (B) in the resin composition for an optical material of the present invention is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin, and 1 to 15 More preferably, it is 2 to 10 parts by mass.
  • the retardation control agent used in the present invention has the following general formula (1)
  • a 1 and A 2 each independently represent an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • R 1 to R 4 each independently represent 1 to 6 carbon atoms
  • X 1 and X 2 are each independently a divalent linking group.
  • B 1 is each independently an aryl monocarboxylic acid residue having 6 to 18 carbon atoms or an aliphatic monocarboxylic acid residue having 1 to 8 carbon atoms
  • B 2 is a fat having 1 to 12 carbon atoms
  • G is an alkylene glycol residue having 2 to 12 carbon atoms or an oxyalkylene glycol residue having 4 to 12 carbon atoms
  • A is an alkylene having 2 to 12 carbon atoms.
  • a compound represented by the formula a compound represented by Ar 1 -L 1 -Ar 2 , (Wherein, Ar 1 and Ar 2 are each independently an aromatic group, and L 1 is selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, -O-, -CO-, and a combination thereof Or a compound represented by the following formula
  • A represents a pyrazole ring
  • Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent.
  • R 1 represents a hydrogen atom, an alkyl group, or an acyl
  • Group represents a group, a sulfonyl group, an alkyloxycarbonyl group or an aryloxycarbonyl group
  • q represents an integer of 1 to 2
  • n and m each represent an integer of 1 to 3).
  • Ar 1 -L 1 -Ar 2 Ar 1 and Ar 2 are each independently an aromatic group.
  • the aromatic group includes an aryl group (aromatic hydrocarbon group), a substituted aryl group, an aromatic heterocyclic group and a substituted aromatic heterocyclic group.
  • aryl groups and substituted aryl groups are preferred.
  • the aromatic ring of the aryl group is preferably a 5-, 6- or 7-membered ring, and more preferably a 5- or 6-membered ring. These aromatic rings may be single or two or more may be linked.
  • aromatic rings may be single or two or more may be linked.
  • benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, indene ring, biphenyl, terphenyl and the like can be mentioned.
  • a benzene ring is particularly preferred.
  • the heterocycle of the aromatic heterocyclic group is generally unsaturated.
  • the aromatic heterocycle is preferably a 5-, 6- or 7-membered ring, more preferably a 5- or 6-membered ring.
  • Aromatic hetero rings generally have the largest number of double bonds.
  • the hetero atom is preferably a nitrogen atom, an oxygen atom or a sulfur atom, more preferably a nitrogen atom or a sulfur atom.
  • aromatic heterocyclic ring examples include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazan ring, triazole ring, pyran ring, pyridine Included are rings, pyridazine rings, pyrimidine rings, pyrazine rings, and 1,3,5-triazine rings.
  • aromatic ring of the aromatic group benzene ring, furan ring, thiophene ring, pyrrole ring, oxazole ring, thiazole ring, imidazole ring, triazole ring, pyridine ring, pyrimidine ring and pyrazine ring are preferable, and benzene ring is particularly preferable. .
  • substituent of the substituted aryl group and the substituted aromatic heterocyclic group include a halogen atom (F, Cl, Br, I), hydroxyl, carboxyl, cyano, amino, alkylamino group (eg, methylamino, ethylamino) , Butylamino, dimethylamino), nitro, sulfo, carbamoyl, alkylcarbamoyl group (eg, N-methylcarbamoyl, N-ethylcarbamoyl, N, N-dimethylcarbamoyl), sulfamoyl, alkylsulfamoyl group (eg, N- Methylsulfamoyl, N-ethylsulfamoyl, N, N-dimethylsulfamoyl), ureide, alkylureido group (eg, N-methylureide, N, N-dimethylurei
  • a halogen atom, cyano, carboxyl, hydroxyl, amino, alkyl substituted amino group, acyl group, acyloxy group, amide group, alkoxycarbonyl group, alkoxy group, alkylthio group Groups and alkyl groups are preferred.
  • the alkyl moiety of the alkylamino group, the alkoxycarbonyl group, the alkoxy group and the alkylthio group and the alkyl group may further have a substituent.
  • alkyl moiety and the substituent of the alkyl group include a halogen atom, hydroxyl, carboxyl, cyano, amino, alkylamino group, nitro, sulfo, carbamoyl, alkylcarbamoyl group, sulfamoyl, alkylsulfamoyl group, ureido, alkylureido Group, alkenyl group, alkynyl group, acyl group, acyloxy group, alkoxy group, aryloxy group, alkoxycarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, alkoxycarbonylamino group, alkylthio group, arylthio group, alkylsulfonyl group, amide group and non-aromatic group Group heterocyclic groups are included.
  • a halogen atom hydroxyl, amino, an alkylamino group, an acyl group, an acyloxy group, an acylamino group, an alkoxycarbonyl group and an alkoxy group are preferable.
  • L 1 is a divalent linking group selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, -O-, -CO- and a combination thereof .
  • the alkylene group may have a cyclic structure.
  • cyclic alkylene group cyclohexylene is preferable, and 1,4-cyclohexylene is particularly preferable.
  • chain alkylene group a linear alkylene group is preferred to a branched alkylene group.
  • the number of carbon atoms of the alkylene group is preferably 1 to 20, more preferably 1 to 15, still more preferably 1 to 10, particularly preferably 1 to 8, and 1 to 6 It is most preferable that
  • the alkenylene group and the alkynylene group preferably have a chain structure rather than a cyclic structure, and more preferably have a linear structure rather than a branched chain structure.
  • the number of carbon atoms of the alkenylene group and the alkynylene group is preferably 2 to 10, more preferably 2 to 8, still more preferably 2 to 6, and particularly preferably 2 to 4. Most preferably, it is 2 (vinylene or ethynylene).
  • the angle formed by Ar 1 and Ar 2 across L 1 is preferably 140 ° or more.
  • a compound represented by the general formula Ar 1 -L 2 -XL 3 -Ar 2 is more preferable.
  • Ar 1 and Ar 2 are each independently an aromatic group.
  • the definition and examples of the aromatic group are the same as Ar 1 and Ar 2 of the general formula Ar 1 -L 1 -Ar 2 .
  • L 2 and L 3 each independently represent a divalent selected from the group consisting of an alkylene group, -O-, -CO- and a combination thereof It is a linking group.
  • the alkylene group preferably has a chain structure rather than a cyclic structure, and more preferably a linear structure rather than a branched chain structure.
  • the number of carbon atoms of the alkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, particularly preferably 1 to 4, 1 or 2 Most preferably (methylene or ethylene).
  • L 2 and L 3 are particularly preferably —O—CO— or —CO—O—.
  • X is 1,4-cyclohexylene, vinylene or ethynylene.
  • Specific examples of the compound represented by the general formula Ar 1 -L 1 -Ar 2 are shown below.
  • aromatic hydrocarbon ring or aromatic heterocycle represented by Ar 1 and Ar 2 there are no limitations on the structure of the aromatic hydrocarbon ring or aromatic heterocycle represented by Ar 1 and Ar 2 in the following, for example, benzene ring, pyrrole ring, pyrazole ring, imidazole ring, 1,2,3-triazole ring 1,2,4-triazole ring, tetrazole ring, furan ring, oxazole ring, isoxazole ring, oxadiazole ring, isoxadiazole ring, thiophene ring, thiazole ring, isothiazole ring, thiadiazole ring, isothiadiazole ring Etc.
  • substituents examples include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc.), an alkyl group (a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an tert-butyl group, n- Octyl group, 2-ethylhexyl group etc., cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group etc.), alkenyl group (vinyl group, allyl group etc.), cycloalkenyl group (2-cyclopentene-1) -Yl, 2-cyclohexen-1-yl group etc.), alkynyl group (ethynyl group, propargyl group etc.), aromatic hydrocarbon ring group (phenyl group, p-tolyl
  • R 1 examples include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom etc.), an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group) Group, 2-ethylhexyl group, etc., acyl group (eg, acetyl group, pivaloylbenzoyl group, etc.), sulfonyl group (eg, methylsulfonyl group, ethylsulfonyl group etc.), alkyloxycarbonyl group (eg, methoxycarbonyl group), And aryloxycarbonyl groups (eg, phenoxycarbonyl group etc.) and the like.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom etc.
  • an alkyl group
  • a 1 and A 2 each independently represent an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • R 1 to R 4 each independently represent 1 to 6 carbon atoms
  • X 1 and X 2 are each independently a divalent linking group.
  • B 1 is each independently an aryl monocarboxylic acid residue having 6 to 18 carbon atoms or an aliphatic monocarboxylic acid residue having 1 to 8 carbon atoms
  • B 2 is a fat having 1 to 12 carbon atoms
  • G is an alkylene glycol residue having 2 to 12 carbon atoms or an oxyalkylene glycol residue having 4 to 12 carbon atoms
  • A is an alkylene having 2 to 12 carbon atoms.
  • It is a dicarboxylic acid residue or an aryldicarboxylic acid residue having 6 to 18 carbon atoms, and l, m and n each represent a repeating number of 1 to 6.
  • the compound represented by is preferable.
  • L 1 and L 2 each independently represent an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • R 1 to R 4 each independently represent 1 to 6 carbon atoms It is an alkyl group of 3.
  • R 1 to R 4 each independently represent an alkyl group having 1 to 3 carbon atoms.
  • Z represents an aromatic group (a1) or an aliphatic group (a2), respectively; a1) is a phenyl group or a paratoluyl group, and the aliphatic group (a2) is a methyl group
  • the resin composition is excellent in stability such as storage stability.
  • the average abundance ratio of the aromatic group (a1) to the aliphatic group (a2) [(a1) / (a2)] is preferably 99.9 / 0.1 to 80/20 in molar ratio .
  • Z in the compounds (C-1) (including a biphenol skeleton) used in the present invention may be the same or different.
  • the compound represented by the above general formula (1-1-1) can be obtained, for example, by reacting an epoxy compound having a biphenyl skeleton with acetic acid, benzoic acid and / or paratoluic acid.
  • Examples of the epoxy compound having a biphenyl skeleton include diglycidyl ether type epoxy compounds obtained by the reaction of biphenols and epichlorohydrin.
  • diglycidyl ether type epoxy compounds obtained by the reaction of biphenols and epichlorohydrin.
  • this epoxy compound 3,3 ', 5,5'-tetramethyl-4,4'-diglycidyl oxybiphenyl (commercially available product "jER YX-4000" manufactured by Mitsubishi Chemical Corporation Biphenol type epoxy compounds such as equivalents 180 to 192) can be used.
  • a catalyst may be used if necessary.
  • phosphine compounds such as trimethyl phosphine, triethyl phosphine, tributyl phosphine, trioctyl phosphine, triphenyl phosphine and the like; 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-ethyl-4-methyl Imidazole, imidazole compounds such as 4-phenyl-2-methylimidazole; triethylamine, tributylamine, trihexylamine, triamylamine, triethanolamine, dimethylaminoethanol, triacetylene diamine, dimethylphenylamine, dimethylbenzylamine, 2 Amine compounds such as-(dimethylaminomethyl) phenol and 1,8
  • each of R 1 to R 4 is a (meth) acrylic group having a methyl group. It is preferable from becoming a compound which is excellent in compatibility with resin (A).
  • the properties of the compounds represented by the above general formulas (1), (1-1) and (1-2) used in the present invention and the properties of the compound (C-1) differ depending on factors such as the composition, etc. Liquid, solid, and paste-like.
  • the content of the compound represented by the general formulas (1), (1-1), (1-2) and the compound (C-1) in the resin composition for optical materials of the present invention is used ((1) although it depends on the heat resistance and the magnitude of retardation of the (meth) acrylic resin (A), 100 parts by mass of the (meth) acrylic resin from the viewpoint of achieving both heat resistance of the resin composition and retardation control.
  • the amount is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass, and still more preferably 2 to 8 parts by mass.
  • the compounds (C-2) represented by the following general formulas (2) to (4) are also more preferable.
  • B 1 is each independently an aryl monocarboxylic acid residue having 6 to 18 carbon atoms or an aliphatic monocarboxylic acid residue having 1 to 8 carbon atoms
  • B 2 is a fat having 1 to 12 carbon atoms
  • G is an alkylene glycol residue having 2 to 12 carbon atoms or an oxyalkylene glycol residue having 4 to 12 carbon atoms
  • A is an alkylene having 2 to 12 carbon atoms. It is a dicarboxylic acid residue or an aryldicarboxylic acid residue having 6 to 18 carbon atoms, and l, m and n each represent a repeating number of 1 to 6.
