WO2021079910A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2021079910A1
WO2021079910A1 PCT/JP2020/039568 JP2020039568W WO2021079910A1 WO 2021079910 A1 WO2021079910 A1 WO 2021079910A1 JP 2020039568 W JP2020039568 W JP 2020039568W WO 2021079910 A1 WO2021079910 A1 WO 2021079910A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
electrode
wave device
piezoelectric substrate
wiring
Prior art date
Application number
PCT/JP2020/039568
Other languages
English (en)
French (fr)
Inventor
永二 藤森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021079910A1 publication Critical patent/WO2021079910A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device having a rectangular plate-shaped piezoelectric substrate.
  • an elastic wave device in which a plurality of elastic wave elements are configured on a rectangular piezoelectric substrate is known.
  • the first and second elastic wave filter portions are configured on a rectangular piezoelectric substrate.
  • An input wiring, a first and second output wiring, and a plurality of ground wirings are provided on the upper surface of the piezoelectric substrate.
  • the input wiring is connected to the first and second elastic wave filters.
  • the first output wiring is connected to the first elastic wave filter unit, and the second output wiring is connected to the second elastic wave filter unit.
  • the plurality of ground wirings are connected to the first elastic wave filter portion or the second elastic wave filter portion.
  • the first output wiring and the second output wiring are connected to the first side surface electrode and the second side surface electrode formed on the side surface, respectively. Further, the first side surface electrode and the second side surface electrode are connected to the first terminal electrode and the second terminal electrode provided on the lower surface of the piezoelectric substrate.
  • the input wiring is connected to an input terminal provided on the lower surface of the piezoelectric substrate via a third side electrode.
  • the first side electrode and the second side electrode came close to each other. Therefore, there is a possibility that the characteristics may be deteriorated due to the electromagnetic coupling between the first side electrode and the second side electrode, which are signal wirings.
  • An object of the present invention is to provide an elastic wave device in which characteristics are unlikely to deteriorate due to coupling between signal wirings.
  • the first main surface and the second main surface facing each other, and the first main surface and the second main surface are connected to each other and face each other.
  • a piezoelectric substrate that connects the first side surface and the third side surface, the first main surface, and the second main surface, and has a second side surface and a fourth side surface that face each other.
  • a first wiring electrode and a second wiring electrode connected to the above, a first signal terminal and a second signal terminal formed on the second main surface of the piezoelectric substrate, and the first wiring electrode. And the first signal terminal, and the first side electrode formed on the first or second side surface of the piezoelectric substrate, the second wiring electrode, and the second side electrode.
  • the first side electrode and the second side electrode are connected to the signal terminal and include a second side electrode formed on the first or second side surface of the piezoelectric substrate. Are arranged so as to sandwich the ridgeline between the first side surface and the second side surface.
  • FIG. 1 (a) and 1 (b) are a perspective view of an elastic wave device according to a first embodiment of the present invention and a plan view showing an electrode structure on a first main surface of a piezoelectric substrate.
  • FIG. 2 shows the positional relationship between the piezoelectric substrate, the first wiring electrode, the first side electrode, and the first signal terminal, and the second wiring electrode, the second side electrode, and the second signal terminal.
  • FIG. 3 shows the positional relationship between the piezoelectric substrate, the first wiring electrode, the first side electrode, and the first signal terminal, and the second wiring electrode, the second side electrode, and the second signal terminal.
  • FIG. 4 shows the first wiring electrode, the first side electrode and the first signal terminal, and the second wiring electrode, the second side electrode and the second signal in the third model having no piezoelectric substrate. It is a schematic perspective view which shows the positional relationship with a terminal.
  • FIG. 5 shows the first wiring electrode, the first side electrode and the first signal terminal, and the second wiring electrode, the second side electrode and the second signal in the fourth model having no piezoelectric substrate. It is a schematic perspective view which shows the positional relationship with a terminal.
  • FIG. 6 is a diagram showing the isolation characteristics between the first and second signal wirings of the first model and the second model.
  • FIG. 7 is a diagram showing the isolation characteristics between the first and second signal wirings of the third model and the fourth model.
  • FIG. 8 is a front view for explaining a modification of the piezoelectric substrate.
  • 1 (a) and 1 (b) are a perspective view of an elastic wave device according to a first embodiment of the present invention and a plan view showing an electrode structure on a first main surface of a piezoelectric substrate.
  • the elastic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 has a rectangular plate-like shape.
