WO2018235876A1 - 弾性波装置、フロントエンド回路及び通信装置 - Google Patents

弾性波装置、フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2018235876A1
WO2018235876A1 PCT/JP2018/023498 JP2018023498W WO2018235876A1 WO 2018235876 A1 WO2018235876 A1 WO 2018235876A1 JP 2018023498 W JP2018023498 W JP 2018023498W WO 2018235876 A1 WO2018235876 A1 WO 2018235876A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
resin portion
main surface
wave device
element substrate
Prior art date
Application number
PCT/JP2018/023498
Other languages
English (en)
French (fr)
Inventor
克也 松本
康之 伊田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019525670A priority Critical patent/JP6835220B2/ja
Priority to CN201880040875.0A priority patent/CN110771038B/zh
Publication of WO2018235876A1 publication Critical patent/WO2018235876A1/ja
Priority to US16/722,023 priority patent/US11695389B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02897Means for compensation or elimination of undesirable effects of strain or mechanical damage, e.g. strain due to bending influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1085Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a non-uniform sealing mass covering the non-active sides of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to an elastic wave device including a sealing resin, a front end circuit including the elastic wave device, and a communication device.
  • An object of the present invention is to suppress disconnection of a lead wire provided on a side surface of an element substrate in an elastic wave device provided with a sealing resin.
  • An elastic wave device has a first main surface and a second main surface facing each other, and a side surface connecting the first main surface and the second main surface, and at least a part of them.
  • the functional electrode provided on the first main surface of the element substrate and the functional electrode, and provided so as to extend from the first main surface to the side surface of the element substrate.
  • An elastic wave device has a first main surface and a second main surface opposite to each other, and a side surface connecting the first main surface and the second main surface, and at least It is electrically connected to an element substrate having a portion of piezoelectricity, a functional electrode provided on the first main surface of the element substrate, and the functional electrode, and provided so as to extend from the first main surface to the side surface of the element substrate Provided so as to seal the elastic wave device and an external terminal electrically connected to the lead-out wire being drawn and the lead-out wire and provided directly or indirectly on the second main surface of the element substrate And a second resin portion provided between the lead wire provided on the side surface and the first resin portion, and the second resin portion is formed of the first resin portion. Also the content of filler is small.
  • the second resin portion is provided between the lead-out wiring and the first resin portion, and the content of the filler of the second resin portion is made smaller than the content of the filler of the first resin portion. Since it is possible to make the Young's modulus of the resin part smaller than the Young's modulus of the first resin part, when an external force is applied to the elastic wave device, the force applied to the lead-out wire can be relaxed. Thus, disconnection of the lead wiring provided on the side surface of the element substrate can be suppressed.
  • the elastic wave device further includes a third resin portion
  • the element substrate has a first corner portion which is a portion where the second main surface and the side surface intersect
  • the lead-out wiring further includes the first surface from the side surface
  • the third resin portion is provided to extend to the corner portion and the second main surface, and the third resin portion is provided at least between the lead wire provided in the first corner portion and the first resin portion, and Young's modulus may be smaller than 1 resin part.
  • the third resin portion between the lead wire and the first resin portion at the first corner portion by providing the third resin portion between the lead wire and the first resin portion at the first corner portion, and making the Young's modulus of the third resin portion smaller than the Young's modulus of the first resin portion, the force applied to the lead-out wire can be relaxed. Thus, disconnection of the lead-out wiring provided at the corner of the element substrate can be suppressed.
  • the elastic wave device further includes a cover layer, the functional electrode is an IDT electrode, and the second resin portion is further provided around the IDT electrode in the direction along the first main surface, and the cover layer May be provided on the second resin portion so as to cover the IDT electrode in the direction perpendicular to the first main surface.
  • the elastic wave device further includes an insulating layer, and the element substrate at least includes a support substrate containing a silicon material, and a piezoelectric layer formed directly or indirectly on the support substrate, and the insulating layer. May be provided between the lead wire and the support substrate.
  • the element substrate includes at least the support substrate and the piezoelectric layer formed directly or indirectly on the support substrate, and the element substrate is viewed in a cross section perpendicular to the first main surface
  • the side surface of the piezoelectric layer may be located inside the side surface of the element substrate, and the lead wire may be provided from the second main surface to the side surface of the piezoelectric layer and the side surface of the element substrate .
  • the element substrate has a support substrate and a piezoelectric layer formed directly on the support substrate, the functional electrode is provided on the piezoelectric layer, and the support substrate is an elastic material that propagates the piezoelectric layer.
  • the bulk wave speed of propagation may be faster than the wave speed of sound.
  • the elastic wave propagated from the piezoelectric layer can be reflected at the interface between the support substrate and the piezoelectric layer and returned to the piezoelectric layer.
  • elastic wave energy can be efficiently confined in the piezoelectric layer.
  • the element substrate includes a support substrate, a piezoelectric layer formed indirectly on the support substrate, and an intermediate layer provided between the support substrate and the piezoelectric layer, and the functional electrode is
  • the intermediate layer is provided on the piezoelectric layer, and the intermediate layer is slower in bulk acoustic velocity of propagation than the acoustic velocity of sound propagating in the piezoelectric layer, and the support substrate is faster than the acoustic velocity of sound in the piezoelectric layer.
  • the propagating bulk wave velocity may be high.
  • the elastic wave propagated from the piezoelectric layer to the intermediate layer can be reflected at the interface between the support substrate and the intermediate layer to be returned to the piezoelectric layer.
  • elastic wave energy can be efficiently confined in the piezoelectric layer.
  • the element substrate includes a support substrate, a piezoelectric layer formed indirectly on the support substrate, and an intermediate layer provided between the support substrate and the piezoelectric layer, and the functional electrode is
  • the intermediate layer is provided on the piezoelectric layer, and the intermediate layer is lower than an acoustic velocity of sound propagating through the piezoelectric layer, a low sound velocity film having a slower bulk acoustic velocity of propagation than an acoustic velocity of sound propagating through the piezoelectric layer.
  • a low sound velocity film is provided between the piezoelectric layer and the support substrate, and a high sound velocity film is provided between the low sound velocity film and the support substrate. It may be provided.
  • the elastic wave propagated from the piezoelectric layer to the low sound velocity film can be reflected at the interface between the high sound velocity film and the low sound velocity film, and can be returned to the piezoelectric layer.
  • elastic wave energy can be efficiently confined in the piezoelectric layer.
  • the element substrate may be bonded to one main surface of the mounting substrate via the external terminal, and the first resin portion may further cover one main surface of the mounting substrate.
  • the force applied to the lead-out wire can be relaxed when an external force is applied to the elastic wave device.
  • a front end circuit according to an aspect of the present invention includes the above elastic wave device.
  • a communication device includes the front end circuit and a signal processing circuit that processes a high frequency signal.
  • FIG. 1 is a cross-sectional view showing an example of the elastic wave device according to the first embodiment.
  • FIG. 2A is a perspective view showing an example of an element substrate, a functional electrode, a first lead-out wiring and a second lead-out wiring of the elastic wave device according to the first embodiment.
  • FIG. 2B is a perspective view of the element substrate, the first lead-out wiring, and the second lead-out wiring shown in FIG. 2A as viewed from the back surface side.
  • FIG. 3 is a cross-sectional view showing another example of the elastic wave device according to the first embodiment.
  • FIG. 4 is a flowchart showing a method of manufacturing the elastic wave device according to the first embodiment.
  • FIG. 5 is a view showing the method of manufacturing the elastic wave device according to the first embodiment.
  • FIG. 6 is a diagram showing a method of manufacturing the elastic wave device according to the first embodiment, following FIG. 5.
  • FIG. 7 is a diagram showing a method of manufacturing the elastic wave device according to the first embodiment, following FIG. 6.
  • FIG. 8 is a cross-sectional view showing an elastic wave device according to a first modification of the first embodiment.
  • FIG. 9 is a cross-sectional view showing an elastic wave device according to a second modification of the first embodiment.
  • FIG. 10 is a cross-sectional view showing an elastic wave device according to a third modification of the first embodiment.
  • FIG. 11 is a cross-sectional view showing an elastic wave device according to the fourth modification of the first embodiment.
  • FIG. 12 is a cross-sectional view showing an elastic wave device according to a fifth modification of the first embodiment.
  • FIG. 13 is a circuit configuration diagram showing a front end circuit and a communication apparatus according to a second embodiment.
  • FIG. 14 is a cross-sectional view showing an elastic wave device of a comparative example.
  • FIG. 1 is a cross-sectional view showing an example of the elastic wave device 1 according to the first embodiment.
  • FIG. 2A is a perspective view showing an example of the element substrate 10, the functional electrode 21, the first lead wire 221, and the second lead wire 222 of the elastic wave device 1.
  • FIG. 2B is a perspective view of the element substrate 10 of the elastic wave device 1 shown in FIG. 2A, the first lead wire 221, and the second lead wire 222 as viewed from the back side. 2A and 2B, the description of the first resin portion 31, the second resin portion 32, the third resin portion 33, the cover layer 40, the first external terminal 51, and the second external terminal 52 is omitted. There is.
  • the elastic wave device 1 includes an element substrate 10, a functional electrode 21 provided on the element substrate 10, a first lead wire 221 and a second lead wire 222, and a cover that covers the functional electrode 21.
  • a layer 40, a first external terminal 51 connected to the first lead wire 221, and a second external terminal 52 connected to the second lead wire 222 are provided.
  • the elastic wave device 1 includes a first resin portion 31 provided to seal the elastic wave device 1 and a second resin portion 32 provided between the element substrate 10 and the first resin portion 31. And the third resin portion 33.
  • the elastic wave device 1 is mounted on the mounting substrate 60 via the first external terminal 51 and the second external terminal 52.
  • the first lead wire 221 is referred to as a lead wire 221
  • the second lead wire 222 is referred to as a lead wire 222
  • the first external terminal 51 is referred to as an external terminal 51
  • the second external terminal 52 is an external terminal.
  • 52 is an external terminal.
  • the element substrate 10 is flat and is a surface intersecting the first main surface 10a and the second main surface 10b opposite to each other, and both the first main surface 10a and the second main surface 10b. It has side 10c which connects 10a and the 2nd principal surface 10b.
  • the second major surface 10 b is a surface located on the mounting substrate 60 side when the elastic wave device 1 is mounted on the mounting substrate 60.
  • the element substrate 10 has a second corner 17 where the first major surface 10a and the side surface 10c intersect, and a first corner 16 where the second major surface 10b and the side surface 10c intersect. Have. In the cross-sectional view shown in FIG. 1, two side surfaces 10c, two first corner portions 16 and two second corner portions 17 are shown.
  • the side surface 10c may be provided to be inclined with respect to the first main surface 10a or the second main surface 10b.
  • the first major surface 10a and the second major surface 10b may not be parallel to each other.
  • the cross section of the element substrate 10 may be trapezoidal, parallelogram or square.
  • the element substrate 10 further includes a support substrate 12 and a piezoelectric layer 11 provided directly on the support substrate 12.
  • the upper surface of the piezoelectric layer 11 is the first main surface 10a described above, and the lower surface of the support substrate 12 is the second main surface 10b described above.
  • the piezoelectric layer 11 is made of, for example, a piezoelectric single crystal such as LiTaO 3 or LiNbO 3 , or a piezoelectric ceramic.
  • the support substrate 12 is made of an insulator or a semiconductor.
  • the material of the support substrate 12 is, for example, Si, Al 2 O 3 or the like.
  • the bulk acoustic velocity of the support substrate 12 is higher than the acoustic velocity of the elastic wave propagating through the piezoelectric layer 11.
  • the functional electrode 21 is a metal film provided on the first major surface 10 a of the element substrate 10.
  • the functional electrode 21 is, for example, an IDT (INTERDIGITAL TRANSDUCER) electrode and a reflector.
  • IDT INTERDIGITAL TRANSDUCER
  • FIG. 2A elastic wave resonators i1 to i7 configured by IDT electrodes and reflectors are shown.
  • the elastic wave resonators i1 to i7 are schematically shown by symbols in which X is enclosed by a rectangular frame.
  • the elastic wave resonators i1 to i7 are electrically connected on the first major surface 10a to form a filter circuit such as a ladder type filter.
  • the functional electrode 21 is made of a metal or alloy such as Al, Cu, or AlCu alloy.
  • the functional electrode 21 is not limited to a single metal film, and may be formed of a laminated metal film in which a plurality of metal films are laminated.
  • the elastic wave resonators i1 to i7 are not limited to the surface acoustic wave resonators, and may be boundary acoustic wave resonators.
  • Each of the first lead-out wiring 221 and the second lead-out wiring 222 has a strip shape, and is provided on each of the first main surface 10 a, the side surface 10 c, and the second main surface 10 b of the element substrate 10.
  • the lead wiring 221 has a lead wiring 221 a and a lead wiring 221 b which are connected to each other.
  • the lead-out wiring 221a is electrically connected to the functional electrode 21, and is provided from the side of the first major surface 10a to the side surface 10c through the second corner portion 17.
  • the lead-out wiring 221b is connected to the end of the lead-out wiring 221a provided on the side surface 10c, and provided so as to extend from the first corner 16 to the second main surface 10b.
  • the second lead-out wiring 222 has a lead-out wiring 222 a and a lead-out wiring 222 b connected to each other.
  • the lead-out wiring 222a is electrically connected to the functional electrode 21, and is provided from the side of the first major surface 10a to the side surface 10c through the second corner portion 17.
  • the lead-out wiring 222b is connected to the end of the lead-out wiring 222a provided on the side surface 10c, and provided so as to extend from the first corner 16 to the second main surface 10b.
  • the lead wire 221b and the lead wire 222b are adjacent to each other on the second major surface 10b.