  • the content of the compound (C-2) in the resin composition for optical materials of the present invention is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin (A) to be used 1 to 15 parts by mass is more preferable, and 2 to 10 parts by mass is more preferable.
  • the compound represented by the general formula (2) can be obtained, for example, by reacting dimethyl terephthalate with propylene glycol.
  • a catalyst may be used as needed.
  • this catalyst include tetraisopropoxytitanium, tetraisopropyl titanate, and zinc acetate.
  • the optical film of the present invention is characterized by containing the resin composition for an optical material of the present invention.
  • the optical film of the present invention is characterized in that the heat resistance of the film is good and the retardation of the film can be adjusted to any size. Since the optical film of the present invention is excellent in the stability to heat, the dimensional change to heat is small, and hence the rate of change of birefringence is small. Further, since the phase difference can be adjusted to an arbitrary value, various liquid crystal display devices can be provided.
  • the resin composition for an optical material of the present invention can be used for the production of various optical moldings.
  • the resin composition for an optical material of the present invention can be used to produce a film-like molded product (optical film).
  • an optical film stretched at least in a uniaxial direction and having an absolute value of retardation of 4 (nm) or less can be particularly suitably used as a polarizing plate protective film for IPS liquid crystal.
  • the retardation film an optical film having an absolute value of retardation of 2 (nm) or less is preferable, and an optical film having an absolute value of retardation of 1 (nm) or less is more preferable.
  • a retardation film having a large birefringence can also be obtained by appropriately adjusting the amounts of the retardation control agent and the cellulose resin, and the draw ratio in the TD direction and the MD direction.
  • Polymers other than the (meth) acrylic resin (A) and the cellulose resin (B) can be mixed with the resin composition for an optical material of the present invention as long as the object of the present invention is not impaired.
  • Examples of polymers other than the (meth) acrylic resin (A) and the cellulose resin (B) include polyolefins such as polyethylene and polypropylene; styrene resins such as polystyrene and styrene acrylonitrile copolymer; polyamide, polyphenylene sulfide resin, Thermoplastic resins such as polyetheretherketone resin, polyester resin, polysulfone, polyphenylene oxide, polyimide, polyetherimide, polyacetal and the like; and thermosetting resins such as phenol resin, melamine resin, silicone resin, epoxy resin and the like. One of these may be mixed, or two or more may be mixed.
  • any additive can be blended according to various purposes within the range that the effect of the present invention is not significantly impaired.
  • the type of the additive is not particularly limited as long as it is generally used for blending of resin and rubbery polymer.
  • Additives include, for example, inorganic fillers, pigments such as iron oxide; stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, lubricants such as ethylene bis stearoamide, etc.
  • paraffin process Softeners and plasticizers such as oils, naphthenic process oils, aromatic process oils, paraffins, organic polysiloxanes, and mineral oils; Hindered phenolic antioxidants, phosphorus thermal stabilizers, lactone thermal stabilizers, vitamins Antioxidants such as E type heat stabilizers; Light stabilizers such as hindered amine type light stabilizers, benzoate type light stabilizers; UV absorption such as benzophenone type UV absorbers, triazine type UV absorbers, benzotriazole type UV absorbers Flame retardants; Antistatic agents; Organic fibers, glass fibers, carbon fibers, metals Reinforcing agents such as Isuka; coloring agents, other additives, or mixtures thereof.
  • paraffin process Softeners and plasticizers such as oils, naphthenic process oils, aromatic process oils, paraffins, organic polysiloxanes, and mineral oils
  • Hindered phenolic antioxidants, phosphorus thermal stabilizers, lactone thermal stabilizers, vitamins Antioxidants
  • the resin composition for an optical material of the present invention preferably contains, for example, the (meth) acrylic resin (A), the cellulose resin (B) and the compound (C-1) or (C-2),
  • the manufacturing method is not particularly limited. Specifically, for example, a single screw extruder for the (meth) acrylic resin (A), the cellulose resin (B) and the compound (C-1) or (C-2) and, if necessary, the above additive, It can obtain by the method of melt-kneading using melt kneaders, such as a twin-screw extruder, a Banbury mixer, Brabender, various kneaders.
  • melt kneaders such as a twin-screw extruder, a Banbury mixer, Brabender, various kneaders.
  • the optical film of the present invention is characterized by containing the resin composition for an optical material of the present invention.
  • methods such as extrusion molding and cast molding are used to obtain the optical film of the present invention.
  • an unstretched optical film can be extruded using an extruder or the like equipped with a T-die, a circular die or the like.
  • the present invention is obtained by melt-kneading the (meth) acrylic resin (A), the cellulose resin (B) and the retardation control agent (C) in advance.
  • the solution casting method is described in detail below.
  • the optical film obtained by the solution casting method exhibits substantially optical isotropy.
  • the film exhibiting optical isotropy can be used, for example, for an optical material such as a liquid crystal display, and is particularly useful as a protective film for a polarizing plate.
  • corrugation is hard to be formed in the surface, and it is excellent in surface smoothness.
  • the (meth) acrylic resin (A), the cellulose resin (B) and the retardation control agent (C) are dissolved in an organic solvent, and the obtained resin solution is used as a metal
  • the metal support used in the first step may be, for example, an endless belt-like or drum-like metal support, and for example, a stainless steel support whose surface is mirror-finished can be used. .
  • the drying method in the second step is not particularly limited, but it is contained in the cast resin solution cast by applying wind of a temperature range of, for example, 30 to 50 ° C. to the upper surface and / or the lower surface of the metal support.
  • the method includes evaporating 50 to 80% by mass of the organic solvent to form a film on the metal support.
  • the third step is a step of peeling the film formed in the second step from the metal support and heating and drying under the temperature condition higher than that of the second step.
  • the heating and drying method for example, a method in which the temperature is raised stepwise at a temperature condition of 100 to 160 ° C. is preferable because good dimensional stability can be obtained. By heating and drying under the above temperature conditions, the organic solvent remaining in the film after the second step can be almost completely removed.
  • the organic solvent can be recovered and reused.
  • organic solvent which can be used when mixing and dissolving the (meth) acrylic resin (A), the cellulose resin (B) and the retardation control agent (C) in an organic solvent
  • solvents such as chloroform, methylene dichloride and methylene chloride can be mentioned without particular limitation.
  • the concentration of the (meth) acrylic resin (A) in the resin solution is preferably 10 to 50% by mass, and more preferably 15 to 35% by mass.
  • the thickness of the optical film of the present invention is preferably in the range of 20 to 120 ⁇ m, more preferably in the range of 25 to 100 ⁇ m, and particularly preferably in the range of 25 to 80 ⁇ m.
  • the unstretched optical film obtained by the above method is longitudinally uniaxially stretched in the mechanical flow direction and transverse uniaxial stretching in the direction orthogonal to the mechanical flow direction.
  • a biaxially stretched stretched film can be obtained by stretching by a sequential biaxial stretching method of roll stretching and tenter stretching, a simultaneous biaxial stretching method by tenter stretching, a biaxial stretching method by tubular stretching, or the like.
  • the stretching ratio is preferably 0.1% to 1000% in at least one direction, more preferably 0.2% to 600%, and 0.3% to 300%. Especially preferred. By designing in this range, a stretched optical film preferable in terms of birefringence, heat resistance and strength can be obtained.
  • the optical film according to the present invention is a polarizing plate protective film for use in a display such as a liquid crystal display, plasma display, organic EL display, field emission display, rear projection television, etc. It can be suitably used as a wave plate, a viewing angle control film, a retardation film such as a liquid crystal optical compensation film, a display front plate or the like.
  • the resin composition for optical materials of the present invention is also applicable to waveguides, lenses, optical fibers, optical fiber substrates, coating materials, LED lenses in the fields of optical communication systems, optical exchange systems, and optical measurement systems. , Lens cover etc.
  • HAZE value of the 40 mm square test piece was measured with a HAZE meter NDH-5000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.). The smaller the obtained haze value, the better the transparency.
  • D infrared dichroic ratio (absorbance (0 °) / absorbance (90 °))
  • D 0 Infrared dichroic ratio in perfect alignment
  • 2 cot 2 ( ⁇ ) ⁇ bond (transition) moment angle to molecular chain axis
  • the unstretched optical film obtained by the solution casting method is used as an example of the optical film of the present invention, and this optical film is cut out with a width of 20 mm in the stretching direction to obtain a measurement sample.
  • the measurement sample is fixed to a photoelastic coefficient measurement instrument (manufactured by Uniopt Corporation), and the weight when pulling the measurement sample is changed from 0 to 10N.
  • Each in-plane phase difference at the time of applying each weight is measured.
  • the measurement conditions are 23 ° C. under an atmosphere of 55% relative humidity.
  • the photoelastic coefficient (C G ) can be obtained by using the following conversion equation.
  • C G [ ⁇ 10 -12 Pa -1 ] ⁇ ⁇ L / 9.8 ⁇ 10 -9 (L: Width of specimen [mm], ⁇ : inclination of straight line)
  • ester compound (C-2-7) which is a normal temperature high viscosity liquid.
  • the acid value of this compound was 0.2
  • the hydroxyl value was 240
  • the number average molecular weight (Mn) was 550.
  • Example 1 270 parts by mass of methylene chloride, 30 parts by mass of methanol and 100 parts by mass of (meth) acrylic resin A (PMMA based acrylic resin manufactured by Mitsubishi Chemical; Acrypet V) 5 parts by mass) and 10 parts by mass of a cellulose resin (cellulose acetate propionate; CAP) were added and dissolved to obtain a dope solution.
  • the dope solution was cast on a glass plate and the solvent was distilled off (dried) to obtain a film having a film thickness of about 60 ⁇ m.
  • the transparency and heat resistance of the obtained film were evaluated according to the above-mentioned method. The evaluation results are shown in Table 1. Moreover, the heat
  • Examples 2 to 32 The number and type of retardation control agents and the number of cellulose resin additions were blended as described in the table to obtain a film in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Tables 1 to 8.
  • Examples 33 to 64 A film was obtained and evaluated in the same manner as in Example 1 except that CAB (cellulose acetate butyrate) was used in place of CAP in Example 1. The results are shown in Tables 9-16.
  • Comparative Examples 2 to 23 The number and type of retardation control agents and the number of cellulose resin additions were blended as described in the table to obtain a film in the same manner as in Comparative Example 1. Evaluation was performed in the same manner as Comparative Example 1. The results are shown in Tables 17-22.
  • the improvement of retardation by the ternary combination system of (meth) acrylic resin / retardation control agent / cellulose resin is because the degree of orientation of the retardation control agent in the film composition is high. It is presumed that it plays a role as an "orientation aid" promoting the orientation of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、耐熱性と光学特性が共に良好な光学フィルム、およびその光学フィルムを製造するための光学材料用樹脂組成物を提供することを課題とする。本発明者らは、光学材料用樹脂組成物の構成をアクリル樹脂+位相差制御剤+セルロース樹脂の三元ブレンド系とすることで、耐熱性をある程度保持し、かつ、それぞれの単独配合よりも位相差改善効果が優れることを見出した。これにより、耐熱性と光学特性が共に良好な光学フィルム、およびその光学フィルムを製造するための光学材料用樹脂組成物を見出すことに成功した。