  • the piezoelectric substrate 2 has a first main surface 2a facing each other, a second main surface 2b, and first to fourth side surfaces 2d to 2g.
  • the first side surface 2d and the third side surface 2f face each other.
  • the second side surface 2e and the fourth side surface 2g face each other.
  • the piezoelectric substrate 2 is made of LiNbO 3 in this embodiment.
  • the piezoelectric substrate 2 may be made of another piezoelectric single crystal such as LiTaO 3.
  • a piezoelectric material other than the piezoelectric single crystal may be used.
  • the first to fourth elastic wave device electrodes 3 to 6 are provided on the piezoelectric substrate 2 in order to form the first to fourth elastic wave filters, respectively.
  • the elastic wave device 1 is a composite filter device in which the first to fourth elastic wave filters are individually configured.
  • a first input wiring 31 and a first output wiring 32 are provided as wiring electrodes on the first main surface 2a of the piezoelectric substrate 2.
  • the first input wiring 31 and the first output wiring 32 are connected to the first elastic wave device electrode 3.
  • the ground electrode 71 is connected to the first electrode 3 for the elastic wave device.
  • a second input wiring 41 and a second output wiring 42 are provided on the first main surface 2a of the piezoelectric substrate 2 as wiring electrodes so as to be connected to the second elastic wave device electrode 4.
  • a third input wiring 51 and a third output wiring 52 are provided on the first main surface 2a of the piezoelectric substrate 2 as wiring electrodes so as to be connected to the third elastic wave device electrode 5.
  • a fourth input wiring 61 and a fourth output wiring 62 are provided on the first main surface 2a of the piezoelectric substrate 2 as wiring electrodes so as to be connected to the fourth elastic wave device electrode 6. ing.
  • the first input wiring 31 and the first output wiring 32 reach the ridgeline between the first main surface 2a and the second side surface 2e. Then, they are connected to the side electrodes 33 and 34 as the first and second side electrodes provided on the second side surface 2e, respectively.
  • the side electrode 33 is connected to a first input signal terminal 35 as a first signal terminal provided on the second main surface 2b.
  • the side electrode 34 is connected to a first output signal terminal 36 provided on the second main surface 2b of the piezoelectric substrate 2.
  • the second input wiring 41 is connected to the side electrode 43 as the second side electrode.
  • the second output wiring 42 is connected to the side electrode 44 as the second side electrode.
  • the side electrode 44 is provided on the first side surface 2d.
  • the side electrode 43 is connected to a second input signal terminal (not shown) provided on the second main surface 2b of the piezoelectric substrate 2.
  • the side electrode 44 is connected to a second output signal terminal 46 provided on the second main surface 2b of the piezoelectric substrate 2.
  • the third input wiring 51 is similarly connected to the side electrode 53 as the second side electrode.
  • the third output wiring 52 is connected to a side electrode 54 as a second side electrode provided on the first side surface 2d.
  • the side electrodes 53 and 54 are connected to a third input signal terminal (not shown) and a third output signal terminal (not shown) provided on the second main surface 2b of the piezoelectric substrate 2, respectively. ing.
  • the fourth input wiring 61 is connected to the side electrode 63 as the first side electrode.
  • the fourth output wiring 62 is connected to the side electrode 64 as the first side electrode.
  • the side electrodes 63 and 64 are provided on the fourth side surface 2g of the piezoelectric substrate 2.
  • the side electrodes 63 and 64 are electrically connected to a fourth input signal terminal (not shown) and a fourth output signal terminal (not shown) provided on the second main surface 2b of the piezoelectric substrate 2, respectively. It is connected to the.
  • the ground electrodes 71 and 72 are electrically connected to the first and fourth elastic wave device electrodes 3 and 6, respectively. Further, the portions connected to the ground potentials of the first to fourth elastic wave device electrodes 3 to 6 are electrically connected to each other by the ground wirings 73 to 75.
  • the ground electrodes 71 and 72 are connected to the side electrode 76 and 77 provided on the second side surface 2e and the fourth side surface 2g.
  • the side electrodes 76 and 77 are electrically connected to a ground terminal provided on the second main surface 2b of the piezoelectric substrate 2.
  • the feature of the elastic wave device 1 is that the side electrodes of the adjacent signal wirings are separately provided on the adjacent side surfaces of the piezoelectric substrate 2.
  • the input signal wiring of the first elastic wave device electrode 3 has a first input wiring 31, a side electrode 33, and a first input signal terminal 35.