  • each of the lead wires 221 and 222 is drawn along the outer periphery of the element substrate 10, and the heat generated on the first major surface 10 a side by the driving of the functional electrode 21 is drawn. It is transmitted to the second main surface 10b side through the wirings 221 and 222 and has a structure capable of radiating heat. Further, the functional electrode 21 is provided on the first major surface 10a, and the lead wirings 221 and 222 are extended from the functional electrode 21 to the second major surface 10b via the first major surface 10a and the side surface 10c. Therefore, the lengths of the lead wires 221 and 222 are increased, and the heat dissipation can be improved.
  • Each of the lead wirings 221 and 222 is formed of, for example, a metal material containing Cu. Note that the lead wirings 221 and 222 are not limited to Cu, and may be formed of a metal material containing Al. Further, the lead wires 221 and 222 may have a covering layer such as gold plating.
  • the first external terminal 51 is electrically connected to the lead wire 221 b provided on the second major surface 10 b.
  • the second external terminal 52 is electrically connected to the lead wire 222b provided on the second major surface 10b.
  • Each of the external terminals 51 and 52 is formed of a metal member containing Sn and Ag.
  • the element substrate 10 is bonded to one main surface 60 a of the mounting substrate 60 via the external terminals 51 and 52.
  • the second resin portion 32 is provided on the first main surface 10 a side and the side surface 10 c side of the element substrate 10.
  • the second resin portion 32 is provided around the functional electrode 21 so as to surround the functional electrode 21 in the direction along the first major surface 10 a when viewed in the direction perpendicular to the first major surface 10 a.
  • the second resin portion 32 is provided to cover the lead wirings 221a and 222a.
  • the height of the second resin portion 32 on the first major surface 10 a side is higher than the height of the functional electrode 21.
  • the structure of the 2nd resin part 32 in the side 10c side is mentioned later.
  • the cover layer 40 is a sheet-like polyimide resin, and is provided on the second resin portion 32 so as to cover the functional electrode 21 in the direction perpendicular to the first major surface 10 a.
  • the cover layer 40 is disposed at a predetermined distance from the functional electrode 21.
  • a sealed space A surrounded by the cover layer 40, the second resin portion 32 and the element substrate 10 is formed.
  • the cover layer 40 has a larger area than the element substrate 10, and the side surface of the cover layer 40 is located outside the side surface 10 c of the element substrate 10.
  • the first resin portion 31 is a sealing resin for sealing the elastic wave device 1.
  • the first resin portion 31 is provided on the outside of each of the first main surface 10a, the second main surface 10b, and the side surface 10c of the element substrate 10 so as to surround the element substrate 10, the functional electrode 21 and the lead wirings 221, 222. ing. Further, as described above, the first resin portion 31 covers the one main surface 60 a of the mounting substrate 60.
  • the first resin portion 31 is an insulating material containing a filler, and is formed of, for example, an epoxy resin containing silica particles.
  • the Young's modulus (elastic modulus) of this epoxy resin is 17 GPa.
  • the second resin portion 32 is provided between the lead wirings 221 a and 222 a and the first resin portion 31 on the outer side of the side surface 10 c of the element substrate 10.
  • the second resin portion 32 is provided between the lead wires 221 a and 222 a and the first resin portion 31 outside the second corner portion 17.
  • the side surface of the second resin portion 32 is formed on the same surface as the side surface of the cover layer 40.
  • the second resin portion 32 is in contact with the lead wirings 221a and 222a, whereas the first resin portion 31 is not in contact with the lead wirings 221a and 222a.
  • the second resin portion 32 is an insulating material, and is formed of, for example, an epoxy resin.
  • the Young's modulus of this epoxy resin is 2 GPa. That is, the Young's modulus of the second resin portion 32 is smaller than the Young's modulus of the first resin portion 31.
  • the elastic wave device 1 by reducing the Young's modulus of the second resin portion 32, even when an external force is applied, the force applied to the lead-out wires 221 a and 222 a is relaxed.
  • the Young's modulus of the second resin portion 32 is smaller than the Young's modulus of the first resin portion 31. As a result, the force applied to the lead wirings 221a and 222a can be relaxed.
  • the linear expansion coefficient of the second resin portion 32 is made closer to the linear expansion coefficient of the lead wirings 221a and 222a than the linear expansion coefficient of the first resin portion 31, not only external force applied to the lead wirings 221a and 222a, but also It is possible to suppress the thermal stress applied to the wirings 221a and 222a.
  • the third resin portion 33 is provided between the lead wirings 221 b and 222 b and the first resin portion 31 on the outside of the second main surface 10 b of the element substrate 10.
  • the third resin portion 33 is provided between the support substrate 12 and the first resin portion 31 in a region where the lead wirings 221 b and 222 b are not formed on the second main surface 10 b. Further, the third resin portion 33 is provided between the lead wirings 221 b and 222 b and the first resin portion 31 outside the first corner portion 16.
  • the third resin portion 33 is in contact with the lead wirings 221 b and 222 b, whereas the first resin portion 31 is not in contact with the lead wirings 221 b and 222 b.
  • the third resin portion 33 is formed of an insulating resin material, and includes, for example, a polyamic acid ester and ethyl lactate.
  • the glass transition point of the resin material forming the third resin portion 33 is 200 ° C.
  • the Young's modulus of the resin material of the third resin portion 33 is 3.5 GPa at a temperature equal to or lower than the glass transition temperature. That is, the Young's modulus of the third resin portion 33 is smaller than the Young's modulus of the first resin portion 31.
  • the elastic wave device 1 by reducing the Young's modulus of the third resin portion 33, the force applied to the lead-out wires 221 b and 222 b is relaxed even when an external force is applied.
  • the Young's modulus of the third resin portion 33 is made smaller than the Young's modulus of the first resin portion 31. As a result, the force applied to the lead wirings 221a and 222a can be relaxed.
  • FIG. 3 is a cross-sectional view showing another example of the elastic wave device 1, and the elastic wave device 1 is a part of the high frequency module.
  • the high frequency module includes, for example, the elastic wave device 1, the mounting component 65, and the mounting substrate 60.
  • the mounting substrate 60 is a printed circuit board, and a land electrode 61 is formed on one main surface 60 a of the mounting substrate 60.
  • the external terminals 51 and 52 of the elastic wave device 1 are connected to the mounting substrate 60 via the land electrodes 61.
  • On the mounting substrate 60 in addition to the elastic wave device 1, laminated ceramic components and IC chips which are mounting components 65 are mounted.
  • the first resin portion 31 is provided on the one main surface 60 a side of the mounting substrate 60 so as to cover the elastic wave device 1 and the mounting component 65.
  • the high frequency module may be formed in a state where the elastic wave device 1 is integrated with the mounting substrate 60.
  • FIG. 4 is a flowchart showing a method of manufacturing the elastic wave device 1.
  • FIG. 5 is a view showing a method of manufacturing the elastic wave device 1
  • FIG. 6 is a view showing a method of manufacturing the elastic wave device 1 following FIG. 5
  • FIG. 7 is a view following FIG.
  • FIG. 7 is a view showing a method of manufacturing the device 1;
  • the functional electrode 21 is formed on the element substrate 10 (S11).
  • the surface on which the functional electrode 21 is formed is the first major surface 10 a which is the upper surface of the piezoelectric layer 11.
  • the functional electrode 21 is, for example, an electrode film to be an IDT electrode and a reflector.
  • the element substrate 10 is in the state of the mother substrate before being singulated. Two element substrates 10 are shown as an example in (a) of FIG.
  • a groove c1 is formed in the element substrate 10 (S12).
  • the grooves c1 are formed in a lattice shape as viewed from the direction perpendicular to the first major surface 10a.
  • the side surface 10c of the element substrate 10 is formed.
  • lead wirings 221a and 222a are formed on the surface of the groove c1 and the surface of the element substrate 10 (S13).
  • the lead wirings 221a and 222a are formed to have a predetermined film thickness along the side surface 10c of the element substrate 10 which is the side surface of the groove c1 and the first major surface 10a of the element substrate 10.
  • the lead wirings 221 a and 222 a on the first major surface 10 a side are formed to be connected to the functional electrode 21.
  • the second resin material b2 is applied on the groove c1 in which the lead wirings 221a and 222a are formed and the first major surface 10a (S14).
  • the resin material b2 is formed to cover the lead wirings 221a and 222a.
  • the resin material b2 is formed to be higher than the functional electrode 21 in the height direction so as to surround the functional electrode 21 in the direction along the first major surface 10a.
  • the cover layer 40 is formed on the 2nd resin part 32 (S15).
  • the cover layer 40 is a sheet-like polyimide resin, and is attached to the second resin portion 32 by adhesion.
  • the sealed space A is formed on the functional electrode 21.
  • the back surface of the element substrate 10 is removed by a grinder or the like (S16). By this removal, the second main surface 10b of the element substrate 10 is formed, and a part of the lead wirings 221a and 222a formed in the groove c1 and a part of the second resin portion 32 are exposed.
  • the lead wirings 221b and 222b are extended on the exposed second main surface 10b (S17).
  • the lead wirings 221b and 222b are formed to be connected to the lead wirings 221a and 222a formed in step S13.
  • the third resin material b3 is applied on the second major surface 10b on which the lead wirings 221b and 222b are formed (S18).
  • the resin material b3 is formed to cover the lead wirings 221b and 222b and to cover the second main surface 10b except for the region where the external terminals 51 and 52 are formed.
  • the third resin portion 33 is formed on the outer side of the second major surface 10 b of the element substrate 10 and the outer side of the first corner portion 16 by applying and curing the resin material b 3.
  • the region where the third resin portion 33 is not formed is concave, and the lead wirings 221 b and 222 b are exposed.
  • the external terminals 51 and 52 are formed in the area
  • the external terminals 51 and 52 are, for example, metal bumps.
  • the mother substrate having the plurality of element substrates 10 is cut and separated into pieces (S20).
  • the width of the blade at the time of cutting is smaller than the width of the groove c1 in step S12.
  • an element d1 which is a part of the elastic wave device 1 is formed, and side surfaces of the cover layer 40, the second resin portion 32 and the third resin portion 33 are formed.
  • the singulated elements d1 are mounted on the mounting substrate 60 (S21).
  • the element d1 is bonded to the land electrode 61 of the mounting substrate 60 by solder or the like.
  • the first resin material is applied to one main surface 60a of the mounting substrate 60 so as to cover the element d1 and is cured (S22).
  • the first resin portion 31 surrounds the element substrate 10, the functional electrode 21 and the lead wirings 221 and 222, and further, the cover layer 40 on the outside thereof, the second resin portion 32, and the third resin
  • the elastic wave device 1 as shown in FIG. 1 is provided so as to surround the portion 33.
  • the elastic wave device 1 having the above configuration can suppress the disconnection of the lead wirings 221 a and 222 a provided on the side surface 10 c of the element substrate 10.
  • the configuration of the elastic wave device in the comparative example will be described.
  • FIG. 14 is a cross-sectional view showing an elastic wave device 501 of a comparative example.
  • the elastic wave device 501 of the comparative example is connected to the element substrate 10, the functional electrode 21 and the lead wirings 221 and 222 provided on the element substrate 10, the cover layer 40 covering the functional electrode 21, and the lead wiring 221 And an external terminal 52 connected to the lead wire 222.
  • the elastic wave device 501 further includes a second resin portion 32 that supports the cover layer 40, and a first resin portion 31 that surrounds the element substrate 10, the lead wirings 221 and 222, and the entire cover layer 40.
  • the lead wirings 221 and 222 of the side surface 10 c are not covered by the second resin portion 32, and the first resin portion 31 is in contact with the lead wirings 221 and 222. Therefore, in the elastic wave device 501, when an external force is applied, those forces are transmitted to the lead wirings 221, 222 of the side surface 10c via the first resin portion 31, and the lead wirings 221, 222 are easily broken.
  • elastic wave device 1 concerning this embodiment has the following composition. That is, the elastic wave device 1 has the first main surface 10a and the second main surface 10b opposite to each other, and the side surface connecting the first main surface 10a and the second main surface 10b, and at least a part of them. And the functional electrode 21 provided on the first major surface 10a of the device substrate 10, and the functional electrode 21. The device substrate 10 is electrically connected to the first major surface 10a.
  • a first resin portion 31 provided to seal the elastic wave device 1, and at least a lead wire 221a and 222a provided on the side surface 10c and a first resin portion And includes first and second resin portions 32 provided between the, the.
  • the second resin portion 32 has a Young's modulus smaller than that of the first resin portion 31.
  • the second resin portion 32 is provided between the lead wirings 221a and 222a and the first resin portion 31, and the Young's modulus of the second resin portion 32 is smaller than the Young's modulus of the first resin portion 31.
  • the force applied to the lead wires 221a and 222a can be relaxed.
  • disconnection of the lead wires 221a and 222a provided on the side surface 10c of the element substrate 10 can be suppressed.
  • the element substrate 10 the functional electrode 21, the lead wires 221a and 222a, the first resin portion 31, the lead wires 221a and 222a, and the first resin portion described above.
  • a second resin portion 32 provided between the first resin portion 31 and the third resin portion 31.
  • the second resin portion 32 has a filler content smaller than that of the first resin portion 31.
  • the second resin portion 32 is provided between the lead wirings 221 a and 222 a and the first resin portion 31, and the content of the filler of the second resin portion 32 is higher than the content of the filler of the first resin portion 31.
  • an external force is applied to the elastic wave device 1 by providing the second resin portion 32 between the lead wirings 221 and 222 and the first resin portion 31 in the first corner portion 16 or the second corner portion 17.
  • the force applied to the lead wires 221 and 222 can be relaxed.
  • disconnection of the lead wires 221 and 222 provided at the corner of the element substrate 10 can be suppressed.