Description

光学材料用樹脂組成物及び光学フィルム
 本発明は、光学材料用樹脂組成物及び光学フィルムに関する。
 アクリル系樹脂フィルムは、その優れた透明性と意匠性から各種光学部材に適用されている。また延伸を行っても複屈折がほとんど発現しないことから、近年では特にIPS(In-Plane-Switching)液晶用の偏光板保護フィルム(インナー)に多く用いられている。
 IPS液晶用偏光板保護フィルムとしての要求性能は、最表面フィルム(アウター)としては高靭性/低透湿/高耐熱が上げられ、内側のフィルム(インナー)としてはゼロ位相差/高耐熱が挙げられる。アクリル樹脂メーカーは、汎用のPMMA(Polymethyl methacrylate)樹脂はもちろんのこと、オリジナルな特殊アクリル樹脂の開発・上市を目指している(特許文献1、2)。
 アクリル樹脂の難点として、他の樹脂に比べて、偏光板保護フィルムとして求められる性能の一つである”耐熱性”が低いことが挙げられる。それゆえに特殊アクリル樹脂は高耐熱化を目指した設計になっていることが多いと推測される。しかしながら耐熱性と光学特性は多くはトレードオフの関係にあり、高耐熱化すると光学特性が悪化するという欠点があると言われている。すなわち、アクリル樹脂を高耐熱化すると複屈折発現が大きくなり、IPS液晶用途への適応が困難になる。
 また、光学材料用樹脂組成物の構成をアクリル樹脂+セルロース樹脂の組み合わせとすると、耐熱性は向上するものの、光学特性の改善については効果が確認できない(特許文献3)。さらに、光学材料用樹脂組成物の構成をアクリル樹脂+位相差制御剤の組み合わせとすると、光学特性の改善には一定の効果があるものの、不十分であり、また耐熱性が著しく低下するという課題がある(特許文献4)。
特開2016-188314号公報 特開2012-012594号公報 特開2014-081598号公報 国際公開第2015/046009号パンフレット
 本発明は、耐熱性と光学特性が共に良好な光学フィルム、およびその光学フィルムを製造するための光学材料用樹脂組成物を提供することを目的とする。
 本発明者らは、光学材料用樹脂組成物の構成をアクリル樹脂+位相差制御剤+セルロース樹脂の三元ブレンド系とすることで、耐熱性をある程度保持し、かつ、それぞれの単独配合よりも位相差改善効果が優れることを見出した。これにより、耐熱性と光学特性が共に良好な光学フィルム、およびその光学フィルムを製造するための光学材料用樹脂組成物を見出すことに成功した。
 すなわち、本発明は以下の(1)~(16)に関する。
(1)(メタ)アクリル樹脂(A)と、セルロース樹脂(B)と、位相差制御剤(C)とを含有することを特徴とする、光学材料用樹脂組成物。
(2)(メタ)アクリル樹脂(A)100質量部に対して、セルロース樹脂(B)を0.5~20質量部含有する、(1)に記載の光学材料用樹脂組成物。
(3)(メタ)アクリル樹脂(A)100質量部に対して、位相差制御剤(C)を0.5~20質量部含有する、(1)または(2)に記載の光学材料用樹脂組成物。
(4)(メタ)アクリル樹脂(A)が、メタクリル酸エステル単位を重合単位として含む、(1)から(3)のいずれか一項に記載の光学材料用樹脂組成物。
(5)セルロース樹脂(B)が、セルロースエステルを含有する、(1)から(4)のいずれか一項に記載の光学材料用樹脂組成物。
(6)セルロースエステルが、セルロースアセテートプロピオネートである、(5)に記載の光学材料用樹脂組成物。
(7)位相差制御剤(C)が、エステル系位相差制御剤である、(1)から(6)のいずれか一項に記載の光学材料用樹脂組成物。
(8)位相差制御剤(C)が、下記一般式(1)
Figure JPOXMLDOC01-appb-C000005
(式中、A、Aはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。X、Xはそれぞれ独立に2価の連結基である。)
で表される化合物、下記一般式(2)~(4)、
Figure JPOXMLDOC01-appb-C000006
(式中、Bはそれぞれ独立に炭素数6~18のアリールモノカルボン酸残基または炭素数1~8の脂肪族モノカルボン酸残基であり、Bは炭素原子数1~12の脂肪族モノアルコール残基であり、Gはそれぞれ独立に炭素数2~12のアルキレングリコール残基または炭素数4~12のオキシアルキレングリコール残基であり、Aはそれぞれ独立に炭素数2~12のアルキレンジカルボン酸残基または炭素数6~18のアリールジカルボン酸残基である。l、m、nは繰り返し数を表し、lは1~6、mは1~5、nは1~6である)
で表される化合物である、(1)から(6)のいずれか一項に記載の光学材料用樹脂組成物。
(9)位相差制御剤(C)が、下記一般式(1-1-1)
Figure JPOXMLDOC01-appb-C000007
(式中、R~Rは、それぞれ独立して炭素原子数1~3のアルキル基を表す。Zはそれぞれ芳香族基(a1)又は脂肪族基(a2)を表し、芳香族基(a1)はフェニル基又はパラトルイル基であり、脂肪族基(a2)はメチル基である。)
で表される化合物(C-1)、又は下記一般式(2)~(4)
Figure JPOXMLDOC01-appb-C000008
(式中、Bはそれぞれ独立に炭素数6~18のアリールモノカルボン酸残基または炭素数1~8の脂肪族モノカルボン酸残基であり、Bは炭素原子数1~12の脂肪族モノアルコール残基であり、Gはそれぞれ独立に炭素数2~12のアルキレングリコール残基または炭素数4~12のオキシアルキレングリコール残基であり、Aはそれぞれ独立に炭素数2~12のアルキレンジカルボン酸残基または炭素数6~18のアリールジカルボン酸残基である。l、m、nは繰り返し数を表し、1~6である)
で表される化合物(C-2)である、(1)から(6)のいずれか一項に記載の光学材料用樹脂組成物。
(10)芳香族基(a1)と脂肪族基(a2)の平均の存在比〔(a1)/(a2)〕は、モル比で99.9/0.1~80/20である、(9)に記載の光学材料用樹脂組成物。
(11)前記Aが炭素数6~18のアリールジカルボン酸残基である、(8)から(10)のいずれか一項に記載の光学材料用樹脂組成物。
(12)前記R~Rがそれぞれメチル基である、(8)から(11)のいずれか一項に記載の光学材料用樹脂組成物。
(13)前記(メタ)アクリル樹脂(A)がメタクリル酸メチルを用いて得られたものである、(1)から(12)のいずれか一項に記載の光学材料用樹脂組成物。
(14)(1)から(13)のいずれか一項に記載の光学材料用樹脂組成物を含有することを特徴とする光学フィルム。
(15)偏光板保護用である(14)に記載の光学フィルム。
(16)(14)または(15)に記載の光学フィルムを有することを特徴とする液晶表示装置。
 本発明によれば、光学材料用樹脂組成物の構成をアクリル樹脂+位相差制御剤+セルロース樹脂の三元ブレンド系とすることで、耐熱性と光学特性が共に良好な光学フィルム、およびその光学フィルムを製造するための光学材料用樹脂組成物を提供することができる。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。
〔光学材料用樹脂組成物〕
[(メタ)アクリル樹脂(A)]
 本発明で用いられる(メタ)アクリル樹脂(A)は、メタクリル酸エステル単位を用いて得られることが好ましい。具体的には、メタクリル酸エステル単位と必要に応じて他の重合性単量体を併用して重合させて得られることが好ましい。前記メタクリル酸エステルとしては、例えば、メタクリル酸シクロヘキシル、メタクリル酸t-ブチルシクロヘキシル、メタクリル酸メチル等が挙げられる。
 本発明で用いられる(メタ)アクリル樹脂(A)の中でも、メタクリル酸メチルを用いて得られた重合体が光学特性に優れるフィルムが得られ、しかも、経済性にも優れていることから好ましい。
 前記の他の重合性単量体としては、例えば、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル化合物類;アクリロニトリル、メタクリルニトリル等のシアン化ビニル類;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド類等が挙げられる。
 前記メタクリル酸エステル単位を重合させて(メタ)アクリル樹脂(A)として用いる重合体を得る場合、他の単量体としては、芳香族ビニル化合物類が耐熱性と経済性に優れる光学フィルムが得られることから好ましく、中でも、スチレン、α-メチルスチレンがより好ましい。ここで、芳香族ビニル化合物類の使用量は、メタクリル酸エステル100質量部に対し、1~50質量部が好ましく、2~30質量部がより好ましい。
 本発明で用いられる(メタ)アクリル樹脂(A)にメタクリル酸エステルを用いる場合、一種を単独で使用しても良いし、2種以上を併用しても良い。また、前記他の単量体を用いる場合についても単独で使用しても良いし、2種以上を併用しても良い。
 本発明で用いられる(メタ)アクリル樹脂(A)の重量平均分子量は、50,000~200,000が、強度のある光学フィルム等の成形品が得られ、且つ、流動性が十分で、成形加工性にも優れる樹脂組成物が得られることから好ましく、70,000~150,000がより好ましい。
 また、本発明で用いられる(メタ)アクリル樹脂(A)の数平均分子量は、15,000~100,000が好ましく、20,000~50,000がより好ましい。
 ここで、本発明において、重量平均分子量(Mw)及び数平均分子量(Mn)はゲルパーミエージョンクロマトグラフィー(GPC)測定に基づきポリスチレン換算した値である。なお、GPCの測定条件は以下の通りである。
[GPC測定条件]
 測定装置:東ソー株式会社製高速GPC装置「HLC-8320GPC」
 カラム:東ソー株式会社製「TSK GURDCOLUMN SuperHZ-L」+東ソー株式会社製「TSK gel SuperHZM-M」+東ソー株式会社製「TSK gel SuperHZM-M」+東ソー株式会社製「TSK gel SuperHZ-2000」+東ソー株式会社製「TSK gel SuperHZ-2000」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「EcoSEC Data Analysis バージョン1.07」
 カラム温度:40℃
 展開溶媒:テトラヒドロフラン
 流速:0.35mL/分
 測定試料:試料7.5mgを10mlのテトラヒドロフランに溶解し、得られた溶液をマイクロフィルターでろ過したものを測定試料とした。
 試料注入量:20μl
 標準試料:前記「HLC-8320GPC」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(単分散ポリスチレン)
 東ソー株式会社製「A-300」
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
 本発明で用いられる(メタ)アクリル樹脂(A)を製造する方法としては、例えば、キャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、アニオン重合等の種々の重合方法を用いることができる。製造方法の中でも、塊状重合や溶液重合が、微小な異物の混入が少ない重合体が得られることから好ましい。溶液重合を行う場合には、原料の混合物をトルエン、エチルベンゼン等の芳香族炭化水素の溶媒に溶解して調製した溶液を用いることができる。塊状重合により重合させる場合には、通常行われるように加熱により生じる遊離ラジカルや電離性放射線照射により重合を開始させることができる。
 前記重合反応に用いられる開始剤としては、一般にラジカル重合において用いられる任意の開始剤を使用することができ、例えば、アゾビスイソブチルニトリル等のアゾ化合物;ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート等の有機過酸化物等が用いられる。重合する際に、90℃以上の高温下で重合を行わせる場合には、溶液重合が一般的であるので、10時間半減期温度が80℃以上でかつ用いる有機溶媒に可溶である過酸化物、アゾビス開始剤などが好ましく、具体的には1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、シクロヘキサンパーオキシド、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、1,1-アゾビス(1-シクロヘキサンカルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル等を挙げることができる。これらの開始剤は0.005~5質量%の範囲で用いられる。
 本発明で用いられる(メタ)アクリル樹脂(A)を重合する際には、必要に応じて分子量調整剤を使用しても良い。前記分子量調節剤は、一般的なラジカル重合において用いる任意のものが使用され、例えば、ブチルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン、チオグリコール酸2-エチルヘキシル等のメルカプタン化合物が特に好ましいものとして挙げられる。これらの分子量調節剤は、重合度が上記の範囲内に制御されるような濃度範囲で添加される。
[セルロース樹脂(B)]
 本発明で用いられるセルロース樹脂(B)は、セルロースエステルを含有していることが好ましい。
 セルロースエステルとしては、特に限定されないが、例えば、芳香族カルボン酸エステル、セルロースの脂肪酸エステル等が挙げられ、特に、セルロースの低級脂肪酸エステル(例えば、炭素数1~5の脂肪酸エステル)が好ましい。
 セルロースの脂肪酸エステルとしては、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースピバレート、セルロースアセテートアシレート、セルロース混酸エステル[例えば、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースアセテートアシレート(セルロースアセテートC3-5アシレートなど)など]などが挙げられる。これらの中でも、セルロースアセテートC3-5アシレートを好適に使用してもよい。これらは1種又は2種以上を使用することができる。
 セルロース樹脂(B)の数平均分子量(Mn)は、50,000~150,000が好ましく、55,000~120,000がより好ましく、60,000~100,000がさらに好ましい。また、該セルロース樹脂(B)の重量平均分子量(Mw)/数平均分子量(Mn)比は、1.3~5.5が好ましく、1.5~5.0がより好ましく、1.7~4.0がさらに好ましく、2.0~3.5が最も好ましい。尚、Mw及びMnは、GPCによりポリスチレン換算で算出した値である。これらの範囲であれば、(メタ)アクリル樹脂との相溶性が良好であり、かつ、可撓性にも優れるため、好ましい。
 セルロース樹脂(B)の置換度は、特に限定されないが、例えば、2~3程度であってもよい。また、セルロースアセテートアシレートにおいて、アセチル置換度は、例えば0.1~2.0であり、好ましくは0.1~1.0である。また、アシル置換度(例えば、C3-5アシル基置換度)は、例えば1.0~2.9であり、好ましくは2.0~2.9である。この場合、(メタ)アクリル樹脂(A)との相溶性が良好である。
 なお、本発明の光学材料用樹脂組成物中のセルロース樹脂(B)の含有量は、(メタ)アクリル樹脂100質量部に対して0.5~20質量部であることが好ましく、1~15質量部がより好ましく、2~10質量部がさらに好ましい。
[位相差制御剤(C)]
 本発明で用いられる位相差制御剤は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式中、A、Aはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。X、Xはそれぞれ独立に2価の連結基である。)
で表される化合物、下記一般式(2)~(4)
Figure JPOXMLDOC01-appb-C000010
(式中、Bはそれぞれ独立に炭素数6~18のアリールモノカルボン酸残基または炭素数1~8の脂肪族モノカルボン酸残基であり、Bは炭素原子数1~12の脂肪族モノアルコール残基であり、Gはそれぞれ独立に炭素数2~12のアルキレングリコール残基または炭素数4~12のオキシアルキレングリコール残基であり、Aはそれぞれ独立に炭素数2~12のアルキレンジカルボン酸残基または炭素数6~18のアリールジカルボン酸残基である。l、m、nは繰り返し数を表し、1~6である)
で表される化合物、または欧州特許911,6556A2号明細書に記載されているような、2以上の芳香族環を有する芳香族化合物、特開2006-2025号公報に記載の棒状化合物、特開2017-72775号公報に記載のピラゾール系化合物であることが好ましい。すなわち、上記の一般式(1)~(4)で表される化合物の他、以下の式
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024