  • the side electrode 33 corresponding to the first side electrode is provided on the second side surface 2e of the piezoelectric substrate 2.
  • the input signal wiring of the second elastic wave device electrode 4 which is an adjacent input signal wiring, has a second input wiring 41, a side electrode 43, and a second input signal terminal.
  • the side electrode 43 corresponding to the second side electrode is provided on the third side surface 2f of the piezoelectric substrate 2.
  • the side electrode 34 as the first side electrode and the side electrode 44 as the second side electrode are provided on the second side surface 2e and the first side surface 2d, respectively. .. Therefore, the side electrodes 33, 43 or the side electrodes 34, 44 constituting the adjacent signal wiring are the ridgeline between the second side surface 2e and the third side surface 2f of the piezoelectric substrate 2, or the second side surface. It is arranged so as to sandwich the ridgeline between the 2e and the first side surface 2d. Therefore, inductive coupling between the signal wiring of the first elastic wave device electrode 3 and the signal wiring of the second elastic wave device electrode 4 is unlikely to occur. Therefore, deterioration of characteristics is unlikely to occur.
  • this will be described with reference to FIGS. 2 to 8.
  • FIG. 2 is a schematic perspective view for explaining a first model 11 in which the first and second signal wirings 81 and 82 are provided on the piezoelectric substrate 2 made of LiNbO 3.
  • the first signal wiring 81 has a first wiring electrode 83, a first side electrode 84, and a first signal terminal 85.
  • the second signal wiring 82 has a second wiring electrode 86, a second side electrode 87, and a second signal terminal 88.
  • the magnetic field was analyzed based on this model. The magnetic field analysis was performed using an electromagnetic field simulator (Femtet (registered trademark)).
  • 2 - 1 were as shown in Table 1 below.
  • the first side electrode 84 is provided on the same first side surface 2d as the second side electrode 87. Therefore, the amount of inductive coupling between the first signal wiring 81 and the second signal wiring 82 becomes large. Also in this second model 12, the inductance of the first signal wiring 81 and the second signal wiring 82 is the same as in the case of the first model 11. The amount of inductive coupling is as shown in Table 1 below.
  • the inductive coupling amount is a negative value as compared with the second model 12, and therefore, it can be seen that the deterioration of the characteristics due to this inductive coupling is unlikely to occur.
  • the third model 13 shown in FIG. 4 and the fourth model 14 shown in FIG. 5 were evaluated.
  • the amount of inductive coupling between the first and second signal wirings 81 and 82 was evaluated assuming that the piezoelectric substrate does not exist.
  • the inductance and inductive coupling amount of the first and second signal wirings are as shown in Table 2 below.
  • the inductive coupling amount is also a negative value in the third model 13, and therefore, even if the distance between the first and second signal wirings 81 and 82 is reduced, the first It can be seen that the amount of inductive coupling can be reduced as in the case of model 11 of.
  • the isolation characteristics of the first and second models 11 and 12 and the third and fourth models 13 and 14 were evaluated.
  • FIG. 6 shows the isolation characteristics of the first and second models 11 and 12.
  • the solid line shows the result of the first model 11
  • the broken line shows the result of the second model 12.
  • FIG. 7 shows the isolation characteristics of the third and fourth models 13 and 14.
  • the solid line shows the result of the third model 13, and the broken line shows the result of the fourth model 14.
  • the first signal wiring and the second signal wiring are provided so as to straddle the ridgeline between the adjacent side surfaces of the piezoelectric substrate, so that the first and second signal wirings are inductively coupled. Can be effectively suppressed.
  • the first side electrode 84 is arranged closer to the ridgeline than the center of the second side surface 2e, and the second side electrode 87 is located on the first side surface 2d from the center. Is also preferably arranged on the ridgeline side. Thereby, miniaturization can be promoted.
  • the side electrode 34 corresponds to the first side electrode
  • the side electrode 44 corresponds to the second side electrode
  • the ridgeline is the first side surface 2d. It is a ridgeline between the surface and the second side surface 2e.
  • the side electrodes 63 and 64 correspond to the first side electrode
  • the side electrodes 53 and 54 correspond to the second side electrode. Therefore, inductive coupling between the signal wirings is also suppressed between the third elastic wave device electrode 5 and the fourth elastic wave device electrode 6. Therefore, the isolation characteristic between the third elastic wave device electrode 5 and the fourth elastic wave device electrode 6 can also be improved.