  • FIG. 8 is a cross-sectional view showing an elastic wave device 1A according to a first modification of the first embodiment.
  • the elastic wave device 1A in a state before being mounted on the mounting substrate 60 is shown in FIG.
  • the first resin portion 31 is provided on the mounting substrate 60 in that the first resin portion 31 is not provided on the mounting substrate 60 but provided only on the elastic wave device 1A. It differs from the first embodiment.
  • Such a first resin portion 31 can be formed by, for example, a printing method, an immersion method, or the like.
  • the second resin portion 32 is provided between the lead wires 221a and 222a and the first resin portion 31, and the Young's modulus of the second resin portion 32 is the Young of the first resin portion 31. It is smaller than the rate. Further, in the elastic wave device 1A, the content ratio of the filler of the second resin portion 32 is smaller than the content ratio of the filler of the first resin portion 31. Therefore, when an external force is applied to the elastic wave device 1A, the force applied to the lead-out wires 221a and 222a can be relaxed. Thus, disconnection of the lead wires 221a and 222a provided on the side surface 10c of the element substrate 10 can be suppressed.
  • FIG. 9 is a cross-sectional view showing an elastic wave device 1B according to a second modification of the first embodiment.
  • the element substrate 10 of the elastic wave device 1B shown in FIG. 9 the element substrate 10 is composed of the support substrate 12 and the piezoelectric layer 11 in that the element substrate 10 is formed of only the piezoelectric layer and the first embodiment. It is different.
  • the second resin portion 32 is provided between the lead wires 221a and 222a and the first resin portion 31, and the Young's modulus of the second resin portion 32 is the Young of the first resin portion 31. It is smaller than the rate. Further, in the elastic wave device 1B, the content of the filler of the second resin portion 32 is smaller than the content of the filler of the first resin portion 31. Therefore, when an external force is applied to the elastic wave device 1B, the force applied to the lead-out wires 221a and 222a can be relaxed. Thus, disconnection of the lead wires 221a and 222a provided on the side surface 10c of the element substrate 10 can be suppressed.
  • FIG. 10 is a cross-sectional view showing an elastic wave device 1C according to the third modification of the first embodiment.
  • An elastic wave device 1C shown in FIG. 10 has a functional electrode 21 between the support substrate 12 and the piezoelectric layer 11 in that the functional electrode 21 is provided between the support substrate 12 and the piezoelectric layer 11 and on the piezoelectric layer 11.
  • This embodiment differs from the first embodiment described above which does not exist between itself and the layer 11.
  • Each lead wire 221a, 222a is connected to the functional electrode 21 on the piezoelectric layer 11 which is the first major surface 10a side.
  • the second resin portion 32 is provided between the lead wires 221a and 222a and the first resin portion 31, and the Young's modulus of the second resin portion 32 is the Young of the first resin portion 31. It is smaller than the rate. Further, in the elastic wave device 1C, the content ratio of the filler of the second resin portion 32 is smaller than the content ratio of the filler of the first resin portion 31. Therefore, when an external force is applied to the elastic wave device 1C, the force applied to the lead-out wires 221a and 222a can be relaxed. Thus, disconnection of the lead wires 221a and 222a provided on the side surface 10c of the element substrate 10 can be suppressed.
  • FIG. 11 is a cross-sectional view showing an elastic wave device 1D according to the fourth modification of the first embodiment.
  • a device substrate 10 includes a support substrate 12 containing a silicon material, an intermediate layer 14 provided on the support substrate 12, and a piezoelectric layer 11 provided on the intermediate layer 14.
  • the second embodiment differs from the first embodiment described above in which the element substrate 10 is constituted of the support substrate 12 and the piezoelectric layer 11 in that it is constituted by The piezoelectric layer 11 of the elastic wave device 1 D is formed indirectly on the support substrate 12.
  • the support substrate 12 has the other main surface 12 b which is the same surface as the second main surface 10 b of the element substrate 10 and the one main surface 12 a which is the surface opposite to the other main surface 12 b.
  • the intermediate layer 14 is composed of a high-order mode leakage layer 13a, a high sound velocity film 13b, and a low sound velocity film 13c.
  • a high-order mode leakage layer 13a made of a film that blocks leakage of high-order modes is stacked on the support substrate 12, and a high sound velocity film 13b having a relatively high sound velocity is formed on the high-order mode leakage layer 13a.
  • the low sound velocity film 13c having a relatively low sound velocity is stacked on the high sound velocity film 13b, and the piezoelectric layer 11 is stacked on the low sound velocity film 13c.
  • An appropriate material may be formed between the intermediate layer 14 and the support substrate 12.
  • the high-order mode leakage layer 13a can be formed of an appropriate material that blocks leakage of the high-order mode.
  • silicon oxide can be mentioned.
  • the high sound velocity film 13 b has a function of confining the elastic wave in the portion where the piezoelectric layer 11 and the low sound velocity film 13 c are stacked so that the elastic wave does not leak below the high sound velocity film 13 b.
  • the high sound velocity film 13 b is made of, for example, aluminum nitride.
  • aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond a medium containing these materials as a main component, a mixture of these materials as a main component
  • Various high sound velocity materials such as a medium to be used can be used.
  • the film thickness of the high sound velocity film 13b is preferably as large as possible. .5 times or more is desirable.
  • the low sound velocity film 13c is made of silicon oxide.
  • a material forming the low sound velocity film 13c an appropriate material having a bulk wave sound velocity lower than that of the bulk wave propagating through the piezoelectric layer 11 can be used.
  • a medium containing the above material as a main component can be used, such as silicon oxide, glass, silicon oxynitride, tantalum oxide, or a compound obtained by adding fluorine, carbon or boron to silicon oxide.
  • the high sound velocity film 13 b refers to a film in which the sound velocity of the bulk wave in the high sound velocity film 13 b is higher than that of the surface waves or boundary waves propagating through the piezoelectric layer 11.
  • the low sound velocity film 13 c is a film in which the sound velocity of the bulk wave in the low sound velocity film 13 c is lower than that of the bulk wave propagating through the piezoelectric layer 11.
  • the Q value can be increased.
  • the piezoelectric layer 11 and the intermediate layer 14 have a smaller external shape than the support substrate 12 when viewed in the direction perpendicular to the second major surface 10b, and the piezoelectric layer 11 and the intermediate layer 14 when viewed in cross section.
  • the side surface 10 d of the intermediate layer 14 is located inside the side surface 10 c of the element substrate 10.
  • a step of dividing the mother substrate into pieces by forming in advance the side surfaces 10d of the piezoelectric layer 11 and the intermediate layer 14 to be positioned inside the side surfaces 10c of the element substrate 10 FIG.
  • the lead wirings 221a and 222a are formed along the side surface 10d of the piezoelectric layer 11 and the intermediate layer 14 and the one main surface 12a of the support substrate 12 from the first main surface 10a side, and extend to the side surface 10c.
  • the second resin portion 32 is provided between the lead wirings 221a and 222a and the first resin portion 31, and the Young's modulus of the second resin portion 32 is the Young of the first resin portion 31. It is smaller than the rate.
  • the content rate of the filler of the 2nd resin part 32 is smaller than the content rate of the filler of the 1st resin part 31. Therefore, when an external force is applied to the elastic wave device 1D, the force applied to the lead wirings 221a and 222a can be relaxed. Thus, disconnection of the lead wires 221a and 222a provided on the side surface 10c of the element substrate 10 can be suppressed.
  • the fourth resin portion 34 is formed on the side surface 10c of the element substrate 10 and the one main surface 12a of the support substrate 12. That is, the fourth resin portion 34 is provided between the side surface 10 c of the element substrate 10 and the one main surface 12 a of the support substrate 12 and the lead wirings 221 a and 222 a. For example, when the side surface 10c of the element substrate 10 is in contact with the lead wirings 221a and 222a, a leak current easily flows in the support substrate 12.
  • the element substrate 10 may have the following stacked structure.
  • the element substrate 10 includes a support substrate 12, an intermediate layer 14 provided on the support substrate 12, and a piezoelectric layer 11 provided on the intermediate layer 14.
  • the piezoelectric layer 11 is formed indirectly on the support substrate 12.
  • the support substrate 12 has one main surface 12 a and the other main surface 12 b opposed to each other.
  • the support substrate 12 is formed of a material whose bulk acoustic velocity of propagation is faster than the acoustic velocity of acoustic waves propagating through the piezoelectric layer 11.
  • Examples of the material of the support substrate 12 include semiconductors such as Si, sapphire, LiTaO 3 (hereinafter, referred to as “LT”), LiNbO 3 (hereinafter, referred to as “LN”), glass and the like. These materials may be used alone or in combination of two or more.
  • the intermediate layer 14 is provided on the one main surface 12 a of the support substrate 12.
  • the intermediate layer 14 is located directly below the piezoelectric layer 11 and in contact with the piezoelectric layer 11. Since the intermediate layer 14 is in contact with the piezoelectric layer 11, the energy of the elastic wave propagating in the piezoelectric layer 11 can be prevented from leaking in the thickness direction.
  • the intermediate layer 14 is formed of a material whose velocity of propagating bulk waves is slower than the velocity of acoustic waves propagating through the piezoelectric layer 11.
  • the intermediate layer 14 is formed of, for example, a polycrystalline, amorphous or uniaxially oriented film, and has crystal grains G1 and grain boundaries G2.
  • the intermediate layer 14 is formed of a SiO 2 layer.
  • silicon nitride, aluminum nitride or the like can be used as the material for forming the intermediate layer 14 in addition to SiO 2 . These may be used alone or in combination of two or more. Further, from the viewpoint of enhancing the adhesion to the support substrate 12, it is desirable to use SiO 2 as the material constituting the intermediate layer 14.
  • the piezoelectric layer 11 is provided on the intermediate layer 14.
  • the piezoelectric layer 11 is in the form of a thin film, and the thickness of the piezoelectric layer 11 is desirably, for example, 3.5 ⁇ or less, for example, when the wavelength of the elastic wave is ⁇ . In that case, the elastic wave can be excited more.
  • the piezoelectric layer 11 is made of LT. However, as a material which comprises the piezoelectric material layer 11, other piezoelectric single crystals, such as LN, may be used, and piezoelectric ceramics may be used.
  • FIG. 12 is a cross-sectional view showing an elastic wave device 1E according to the fifth modification of the first embodiment.
  • Elastic wave device 1E of modification 5 is insulating in that insulating layer 45 is provided between one main surface 12a, other main surface 12b and side surface 12c of support substrate 12 and each lead wire 221, 222. This embodiment differs from the first embodiment in which the layer 45 is not provided.
  • the element substrate 10 of the elastic wave device 1E is configured of a support substrate 12 containing a silicon material, an intermediate layer 14 provided on the support substrate 12, and a piezoelectric layer 11 provided on the intermediate layer 14. .
  • the piezoelectric layer 11 and the intermediate layer 14 when viewed in a direction perpendicular to the first major surface 10a, the piezoelectric layer 11 and the intermediate layer 14 have a smaller external shape than the support substrate 12, and when viewed in cross section, the piezoelectric layer 11 and the intermediate layer
  • the side surface 10 d of 14 is located inside the side surface 10 c of the element substrate 10.
  • a step of dividing the mother substrate into pieces by forming in advance the side surfaces 10d of the piezoelectric layer 11 and the intermediate layer 14 to be positioned inside the side surfaces 10c of the element substrate 10 FIG.
  • the element substrate 10 having the above structure has a convex cross section. Specifically, the element substrate 10 has a first major surface 10a, a second major surface 10b, a side surface 10c, and a side surface 10d.
  • the side surface 10c is a surface that intersects the second major surface 10b, and is connected to the second major surface 10b.
  • the side surface 10d is a surface that intersects the first major surface 10a, and is connected to the first major surface 10a.
  • the side surface 10 d of the element substrate 10 referred to here is the same as the side surface 10 d of the piezoelectric layer 11 and the intermediate layer 14 described above.
  • the support substrate 12 constituting the element substrate 10 has one main surface 12 a, the other main surface 12 b, and the side surface 12 c.
  • the other main surface 12b of the support substrate 12 is the same surface as the second main surface 10b
  • the side surface 12c of the support substrate 12 is the same surface as the side surface 10c.
  • One main surface 12a of the support substrate 12 intersects with both the side surface 10d and the side surface 10c, and a part of the one main surface 12a connects the side surface 10d and the side surface 10c.
  • the side surfaces 10c and 12c may be provided to be inclined with respect to the first major surface 10a or the second major surface 10b.
  • the first major surface 10a, the second major surface 10b, and the one major surface 12a may not be parallel.
  • element substrate 10 has a first corner portion 16 which is a portion where second major surface 10b and side surface 10c intersect, and a second corner portion 17 where a first major surface 10a and side surface 10d intersect. It has the 3rd corner 18 which is a portion which one main surface 12a and side 10c cross.
  • the lead wires 221 a and 222 a are provided along the path connecting the side surface 10 d of the piezoelectric layer 11 and the side surface 10 d of the piezoelectric layer 11 and the side surface 10 c of the element substrate 10. More specifically, the lead wirings 221a and 222a are provided in a step-like manner along the first main surface 10a to the second corner 17, the side surface 10d, the one main surface 12a, the third corner 18 and the side surface 10c. ing. The lead wirings 221 a and 222 a are provided on the one main surface 12 a of the support substrate 12 along the surface on which the piezoelectric layer 11 and the intermediate layer 14 are not provided.
  • the lead wirings 221b and 222b are respectively connected to the ends of the lead wirings 221a and 222a provided on the side surface 10c, and are provided along the first corner 16 and the second main surface 10b.
  • the lead wirings 221 a and 221 b and 222 a and 222 b in the present embodiment are not in contact with the support substrate 12.