Figure JPOXMLDOC01-appb-I000025

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031

Figure JPOXMLDOC01-appb-I000032

Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034

Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037

Figure JPOXMLDOC01-appb-I000038

Figure JPOXMLDOC01-appb-I000039

Figure JPOXMLDOC01-appb-I000040

で表される化合物、Ar1-L1-Ar2で表される化合物、
(式中、Ar1及びAr2は、それぞれ独立に、芳香族基であり、L1は、アルキレン基、アルケニレン基、アルキニレン基、-O-、-CO-及びそれらの組み合わせからなる群より選ばれる2価の連結基である)または以下の式で表される化合物
Figure JPOXMLDOC01-appb-C000041
(式中、Aはピラゾール環を表し、Ar及びArはそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。Rは水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表し、qは1~2の整数を表し、n及びmは1~3の整数を表す。)が好ましい。
 上記一般式Ar1-L1-Ar2において、Ar1及びAr2は、それぞれ独立に、芳香族基である。本明細書において芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基を含む。これらの芳香族基では、アリール基及び置換アリール基が、好ましい。
 アリール基(芳香族性炭化水素基)の芳香族環としては、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。これらの芳香族環は単一であってもよく、2つ以上が連結していても良い。例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、インデン環、ビフェニル、テルフェニルなどが挙げられる。これらの中で特に好ましいのがベンゼン環である。
 芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。芳香族性へテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子又は硫黄原子が好ましく、窒素原子又は硫黄原子がさらに好ましい。芳香族性へテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、及び1,3,5-トリアジン環が含まれる。
 芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環及びピラジン環が好ましく、ベンゼン環が特に好ましい。
 置換アリール基及び置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基(例えば、メチルアミノ、エチルアミノ、ブチルアミノ、ジメチルアミノ)、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基(例えば、N-メチルカルバモイル、N-エチルカルバモイル、N,N-ジメチルカルバモイル)、スルファモイル、アルキルスルファモイル基(例えば、N-メチルスルファモイル、N-エチルスルファモイル、N,N-ジメチルスルファモイル)、ウレイド、アルキルウレイド基(例えば、N-メチルウレイド、N,N-ジメチルウレイド、N,N,N’-トリメチルウレイド)、アルキル基(例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘプチル、オクチル、イソプロピル、s-ブチル、t-アミル、シクロヘキシル、シクロペンチル)、アルケニル基(例えば、ビニル、アリル、ヘキセニル)、アルキニル基(例えば、エチニル、ブチニル)、アシル基(例えば、ホルミル、アセチル、ブチリル、ヘキサノイル、ラウリル)、アシルオキシ基(例えば、アセトキシ、ブチリルオキシ、ヘキサノイルオキシ、ラウリルオキシ)、アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘプチルオキシ、オクチルオキシ)、アリールオキシ基(例えば、フェノキシ)、アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカルボニル、ヘプチルオキシカルボニル)、アリールオキシカルボニル基(例えば、フェノキシカルボニル)、アルコキシカルボニルアミノ基(例えば、ブトキシカルボニルアミノ、ヘキシルオキシカルボニルアミノ)、アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ、ペンチルチオ、ヘプチルチオ、オクチルチオ)、アリールチオ基(例えば、フェニルチオ)、アルキルスルホニル基(例えば、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル、ヘプチルスルホニル、オクチルスルホニル)、アミド基(例えば、アセトアミド、ブチルアミド基、ヘキシルアミド、ラウリルアミド)及び非芳香族性複素環基(例えば、モルホリル、ピラジニル)が含まれる。
 置換アリール基及び置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ、カルボキシル、ヒドロキシル、アミノ、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基及びアルキル基が好ましい。アルキルアミノ基、アルコキシカルボニル基、アルコキシ基及びアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分及びアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基及び非芳香族性複素環基が含まれる。アルキル部分及びアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基及びアルコキシ基が好ましい。
 前記一般式Ar1-L1-Ar2において、L1は、アルキレン基、アルケニレン基、アルキニレン基、-O-、-CO-及びそれらの組み合わせからなる群より選ばれる2価の連結基である。アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4-シクロへキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。アルキレン基の炭素原子数は、1~20であることが好ましく、1~15であることがより好ましく、1~10であることがさらに好ましく、1~8であることが特に好ましく、1~6であることが最も好ましい。
 アルケニレン基及びアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。アルケニレン基及びアルキニレン基の炭素原子数は、2~10であることが好ましく、2~8であることがより好ましく、2~6であることがさらに好ましく、2~4であることが特に好ましく、2(ビニレン又はエチニレン)であることが最も好ましい。
 組み合わせからなる2価の連結基の例を示す。
 L-1:-O-CO-アルキレン基-CO-O-
 L-2:-CO-O-アルキレン基-O-CO-
 L-3:-O-CO-アルケニレン基-CO-O-
 L-4:-CO-O-アルケニレン基-O-CO-
 L-5:-O-CO-アルキニレン基-CO-O-
 L-6:-CO-O-アルキニレン基-O-CO-
 一般式Ar1-L1-Ar2の分子構造において、L1を挟んで、Ar1とAr2とが形成する角度は、140゜以上であることが好ましい。棒状化合物としては、一般式Ar1-L2-X-L3-Ar2で表される化合物がさらに好ましい。
 一般式Ar1-L2-X-L3-Ar2において、Ar1及びAr2は、それぞれ独立に、芳香族基である。芳香族基の定義及び例は、一般式Ar1-L1-Ar2のAr1及びAr2と同様である。
 一般式Ar1-L2-X-L3-Arにおいて、L2及びL3は、それぞれ独立に、アルキレン基、-O-、-CO-及びそれらの組み合わせからなる群より選ばれる2価の連結基である。アルキレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。アルキレン基の炭素原子数は、1~10であることが好ましく、1~8であることがより好ましく、1~6であることがさらに好ましく、1~4であることが特に好ましく、1又は2(メチレン又はエチレン)であることが最も好ましい。L2及びL3は、-O-CO-又は-CO-O-であることが特に好ましい。
 一般式Ar1-L2-X-L3-Arにおいて、Xは、1,4-シクロへキシレン、ビニレン又はエチニレンである。以下に、一般式Ar1-L1-Ar2で表される化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-I000043