  • the number of the elastic wave filters is not particularly limited. Further, in the elastic wave device 1, the first to fourth elastic wave filters are individually configured, but the input ends of the plurality of elastic wave filters are commonly connected and connected to the antenna terminal. You may.
  • other elastic wave elements may be configured on the piezoelectric substrate 2.
  • the elastic wave device 1 can be used. Similarly, the amount of induced coupling can be reduced. Therefore, even if miniaturization or compounding is promoted, deterioration of characteristics is unlikely to occur.
  • the piezoelectric substrate 2 was used in the elastic wave device 1, the piezoelectric substrate 21 shown in FIG. 8 may be used.
  • the piezoelectric film 23 is laminated on the support substrate 22.
  • Elastic wave device 2 ... piezoelectric substrate 2a, 2b ... 1st and 2nd main surfaces 2d, 2e, 2f, 2g ... 1st to 4th side surfaces 3, 4, 5, 6 ... 1st to 4th Electrodes for elastic wave devices 11, 12, 13, 14 ... 1st to 4th models 21 ... piezoelectric substrate 22 ... support substrate 23 ... piezoelectric film 31, 41, 51, 61 ... 1st to 4th input wiring 32, 42, 52, 62 ... 1st to 4th output wirings 33, 34, 43, 44, 53, 54, 63, 64 ... Side electrodes 35 ... 1st input signal terminals 36, 46 ... 1st, 2nd Output signal terminals 71, 72 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

小型化や複合化を進めた場合であっても、特性の劣化が生じ難い弾性波装置を提供する。 圧電基板2と、圧電基板2の第1の主面2a上に構成されている弾性波装置を構成するための第1,第2の弾性波装置用電極3,4と、第1の主面2a上に形成され、第1,第2の弾性波装置用電極3,4に電気的に接続されている第1の出力配線32及び第2の出力配線42と、第2の主面2b上に設けられている第1の出力信号端子36及び第2の出力信号端子46と、第1の出力配線32と第1の出力信号端子36とを接続している第1の側面電極としての側面電極34と、第2の出力配線42と第2の出力信号端子46とを接続している第2の側面電極としての側面電極44とを備え、側面電極34と側面電極44とが、第1の側面2dと第2の側面2eとの間の稜線を挟んで隣り合っている、弾性波装置1。

Description

弾性波装置
 本発明は、矩形板状の圧電基板を有する弾性波装置に関する。
 従来、複数の弾性波素子が矩形の圧電基板上に構成されている弾性波装置が知られている。例えば、下記の特許文献1では、矩形の圧電基板上に第1,第2の弾性波フィルタ部が構成されている。そして、圧電基板の上面に、入力配線、第1,第2の出力配線及び複数のグラウンド配線が設けられている。入力配線は、第1,第2の弾性波フィルタ部に接続されている。第1の出力配線が、第1の弾性波フィルタ部に接続されており、第2の出力配線が、第2の弾性波フィルタ部に接続されている。また、複数のグラウンド配線は、第1の弾性波フィルタ部又は第2の弾性波フィルタ部に接続されている。第1の出力配線と第2の出力配線は、側面に形成された第1側面電極及び第2側面電極にそれぞれ接続されている。また、第1側面電極及び第2側面電極は、圧電基板の下面に設けられた第1端子電極及び第2端子電極に接続されている。入力配線は、第3側面電極を介して圧電基板の下面に設けられた入力端子に接続されている。
特開2018-6931号公報