  • insulating layer 45 is formed on one main surface 12a, the other main surface 12b and side surface 12c of support substrate 12. Specifically, the insulating layer 45 is provided between the one main surface 12a of the support substrate 12 and the lead wirings 221a and 222a, and between the side surface 12c and the lead wirings 221a and 222a. In addition, an insulating layer 45 is provided between the other main surface 12 b of the support substrate 12 and the lead wirings 221 b and 222 b.
  • the insulating layer 45 is formed of, for example, a material such as silicon oxide (SiO 2 ) or silicon nitride (SiN). The insulating layer 45 may be provided on the entire surfaces of the one main surface 12a, the other main surface 12b, and the side surface 12c.
  • the insulating layer 45 is provided between the lead wirings 221 and 222 and the support substrate 12 containing a silicon material, so that the lead wirings 221 and 222 are not in contact with the support substrate 12.
  • a leak current is likely to flow in the support substrate 12 containing a silicon material.
  • the insulating layer 45 between the support substrate 12 and the lead wirings 221 and 222 as in the elastic wave device 1E it is possible to suppress the flow of leak current in the support substrate 12 containing a silicon material, Characteristic deterioration of the elastic wave device 1E can be suppressed.
  • An elastic wave device 1E includes a first major surface 10a, a second major surface 10b opposite to the first major surface 10a, and a side surface connecting the first major surface 10a and the second major surface 10b. 10c, and at least a part of which includes a silicon material, and is electrically connected to the element substrate 10, the functional electrode 21 provided on the first major surface 10a of the element substrate 10, and the functional electrode 21. , And lead wires 221 and 222 provided so as to extend from the first major surface 10 a to the side surface 10 c, and an insulating layer 45 provided between the element substrate 10 and the lead wires 221 and 222 outside the side surface 10 c. And As described above, by providing the insulating layer 45 between the side surface 10 c of the element substrate 10 and the lead wirings 221 and 222, it is possible to suppress a leak current from flowing into the element substrate 10 containing a silicon material.
  • the lead wirings 221 and 222 are further provided so as to extend from the side surface 10c to the second main surface 10b, and the insulating layer 45 is provided outside the second main surface 10b with the element substrate 10 and the respective lead wirings 221 and 222. And between.
  • the insulating layer 45 between the second major surface 10 b of the element substrate 10 and the lead wirings 221 and 222, it is possible to suppress a leak current from flowing in the element substrate 10 containing a silicon material.
  • the element substrate 10 has the other main surface 12b which is the same surface as the second main surface 10b, and the one main surface 12a opposite to the other main surface 12b, and includes a support substrate 12 containing a silicon material, and support
  • the side surface 10 d of the piezoelectric layer 11 is positioned inward of the side surface 10 c of the element substrate 10, and the lead wirings 221 and 222 are formed of the piezoelectric layer 11 positioned on the one main surface 12 a of the substrate 12. Furthermore, it is a path connecting the side surface 10 d of the piezoelectric layer 11 and the side surface 10 d of the piezoelectric layer 11 and the side surface 10 c of the element substrate 10, and is formed along at least a part of one main surface 12 a of the support substrate 12.
  • the insulating layer 45 is provided between the support substrate 12 and the lead wirings 221 and 222 on the outer side of the one main surface 12a. As described above, by providing the insulating layer 45 between the one main surface 12 a of the support substrate 12 and the lead wirings 221 and 222, it is possible to suppress a leak current from flowing in the support substrate 12 containing a silicon material.
  • the intermediate layer 14 has the following laminated structure.
  • the intermediate layer 14 is composed of a high-order mode leakage layer 13a, a high sound velocity film 13b, and a low sound velocity film 13c.
  • a high-order mode leakage layer 13a made of a film that blocks leakage of high-order modes is stacked on the support substrate 12, and a high sound velocity film 13b having a relatively high sound velocity is formed on the high-order mode leakage layer 13a.
  • the low sound velocity film 13c having a relatively low sound velocity is stacked on the high sound velocity film 13b, and the piezoelectric layer 11 is stacked on the low sound velocity film 13c.
  • An appropriate material may be formed between the intermediate layer 14 and the support substrate 12.
  • the high-order mode leakage layer 13a can be formed of an appropriate material that blocks leakage of the high-order mode.
  • silicon oxide can be mentioned.
  • the high sound velocity film 13 b has a function of confining the elastic wave in the portion where the piezoelectric layer 11 and the low sound velocity film 13 c are stacked so that the elastic wave does not leak below the high sound velocity film 13 b.
  • the high sound velocity film 13 b is made of, for example, aluminum nitride.
  • aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond a medium containing these materials as a main component, a mixture of these materials as a main component
  • Various high sound velocity materials such as a medium to be used can be used.
  • the film thickness of the high sound velocity film 13b is preferably as large as possible. .5 times or more is desirable.
  • the low sound velocity film 13c is made of silicon oxide.
  • a material forming the low sound velocity film 13c an appropriate material having a bulk wave sound velocity lower than that of the bulk wave propagating through the piezoelectric layer 11 can be used.
  • a medium containing the above material as a main component can be used, such as silicon oxide, glass, silicon oxynitride, tantalum oxide, or a compound obtained by adding fluorine, carbon or boron to silicon oxide.
  • the high sound velocity film 13 b refers to a film in which the sound velocity of the bulk wave in the high sound velocity film 13 b is higher than that of the surface waves or boundary waves propagating through the piezoelectric layer 11.
  • the low sound velocity film 13 c is a film in which the sound velocity of the bulk wave in the low sound velocity film 13 c is lower than that of the bulk wave propagating through the piezoelectric layer 11.
  • the Q value can be increased.
  • the element substrate 10 is formed of the piezoelectric layer 11 and the support substrate 12.
  • the present invention is not limited thereto, and the element substrate 10 may be formed integrally with, for example, a piezoelectric ceramic material. .
  • the electrode structure on the first major surface 10 a of the element substrate 10 is not particularly limited, and the functional electrode 21 may not have a reflector.
  • the functional electrode 21 may have at least an electrode structure for exciting an elastic wave.
  • FIG. 13 is a circuit configuration diagram showing the front end circuit 108 and the communication device 109 according to the second embodiment.
  • the elastic wave device 1 In the front end circuit 108 and the communication device 109, the elastic wave device 1 according to the first embodiment is included in the first filter 111 and the second filter 112.
  • LNA Low Noise
  • Amplifier 103
  • a multiport switch 105 is provided between the first filter 111 and the antenna common terminal 115 and between the second filter 112 and the antenna common terminal 115.
  • the multiport switch 105 is a switch that can be turned on / off simultaneously, and when the first filter 111 is connected to the antenna common terminal 115, that is, when the first filter 111 is performing signal processing,