Figure JPOXMLDOC01-appb-I000044

Figure JPOXMLDOC01-appb-I000045

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047

Figure JPOXMLDOC01-appb-I000048

Figure JPOXMLDOC01-appb-I000049

Figure JPOXMLDOC01-appb-I000050
 下記の式
Figure JPOXMLDOC01-appb-C000051
のAr及びArで表される芳香族炭化水素環又は芳香族複素環の構造に制限はないが、例えば、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、テトラゾール環、フラン環、オキサゾール環、イソオキサゾール環、オキサジアゾール環、イソオキサジアゾール環、チオフェン環、チアゾール環、イソチアゾール環、チアジアゾール環、イソチアジアゾール環等が挙げられる。
 上記の置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、芳香族炭化水素環基(フェニル基、p-トリル基、ナフチル基等)、芳香族複素環基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基、トリアジン基、ピラゾール基、1,2,3-トリアゾール基、1,2,4-トリアゾール基、オキサゾール基、イソオキサゾール基、1,2,4-オキサジアゾール基、1,3,4-オキサジアゾール基、チアゾール基、イソチアゾール基、1,2,4-チオジアゾール基、1,3,4-チアジアゾール基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’-フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)等の各基が挙げられる。
 Rの具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、アシル基(アセチル基、ピバロイルベンゾイル基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アルキルオキシカルボニル基(例えば、メトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)等が挙げられる。
 これらの中でも、下記一般式(1)
Figure JPOXMLDOC01-appb-C000052
(式中、A、Aはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。X、Xはそれぞれ独立に2価の連結基である。)
で表される化合物、下記一般式(2)~(4)
Figure JPOXMLDOC01-appb-C000053
(式中、Bはそれぞれ独立に炭素数6~18のアリールモノカルボン酸残基または炭素数1~8の脂肪族モノカルボン酸残基であり、Bは炭素原子数1~12の脂肪族モノアルコール残基であり、Gはそれぞれ独立に炭素数2~12のアルキレングリコール残基または炭素数4~12のオキシアルキレングリコール残基であり、Aはそれぞれ独立に炭素数2~12のアルキレンジカルボン酸残基または炭素数6~18のアリールジカルボン酸残基である。l、m、nは繰り返し数を表し、1~6である)
で表される化合物が好ましい。
 また、前記一般式(1)で表される化合物の中でも、下記一般式(1-1)または一般式(1-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000054
(式中、L、Lはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。)
 上記で挙げられた本発明で用いられる位相差制御剤の中でも、下記一般式(1-1-1)
Figure JPOXMLDOC01-appb-C000055
(式中、R~Rは、それぞれ独立して炭素原子数1~3のアルキル基を表す。Zはそれぞれ芳香族基(a1)又は脂肪族基(a2)を表し、芳香族基(a1)はフェニル基又はパラトルイル基であり、脂肪族基(a2)はメチル基である。)
で表される化合物(C-1)であることがより好ましい。この化合物は、上記の式(1-1-1)で示されるように、ビフェノール骨格を含む。ビフェニル骨格を有することにより(メタ)アクリル樹脂の位相差を正の方向へ大きくするという効果が期待できる。また、末端が前記Zで封止されていることにより、保存安定性等の安定性に優れた樹脂組成物となる。また、芳香族基(a1)と脂肪族基(a2)の平均の存在比〔(a1)/(a2)〕は、モル比で99.9/0.1~80/20であることが好ましい。
 前記本発明で用いる(ビフェノール骨格を含む)化合物(C-1)中のZは同一のものでも良いし、異なっていても良い。
 前記一般式(1-1-1)で表される化合物は、例えば、ビフェニル骨格を有するエポキシ化合物と、酢酸、安息香酸、及び/またはパラトルイル酸とを反応させることにより得ることができる。
 前記ビフェニル骨格を有するエポキシ化合物としては、例えば、ビフェノール類とエピクロルヒドリンとの反応によって得られるジグリシジルエーテル型のエポキシ化合物等が挙げられる。このエポキシ化合物の具体的な例として、3,3’,5,5’-テトラメチル-4,4’-ジグリシジルオキシビフェニル(市販品では、三菱ケミカル株式会社製「jER YX-4000」(エポキシ当量180~192))等のビフェノール型エポキシ化合物を使用できる。
 前記エポキシ化合物のエポキシ基と、酢酸、安息香酸、パラトルイル酸のカルボキシル基との反応において、必要に応じて触媒を用いてもよい。この触媒としては、例えば、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン等のホスフィン化合物;2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-エチル-4-メチルイミダゾール、4-フェニル-2-メチルイミダゾール等のイミダゾール系化合物;トリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリアミルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリアチレンジアミン、ジメチルフェニルアミン、ジメチルベンジルアミン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)ウンデセン-7等のアミン化合物;ジメチルアミノピリジン等のピリジン化合物などが挙げられる。これらの触媒は、前記エポキシ化合物及び酢酸、安息香酸、パラトルイル酸の合計100質量部に対して0.05~1質量部使用することが好ましい。
 前記一般式(1-1-1)で表される化合物の中でも、Zがフェニル基又はトリル基のものが、(メタ)アクリル樹脂に対する相溶性が良好なことから好ましい。
 更に、前記一般式(1)、(1-1)、(1-2)、(1-1-1)で表される化合物において、R~Rは、それぞれメチル基が(メタ)アクリル樹脂(A)との相溶性に優れる化合物となることから好ましい。
 本発明で用いる前記一般式(1)、(1-1)、(1-2)で表される化合物、および化合物(C-1)の性状は、組成などの要因により異なるが、通常、常温にて液体、固体、ペースト状などである。
 本発明の光学材料用樹脂組成物中の前記一般式(1)、(1-1)、(1-2)で表される化合物、および化合物(C-1)の含有量は、使用する(メタ)アクリル樹脂(A)の有する耐熱性および位相差の大きさにもよるが、樹脂組成物の耐熱性と位相差制御の両立を達成するという観点から前記(メタ)アクリル樹脂100質量部に対して0.5~20質量部であることが好ましく、1~15質量部がより好ましく、2~8質量部がさらに好ましい。
 また、上記で挙げられた本発明で用いられる位相差制御剤の中でも、下記一般式(2)~(4)で表される化合物(C-2)であることもまた、より好ましい。
Figure JPOXMLDOC01-appb-C000056
(式中、Bはそれぞれ独立に炭素数6~18のアリールモノカルボン酸残基または炭素数1~8の脂肪族モノカルボン酸残基であり、Bは炭素原子数1~12の脂肪族モノアルコール残基であり、Gはそれぞれ独立に炭素数2~12のアルキレングリコール残基または炭素数4~12のオキシアルキレングリコール残基であり、Aはそれぞれ独立に炭素数2~12のアルキレンジカルボン酸残基または炭素数6~18のアリールジカルボン酸残基である。l、m、nは繰り返し数を表し、1~6である)
 本発明の光学材料用樹脂組成物中の化合物(C-2)の含有量は、使用する(メタ)アクリル樹脂(A)100質量部に対して0.5~20質量部であることが好ましく、1~15質量部がより好ましく、2~10質量部がさらに好ましい。
 前記一般式(2)で表される化合物は、例えば、ジメチルテレフタレートと、プロピレングリコールとを反応させることにより得ることができる。
 前記ジメチルテレフタレートと、プロピレングリコールとの反応において、必要に応じて触媒を用いてもよい。この触媒としては、例えば、テトライソプロポキシチタン、テトライソプロピルチタネートや酢酸亜鉛などが挙げられる。
〔光学フィルム〕