 弾性波装置の小型化や複合化が進むと、上記第1側面電極と第2側面電極とが近接する。そのため、信号配線である第1側面電極と第2側面電極間の電磁結合により特性が劣化するおそれがあった。
 本発明の目的は、信号配線同士の結合による特性の劣化が生じ難い弾性波装置を提供することにある。
 本発明に係る弾性波装置は、対向し合う第1の主面及び第2の主面と、前記第1の主面と前記第2の主面とを接続しており、対向し合っている第1の側面及び第3の側面と、前記第1の主面と前記第2の主面とを接続しており、対向し合っている第2の側面及び第4の側面とを有する圧電基板と、前記圧電基板の前記第1の主面上に構成されている弾性波装置用電極と、前記圧電基板の前記第1の主面に形成されており、前記弾性波装置用電極に電気的に接続された第1の配線電極及び第2の配線電極と、前記圧電基板の前記第2の主面に形成された第1の信号端子及び第2の信号端子と、前記第1の配線電極と前記第1の信号端子とを接続しており、かつ前記圧電基板の前記第1または第2の側面に形成されている第1の側面電極と、前記第2の配線電極と前記第2の信号端子とを接続しており、かつ前記圧電基板の前記第1または第2の側面に形成されている第2の側面電極とを備え、前記第1の側面電極と、前記第2の側面電極とが、前記第1の側面と前記第2の側面との間の稜線を挟んで配置されている。
 本発明の弾性波装置では、小型化及び複合化が進んだ場合であっても、信号配線同士の結合による特性の劣化が生じ難い。
図1(a)及び図1(b)は、本発明の第1の実施形態に係る弾性波装置の斜視図及び圧電基板の第1の主面上の電極構造を示す平面図である。 図2は、圧電基板と、第1の配線電極、第1の側面電極及び第1の信号端子と、第2の配線電極、第2の側面電極及び第2の信号端子との位置関係を示す、第1のモデルの弾性波装置の模式的斜視図である。 図3は、圧電基板と、第1の配線電極、第1の側面電極及び第1の信号端子と、第2の配線電極、第2の側面電極及び第2の信号端子との位置関係を示す、第2のモデルの弾性波装置の模式的斜視図である。 図4は、圧電基板を有しない第3のモデルにおける、第1の配線電極、第1の側面電極及び第1の信号端子と、第2の配線電極、第2の側面電極及び第2の信号端子との位置関係を示す模式的斜視図である。 図5は、圧電基板を有しない第4のモデルにおける、第1の配線電極、第1の側面電極及び第1の信号端子と、第2の配線電極、第2の側面電極及び第2の信号端子との位置関係を示す模式的斜視図である。 図6は、第1のモデル及び第2のモデルの第1,第2の信号配線間のアイソレーション特性を示す図である。 図7は、第3のモデル及び第4のモデルの第1,第2の信号配線間のアイソレーション特性を示す図である。 図8は、圧電基板の変形例を説明するための正面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1(a)及び図1(b)は、本発明の第1の実施形態に係る弾性波装置の斜視図及び圧電基板の第1の主面上の電極構造を示す平面図である。
 弾性波装置1は、圧電基板2を有する。圧電基板2は、矩形板状の形状を有する。圧電基板2は、対向し合う第1の主面2aと、第2の主面2bと、第1~第4の側面2d~2gとを有する。第1の側面2dと、第3の側面2fとが対向し合っている。第2の側面2eと、第4の側面2gとが対向し合っている。
 圧電基板2は、本実施形態では、LiNbOからなる。もっとも、圧電基板2は、LiTaOのような他の圧電単結晶からなるものであってもよい。また、圧電単結晶以外の圧電材料を用いてもよい。
 本実施形態では、圧電基板2上において、第1~第4の弾性波フィルタをそれぞれ構成するため、第1~第4の弾性波装置用電極3~6が設けられている。弾性波装置1は、第1~第4の弾性波フィルタが個別に構成されている、複合フィルタ装置である。
 圧電基板2の第1の主面2a上に、配線電極として、第1の入力配線31及び第1の出力配線32が設けられている。第1の入力配線31及び第1の出力配線32は、第1の弾性波装置用電極3に接続されている。また、グラウンド電極71が、第1の弾性波装置用電極3に接続されている。
 同様に、第2の弾性波装置用電極4に接続されるように、配線電極として、第2の入力配線41及び第2の出力配線42が圧電基板2の第1の主面2a上に設けられている。また、第3の弾性波装置用電極5に接続されるように、配線電極として、第3の入力配線51及び第3の出力配線52が圧電基板2の第1の主面2a上に設けられている。さらに、第4の弾性波装置用電極6に接続されるように、配線電極として、第4の入力配線61及び第4の出力配線62が圧電基板2の第1の主面2a上に設けられている。
 第1の入力配線31及び第1の出力配線32は、第1の主面2aと、第2の側面2eとの稜線に至っている。そして、第2の側面2eに設けられた、第1,第2の側面電極としての側面電極33,34にそれぞれ接続されている。側面電極33は、第2の主面2bに設けられた第1の信号端子としての第1の入力信号端子35に接続されている。側面電極34は、圧電基板2の第2の主面2bに設けられた第1の出力信号端子36に接続されている。