  • the second filter 112 can also be connected to the antenna common terminal 115.
  • disconnection of the lead-out line can be suppressed on the side surface of the element substrate of the elastic wave device.
  • the present invention is not limited to this, and the first filter 111 including the elastic wave device 1 may be used as the transmission filter.
  • the communication device 109 capable of transmission and reception can be configured by replacing the LNA 103 located between the first filter 111 which is a transmission filter and the RFIC 104 with a PA (Power Amplifier).
  • the filters constituting the front end circuit 108 and the communication device 109 are not limited to surface acoustic wave filters, and may be boundary acoustic wave filters. This also achieves the same effects as the effects of the elastic wave device 1 and the like according to the above-described embodiment.
  • the elastic wave devices 1 to 1 E, the front end circuit 108 and the communication device 109 according to the present invention have been described above based on the embodiment and the modification, but the present invention is limited to the embodiment and the modification. It is not a thing.
  • the present invention also includes the resulting variations and various devices incorporating the elastic wave device according to the present invention.
  • the elastic wave device of the present invention is widely used in various electronic devices and communication devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波装置(1)は、圧電性を有する素子基板(10)と、素子基板(10)における第1主面(10a)に設けられている機能電極(21)と、機能電極(21)に電気的に接続され、素子基板(10)における第1主面(10a)から側面(10c)に至るように設けられている引き出し配線(221a、222a)と、引き出し配線(221a、222a)と電気的に接続され、素子基板(10)における第2主面(10b)上に設けられている外部端子(51、52)と、弾性波装置(1)を封止するように設けられている第1樹脂部(31)と、少なくとも、側面(10c)に設けられている引き出し配線(221a、222a)と第1樹脂部(31)との間に設けられている第2樹脂部(32)と、を備えている。第2樹脂部(32)は、第1樹脂部(31)よりもヤング率が小さい。

Description

弾性波装置、フロントエンド回路及び通信装置
 本発明は、封止樹脂を備える弾性波装置、この弾性波装置を備えるフロントエンド回路及び通信装置に関する。
 従来、帯域フィルタとして弾性波装置が広く用いられている。この弾性波装置の一例として、特許文献1には、素子基板と、素子基板の表面側に形成されているIDT電極と、素子基板の裏面(実装面)側に形成されている外部端子とを備える弾性波装置が記載されている。この弾性波装置では、IDT電極と外部端子とが、素子基板の側面に形成された引き出し配線を介して接続されている(特許文献1の図10参照)。
国際公開第2016/208287号
 しかしながら、特許文献1に記載されている弾性波装置では、樹脂封止された後、弾性波装置に外力が加えられた場合が発生した場合に、素子基板の側面に設けられた引き出し配線が断線するという問題がある。
 本発明の目的は、封止樹脂を備える弾性波装置において、素子基板の側面に設けられた引き出し配線が断線することを抑制することである。
 本発明の一態様に係る弾性波装置は、互いに背向する第1主面及び第2主面と、第1主面と第2主面とを繋ぐ側面とを有し、かつ、少なくとも一部に圧電性を有する素子基板と、素子基板における第1主面に設けられている機能電極と、機能電極に電気的に接続され、素子基板における第1主面から側面に至るように設けられている引き出し配線と、引き出し配線と電気的に接続され、素子基板における第2主面上に直接又は間接的に設けられている外部端子と、弾性波装置を封止するように設けられている第1樹脂部と、少なくとも、側面に設けられている引き出し配線と第1樹脂部との間に設けられている第2樹脂部と、を備え、第2樹脂部は、第1樹脂部よりもヤング率が小さい。
 このように、引き出し配線と第1樹脂部との間に第2樹脂部を設け、第2樹脂部のヤング率を第1樹脂部のヤング率よりも小さくすることで、弾性波装置に外力が加えられた場合に、引き出し配線に加えられる力を緩和することができる。これにより、素子基板の側面に設けられた引き出し配線が断線することを抑制できる。
 また、本発明の一態様に係る弾性波装置は、互いに背向する第1主面及び第2主面と、第1主面と第2主面とを繋ぐ側面とを有し、かつ、少なくとも一部に圧電性を有する素子基板と、素子基板における第1主面に設けられている機能電極と、機能電極に電気的に接続され、素子基板における第1主面から側面に至るように設けられている引き出し配線と、引き出し配線と電気的に接続され、素子基板における第2主面上に直接又は間接的に設けられている外部端子と、弾性波装置を封止するように設けられている第1樹脂部と、少なくとも、側面に設けられている引き出し配線と第1樹脂部との間に設けられている第2樹脂部と、を備え、第2樹脂部は、第1樹脂部よりもフィラーの含有率が小さい。
 このように、引き出し配線と第1樹脂部との間に第2樹脂部を設け、第2樹脂部のフィラーの含有率を第1樹脂部のフィラーの含有率よりも小さくすることで、第2樹脂部のヤング率を第1樹脂部のヤング率よりも小さくすることが可能となるので、弾性波装置に外力が加えられた場合に、引き出し配線に加えられる力を緩和することができる。これにより、素子基板の側面に設けられた引き出し配線が断線することを抑制できる。
 また、弾性波装置は、さらに、第3樹脂部を備え、素子基板は、第2主面と側面とが交わる部分である第1角部を有し、引き出し配線は、さらに、側面から第1角部及び第2主面に至るように設けられ、第3樹脂部は、少なくとも、第1角部に設けられている引き出し配線と第1樹脂部との間に設けられており、かつ、第1樹脂部よりもヤング率が小さくてもよい。
 このように、第1角部において、引き出し配線と第1樹脂部との間に第3樹脂部を設け、第3樹脂部のヤング率を第1樹脂部のヤング率よりも小さくすることで、弾性波装置に外力が加えられた場合に、引き出し配線に加えられる力を緩和することができる。これにより、素子基板の角部に設けられた引き出し配線が断線することを抑制できる。
 また、弾性波装置は、さらに、カバー層を備え、機能電極は、IDT電極であり、第2樹脂部は、さらに、第1主面に沿う方向において、IDT電極の周囲に設けられ、カバー層は、第1主面に垂直な方向においてIDT電極を覆うように第2樹脂部上に設けられていてもよい。
 また、弾性波装置は、さらに、絶縁層を備え、素子基板は、シリコン材料を含む支持基板と、支持基板上に直接又は間接的に形成された圧電体層と、を少なくとも有し、絶縁層は、引き出し配線と支持基板との間に設けられていてもよい。
 このように、支持基板と引き出し配線との間に絶縁層を設けることで、支持基板内にリーク電流が流れることを抑制できる。
 また、素子基板は、支持基板と、支持基板上に直接又は間接的に形成された圧電体層と、を少なくとも有し、素子基板を第1主面に垂直な方向から断面視した場合に、圧電体層の側面は、素子基板の側面よりも内側に位置し、引き出し配線は、第2主面から、圧電体層の側面、及び、素子基板の側面に至るように設けられていてもよい。
 これによれば、例えば、複数の素子基板からなるマザー基板をダイシングブレードを用いてカットして弾性波装置を製造する場合に、ダイシングブレードが圧電体層に触れることを防ぐことができ、圧電体層の割れや界面剥離を抑制することができる。
 また、素子基板は、支持基板と、支持基板上に直接形成された圧電体層と、を有し、機能電極は、圧電体層上に設けられ、支持基板は、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速であってもよい。
 これによれば、圧電体層から伝搬した弾性波を、支持基板と圧電体層との界面で反射し、圧電体層に戻すことができる。これにより、弾性波エネルギーを圧電体層内に効率的に閉じ込めることができる。
 また、素子基板は、支持基板と、支持基板上に間接的に形成された圧電体層と、支持基板と圧電体層との間に設けられた中間層と、を有し、機能電極は、圧電体層上に設けられ、中間層は、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速であり、支持基板は、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速であってもよい。
 これによれば、圧電体層から中間層に伝搬した弾性波を、支持基板と中間層との界面で反射し、圧電体層に戻すことができる。これにより、弾性波エネルギーを圧電体層内に効率的に閉じ込めることができる。
 また、素子基板は、支持基板と、支持基板上に間接的に形成された圧電体層と、支持基板と圧電体層との間に設けられた中間層と、を有し、機能電極は、圧電体層上に設けられ、中間層は、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜と、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速膜とを有し、低音速膜は、圧電体層と支持基板との間に設けられ、高音速膜は、低音速膜と支持基板との間に設けられていてもよい。
 これによれば、圧電体層から低音速膜に伝搬した弾性波を、高音速膜と低音速膜との界面で反射し、圧電体層に戻すことができる。これにより、弾性波エネルギーを圧電体層内に効率的に閉じ込めることができる。
 また、素子基板は、外部端子を介して実装基板の一方の主面に接合され、第1樹脂部は、さらに、実装基板の一方の主面を覆っていてもよい。
 このように、第1樹脂部が実装基板の一方の主面を覆っている場合であっても、弾性波装置に外力が加えられた場合に、引き出し配線に加えられる力を緩和することができる。
 また、本発明の一態様に係るフロントエンド回路は、上記弾性波装置を備える。
 これによれば、引き出し配線の断線が抑制された弾性波装置を有するフロントエンド回路を提供することができる。
 また、本発明の一態様に係る通信装置は、上記フロントエンド回路と、高周波信号を処理する信号処理回路と、を備える。
 これによれば、通信装置の信頼性を向上することができる。
 本発明によれば、封止樹脂を備える弾性波装置において、素子基板の側面に設けられた引き出し配線が断線することを抑制できる。
図1は、実施の形態1に係る弾性波装置の一例を示す断面図である。 図2Aは、実施の形態1に係る弾性波装置の素子基板、機能電極、第1の引き出し配線及び第2の引き出し配線の一例を示す斜視図である。 図2Bは、図2Aに示す素子基板、第1の引き出し配線及び第2の引き出し配線を裏面側から見た場合の斜視図である。 図3は、実施の形態1に係る弾性波装置の他の一例を示す断面図である。 図4は、実施の形態1に係る弾性波装置の製造方法を示すフローチャートである。 図5は、実施の形態1に係る弾性波装置の製造方法を示す図である。 図6は、図5につづき、実施の形態1に係る弾性波装置の製造方法を示す図である。 図7は、図6につづき、実施の形態1に係る弾性波装置の製造方法を示す図である。 図8は、実施の形態1の変形例1に係る弾性波装置を示す断面図である。 図9は、実施の形態1の変形例2に係る弾性波装置を示す断面図である。 図10は、実施の形態1の変形例3に係る弾性波装置を示す断面図である。 図11は、実施の形態1の変形例4に係る弾性波装置を示す断面図である。 図12は、実施の形態1の変形例5に係る弾性波装置を示す断面図である。 図13は、実施の形態2に係るフロントエンド回路及び通信装置を示す回路構成図である。 図14は、比較例の弾性波装置を示す断面図である。
 以下、本発明の実施の形態について、実施の形態及び図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ又は大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 [1-1.弾性波装置の構成]
 図1は、実施の形態1に係る弾性波装置1の一例を示す断面図である。図2Aは、弾性波装置1の素子基板10、機能電極21、第1の引き出し配線221及び第2の引き出し配線222の一例を示す斜視図である。図2Bは、図2Aに示す弾性波装置1の素子基板10、第1の引き出し配線221及び第2の引き出し配線222を裏面側から見た場合の斜視図である。なお、図2A及び図2Bでは、第1樹脂部31、第2樹脂部32、第3樹脂部33、カバー層40、第1の外部端子51及び第2の外部端子52の記載を省略している。
 図1に示すように弾性波装置1は、素子基板10と、素子基板10に設けられている機能電極21、第1の引き出し配線221及び第2の引き出し配線222と、機能電極21を覆うカバー層40と、第1の引き出し配線221に接続されている第1の外部端子51と、第2の引き出し配線222に接続されている第2の外部端子52とを備える。また、弾性波装置1は、弾性波装置1を封止するように設けられた第1樹脂部31と、素子基板10と第1樹脂部31との間に設けられている第2樹脂部32と、第3樹脂部33とを備える。弾性波装置1は、第1の外部端子51及び第2の外部端子52を介して実装基板60に実装される。
 以下、第1の引き出し配線221を引き出し配線221と呼び、第2の引き出し配線222を引き出し配線222と呼び、第1の外部端子51を外部端子51と呼び、第2の外部端子52を外部端子52と呼ぶ場合がある。
 素子基板10は、平板状であり、互いに背向する第1主面10a及び第2主面10bと、第1主面10a及び第2主面10bの両方に交わる面であって第1主面10aと第2主面10bとを繋ぐ側面10cとを有する。第2主面10bは、弾性波装置1が実装基板60に実装される場合に、実装基板60側に位置する面である。素子基板10は、第1主面10aと側面10cとが交わる部分である第2角部17を有し、また、第2主面10bと側面10cとが交わる部分である第1角部16を有している。図1に示す断面図には、2つの側面10c、2つの第1角部16及び2つの第2角部17が表わされている。なお、側面10cは、第1主面10a又は第2主面10bに対して傾いて設けられてもよい。第1主面10a及び第2主面10bは、互いに平行でなくてもよい。素子基板10の断面は、台形状、平行四辺形状又は四角形状であってもよい。
 また、素子基板10は、支持基板12と、支持基板12上に直接設けられた圧電体層11とを有している。圧電体層11の上面は、前述した第1主面10aとなり、支持基板12の下面は、前述した第2主面10bとなっている。圧電体層11は、例えばLiTaOやLiNbOなどの圧電単結晶、又は、圧電セラミックスからなる。支持基板12は、絶縁体もしくは半導体からなる。支持基板12の材料は、例えばSi、Alなどである。支持基板12は、圧電体層11を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である。
 機能電極21は、素子基板10の第1主面10aに設けられている金属膜である。機能電極21は、例えば、IDT(INTERDIGITAL TRANSDUCER)電極及び反射器である。図2Aには、IDT電極及び反射器によって構成される弾性波共振子i1~i7が示されている。図2Aにおいて、弾性波共振子i1~i7は、Xを矩形の枠で囲んだ記号で略図的に示されている。弾性波共振子i1~i7は、第1主面10a上にて電気的に接続され、ラダー型フィルタなどのフィルタ回路を形成している。機能電極21は、Al、Cu、AlCu合金などの金属もしくは合金からなる。また、機能電極21は、単一の金属膜に限らず、複数の金属膜が積層された積層金属膜によって形成されていてもよい。なお、弾性波共振子i1~i7は、弾性表面波共振子に限られず、弾性境界波共振子であってもよい。