 本発明の光学フィルムは、前記本発明の光学材料用樹脂組成物を含有することを特徴とする。本発明の光学フィルムは、フィルムの耐熱性が良好であり、フィルムの位相差を任意の大きさに調整が可能である特徴を有する。本発明の光学フィルムは熱に対する安定性に優れるため、熱に対する寸法変化が小さく、それゆえに複屈折の変化率が小さい。また、位相差を任意の値に調整することができるため、種々の液晶表示装置を提供することができる。
 本発明の光学材料用樹脂組成物を用いることにより、種々の光学用の成形体の製造に用いる事ができる。中でも、フィルム状の成形体(光学フィルム)を製造するのに本発明の光学材料用樹脂組成物を用いることができる。前記光学フィルムにおいて、例えば、少なくとも一軸方向に延伸されており、位相差の絶対値が4(nm)以下である光学フィルムは、特にIPS液晶用偏光板保護フィルムに好適に用いることができる。前記位相差フィルムとしては、位相差の絶対値が2(nm)以下である光学フィルムが好ましく、位相差の絶対値が1(nm)以下である光学フィルムがより好ましい。また位相差制御剤やセルロース樹脂の量、TD方向とMD方向の延伸倍率を適宜調整することにより、複屈折の大きな位相差フィルムも得ることができる。
 本発明の光学材料用樹脂組成物には、前記(メタ)アクリル樹脂(A)やセルロース樹脂(B)以外の重合体を、本発明の目的を損なわない範囲で混合することができる。前記(メタ)アクリル樹脂(A)やセルロース樹脂(B)以外の重合体としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリスチレン、スチレンアクリロニトリル共重合体等のスチレン系樹脂;ポリアミド、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、ポリアセタール等の熱可塑性樹脂;及びフェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂等が挙げられる。これらは1種類を混合しても良いし、2種以上を混合しても良い。
 さらに、本発明の効果を著しく損なわない範囲内で、各種目的に応じて任意の添加剤を配合することができる。添加剤の種類は,樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。添加剤としては、例えば、無機充填剤、酸化鉄等の顔料;ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤;離型剤;パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤・可塑剤;ヒンダードフェノール系酸化防止剤、りん系熱安定剤、ラクトン系熱安定剤、ビタミンE系熱安定剤等の酸化防止剤;ヒンダードアミン系光安定剤、ベンゾエート系光安定剤等の光安定剤;ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;難燃剤;帯電防止剤;有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤;着色剤、その他添加剤或いはこれらの混合物等が挙げられる。
 本発明の光学材料用樹脂組成物は、例えば、前記(メタ)クリル樹脂(A)、セルロース樹脂(B)及び化合物(C-1)または(C-2)とを含有することが好ましいが、その製造方法は特に制限がない。具体的には、例えば、前記(メタ)アクリル樹脂(A)、セルロース樹脂(B)及び化合物(C-1)または(C-2)と、必要に応じて上記添加剤を単軸押出機、二軸押出機、バンバリーミキサー、ブラベンダー、各種ニーダー等の溶融混練機を用いて溶融混練する方法により得ることができる。
 本発明の光学フィルムは、本発明の光学材料用樹脂組成物を含有することを特徴とする。本発明の光学フィルムを得るには、例えば、押し出し成形、キャスト成形等の手法が用いられる。具体的には、例えば、Tダイ、円形ダイ等が装着された押出機等を用いて、未延伸状態の光学フィルムを押し出し成形することができる。押し出し成形により本発明の光学フィルムを得る場合は、例えば、事前に前記(メタ)クリル樹脂(A)、セルロース樹脂(B)及び位相差制御剤(C)を溶融混錬して得られる本発明の光学材料用樹脂組成物を用いることもできれば、押し出し成形時に(メタ)アクリル樹脂(A)、セルロース樹脂(B)及び位相差制御剤(C)とを溶融混錬し、そのまま押し出し成形することもできる。また、例えば、前記(メタ)アクリル樹脂(A)、セルロース樹脂(B)及び位相差制御剤(C)を溶解する溶媒を用いて、前記(メタ)アクリル樹脂(A)、セルロース樹脂(B)及び位相差制御剤(C)を該溶媒中に溶解し、いわゆるドープ液を得たうえで、キャスト成形する溶液流延法(ソルベントキャスト法)により未延伸状態の本発明の光学フィルムを得ることもできる。
 以下に、溶液流延法について、詳述する。溶液流延法で得られる光学フィルムは、実質的に光学等方性を示す。前記光学等方性を示すフィルムは、例えば液晶ディスプレイなどの光学材料に使用することができ、中でも偏光板用保護フィルムに有用である。また、前記方法によって得られたフィルムは、その表面に凹凸が形成されにくく、表面平滑性に優れる。
 前記溶液流延法は、一般に、例えば、前記(メタ)アクリル樹脂(A)、セルロース樹脂(B)及び位相差制御剤(C)とを有機溶剤中に溶解させ、得られた樹脂溶液を金属支持体上に流延させる第1工程と、流延させた前記樹脂溶液中に含まれる有機溶剤を留去し乾燥させてフィルムを形成する第2工程、それに続く、金属支持体上に形成されたフィルムを金属支持体から剥離し加熱乾燥させる第3工程からなる。
 前記第1工程で使用する金属支持体としては、無端ベルト状又はドラム状の金属製のものなどを例示でき、例えば、ステンレス製でその表面が鏡面仕上げの施されたものを使用することができる。
 前記金属支持体上に樹脂溶液を流延させる際には、得られるフィルムに異物が混入することを防止するために、フィルターで濾過した樹脂溶液を使用することが好ましい。
 前記第2工程の乾燥方法としては、特に限定しないが、例えば30~50℃の温度範囲の風を前記金属支持体の上面及び/又は下面に当てることで、流延した前記樹脂溶液中に含まれる有機溶剤の50~80質量%を蒸発させ、前記金属支持体上にフィルムを形成させる方法が挙げられる。
 次いで、前記第3工程は、前記第2工程で形成されたフィルムを金属支持体上から剥離し、前記第2工程よりも高い温度条件下で加熱乾燥させる工程である。前記加熱乾燥方法としては、例えば100~160℃の温度条件にて段階的に温度を上昇させる方法が、良好な寸法安定性を得ることができるため、好ましい。前記温度条件にて加熱乾燥することにより、前記第2工程後のフィルム中に残存する有機溶剤をほぼ完全に除去することができる。
 尚、前記第1工程~第3工程で、有機溶媒は回収し再使用することも可能である。
 例えば、前記(メタ)アクリル樹脂(A)、セルロース樹脂(B)及び位相差制御剤(C)を有機溶剤に混合させ溶解する際に使用できる有機溶剤としては、それらを溶解可能なものであれば特に限定しないが、例えば、クロロホルム、二塩化メチレン、塩化メチレン等の溶媒を挙げることができる。
 前記樹脂溶液中の(メタ)アクリル樹脂(A)の濃度は、10~50質量%が好ましく、15~35質量%がより好ましい。
 本発明の光学フィルムの膜厚は、20~120μmの範囲が好ましく、25~100μmの範囲がより好ましく、25~80μmの範囲が特に好ましい。
 本発明においては、例えば、前記の方法で得られる未延伸状態の光学フィルムを必要に応じて、機械的流れ方向に縦一軸延伸、機械的流れ方向に直行する方向に横一軸延伸することで延伸された光学フィルムを得ることができる。また、ロール延伸とテンター延伸の逐次2軸延伸法、テンター延伸による同時2軸延伸法、チューブラー延伸による2軸延伸法等によって延伸することにより2軸延伸された延伸フィルムを得ることができる。延伸倍率は少なくともどちらか一方向に0.1%以上1000%以下であることが好ましく、0.2%以上600%以下であることがさらに好ましく、0.3%以上300%以下であることがとりわけ好ましい。この範囲に設計することにより、複屈折、耐熱性、強度の観点で好ましい延伸された光学フィルムが得られる。
 本発明に係る光学フィルムは、光学材料として、液晶表示装置、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等のディスプレイに用いられる偏光板保護フィルム、1/4波長板、1/2波長板、視野角制御フィルム、液晶光学補償フィルム等の位相差フィルム、ディスプレイ前面板等に好適に用いることができる。また、本発明の光学材料用樹脂組成物は、その他にも、光通信システム、光交換システム、光計測システムの分野において、導波路、レンズ、光ファイバー、光ファイバーの基材、被覆材料、LEDのレンズ、レンズカバーなどにも用いることができる。
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
<分子量の測定法>
 分子量は、テトラヒドロフラン(THF)溶媒を用い、示差屈折検出によるゲルパーミエージョンクロマトグラフィー(GPC)により行った。
<光学特性の評価方法>
 23℃かつ相対湿度55%で2時間以上静置し,複屈折測定装置(KOBRA-WR,王子計測器(株)製)を用いて波長590nmにおける面内位相差(Re値),面外位相差(Rth値)を測定した。
<透明性の評価方法>
 40mm角の試験片をHAZEメーターNDH-5000(日本電色工業製)にて、HAZE値の測定を行った。得られたHAZE値が小さいほど、透明性に優れることを示す。