 第2の入力配線41は、第2の側面電極としての側面電極43に接続されている。第2の出力配線42は、第2の側面電極としての側面電極44に接続されている。側面電極44は、第1の側面2d上に設けられている。側面電極43は、圧電基板2の第2の主面2bに設けられた第2の入力信号端子(図示されず)に接続されている。側面電極44は、圧電基板2の第2の主面2b上に設けられた第2の出力信号端子46に接続されている。第3の入力配線51は、同様に、第2の側面電極としての側面電極53に接続されている。第3の出力配線52は、第1の側面2d上に設けられた、第2の側面電極としての側面電極54に接続されている。側面電極53,54は、それぞれ、圧電基板2の第2の主面2bに設けられている第3の入力信号端子(図示されず)及び第3の出力信号端子(図示されず)に接続されている。
 第4の入力配線61は、第1の側面電極としての側面電極63に接続されている。第4の出力配線62は、第1の側面電極としての側面電極64に接続されている。側面電極63,64は、圧電基板2の第4の側面2g上に設けられている。側面電極63,64は、それぞれ、圧電基板2の第2の主面2b上に設けられた第4の入力信号端子(図示されず)及び第4の出力信号端子(図示されず)に電気的に接続されている。
 グラウンド電極71,72は、第1,第4の弾性波装置用電極3,6にそれぞれ電気的に接続されている。また、グラウンド配線73~75により、第1~第4の弾性波装置用電極3~6のグラウンド電位に接続される部分同士が、電気的に接続されている。グラウンド電極71,72は、第2の側面2e及び第4の側面2g上に設けられた側面電極76,77に接続されている。側面電極76,77は、圧電基板2の第2の主面2b上に設けられたグラウンド端子に電気的に接続されている。
 弾性波装置1の特徴は、隣合う信号配線の側面電極が、圧電基板2の隣合う側面に分けて設けられていることにある。例えば、第1の弾性波装置用電極3の入力信号配線は、第1の入力配線31、側面電極33及び第1の入力信号端子35を有する。ここで、第1の側面電極に相当する側面電極33は、圧電基板2の第2の側面2e上に設けられている。他方、隣接する入力信号配線である第2の弾性波装置用電極4の入力信号配線は、第2の入力配線41、側面電極43及び第2の入力信号端子を有する。ここで、第2の側面電極に相当する側面電極43は、圧電基板2の第3の側面2f上に設けられている。
 同様に、出力側においても、第1の側面電極としての側面電極34と、第2の側面電極としての側面電極44は、それぞれ、第2の側面2e及び第1の側面2dに設けられている。したがって、隣接する信号配線を構成している側面電極33,43又は側面電極34,44が、圧電基板2の第2の側面2eと第3の側面2fとの間の稜線または、第2の側面2eと第1の側面2dとの間の稜線を挟んで配置されている。そのため、第1の弾性波装置用電極3の信号配線と、第2の弾性波装置用電極4の信号配線との間の誘導結合が生じ難い。よって、特性の劣化が生じ難い。以下、これを図2~図8を参照して説明する。
 図2は、LiNbOからなる圧電基板2に、第1,第2の信号配線81,82を設けた第1のモデル11を説明するための模式的斜視図である。第1の信号配線81は、第1の配線電極83、第1の側面電極84及び第1の信号端子85を有する。第2の信号配線82は、第2の配線電極86、第2の側面電極87及び第2の信号端子88を有する。このモデルに基づき、磁場を解析した。磁場解析は、電磁界シュミレータ(Femtet(登録商標))を用いて行った。
 なお、図2及び後述の図3~図5中の矢印は、電流の流れる方向を示す。
 第1の信号配線81のインダクタンス及び第2の信号配線82のインダクタンスを下記表1に示す通りとした場合の第1の信号配線81と第2の信号配線82との間の誘導結合量M1-21は以下の表1に示す通りであった。
 これに対して、図3に示す第2のモデル12では、第1の側面電極84は、第2の側面電極87と同じ第1の側面2d上に設けられている。したがって、第1の信号配線81と、第2の信号配線82との間の誘導結合量が大きくなる。この第2のモデル12においても、第1の信号配線81及び第2の信号配線82のインダクタンスを第1のモデル11の場合と同様とした。誘導結合量は下記の表1に示す通りとなった。
Figure JPOXMLDOC01-appb-T000001
 上記のように、第2のモデル12に比べ、第1のモデル11では、誘導結合量がマイナスの値になり、したがって、この誘導結合による特性の劣化が生じ難いことがわかる。
 次に、信号配線間を近づける評価を行うために、図4に示す第3のモデル13及び図5に示す第4のモデル14を評価した。ここでは、配線を近づける評価を行うために、圧電基板が存在しないものとして、第1,第2の信号配線81,82間の誘導結合による誘導結合量を評価した。第1,第2の信号配線のインダクタンス及び誘導結合量は、以下の表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、第3のモデル13においても、誘導結合量がマイナスの値であり、したがって、第1,第2の信号配線81,82間の距離を近づけたとしても、第1のモデル11の場合と同様に、誘導結合量を小さくし得ることがわかる。