 第1の引き出し配線221及び第2の引き出し配線222のそれぞれは、帯状であり、素子基板10の第1主面10a、側面10c及び第2主面10bのそれぞれに設けられている。具体的には、引き出し配線221は、互いに接続されている引き出し配線221a及び引き出し配線221bを有している。引き出し配線221aは、機能電極21に電気的に接続され、第1主面10a側から第2角部17を経て側面10cに至るように設けられている。引き出し配線221bは、側面10cに設けられた引き出し配線221aの端部に接続され、第1角部16から第2主面10bに至るように設けられている。
 第2の引き出し配線222は、互いに接続されている引き出し配線222a及び引き出し配線222bを有している。引き出し配線222aは、機能電極21に電気的に接続され、第1主面10a側から第2角部17を経て側面10cに至るように設けられている。引き出し配線222bは、側面10cに設けられた引き出し配線222aの端部に接続され、第1角部16から第2主面10bに至るように設けられている。
 引き出し配線221b及び引き出し配線222bは、第2主面10b上において互いに隣り合っている。
 この弾性波装置1では、引き出し配線221、222のそれぞれが素子基板10の外周に沿って引き回されており、機能電極21の駆動によって第1主面10a側にて発生した熱を、各引き出し配線221、222を介して第2主面10b側に伝達して、放熱できる構造となっている。また、機能電極21が第1主面10aに設けられ、各引き出し配線221、222が、機能電極21から第1主面10a及び側面10cを介して第2主面10bに至るまで延設されているので、引き出し配線221、222の長さが長くなり、放熱性を向上できる構造となっている。
 引き出し配線221、222のそれぞれは、例えばCuを含む金属材料によって形成されている。なお、引き出し配線221、222は、Cuに限られず、Alを含む金属材料によって形成されていてもよい。また、引き出し配線221、222は、金めっきなどの被覆層を有していてもよい。
 第1の外部端子51は、第2主面10bに設けられた引き出し配線221bに電気的に接続されている。第2の外部端子52は、第2主面10bに設けられた引き出し配線222bに電気的に接続されている。外部端子51、52のそれぞれは、Sn及びAgを含む金属部材で形成されている。素子基板10は、この外部端子51、52を介して実装基板60の一方の主面60aに接合される。
 第2樹脂部32は、素子基板10の第1主面10a側及び側面10c側に設けられている。第2樹脂部32は、第1主面10aに垂直な方向から見た場合、第1主面10aに沿う方向において、機能電極21を取り囲むように機能電極21の周囲に設けられている。また、第2樹脂部32は、引き出し配線221a、222aを覆うように設けられている。第1主面10a側における第2樹脂部32の高さは、機能電極21の高さよりも高い。なお、側面10c側における第2樹脂部32の構成については後述する。
 カバー層40は、シート状のポリイミド樹脂であり、第1主面10aに垂直な方向において、機能電極21を覆うように第2樹脂部32上に設けられている。カバー層40は、機能電極21に対して所定の間隔をあけて配置されている。弾性波装置1には、カバー層40、第2樹脂部32及び素子基板10によって囲まれた密閉空間Aが形成されている。カバー層40は素子基板10よりも面積が大きく、カバー層40の側面は素子基板10の側面10cよりも外側に位置している。
 第1樹脂部31は、弾性波装置1を封止する封止樹脂である。第1樹脂部31は、素子基板10、機能電極21及び引き出し配線221、222を囲むように、素子基板10の第1主面10a、第2主面10b及び側面10cのそれぞれの外側に設けられている。また、前述したように第1樹脂部31は、実装基板60の一方の主面60aを覆っている。
 第1樹脂部31は、フィラーを含む絶縁性材料であり、例えば、シリカ粒子を含むエポキシ樹脂によって形成されている。例えば、このエポキシ樹脂のヤング率(弾性係数)は17GPaである。
 第2樹脂部32は、素子基板10の側面10cの外側において、各引き出し配線221a、222aと第1樹脂部31との間に設けられている。また、第2樹脂部32は、第2角部17の外側において、各引き出し配線221a、222aと第1樹脂部31との間に設けられている。第2樹脂部32の側面は、カバー層40の側面と同一の面に形成されている。第2樹脂部32は、引き出し配線221a、222aに接しているのに対し、第1樹脂部31は、引き出し配線221a、222aに接していない。
 第2樹脂部32は、絶縁性材料であり、例えば、エポキシ樹脂によって形成されている。例えば、このエポキシ樹脂のヤング率は2GPaである。すなわち、第2樹脂部32のヤング率は、第1樹脂部31のヤング率よりも小さい。弾性波装置1では、第2樹脂部32のヤング率を小さくすることで、外力が加えられた場合であっても、引き出し配線221a、222aに加えられる力が緩和される構造となっている。
 なお、第2樹脂部32のフィラーの含有率を第1樹脂部31のフィラーの含有率よりも小さくすれば、第2樹脂部32のヤング率を第1樹脂部31のヤング率よりも小さくすることが可能となるので、引き出し配線221a、222aに加えられる力を緩和することができる。
 また、第2樹脂部32の線膨張係数を第1樹脂部31の線膨張係数よりも引き出し配線221a、222aの線膨張係数に近づけることで、引き出し配線221a、222aにかかる外力だけでなく、引き出し配線221a、222aにかかる熱応力を抑制することが可能となる。
 第3樹脂部33は、素子基板10の第2主面10bの外側において、各引き出し配線221b、222bと第1樹脂部31との間に設けられている。また、第3樹脂部33は、第2主面10bの引き出し配線221b、222bが形成されていない領域において、支持基板12と第1樹脂部31との間に設けられている。また、第3樹脂部33は、第1角部16の外側において、各引き出し配線221b、222bと第1樹脂部31との間に設けられている。第3樹脂部33は、引き出し配線221b、222bに接しているのに対し、第1樹脂部31は、引き出し配線221b、222bに接していない。
 第3樹脂部33は、絶縁性の樹脂材料で形成され、例えば、ポリアミック酸エステル及び乳酸エチルを含む。第3樹脂部33を形成する樹脂材料のガラス転移点は200℃である。ガラス転移点以下の温度において、第3樹脂部33の樹脂材料のヤング率は3.5GPaである。すなわち、第3樹脂部33のヤング率は、第1樹脂部31のヤング率よりも小さい。弾性波装置1では、第3樹脂部33のヤング率を小さくすることで、外力が加えられた場合であっても、引き出し配線221b、222bに加えられる力が緩和される構造となっている。
 なお、第3樹脂部33のフィラーの含有率は、第1樹脂部31のフィラーの含有率よりも小さければ、第3樹脂部33のヤング率を第1樹脂部31のヤング率よりも小さくすることが可能となるので、引き出し配線221a、222aに加えられる力を緩和することができる。
 なお、第3樹脂部33の線膨張係数を第1樹脂部31よりも引き出し配線221b、222bの線膨張係数に近づけることで、引き出し配線221a、222aにかかる外力だけでなく、引き出し配線221b、222bにかかる熱応力を抑制することが可能となる。
 図3は、弾性波装置1の他の一例を示す断面図であり、弾性波装置1が高周波モジュールの一部となっている。高周波モジュールは、例えば、弾性波装置1と、実装部品65と、実装基板60とによって構成されている。
 実装基板60は、プリント回路基板であり、実装基板60の一方の主面60aには、ランド電極61が形成されている。弾性波装置1の外部端子51、52は、このランド電極61を介して実装基板60に接続されている。実装基板60には、弾性波装置1の他に、実装部品65である積層セラミック部品及びICチップが実装されている。第1樹脂部31は、弾性波装置1及び実装部品65を覆うように、実装基板60の一方の主面60a側に設けられている。このように、弾性波装置1が実装基板60と一体となった状態で高周波モジュールを形成していてもよい。
 [1-2.弾性波装置の製造方法]
 次に、弾性波装置1の製造方法について説明する。図4は、弾性波装置1の製造方法を示すフローチャートである。図5は、弾性波装置1の製造方法を示す図であり、図6は、図5につづき、弾性波装置1の製造方法を示す図であり、図7は、図6につづき、弾性波装置1の製造方法を示す図である。
 まず、図5の(a)に示すように、素子基板10に機能電極21を形成する(S11)。機能電極21が形成される面は、圧電体層11の上面である第1主面10aである。機能電極21は、例えば、IDT電極及び反射器となる電極膜である。素子基板10は、個片化される前のマザー基板の状態である。図5の(a)には、一例として2つの素子基板10が示されている。
 次に、図5の(b)に示すように、素子基板10に溝c1を形成する(S12)。溝c1は、第1主面10aに垂直な方向から見て格子状に形成される。この溝c1の形成によって、素子基板10の側面10cが形成される。
 次に、図5の(c)に示すように、溝c1の表面及び素子基板10の表面に引き出し配線221a、222aを形成する(S13)。引き出し配線221a、222aは、溝c1の側面である素子基板10の側面10c、及び、素子基板10の第1主面10aに沿って所定の膜厚で形成される。第1主面10a側の引き出し配線221a、222aは、機能電極21と接続するように形成される。
 次に、図5の(d)に示すように、引き出し配線221a、222aが形成された溝c1及び第1主面10a上に第2の樹脂材料b2を塗布する(S14)。樹脂材料b2は、引き出し配線221a、222aを覆うように形成される。また、樹脂材料b2は、第1主面10aに沿う方向において機能電極21を取り囲むように、高さ方向において機能電極21よりも高くなるように形成される。この樹脂材料b2が塗布硬化されることで、素子基板10の側面10cの外側及び第2角部17の外側に第2樹脂部32が形成される。
 次に、図6の(a)に示すように、第2樹脂部32上にカバー層40が形成される(S15)。カバー層40は、シート状のポリイミド樹脂であり、接着によって第2樹脂部32に貼り付けられる。このカバー層40の形成により、機能電極21上に密閉空間Aが形成される。
 次に、図6の(b)に示すように、素子基板10の裏面をグラインダ等によって除去する(S16)。この除去によって、素子基板10の第2主面10bが形成され、また、溝c1に形成された引き出し配線221a、222aの一部及び第2樹脂部32の一部が露出する。
 次に、図6の(c)に示すように、露出した第2主面10bに引き出し配線221b、222bを延設する(S17)。引き出し配線221b、222bのそれぞれは、ステップS13にて形成した引き出し配線221a、222aのそれぞれと接続するように形成される。
 次に、図6の(d)に示すように、引き出し配線221b、222bが形成された第2主面10b上に第3の樹脂材料b3を塗布する(S18)。樹脂材料b3は、外部端子51、52が形成される領域を除いて、引き出し配線221b、222bを覆うように、かつ、第2主面10bを覆うように形成される。この樹脂材料b3が塗布硬化されることで、素子基板10の第2主面10bの外側及び第1角部16の外側に、第3樹脂部33が形成される。第3樹脂部33が形成されていない領域は、凹状となり、引き出し配線221b、222bが露出している。
 次に、図7の(a)に示すように、第3樹脂部33が形成されていない領域に外部端子51、52を形成する(S19)。外部端子51、52は、例えば、金属バンプである。この外部端子51、52の形成によって、引き出し配線221bと外部端子51とが接続され、引き出し配線222bと外部端子52とが接続される。
 次に、図7の(b)に示すように、複数の素子基板10を有するマザー基板をカットして個片化する(S20)。カットする際のブレードの幅は、ステップS12における溝c1の幅よりも小さい。このカットによって、弾性波装置1の一部である素子d1が形成され、また、カバー層40、第2樹脂部32及び第3樹脂部33のそれぞれの側面が形成される。
 次に、図7の(c)に示すように、個片化された素子d1を実装基板60に実装する(S21)。素子d1は、はんだ等によって実装基板60のランド電極61に接合される。
 そして、素子d1を覆うように実装基板60の一方の主面60aに第1の樹脂材料を塗布し、硬化する(S22)。第1の樹脂材料の硬化により、第1樹脂部31が、素子基板10、機能電極21及び引き出し配線221、222を囲み、さらに、その外側のカバー層40、第2樹脂部32、第3樹脂部33を囲むように設けられ、図1に示すような弾性波装置1が形成される。
 [1-3.効果等]
 上記構成を有する弾性波装置1は、素子基板10の側面10cに設けられた引き出し配線221a、222aの断線を抑制することができる。この理解を容易にするために、比較例における弾性波装置の構成を説明する。
 図14は、比較例の弾性波装置501を示す断面図である。比較例の弾性波装置501は、素子基板10と、素子基板10に設けられている機能電極21及び引き出し配線221、222と、機能電極21を覆うカバー層40と、引き出し配線221に接続されている外部端子51と、引き出し配線222に接続されている外部端子52とを備える。また、弾性波装置501は、カバー層40を支持する第2樹脂部32と、素子基板10、引き出し配線221、222及びカバー層40の全体を囲む第1樹脂部31を備える。
 比較例の弾性波装置501では、側面10cの引き出し配線221、222が第2樹脂部32で覆われておらず、第1樹脂部31が引き出し配線221、222に接している。そのため、弾性波装置501では、外力が加えられると、それらの力が第1樹脂部31を介して側面10cの引き出し配線221、222に伝わり、引き出し配線221、222が断線しやすい。
 それに対し、本実施の形態に係る弾性波装置1は、以下の構成を有している。すなわち、弾性波装置1は、互いに背向する第1主面10a及び第2主面10bと、第1主面10aと第2主面10bとを繋ぐ側面とを有し、かつ、少なくとも一部に圧電性を有する素子基板10と、素子基板10における第1主面10aに設けられている機能電極21と、機能電極21に電気的に接続され、素子基板10における第1主面10aから側面10cに至るように設けられている引き出し配線221a、222aと、引き出し配線221a、222aと電気的に接続され、素子基板10における第2主面10b上に直接又は間接的に設けられている外部端子51、52と、弾性波装置1を封止するように設けられている第1樹脂部31と、少なくとも、側面10cに設けられている引き出し配線221a、222aと第1樹脂部31との間に設けられている第2樹脂部32と、を備えている。第2樹脂部32は、第1樹脂部31よりもヤング率が小さい。
 このように、引き出し配線221a、222aと第1樹脂部31との間に第2樹脂部32を設け、第2樹脂部32のヤング率を第1樹脂部31のヤング率よりも小さくすることで、弾性波装置1に外力が加えられた場合に、引き出し配線221a、222aに加えられる力を緩和することができる。これにより、素子基板10の側面10cに設けられた引き出し配線221a、222aが断線することを抑制できる。
 また、本実施の形態に係る弾性波装置1は、上記の素子基板10と、機能電極21と、引き出し配線221a、222aと、第1樹脂部31と、引き出し配線221a、222aと第1樹脂部31との間に設けられている第2樹脂部32と、を備え、第2樹脂部32は、第1樹脂部31よりもフィラーの含有率が小さい。
 このように、引き出し配線221a、222aと第1樹脂部31との間に第2樹脂部32を設け、第2樹脂部32のフィラーの含有率を第1樹脂部31のフィラーの含有率よりも小さくすることで、弾性波装置1に外力が加えられた場合に、引き出し配線221a、222aに加えられる力を緩和することができる。これにより、素子基板10の側面10cに設けられた引き出し配線221a、222aが断線することを抑制できる。
 また、第1角部16又は第2角部17において、引き出し配線221、222と第1樹脂部31との間に第2樹脂部32を設けることで、弾性波装置1に外力が加えられた場合に、引き出し配線221、222に加えられる力を緩和することができる。これにより、素子基板10の角部に設けられた引き出し配線221、222が断線することを抑制できる。
 [1-4.実施の形態1の変形例1]
 図8は、実施の形態1の変形例1に係る弾性波装置1Aを示す断面図である。図8には、実装基板60に実装される前の状態の弾性波装置1Aが示されている。弾性波装置1Aでは、第1樹脂部31が実装基板60に設けられておらず、弾性波装置1Aのみに設けられている点で、第1樹脂部31が実装基板60に設けられている上記実施の形態1と異なる。このような第1樹脂部31は、例えば、印刷法、浸漬法等によって形成することができる。
 変形例1の弾性波装置1Aでも、引き出し配線221a、222aと第1樹脂部31との間に第2樹脂部32が設けられ、第2樹脂部32のヤング率が第1樹脂部31のヤング率よりも小さくなっている。また、弾性波装置1Aでは、第2樹脂部32のフィラーの含有率が第1樹脂部31のフィラーの含有率よりも小さくなっている。そのため、弾性波装置1Aに外力が加えられた場合に、引き出し配線221a、222aに加えられる力を緩和することができる。これにより、素子基板10の側面10cに設けられた引き出し配線221a、222aが断線することを抑制できる。
 [1-5.実施の形態1の変形例2]
 図9は、実施の形態1の変形例2に係る弾性波装置1Bを示す断面図である。図9に示す弾性波装置1Bの素子基板10は、圧電体層のみで形成されている点で、素子基板10が支持基板12と圧電体層11とで構成されている上記実施の形態1と異なる。
 変形例2の弾性波装置1Bでも、引き出し配線221a、222aと第1樹脂部31との間に第2樹脂部32が設けられ、第2樹脂部32のヤング率が第1樹脂部31のヤング率よりも小さくなっている。また、弾性波装置1Bでは、第2樹脂部32のフィラーの含有率が第1樹脂部31のフィラーの含有率よりも小さくなっている。そのため、弾性波装置1Bに外力が加えられた場合に、引き出し配線221a、222aに加えられる力を緩和することができる。これにより、素子基板10の側面10cに設けられた引き出し配線221a、222aが断線することを抑制できる。
 [1-6.実施の形態1の変形例3]