<耐熱性の評価方法>
 動的粘弾性測定装置により、測定したtanδのピークトップ値における温度をTgと定義し、その大きさを評価した。
<フィルムの熱延伸方法と条件>
 55mm角の試験片を井元製作所(製)の二軸延伸機を用いて、下記条件にて熱延伸を行った。
・倍率:1.5倍、速度:50%/min、温度:(DMA測定のtanδピークトップを与える温度)-12 ℃
・自由一軸延伸
<フィルム中の添加剤の配向度の算出方法>
 円二色性赤外偏光分光測定装置(Nicolet iS10;サーモフィッシャー製)を用いて、フィルム組成物中の位相差制御剤の特定ピークについて、延伸方向に対して平行方向(0°)と垂直方向(90°)の吸光度を測定し、以下の定義式を用いて位相差制御剤の配向度を算出した。
Figure JPOXMLDOC01-appb-M000057
 式中、D:赤外二色比(吸光度(0°)/吸光度(90°))
    D0:完全配向時の赤外二色比,2cot(α)
    α:分子鎖軸に対する結合(遷移)モーメント角
<光弾性係数の測定方法>
 本発明の光学フィルムの一例として溶液キャスト法で得られた未延伸光学フィルムを用い、この光学フィルムを延伸方向に幅20mmで切り抜き、測定サンプルを得る。この測定サンプルを光弾性係数測定機器(ユニオプト社製)に固定し、0~10Nまで測定サンプルを引っ張る際の加重を変化させる。各々の加重をかけた際の面内位相差をそれぞれ測定する。測定条件は23℃、相対湿度55%雰囲気下で行う。かけた加重に対して測定された位相差をプロットし、得られたグラフの傾き(Δ)から、下記の換算式を用いることで光弾性係数(C)が得られる。
[×10-12Pa-1]=Δ×L/9.8×10-9
(L:試片の幅[mm]、Δ:直線の傾き)
 合成例1(エステル樹脂C-2-1)
 温度計、攪拌機、及び還流冷却器を付した内容量3Lの四つ口フラスコに、テレフタル酸メチルを463gと、安息香酸を648gと、プロピレングリコールを410gと、テトライソプロポキシチタンを0.091gとを仕込んだ後、窒素気流下で攪拌しながら、220℃になるまで段階的に昇温し、合計17時間縮合反応させた。反応後に未反応のプロピレングリコールを減圧除去することで、常温高粘度液体であるエステル化合物(C-2-1)を得た。この化合物の酸価は0.1、水酸基価は8、数平均分子量(Mn)は430であった。
 合成例2(エステル樹脂C-2-2)
 温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四つ口フラスコに、テレフタル酸ジメチルを554g、プロピレングリコールを476g、パラトルイル酸を817g、エステル化触媒としてテトライソプロピルチタネートを0.13gを仕込み、窒素気流下で攪拌しながら、220℃になるまで段階的に昇温し、計19時間縮合反応させた。反応後に未反応のプロピレングリコールを減圧除去することで、常温高粘度液体であるエステル化合物(C-2-2)を得た。この化合物の酸価は0.2、水酸基価は11、数平均分子量(Mn)は500であった。
 合成例3(エステル樹脂C-2-3)
 温度計、攪拌器、及び還流冷却器を付した内容積2リットルの四つ口フラスコに、2,6-ナフタレンジカルボン酸ジメチルを733g、プロピレングリコールを685g、エステル化触媒として酢酸亜鉛を0.09g仕込み、窒素気流下で攪拌しながら、210℃になるまで段階的に昇温し、合計20時間縮合反応させた。反応後に未反応のプロピレングリコールを減圧除去することで、常温高粘度液体であるエステル化合物(C-2-3)を得た。この化合物の酸価は0.3、水酸基価は184、数平均分子量(Mn)は640であった。
 合成例4(エステル樹脂C-2-4)
 温度計、攪拌器、及び還流冷却器を付した内容積1リットルの四つ口フラスコに、2,6-ナフタレンジカルボン酸を973g、テレフタル酸を83g、プロピレングリコールを496g、トリエチレングリコールを109g、エステル化触媒として酢酸亜鉛を0.10g仕込み、窒素気流下で攪拌しながら、210℃になるまで段階的に昇温し、合計20時間縮合反応させた。反応後に未反応のグリコール成分を減圧除去することで、常温高粘度液体であるエステル化合物(C-2-4)を得た。この化合物の酸価は0.2、水酸基価は65、数平均分子量(Mn)は910であった。
 合成例5(エステル樹脂C-2-5)
 温度計、攪拌機、及び還流冷却器を付した内容量2Lの四つ口フラスコに、テレフタル酸ジメチルを699gと、安息香酸を293gと、プロピレングリコールを416gと、テトライソプロポキシチタンを0.09gとを仕込んだ後、窒素気流下で攪拌しながら、220℃になるまで段階的に昇温し、合計17時間縮合反応させた。反応後に未反応のプロピレングリコールを減圧除去することで、常温高粘度液体であるエステル化合物(C-2-5)を得た。この化合物の酸価は0.1、水酸基価は12、数平均分子量(Mn)は790であった。
 合成例6(エステル化合物C-2-6)
 温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四つ口フラスコに、テレフタル酸ジメチルを971g、プロピレングリコールを1141g、エステル化触媒としてテトライソプロピルチタネートを0.13gを仕込み、窒素気流下で攪拌しながら、190℃になるまで段階的に昇温し、計15時間縮合反応させた。反応後に未反応のプロピレングリコールを減圧除去することで、常温高粘度液体であるエステル化合物(C-2-6)を得た。この化合物の酸価は0.1、水酸基価は270、数平均分子量(Mn)は500であった。
 合成例7(エステル化合物C-2-7)
 温度計、攪拌器、及び還流冷却器を付した内容積0.5リットルの四つ口フラスコに、テレフタル酸ジメチルを87g、4,4’-ビフェニルジカルボン酸ジメチルを122gプロピレングリコールを205g、エステル化触媒としてテトライソプロピルチタネートを0.03gを仕込み、窒素気流下で攪拌しながら、200℃になるまで段階的に昇温し、計18時間縮合反応させた。反応後に未反応のプロピレングリコールを減圧除去することで、常温高粘度液体であるエステル化合物(C-2-7)を得た。この化合物の酸価は0.2、水酸基価は240、数平均分子量(Mn)は550であった。
 合成例8(エステル化合物C-1-1)
 温度計、撹拌器及び還流冷却器を付した内容量3Lの四つ口フラスコに、テトラメチルビフェノール型エポキシ樹脂(エポキシ当量191g/eq.)を1337g、パラトルイル酸を905g、溶媒としてメチルイソブチルケトンを449g、触媒としてトリフェニルホスフィンを2gを加えて、115℃で9時間反応させた。続いて、酢酸を56g加え、140℃まで昇温し4時間反応させた。未反応原料および溶媒を140℃にて除去して、エステル化合物(C-1-1)を得た。この化合物の酸価は0.4、水酸基価は172、エポキシ当量は35万g/eq.数平均分子量(Mn)は690であった。
 実施例1
 (メタ)アクリル樹脂A(三菱ケミカル社製PMMA系アクリル樹脂;アクリペットV)100質量部に対し、メチレンクロライド270質量部、メタノール30質量部および本発明の位相差制御剤(C-2-1)を5質量部、ならびにセルロース樹脂(セルロースアセテートプロピオネート;CAP)を10質量部加えて溶解し、ドープ液を得た。ドープ液をガラス板上に流延し、溶媒を留去する(乾燥する)ことで膜厚約60μmのフィルムを得た。得られたフィルムの透明性、耐熱性を上述の方法に従って評価した。評価結果を第1表に示す。また、各フィルムの熱延伸を上述の方法・条件にて行い、得られた延伸フィルムの光学特性を評価した。結果を同様に第1表に示す。
 実施例2~32
 位相差制御剤の添加部数および種類、またセルロース樹脂の添加部数を表に記載の通りに配合し、実施例1と同様にしてフィルムを得た。実施例1と同様にして評価を行った。その結果を第1~8表に示す。
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
 実施例33~64
 実施例1において、CAPの代わりにCAB(セルロースアセテートブチレート)を用いる以外は、実施例1と同様にして、第4~6表に示す配合割合でフィルムを得、それを評価した。結果を第9~16表に示す。
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
 比較例1
 (メタ)アクリル樹脂A100質量部に対し、メチレンクロライド270質量部、メタノール30質量部加えて溶解し、ドープ液を得た。ドープ液をガラス板上に流延し、溶媒を留去する(乾燥する)ことで膜厚約60μmのフィルムを得た。得られたフィルムの透明性、耐熱性を上述の方法に従って評価した。評価結果を第2表に示す。また、熱延伸を上述の方法・条件にて行い、得られた延伸フィルムの光学特性を評価した。結果を同様に第17表に示す。
 比較例2~23
 位相差制御剤の添加部数および種類、またセルロース樹脂の添加部数を表に記載の通りに配合し、比較例1と同様にしてフィルムを得た。比較例1と同様にして評価を行った。その結果を第17~22表に示す。
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
 (メタ)アクリル樹脂/位相差制御剤/セルロース樹脂の三元配合系による位相差改善は、フィルム組成物中の位相差制御剤の配向度が高くなっていることからセルロース樹脂が位相差制御剤の配向を助長する“配向助剤”としての役割を担っていると推測される。