 より具体的に、第1及び第2のモデル11,12、並びに第3及び第4のモデル13,14について、アイソレーション特性を評価した。
 図6は、第1,第2のモデル11,12のアイソレーション特性を示す。このアイソレーション特性において、実線が第1のモデル11の結果を、破線が第2のモデル12の結果を示す。
 図6から明らかなように、第2のモデル12に比べて、第1のモデル11では、アイソレーション特性が良好であることがわかる。
 また、図7は、第3,第4のモデル13,14のアイソレーション特性を示す。実線が第3のモデル13の結果を、破線が第4のモデル14の結果を示す。
 図7から明らかなように、第3のモデル13によれば、第4のモデル14に比べアイソレーション特性が大きく改善していることがわかる。
 上記のように、第1の信号配線と第2の信号配線とが、圧電基板の隣り合う側面間の稜線を跨いで設けられている構成により、第1,第2の信号配線間の誘導結合を効果的に抑制することができる。この場合、好ましくは、第1の側面電極84は、第2の側面2eの中央よりも、上記稜線側に配置されており、第2の側面電極87が、第1の側面2dにおいて、中央よりも上記稜線側に配置されていることが好ましい。それによって、小型化を進めることができる。
 第1の実施形態に係る弾性波装置1では、側面電極34が第1の側面電極に相当し、側面電極44が第2の側面電極に相当し、この場合、稜線は、第1の側面2dと第2の側面2eとの間の稜線となる。同様に、側面電極63,64が第1の側面電極に相当し、側面電極53,54が第2の側面電極に相当する。したがって、第3の弾性波装置用電極5と第4の弾性波装置用電極6との間でも、信号配線間の誘導結合が抑制される。よって、第3の弾性波装置用電極5と第4の弾性波装置用電極6との間のアイソレーション特性も改善され得る。
 なお、弾性波装置1では、第1~第4の弾性波フィルタが構成されていたが、この弾性波フィルタの数は特に限定されない。また弾性波装置1では、第1~第4の弾性波フィルタは個別に構成されていたが、複数の弾性波フィルタ部の入力端が共通接続され、アンテナ端子に接続される構成を有していてもよい。
 さらに、弾性波フィルタに限らず、他の弾性波素子が圧電基板2上に構成されていてもよい。さらに、単一の弾性波素子が圧電基板2上に構成されている構造であっても、隣り合う信号配線が隣り合う圧電基板の側面間の稜線を挟んで設けられれば、弾性波装置1と同様に、誘導結合量を少なくすることができる。したがって、小型化や複合化を進めた場合でも、特性の劣化が生じ難い。
 なお、弾性波装置1では、圧電基板2が用いられたが、図8に示す圧電基板21を用いてもよい。圧電基板21では、支持基板22上に、圧電膜23が積層されている。
 1…弾性波装置
 2…圧電基板
 2a,2b…第1,第2の主面
 2d,2e,2f,2g…第1~第4の側面
 3,4,5,6…第1~第4の弾性波装置用電極
 11,12,13,14…第1~第4のモデル
 21…圧電基板
 22…支持基板
 23…圧電膜
 31,41,51,61…第1~第4の入力配線
 32,42,52,62…第1~第4の出力配線
 33,34,43,44,53,54,63,64…側面電極
 35…第1の入力信号端子
 36,46…第1,第2の出力信号端子
 71,72…グラウンド電極
 73,74,75…グラウンド配線
 76,77…側面電極
 81,82…第1,第2の信号配線
 83,86…第1,第2の配線電極
 84,87…第1,第2の側面電極
 85,88…第1,第2の信号端子

Claims (5)

  1.  対向し合う第1の主面及び第2の主面と、前記第1の主面と前記第2の主面とを接続しており、対向し合っている第1の側面及び第3の側面と、前記第1の主面と前記第2の主面とを接続しており、対向し合っている第2の側面及び第4の側面とを有する圧電基板と、
     前記圧電基板の前記第1の主面上に構成されている弾性波装置用電極と、
     前記圧電基板の前記第1の主面に形成されており、前記弾性波装置用電極に電気的に接続された第1の配線電極及び第2の配線電極と、
     前記圧電基板の前記第2の主面に形成された第1の信号端子及び第2の信号端子と、
     前記第1の配線電極と前記第1の信号端子とを接続しており、かつ前記圧電基板の前記第1または第2の側面に形成されている第1の側面電極と、
     前記第2の配線電極と前記第2の信号端子とを接続しており、かつ前記圧電基板の前記第1または第2の側面に形成されている第2の側面電極とを備え、
     前記第1の側面電極と、前記第2の側面電極とが、前記第1の側面と前記第2の側面との間の稜線を挟んで配置されている、弾性波装置。
  2.  前記弾性波装置用電極は、第1の弾性波フィルタ及び第2の弾性波フィルタを構成している電極であり、
     前記第1の信号端子は、前記第1の弾性波フィルタの信号端子であり、前記第2の信号端子は、前記第2の弾性波フィルタの信号端子である、請求項1に記載の弾性波装置。