 図10は、実施の形態1の変形例3に係る弾性波装置1Cを示す断面図である。図10示す弾性波装置1Cは、機能電極21が支持基板12と圧電体層11との間、及び、圧電体層11上に設けられている点で、機能電極21が支持基板12と圧電体層11との間に存在しない上記実施の形態1と異なる。各引き出し配線221a、222aは、第1主面10a側である圧電体層11上の機能電極21に接続されている。
 変形例3の弾性波装置1Cでも、引き出し配線221a、222aと第1樹脂部31との間に第2樹脂部32が設けられ、第2樹脂部32のヤング率が第1樹脂部31のヤング率よりも小さくなっている。また、弾性波装置1Cでは、第2樹脂部32のフィラーの含有率が第1樹脂部31のフィラーの含有率よりも小さくなっている。そのため、弾性波装置1Cに外力が加えられた場合に、引き出し配線221a、222aに加えられる力を緩和することができる。これにより、素子基板10の側面10cに設けられた引き出し配線221a、222aが断線することを抑制できる。
 [1-7.実施の形態1の変形例4]
 図11は、実施の形態1の変形例4に係る弾性波装置1Dを示す断面図である。変形例4の弾性波装置1Dは、素子基板10が、シリコン材料を含む支持基板12と、支持基板12上に設けられた中間層14と、中間層14上に設けられた圧電体層11とによって構成されている点で、素子基板10が支持基板12と圧電体層11とで構成されている上記実施の形態1と異なる。弾性波装置1Dの圧電体層11は、支持基板12上に間接的に形成されている。支持基板12は、素子基板10の第2主面10bと同じ面である他方主面12bと、他方主面12bの反対の面である一方主面12aとを有している。
 中間層14は、高次モード漏洩層13a、高音速膜13b及び低音速膜13cによって構成されている。具体的には、支持基板12上に高次モードの漏洩を遮断する膜からなる高次モード漏洩層13aが積層され、高次モード漏洩層13a上に音速が相対的に高い高音速膜13bが積層され、高音速膜13b上に音速が相対的に低い低音速膜13cが積層され、低音速膜13c上に圧電体層11が積層されている。なお、中間層14と支持基板12の間に適宜の材料が形成されていても良い。
 高次モード漏洩層13aは、高次モードの漏洩を遮断する適宜の材料により形成することができる。このような材料としては、酸化ケイ素などを挙げることができる。
 高音速膜13bは、弾性波が高音速膜13bより下側に漏れないように、弾性波を圧電体層11及び低音速膜13cが積層されている部分に閉じ込める機能を有している。高音速膜13bは、例えば窒化アルミニウムからなる。もっとも、上記弾性波を閉じ込め得る限り、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜又はダイヤモンド、これらの材料を主成分とする媒質、これらの材料の混合物を主成分とする媒質等のさまざまな高音速材料を用いることができる。弾性波を圧電体層11及び低音速膜13cが積層されている部分に閉じ込めるには、高音速膜13bの膜厚は厚いほど望ましく、弾性波の波長λの0.1倍以上、さらには1.5倍以上であることが望ましい。
 低音速膜13cは酸化ケイ素からなる。もっとも、低音速膜13cを構成する材料としては圧電体層11を伝搬するバルク波よりも低音速のバルク波音速を有する適宜の材料を用いることができる。このような材料としては、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、また、酸化ケイ素にフッ素や炭素やホウ素を加えた化合物など、上記材料を主成分とした媒質を用いることができる。
 なお、高音速膜13bとは、圧電体層11を伝搬する表面波や境界波の弾性波よりも、高音速膜13b中のバルク波の音速が高速となる膜をいうものとする。また、低音速膜13cとは、圧電体層11を伝搬するバルク波よりも、低音速膜13c中のバルク波の音速が低速となる膜をいうものとする。
 このように圧電体層11と、支持基板12との間に高次モード漏洩層13a、高音速膜13b及び低音速膜13cを配置することで、Q値を高めることができる。
 また、弾性波装置1Dでは、第2主面10bに垂直な方向から見た場合、圧電体層11及び中間層14は支持基板12よりも外形が小さく、断面視した場合、圧電体層11及び中間層14の側面10dは素子基板10の側面10cよりも内側に位置している。例えば、圧電体層11及び中間層14の側面10dが素子基板10の側面10cよりも内側に位置するように予め形成しておくことで、マザー基板を個片化する工程(図7の(b)参照)でダイシングブレードを用いてカットする場合に、ダイシングブレードが圧電体層11及び中間層14に触れることを防ぐことができ、圧電体層11及び中間層14の割れや界面剥離を抑制することができる。
 各引き出し配線221a、222aは、第1主面10a側から圧電体層11及び中間層14の側面10d、支持基板12の一方主面12aに沿って形成され、側面10c側に至っている。
 変形例4の弾性波装置1Dでも、引き出し配線221a、222aと第1樹脂部31との間に第2樹脂部32が設けられ、第2樹脂部32のヤング率が第1樹脂部31のヤング率よりも小さくなっている。また、弾性波装置1Dでは、第2樹脂部32のフィラーの含有率が第1樹脂部31のフィラーの含有率よりも小さくなっている。そのため、弾性波装置1Dに外力が加えられた場合に、引き出し配線221a、222aに加えられる力を緩和することができる。これにより、素子基板10の側面10cに設けられた引き出し配線221a、222aが断線することを抑制できる。
 また、弾性波装置1Dでは、素子基板10の側面10c及び支持基板12の一方主面12aに第4樹脂部34が形成されている。すなわち、素子基板10の側面10c及び支持基板12の一方主面12aと、引き出し配線221a、222aとの間に第4樹脂部34が設けられている。例えば、素子基板10の側面10cと引き出し配線221a、222aとが接している場合、支持基板12内にリーク電流が流れやすい。それに対して弾性波装置1Dのように、素子基板10の側面10cと引き出し配線221a、222aとの間に第4樹脂部34を設けることで、支持基板12内にリーク電流が流れることを抑制できる。
 なお、本実施の形態において、素子基板10は以下の積層構造を有していてもよい。
 素子基板10は、支持基板12と、支持基板12上に設けられた中間層14と、中間層14上に設けられた圧電体層11とによって構成される。圧電体層11は、支持基板12上に間接的に形成されている。
 支持基板12は、互いに対向する一方主面12a及び他方主面12bを有する。支持基板12は、圧電体層11を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速となる材料によって形成される。支持基板12の材料としては、例えば、Siなどの半導体、サファイア、LiTaO(以下、「LT」と称する)、LiNbO(以下、「LN」と称する)、ガラスなどが挙げられる。これらの材料は、単独で用いてもよく、複数を併用してもよい。
 中間層14は、支持基板12の一方主面12a上に設けられている。また、中間層14は、圧電体層11の直下に位置し、圧電体層11に接している。中間層14が圧電体層11に接していることで、圧電体層11を伝搬する弾性波のエネルギーが、厚み方向に漏洩するのを防止することができる。
 中間層14は、圧電体層11を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速となる材料によって形成される。中間層14は、例えば、多結晶、アモルファス又は一軸配向された膜により形成され、結晶粒子G1及び粒界G2を有している。
 具体的には、中間層14はSiO層により形成されている。もっとも、中間層14を形成する材料としては、SiOの他に、窒化ケイ素、窒化アルミニウムなどを用いることができる。これらは、単独で用いてもよく、複数を併用してもよい。また、支持基板12との密着性を高める観点からは、中間層14を構成する材料として、SiOを用いることが望ましい。
 圧電体層11は、中間層14上に設けられている。圧電体層11は薄膜状であり、圧電体層11の厚みは、弾性波の波長をλとした場合に、例えば、厚み3.5λ以下であることが望ましい。その場合、弾性波をより励振させることができる。圧電体層11は、LTにより構成されている。もっとも、圧電体層11を構成する材料としては、LNなどの他の圧電単結晶を用いてもよいし、圧電セラミックスを用いてもよい。
 [1-8.実施の形態1の変形例5]
 図12は、実施の形態1の変形例5に係る弾性波装置1Eを示す断面図である。変形例5の弾性波装置1Eは、支持基板12の一方主面12a、他方主面12b及び側面12cと、各引き出し配線221、222との間に絶縁層45が設けられている点で、絶縁層45が設けられていない上記実施の形態1と異なる。
 弾性波装置1Eの素子基板10は、シリコン材料を含む支持基板12と、支持基板12上に設けられた中間層14と、中間層14上に設けられた圧電体層11とによって構成されている。
 弾性波装置1Eでは、第1主面10aに垂直な方向から見た場合、圧電体層11及び中間層14は支持基板12よりも外形が小さく、断面視した場合、圧電体層11及び中間層14の側面10dは素子基板10の側面10cよりも内側に位置している。例えば、圧電体層11及び中間層14の側面10dが素子基板10の側面10cよりも内側に位置するように予め形成しておくことで、マザー基板を個片化する工程(図7の(b)参照)でダイシングブレードを用いてカットする場合に、ダイシングブレードが圧電体層11及び中間層14に触れることを防ぐことができ、圧電体層11及び中間層14の割れや界面剥離を抑制することができる。
 上記構造の素子基板10は、断面が凸状の形状を有している。具体的には、素子基板10は、第1主面10a、第2主面10b、側面10c及び側面10dを有している。側面10cは、第2主面10bに交わる面であり、第2主面10bに接続されている。側面10dは、第1主面10aに交わる面であり、第1主面10aに接続されている。ここでいう素子基板10の側面10dは、前述した圧電体層11及び中間層14の側面10dと同じである。また、素子基板10を構成する支持基板12は、一方主面12a、他方主面12b及び側面12cを有している。支持基板12の他方主面12bは、第2主面10bと同じ面であり、支持基板12の側面12cは、側面10cと同じ面である。支持基板12の一方主面12aは、側面10d及び側面10cの両方に交わり、一方主面12aの一部は、側面10d及び側面10cを繋いでいる。なお、側面10c、12cは、第1主面10a又は第2主面10bに対して傾いて設けられてもよい。第1主面10a、第2主面10b及び一方主面12aは、平行でなくてもよい。
 また、素子基板10は、第2主面10bと側面10cとが交わる部分である第1角部16を有し、第1主面10aと側面10dとが交わる部分である第2角部17を有し、一方主面12aと側面10cとが交わる部分である第3角部18を有している。
 各引き出し配線221a、222aは、圧電体層11の側面10d、及び、圧電体層11の側面10dと素子基板10の側面10cとを繋ぐ経路に沿って設けられている。より具体的には、各引き出し配線221a、222aは、第1主面10aから第2角部17、側面10d、一方主面12a、第3角部18及び側面10cに沿って階段状に設けられている。なお、引き出し配線221a、222aは、支持基板12の一方主面12a上において圧電体層11及び中間層14が設けられていない面に沿って設けられている。また、引き出し配線221b、222bのそれぞれは、側面10cに設けられた引き出し配線221a、222aのそれぞれの端部に接続され、第1角部16及び第2主面10bに沿って設けられている。ただし、本実施の形態における引き出し配線221a、221b及び222a、222bは、支持基板12に接していない。
 本実施の形態の弾性波装置1Eでは、支持基板12の一方主面12a、他方主面12b及び側面12cに絶縁層45が形成されている。具体的には、支持基板12の一方主面12aと引き出し配線221a、222aとの間、及び、側面12cと引き出し配線221a、222aとの間に絶縁層45が設けられている。また、支持基板12の他方主面12bと引き出し配線221b、222bとの間に絶縁層45が設けられている。絶縁層45は、例えば、酸化ケイ素(SiO)又は窒化シリコン(SiN)などの材料によって形成されている。絶縁層45は、一方主面12a、他方主面12b及び側面12cのそれぞれの全面に設けられていてもよい。
 このように、引き出し配線221、222と、シリコン材料を含む支持基板12との間に絶縁層45が設けられることで、引き出し配線221、222が支持基板12に接していない構造となっている。例えば、支持基板12と引き出し配線221、222とが接している場合、シリコン材料を含む支持基板12内にリーク電流が流れやすい。それに対して弾性波装置1Eのように、支持基板12と引き出し配線221、222との間に絶縁層45を設けることで、シリコン材料を含む支持基板12内にリーク電流が流れることを抑制でき、弾性波装置1Eの特性劣化を抑制することができる。
 本実施の形態に係る弾性波装置1Eは、第1主面10aと、第1主面10aと背向する第2主面10bと、第1主面10aと第2主面10bとを繋ぐ側面10cとを有し、かつ、少なくとも一部にシリコン材料を含む、素子基板10と、素子基板10における第1主面10aに設けられている機能電極21と、機能電極21に電気的に接続され、第1主面10aから側面10cに至るように設けられている引き出し配線221、222と、側面10cの外側において、素子基板10と引き出し配線221、222との間に設けられている絶縁層45とを備える。このように、素子基板10の側面10cと引き出し配線221、222との間に絶縁層45を設けることで、シリコン材料を含む素子基板10内にリーク電流が流れることを抑制できる。
 また、引き出し配線221、222は、さらに、側面10cから第2主面10bに至るように設けられ、絶縁層45は、第2主面10bの外側において、素子基板10と各引き出し配線221、222との間に設けられている。このように、素子基板10の第2主面10bと引き出し配線221、222との間に絶縁層45を設けることで、シリコン材料を含む素子基板10内にリーク電流が流れることを抑制できる。
 また、素子基板10は、第2主面10bと同じ面である他方主面12bと、他方主面12bと背向する一方主面12aとを有し、シリコン材料を含む支持基板12と、支持基板12の一方主面12a上に位置する圧電体層11と、を有し、圧電体層11の側面10dは、素子基板10の側面10cよりも内側に位置し、引き出し配線221、222は、さらに、圧電体層11の側面10d、及び、圧電体層11の側面10dと素子基板10の側面10cとを繋ぐ経路であって、少なくとも支持基板12の一方主面12aの一部に沿って形成され、絶縁層45は、一方主面12aの外側において、支持基板12と引き出し配線221、222との間に設けられている。このように、支持基板12の一方主面12aと各引き出し配線221、222との間に絶縁層45を設けることで、シリコン材料を含む支持基板12内にリーク電流が流れることを抑制できる。
 なお、本実施の形態において、中間層14は以下の積層構造を有している。
 中間層14は、高次モード漏洩層13a、高音速膜13b及び低音速膜13cによって構成されている。具体的には、支持基板12上に高次モードの漏洩を遮断する膜からなる高次モード漏洩層13aが積層され、高次モード漏洩層13a上に音速が相対的に高い高音速膜13bが積層され、高音速膜13b上に音速が相対的に低い低音速膜13cが積層され、低音速膜13c上に圧電体層11が積層されている。なお、中間層14と支持基板12の間に適宜の材料が形成されていても良い。
 高次モード漏洩層13aは、高次モードの漏洩を遮断する適宜の材料により形成することができる。このような材料としては、酸化ケイ素などを挙げることができる。
 高音速膜13bは、弾性波が高音速膜13bより下側に漏れないように、弾性波を圧電体層11及び低音速膜13cが積層されている部分に閉じ込める機能を有している。高音速膜13bは、例えば窒化アルミニウムからなる。もっとも、上記弾性波を閉じ込め得る限り、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜又はダイヤモンド、これらの材料を主成分とする媒質、これらの材料の混合物を主成分とする媒質等のさまざまな高音速材料を用いることができる。弾性波を圧電体層11及び低音速膜13cが積層されている部分に閉じ込めるには、高音速膜13bの膜厚は厚いほど望ましく、弾性波の波長λの0.1倍以上、さらには1.5倍以上であることが望ましい。
 低音速膜13cは酸化ケイ素からなる。もっとも、低音速膜13cを構成する材料としては圧電体層11を伝搬するバルク波よりも低音速のバルク波音速を有する適宜の材料を用いることができる。このような材料としては、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、また、酸化ケイ素にフッ素や炭素やホウ素を加えた化合物など、上記材料を主成分とした媒質を用いることができる。
 なお、高音速膜13bとは、圧電体層11を伝搬する表面波や境界波の弾性波よりも、高音速膜13b中のバルク波の音速が高速となる膜をいうものとする。また、低音速膜13cとは、圧電体層11を伝搬するバルク波よりも、低音速膜13c中のバルク波の音速が低速となる膜をいうものとする。
 このように圧電体層11と、支持基板12との間に高次モード漏洩層13a、高音速膜13b及び低音速膜13cを配置することで、Q値を高めることができる。
 [1-9.実施の形態1のその他の変形例]
 その他の変形例について説明する。例えば、実施の形態1では、素子基板10を圧電体層11と支持基板12とで構成しているが、それに限られず、素子基板10を一体物とし、例えば圧電セラミック材料で形成してもよい。
 また、実施の形態1において、素子基板10の第1主面10a上の電極構造は特に限定されず、機能電極21は反射器を有していなくてもよい。機能電極21は、少なくとも弾性波を励振する電極構造を有していればよい。
 (実施の形態2)
 次に、実施の形態2に係るフロントエンド回路108及び通信装置109について説明する。図13は、実施の形態2に係るフロントエンド回路108及び通信装置109を示す回路構成図である。
 このフロントエンド回路108及び通信装置109では、第1フィルタ111及び第2フィルタ112に、実施の形態1に係る弾性波装置1が含まれている。
 図13に示すフロントエンド回路108及び通信装置109では、入力された信号を増幅するため、第1端子116とRFIC104との間、及び、第2端子117とRFIC104との間にそれぞれLNA(Low Noise Amplifier)103が設けられている。また、アンテナ素子102との接続状態を切り替えるため、第1フィルタ111とアンテナ共通端子115との間、及び、第2フィルタ112とアンテナ共通端子115との間にマルチポートスイッチ105が設けられている。マルチポートスイッチ105は、同時にON/OFFすることができるスイッチであり、第1フィルタ111がアンテナ共通端子115に接続されているとき、すなわち、第1フィルタ111が信号処理をしている場合に、第2フィルタ112もアンテナ共通端子115に接続されるようにすることができる。
 このような回路構成を有するフロントエンド回路108及び通信装置109においても実施の形態1と同様に、弾性波装置の素子基板の側面において、引き出し配線が断線することを抑制できる。
 また、上記実施の形態2では、第1フィルタ111を受信フィルタとしているが、それに限られず、弾性波装置1を含む第1フィルタ111を送信フィルタとしてもよい。例えば、送信フィルタである第1フィルタ111とRFIC104との間に位置するLNA103をPA(Power Amplifier)に置き換えることで、送受信可能な通信装置109を構成することができる。
 また、フロントエンド回路108及び通信装置109を構成する各フィルタは、弾性表面波フィルタに限られず、弾性境界波フィルタであってもよい。これによっても、上記実施の形態に係る弾性波装置1等が有する効果と同様の効果が奏される。
 (その他の形態)
 以上、本発明に係る弾性波装置1~1E、フロントエンド回路108及び通信装置109について、実施の形態及び変形例に基づいて説明したが、本発明は、上記実施の形態及び変形例に限定されるものではない。上記実施の形態及び変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波装置を内蔵した各種機器も本発明に含まれる。
 本発明の弾性波装置は、さまざまな電子機器や通信機器に広く用いられる。
 1、1A、1B、1C、1D、1E 弾性波装置
 10  素子基板
 10a 第1主面
 10b 第2主面
 10c、10d 側面
 11  圧電体層
 12  支持基板
 12a 一方主面
 12b 他方主面
 12c 側面
 14  中間層
 16  第1角部
 17  第2角部
 18  第3角部
 21  機能電極
 221、221a、221b、222、222a、222b 引き出し配線
 31  第1樹脂部
 32  第2樹脂部
 33  第3樹脂部
 34  第4樹脂部
 40  カバー層
 45  絶縁層
 51、52 外部端子
 60  実装基板
 60a 一方の主面
 61  ランド電極
 65  実装部品
 102 アンテナ素子
 103 LNA
 104 RFIC
 105 スイッチ
 108 フロントエンド回路
 109 通信装置
 111、112 フィルタ
 115、116、117 端子
 A   密閉空間
 i1~i7 弾性波共振子
 b2、b3 樹脂材料
 c1  溝
 d1  素子

Claims (12)

  1.  互いに背向する第1主面及び第2主面と、前記第1主面と前記第2主面とを繋ぐ側面とを有し、かつ、少なくとも一部に圧電性を有する素子基板と、
     前記素子基板における前記第1主面に設けられている機能電極と、
     前記機能電極に電気的に接続され、前記素子基板における前記第1主面から前記側面に至るように設けられている引き出し配線と、
     前記引き出し配線と電気的に接続され、前記素子基板における前記第2主面上に直接又は間接的に設けられている外部端子と、
     弾性波装置を封止するように設けられている第1樹脂部と、
     少なくとも、前記側面に設けられている前記引き出し配線と前記第1樹脂部との間に設けられている第2樹脂部と、
     を備え、
     前記第2樹脂部は、前記第1樹脂部よりもヤング率が小さい、
     弾性波装置。
  2.  互いに背向する第1主面及び第2主面と、前記第1主面と前記第2主面とを繋ぐ側面とを有し、かつ、少なくとも一部に圧電性を有する素子基板と、
     前記素子基板における前記第1主面に設けられている機能電極と、
     前記機能電極に電気的に接続され、前記素子基板における前記第1主面から前記側面に至るように設けられている引き出し配線と、
     前記引き出し配線と電気的に接続され、前記素子基板における前記第2主面上に直接又は間接的に設けられている外部端子と、
     弾性波装置を封止するように設けられている第1樹脂部と、
     少なくとも、前記側面に設けられている前記引き出し配線と前記第1樹脂部との間に設けられている第2樹脂部と、
     を備え、
     前記第2樹脂部は、前記第1樹脂部よりもフィラーの含有率が小さい、
     弾性波装置。
  3.  前記弾性波装置は、さらに、第3樹脂部を備え、
     前記素子基板は、前記第2主面と前記側面とが交わる部分である第1角部を有し、
     前記引き出し配線は、さらに、前記側面から前記第1角部及び前記第2主面に至るように設けられ、
     前記第3樹脂部は、少なくとも、前記第1角部に設けられている前記引き出し配線と前記第1樹脂部との間に設けられており、かつ、前記第1樹脂部よりもヤング率が小さい、
     請求項1または2に記載の弾性波装置。
  4.  前記弾性波装置は、さらに、カバー層を備え、
     前記機能電極は、IDT電極であり、
     前記第2樹脂部は、さらに、前記第1主面に沿う方向において、前記IDT電極の周囲に設けられ、
     前記カバー層は、前記第1主面に垂直な方向において前記IDT電極を覆うように前記第2樹脂部上に設けられている、
     請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記弾性波装置は、さらに、絶縁層を備え、
     前記素子基板は、シリコン材料を含む支持基板と、前記支持基板上に直接又は間接的に形成された圧電体層と、を少なくとも有し、
     前記絶縁層は、前記引き出し配線と前記支持基板との間に設けられている、
     請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記素子基板は、支持基板と、前記支持基板上に直接又は間接的に形成された圧電体層と、を少なくとも有し、
     前記素子基板を前記第1主面に垂直な方向から断面視した場合に、前記圧電体層の側面は、前記素子基板の前記側面よりも内側に位置し、
     前記引き出し配線は、前記第2主面から、前記圧電体層の側面、及び、前記素子基板の側面に至るように設けられている、
     請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記素子基板は、支持基板と、前記支持基板上に直接形成された圧電体層と、を有し、
     前記機能電極は、前記圧電体層上に設けられ、
     前記支持基板は、前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である、
     請求項1~6のいずれか1項に記載の弾性波装置。
  8.  前記素子基板は、支持基板と、前記支持基板上に間接的に形成された圧電体層と、前記支持基板と前記圧電体層との間に設けられた中間層と、を有し、
     前記機能電極は、前記圧電体層上に設けられ、
     前記中間層は、前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速であり、
     前記支持基板は、前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である、
     請求項1~6のいずれか1項に記載の弾性波装置。
  9.  前記素子基板は、支持基板と、前記支持基板上に間接的に形成された圧電体層と、前記支持基板と前記圧電体層との間に設けられた中間層と、を有し、
     前記機能電極は、前記圧電体層上に設けられ、
     前記中間層は、前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜と、前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速膜とを有し、
     前記低音速膜は、前記圧電体層と前記支持基板との間に設けられ、
     前記高音速膜は、前記低音速膜と前記支持基板との間に設けられている、
     請求項1~6のいずれか1項に記載の弾性波装置。
  10.  前記素子基板は、前記外部端子を介して実装基板の一方の主面に接合され、
     前記第1樹脂部は、さらに、前記実装基板の一方の主面を覆っている、
     請求項1~9のいずれか1項に記載の弾性波装置。
  11.  請求項1~10のいずれか1項に記載の弾性波装置を備える、
     フロントエンド回路。
  12.  請求項11に記載のフロントエンド回路と、
     高周波信号を処理する信号処理回路と、
     を備える通信装置。
     
PCT/JP2018/023498 2017-06-23 2018-06-20 弾性波装置、フロントエンド回路及び通信装置 WO2018235876A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019525670A JP6835220B2 (ja) 2017-06-23 2018-06-20 弾性波装置、フロントエンド回路及び通信装置
CN201880040875.0A CN110771038B (zh) 2017-06-23 2018-06-20 弹性波装置、前端电路以及通信装置
US16/722,023 US11695389B2 (en) 2017-06-23 2019-12-20 Acoustic wave device, front-end circuit, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017123619 2017-06-23
JP2017-123619 2017-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/722,023 Continuation US11695389B2 (en) 2017-06-23 2019-12-20 Acoustic wave device, front-end circuit, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2018235876A1 true WO2018235876A1 (ja) 2018-12-27

Family

ID=64737467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023498 WO2018235876A1 (ja) 2017-06-23 2018-06-20 弾性波装置、フロントエンド回路及び通信装置

Country Status (4)

Country Link
US (1) US11695389B2 (ja)
JP (1) JP6835220B2 (ja)
CN (1) CN110771038B (ja)
WO (1) WO2018235876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079910A1 (ja) * 2019-10-24 2021-04-29 株式会社村田製作所 弾性波装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417374B (zh) * 2016-07-01 2022-07-22 株式会社村田制作所 弹性波装置以及电子部件
JPWO2018105201A1 (ja) * 2016-12-08 2019-08-08 株式会社村田製作所 複合部品及びその実装構造

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134370A (ja) * 2005-11-08 2007-05-31 Matsushita Electric Ind Co Ltd 電子部品パッケージ
WO2013128823A1 (ja) * 2012-02-28 2013-09-06 パナソニック株式会社 弾性波装置およびその製造方法
WO2016060072A1 (ja) * 2014-10-17 2016-04-21 株式会社村田製作所 圧電デバイス、圧電デバイスの製造方法
WO2016208287A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 弾性波フィルタ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645233B2 (ja) * 2005-03-03 2011-03-09 パナソニック株式会社 弾性表面波装置
JP2013247593A (ja) * 2012-05-29 2013-12-09 Murata Mfg Co Ltd 圧電薄膜共振子
JP5565544B2 (ja) * 2012-08-01 2014-08-06 株式会社村田製作所 電子部品及び電子部品モジュール
WO2014034326A1 (ja) * 2012-08-29 2014-03-06 株式会社村田製作所 弾性波装置
JP6393092B2 (ja) 2013-08-07 2018-09-19 日東電工株式会社 中空型電子デバイス封止用樹脂シート及び中空型電子デバイスパッケージの製造方法
WO2017013968A1 (ja) * 2015-07-17 2017-01-26 株式会社村田製作所 弾性波装置
CN110771037B (zh) * 2017-06-23 2023-09-12 株式会社村田制作所 弹性波装置、前端电路以及通信装置
JP7057690B2 (ja) * 2018-03-19 2022-04-20 株式会社村田製作所 弾性波装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134370A (ja) * 2005-11-08 2007-05-31 Matsushita Electric Ind Co Ltd 電子部品パッケージ
WO2013128823A1 (ja) * 2012-02-28 2013-09-06 パナソニック株式会社 弾性波装置およびその製造方法
WO2016060072A1 (ja) * 2014-10-17 2016-04-21 株式会社村田製作所 圧電デバイス、圧電デバイスの製造方法
WO2016208287A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 弾性波フィルタ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079910A1 (ja) * 2019-10-24 2021-04-29 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN110771038A (zh) 2020-02-07
US20200127635A1 (en) 2020-04-23
JP6835220B2 (ja) 2021-02-24
CN110771038B (zh) 2023-09-19
US11695389B2 (en) 2023-07-04
JPWO2018235876A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
CN110771037B (zh) 弹性波装置、前端电路以及通信装置
JP6509147B2 (ja) 電子デバイス
JP4587732B2 (ja) 弾性表面波装置
JP5120446B2 (ja) 弾性表面波装置
WO2015098678A1 (ja) 弾性波装置
US10756698B2 (en) Elastic wave device
CN110289826B (zh) 弹性波装置
JP6835220B2 (ja) 弾性波装置、フロントエンド回路及び通信装置
KR102320449B1 (ko) 탄성파 장치, 및 전자부품 모듈
JP2019106698A (ja) 電子部品モジュール
KR102294238B1 (ko) 탄성파 장치, 탄성파 장치 패키지, 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
WO2019044203A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
US20230223916A1 (en) Acoustic wave device
JP7441010B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
WO2020130051A1 (ja) 弾性波素子および弾性波装置
KR20210083170A (ko) 고주파 모듈 및 통신 장치
WO2022145202A1 (ja) 電子デバイス
WO2024080205A1 (ja) フィルタ装置
WO2022145203A1 (ja) 電子デバイス
WO2022145204A1 (ja) 電子デバイス
JP2023068334A (ja) 弾性波装置
JPWO2018174064A1 (ja) 弾性波装置、分波器および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820913

Country of ref document: EP

Kind code of ref document: A1