Claims (16)

  1.  (メタ)アクリル樹脂(A)と、
    セルロース樹脂(B)と、
    位相差制御剤(C)と、を含有することを特徴とする、光学材料用樹脂組成物。
  2.  (メタ)アクリル樹脂(A)100質量部に対して、セルロース樹脂(B)を0.5~20質量部含有する、請求項1に記載の光学材料用樹脂組成物。
  3.  (メタ)アクリル樹脂(A)100質量部に対して、位相差制御剤(C)を0.5~20質量部含有する、請求項1または2に記載の光学材料用樹脂組成物。
  4.  (メタ)アクリル樹脂(A)が、メタクリル酸エステル単位を重合単位として含む、請求項1から3のいずれか一項に記載の光学材料用樹脂組成物。
  5.  セルロース樹脂(B)が、セルロースエステルを含有する、請求項1から4のいずれか一項に記載の光学材料用樹脂組成物。
  6.  セルロースエステルが、セルロースアセテートプロピオネートである、請求項5に記載の光学材料用樹脂組成物。
  7.  位相差制御剤(C)が、エステル系位相差制御剤である、請求項1から6のいずれか一項に記載の光学材料用樹脂組成物。
  8.  位相差制御剤(C)が、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、A、Aはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。X、Xはそれぞれ独立に2価の連結基である。)
    で表される化合物、下記一般式(2)~(4)、
    Figure JPOXMLDOC01-appb-C000002
    (式中、Bはそれぞれ独立に炭素数6~18のアリールモノカルボン酸残基または炭素数1~8の脂肪族モノカルボン酸残基であり、Bは炭素原子数1~12の脂肪族モノアルコール残基であり、Gはそれぞれ独立に炭素数2~12のアルキレングリコール残基または炭素数4~12のオキシアルキレングリコール残基であり、Aはそれぞれ独立に炭素数2~12のアルキレンジカルボン酸残基または炭素数6~18のアリールジカルボン酸残基である。l、m、nは繰り返し数を表し、1~6である)
    で表される化合物である、請求項1から6のいずれか一項に記載の光学材料用樹脂組成物。
  9.  位相差制御剤(C)が、下記一般式(1-1-1)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R~Rは、それぞれ独立して炭素原子数1~3のアルキル基を表す。Zはそれぞれ芳香族基(a1)又は脂肪族基(a2)を表し、芳香族基(a1)はフェニル基又はパラトルイル基であり、脂肪族基(a2)はメチル基である。)
    で表される化合物(C-1)、又は下記一般式(2)~(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Bはそれぞれ独立に炭素数6~18のアリールモノカルボン酸残基または炭素数1~8の脂肪族モノカルボン酸残基であり、Bは炭素原子数1~12の脂肪族モノアルコール残基であり、Gはそれぞれ独立に炭素数2~12のアルキレングリコール残基または炭素数4~12のオキシアルキレングリコール残基であり、Aはそれぞれ独立に炭素数2~12のアルキレンジカルボン酸残基または炭素数6~18のアリールジカルボン酸残基である。l、m、nは繰り返し数を表し、1~6である)
    で表される化合物(C-2)である、請求項1から6のいずれか一項に記載の光学材料用樹脂組成物。
  10.  芳香族基(a1)と脂肪族基(a2)の平均の存在比〔(a1)/(a2)〕は、モル比で99.9/0.1~80/20である、請求項9に記載の光学材料用樹脂組成物。
  11.  前記Aが炭素数6~18のアリールジカルボン酸残基である、請求項8から10のいずれか一項に記載の光学材料用樹脂組成物。
  12.  前記R~Rがそれぞれメチル基である、請求項8から11のいずれか一項に記載の光学材料用樹脂組成物。
  13.  前記(メタ)アクリル樹脂(A)がメタクリル酸メチルを用いて得られたものである、請求項1から12のいずれか一項に記載の光学材料用樹脂組成物。
  14.  請求項1から13のいずれか一項に記載の光学材料用樹脂組成物を含有することを特徴とする光学フィルム。
  15.  偏光板保護用である請求項14に記載の光学フィルム。
  16.  請求項14または15に記載の光学フィルムを有することを特徴とする液晶表示装置。
PCT/JP2018/022353 2017-06-28 2018-06-12 光学材料用樹脂組成物及び光学フィルム WO2019003890A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197033941A KR102415014B1 (ko) 2017-06-28 2018-06-12 광학 재료용 수지 조성물 및 광학 필름
CN201880043336.2A CN110832364B (zh) 2017-06-28 2018-06-12 光学材料用树脂组合物和光学薄膜
JP2019526768A JP6642766B2 (ja) 2017-06-28 2018-06-12 光学材料用樹脂組成物及び光学フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-125849 2017-06-28
JP2017125849 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019003890A1 true WO2019003890A1 (ja) 2019-01-03

Family

ID=64741453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022353 WO2019003890A1 (ja) 2017-06-28 2018-06-12 光学材料用樹脂組成物及び光学フィルム

Country Status (5)

Country Link
JP (1) JP6642766B2 (ja)
KR (1) KR102415014B1 (ja)
CN (1) CN110832364B (ja)
TW (1) TWI773777B (ja)
WO (1) WO2019003890A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423777B (zh) * 2019-02-08 2023-03-24 Dic株式会社 光学材料用树脂组合物、光学薄膜和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081607A1 (ja) * 2007-12-25 2009-07-02 Konica Minolta Opto, Inc. アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP2010032655A (ja) * 2008-07-26 2010-02-12 Konica Minolta Opto Inc 位相差フィルム、偏光板、液晶表示装置および位相差フィルムの製造方法
JP2013044768A (ja) * 2011-08-22 2013-03-04 Konica Minolta Advanced Layers Inc 光学フィルム
WO2015046009A1 (ja) * 2013-09-27 2015-04-02 Dic株式会社 光学材料用樹脂組成物、光学フィルム及び液晶表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390618B1 (ko) * 2009-10-13 2014-04-29 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 광학 필름
JP5666989B2 (ja) 2010-06-03 2015-02-12 株式会社日本触媒 光学フィルムおよび画像表示装置
JP2014081598A (ja) 2012-10-18 2014-05-08 Fujifilm Corp 光学フィルム及びその製造方法ならびに偏光板
JP6569890B2 (ja) * 2015-03-17 2019-09-04 Dic株式会社 光学フィルム及び液晶表示装置
JP2016188314A (ja) 2015-03-30 2016-11-04 株式会社日本触媒 樹脂組成物、該樹脂組成物で形成されたフィルム、該フィルムを備えた偏光板及び該偏光板を備えた画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081607A1 (ja) * 2007-12-25 2009-07-02 Konica Minolta Opto, Inc. アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP2010032655A (ja) * 2008-07-26 2010-02-12 Konica Minolta Opto Inc 位相差フィルム、偏光板、液晶表示装置および位相差フィルムの製造方法
JP2013044768A (ja) * 2011-08-22 2013-03-04 Konica Minolta Advanced Layers Inc 光学フィルム
WO2015046009A1 (ja) * 2013-09-27 2015-04-02 Dic株式会社 光学材料用樹脂組成物、光学フィルム及び液晶表示装置

Also Published As

Publication number Publication date
TW201905076A (zh) 2019-02-01
KR102415014B1 (ko) 2022-07-01
KR20200023274A (ko) 2020-03-04
CN110832364B (zh) 2021-10-29
TWI773777B (zh) 2022-08-11
JP6642766B2 (ja) 2020-02-12
JPWO2019003890A1 (ja) 2019-12-19
CN110832364A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
KR101950257B1 (ko) 수지 조성물, 그것을 이용한 광학 보상 필름 및 광학 보상 필름의 제조 방법
JP6253655B2 (ja) (メタ)アクリル系樹脂
JP6136254B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
KR101778477B1 (ko) 편광판, 그것을 구비한 액정 표시 장치
JP5850290B2 (ja) 光学材料用樹脂組成物、光学フィルム及び液晶表示装置
JP6071765B2 (ja) 架橋剤、組成物および化合物
JP2014125609A (ja) 樹脂組成物およびそれを用いた光学補償フィルム
JP6642766B2 (ja) 光学材料用樹脂組成物及び光学フィルム
WO2018105561A1 (ja) 共重合体及びそれを用いた光学フィルム
JP6010233B2 (ja) 位相差フィルム並びにそれを用いた光学補償層、光学補償偏光板、液晶及び有機el表示装置
JP5950174B2 (ja) 光学材料用樹脂組成物、光学フィルム及び液晶表示装置
JP6788598B2 (ja) ポリマー材料、フィルム、円偏光板、画像表示装置及びフィルムの製造方法
JP2019172867A (ja) 共重合体及びそれを用いた光学フィルム
JP2016528349A (ja) 逆波長分散を有する光学フィルムおよびこれを含む表示装置
JP6870374B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
JPWO2018181999A1 (ja) 位相差フィルム
JP2019006942A (ja) 光学材料用樹脂組成物及び光学フィルム
JP6237366B2 (ja) 光学補償フィルム用重合体
JP6229561B2 (ja) 光学補償フィルム用重合体
WO2014203796A1 (ja) セルロースエステル樹脂組成物、セルロースエステル光学フィルム、偏光板及び液晶表示装置
JPWO2020162259A1 (ja) 光学材料用樹脂組成物、光学フィルム及び表示装置
JP2008242258A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526768

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197033941

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824322

Country of ref document: EP

Kind code of ref document: A1