  3.  前記第1の側面電極は、前記第2の側面の中央よりも前記稜線側に配置されており、前記第2の側面電極は、前記第1の側面の中央よりも前記稜線側に配置されている、請求項1又は2に記載の弾性波装置。
  4.  前記圧電基板が、圧電単結晶基板である、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記圧電基板が、支持基板と、前記支持基板上に積層された圧電膜とを有する、請求項1~3のいずれか1項に記載の弾性波装置。
PCT/JP2020/039568 2019-10-24 2020-10-21 弾性波装置 WO2021079910A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-193232 2019-10-24
JP2019193232 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021079910A1 true WO2021079910A1 (ja) 2021-04-29

Family

ID=75620055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039568 WO2021079910A1 (ja) 2019-10-24 2020-10-21 弾性波装置

Country Status (1)

Country Link
WO (1) WO2021079910A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045563A (ja) * 2008-08-12 2010-02-25 Murata Mfg Co Ltd マルチバンドデュプレクサモジュール
WO2017110308A1 (ja) * 2015-12-21 2017-06-29 株式会社村田製作所 弾性波装置
WO2018235876A1 (ja) * 2017-06-23 2018-12-27 株式会社村田製作所 弾性波装置、フロントエンド回路及び通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045563A (ja) * 2008-08-12 2010-02-25 Murata Mfg Co Ltd マルチバンドデュプレクサモジュール
WO2017110308A1 (ja) * 2015-12-21 2017-06-29 株式会社村田製作所 弾性波装置
WO2018235876A1 (ja) * 2017-06-23 2018-12-27 株式会社村田製作所 弾性波装置、フロントエンド回路及び通信装置

Similar Documents

Publication Publication Date Title
US8810350B2 (en) Electronic component and method of producing same
CN107070428A (zh) 电子部件
DE112014004077B4 (de) Resonator für elastische Wellen, Filtervorrichtungfür elastische Wellen, und Duplexer
DE112016002835T5 (de) Vorrichtung für elastische Wellen
CN104682913B (zh) 弹性表面波滤波器
JP2008147581A (ja) 貫通コンデンサアレイ
JPWO2016111315A1 (ja) 弾性波装置
JP4513860B2 (ja) 圧電薄膜フィルタ
US10476466B2 (en) Electronic component
WO2014199674A1 (ja) フィルタ装置及びデュプレクサ
WO2021079910A1 (ja) 弾性波装置
EP0844734B1 (en) Ladder type filter
CN107078720A (zh) 梯型滤波器以及双工器
KR102374795B1 (ko) 탄성파 장치 및 탄성파 장치의 제조 방법
JP2001077664A (ja) エネルギー閉じ込め型圧電フィルタ
JP6798866B2 (ja) マルチプレクサ
JP2006311330A (ja) 弾性表面波デバイス
US6225877B1 (en) Multilayer type piezoelectric filter with intermediary printed circuit board elements
JP3627197B2 (ja) 圧電トランス及びそれを用いたトランス装置
JP2001035249A (ja) 導電性部材
JPS58130613A (ja) 弾性表面波装置
JP3610477B2 (ja) 積層型圧電フィルタ
DE102007028372A1 (de) Oszillatorkreis mit akustischen Zweitor-Oberflächenwellenresonatoren
JP3480893B2 (ja) エネルギー閉じ込め型圧電フィルタ
JPH0253315A (ja) 圧電フイルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP