WO2018235686A1 - 局所排気機能を備えた集塵装置、およびそれを用いた集塵・排気システム - Google Patents

局所排気機能を備えた集塵装置、およびそれを用いた集塵・排気システム Download PDF

Info

Publication number
WO2018235686A1
WO2018235686A1 PCT/JP2018/022510 JP2018022510W WO2018235686A1 WO 2018235686 A1 WO2018235686 A1 WO 2018235686A1 JP 2018022510 W JP2018022510 W JP 2018022510W WO 2018235686 A1 WO2018235686 A1 WO 2018235686A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
housing
filter medium
dust collection
fluid
Prior art date
Application number
PCT/JP2018/022510
Other languages
English (en)
French (fr)
Inventor
大治 福島
秀直 栗原
英樹 七五三
朝史 東風平
嘉崇 山口
Original Assignee
ホーコス株式会社
東洋エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホーコス株式会社, 東洋エンジニアリング株式会社 filed Critical ホーコス株式会社
Priority to EP18820708.8A priority Critical patent/EP3643389B1/en
Priority to JP2019525473A priority patent/JP7197083B2/ja
Publication of WO2018235686A1 publication Critical patent/WO2018235686A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/06Particle separators, e.g. dust precipitators, having hollow filters made of flexible material with means keeping the working surfaces flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • B01D46/0005Mounting of filtering elements within casings, housings or frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2265/00Casings, housings or mounting for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2265/06Details of supporting structures for filtering material, e.g. cores

Definitions

  • the present invention relates to a dust collection apparatus using a particulate or irregularly shaped packing as a filter medium, and more particularly to a dust collection apparatus having a local exhaust function suitable for pharmaceutical plants and chemical product plants handling highly pharmacologically active substances. .
  • the dust collector for highly pharmacologically active substances currently on the market is a filter medium as in a general dust collector (for example, Patent Document 1). As a bug filter.
  • bag filter type dust collector In the case of a dust collector using a bag filter (hereinafter referred to as "bag filter type dust collector”), it is necessary to take out a used filter at the time of filter replacement, and this work is in a state where the device body is opened. As a result, the dust adhering to the filter may scatter and workers may be exposed. To avoid the risk of this exposure, attach a plastic bag for recovery to the filter outlet and recover the used filter, then attach a plastic bag with a new filter to the filter outlet, It is necessary to prevent exposure by following the procedure of inserting a filter (bug in / bug out), and the filter replacement work becomes complicated. In addition, even after following such a procedure, there is still the possibility of exposure due to operation error because replacement work is complicated. Furthermore, not only at the time of filter replacement, but also at the time of discharging, collecting, and disposing of dust in the device, there is the possibility of exposure, and measures for this are also required.
  • a mechanism for fixing the filter, a mechanism for removing dust adhering to the filter, etc. exist inside the device, and the structure is complicated. It is difficult to clean all the way, and the cleaning solution tends to remain inside.
  • the bag filter type dust collection device incorporates a discharge mechanism etc. in addition to the shape of the filter itself becoming large. As a result, the entire apparatus becomes large and heavy, and there is a disadvantage that it can not move freely anywhere.
  • a dust collector (hereinafter, referred to as "granular filter type dust collector") using a filler of a large number of granular filter media (spherical body, columnar body, etc.) instead of the bag filter is known.
  • granular filter type dust collector using a filler of a large number of granular filter media (spherical body, columnar body, etc.) instead of the bag filter.
  • high temperature gas is introduced into the filter medium to remove dust and the like in the gas while flowing fine particles constituting the particulate filter medium.
  • Patent Document 6 the exhaust gas is brought into contact with the filter medium while the container filled with the fine particles constituting the particulate filter medium is rotated.
  • the particulate filter medium held at a fixed position on the way from the inlet to the outlet of the fluid is configured to remove impurities in the fluid by passing the fluid.
  • Patent Documents 4, 6, and 7 describe a method of regenerating a filter medium to which dust or the like adheres.
  • the valve provided at the lower part of the filling space of the fine particles constituting the filter medium is opened to discharge the particles, and the discharged particles are sent to the regenerating apparatus and subjected to the regeneration treatment , Filling from the top of the filling space is to be reused.
  • the particulate matter which comprises a filter medium is stirred by pressure air, the deposit
  • the particulate filter material type dust collectors disclosed in Patent Documents 2 to 6 and Non-patent Document 1 all target high-temperature combustion gas etc. to be filtered, and flow high temperature gas while flowing particulate filter media. It is an apparatus which makes particulate filter media contact and carries out dust removal.
  • the use conditions are different.
  • the dust generated during the handling of highly pharmacologically active substances such as pharmaceuticals targeted by the present invention is not so high in temperature that workers can not touch it, and the amount is small compared to continuous gas processing plants. As in the case, it is not necessary to flow the particulate filter media, nor is there a need for an apparatus therefor.
  • the working time is an individual operation unit and is relatively short, so the amount of dust adhering to the filter medium during operation of the dust collector is also a continuous plant It is limited compared to. Therefore, in the regeneration of the filter medium, there is little need to provide equipment such as dedicated regeneration devices and stirring devices as disclosed in Patent Documents 4, 6, and 7.
  • the particulate filter media type dust collector while preventing exposure, replacement / cleaning of the filter media and each part, and disassembling / assembling of the device can be performed easily, thereby improving the efficiency of maintenance work. It is also important to For example, in the dust collecting apparatus of Patent Document 7, the particulate filter medium is accommodated in each of the plurality of accommodation spaces divided in the vertical direction, but in such a structure, replacement and cleaning of the filter medium is not easy, ⁇ It takes time to assemble.
  • the conventional particulate filter-type dust collector basically targets dust, and does not serve the purpose of reducing gas components.
  • solvent atmosphere may coexist at the place where the dust is manipulated. Therefore, devices and systems capable of reducing the effective components of gas by sucking in gas components using the flow of air flow for dust collection are desired, but small dust collectors that can be carried freely to the work place and local A device with both functions of the exhaust system can not be realized with the systems described in the respective documents mentioned above.
  • the present invention can locally reduce the size and weight while effectively preventing or reducing exposure, and is also excellent in maintainability such as cleanability and assembly / degradability. It is an object of the present invention to provide a dust collection device having an exhaust function and a dust collection / exhaust system using the same.
  • the dust collection apparatus discharges the filtered fluid in contact with the housing, the filter medium contained in the interior of the housing, the suction port for introducing the fluid to be filtered into the housing, and the filter medium.
  • a dust collection device having a local exhaust function provided with a discharge port, wherein the filter medium comprises a packing of a large number of granular or irregularly shaped filter mediums.
  • an outer cylinder which is provided inside the housing and through which the fluid can pass
  • an inner cylinder which is disposed inside the outer cylinder and through which the fluid can pass
  • the filling space formed between the cylinder and the cylinder further includes an inlet for charging the filter medium from above and filling the space, and an outlet for discharging the filter medium filling the space to the lower side.
  • the dust collection / exhaust system includes a dust collection apparatus having the above-described local exhaust function, a suction duct whose one end is connected to a suction port of the dust collector, and a other end of the suction duct.
  • the dust collection / exhaust system according to the present invention includes a dust collection apparatus having the above-described local exhaust function, and a dust collection apparatus for removing dust remaining in fluid discharged from the discharge port of the dust collection apparatus. It can also consist of a filter device.
  • the dust collection apparatus of the present invention since no bag filter is used, it is possible to minimize the work of the dried powder etc. being in an open state when replacing or cleaning the filter medium, and the risk of exposure is significant. Reduce. Further, the dust collecting apparatus of the present invention has a simple structure, so the entire apparatus is compact and lightweight. Furthermore, since the dust collecting apparatus of the present invention is designed to be easily disassembled and assembled, the cleaning operation is easy and the maintenance property is excellent.
  • dust generated at the work site is confined between the suction hood and the dust collection device. For this reason, it is possible to prevent workers from being exposed to dust and to prevent dust from being mixed into other processes and being diffused to the outside. In addition, secondary scattering due to dust entering and staying in the local exhaust duct can be prevented.
  • FIG. 3 is a cross-sectional view along the line AA and a cross-sectional view along the line BB in FIG. It is sectional drawing which shows the state with which the granular filter medium was filled. It is a figure which shows the flow of the fluid inside a dust collector. It is a figure showing an example of the dust collection system of the present invention. It is a figure which shows the usage example of the dust collector in a pharmaceutical factory etc. It is a figure which shows the operation example of a dust collection system. It is a figure which shows the other operation example of a dust collection system.
  • FIG. 1 is an external view of the entire apparatus
  • FIG. 2 (a) is a top view
  • FIG. 2 (b) is a front view
  • FIG. 2 (c) is a side view.
  • the dust collector 100 includes a lid 1, an upper housing 3, an intermediate housing 4, a side lid 5, a lower housing 7, a hopper 10, and a base 11.
  • a housing 50 is constituted by the upper housing 3, the intermediate housing 4 and the lower housing 7. Further, the lid 1, the housing 50 and the hopper 10 constitute the main body of the dust collection apparatus 100. Inside the main body, various members described later are accommodated.
  • the lid 1 is detachably attached to the upper housing 3 so as to close the upper portion of the upper housing 3.
  • a ferrule joint or the like having no step or groove on the inner surface is used.
  • the lid 1 has a suction port 1a for introducing a fluid to be filtered into the interior of the housing 50, an inlet 1b for charging the granular filter medium 21 (FIG. 5) filled in the housing 50, and the granular filter medium 21.
  • a confirmation window 1c for confirming the filling state is provided.
  • the suction port 1a and the insertion port 1b are opened above the housing 50, and the confirmation window 1c is covered with a transparent glass or resin plate.
  • Each housing 3, 4, 7 is formed of a cylindrical tube whose upper and lower sides are open.
  • the upper housing 3 is detachably connected to the upper portion of the intermediate housing 4, and the lower housing 7 is detachably connected to the lower portion of the intermediate housing 4.
  • the above-mentioned ferrule joint etc. are used also for these connection.
  • An opening 4 a as shown in FIG. 3 is formed on the side of the intermediate housing 4, and the side lid 5 is detachably attached to the intermediate housing 4 so as to cover the opening 4 a.
  • a fixing member such as a screw is used to attach the side lid 5.
  • the side lid 5 is provided with a discharge port 5a for discharging the filtered fluid in communication with the opening 4a.
  • the discharge port 5 a is opened to the side of the intermediate housing 4.
  • the hopper 10 is detachably connected to the lower portion of the lower housing 7. Also for this connection, a ferrule joint or the like is used.
  • the hopper 10 is provided with a discharge port 10 a for discharging the particulate filter medium 21 in the housing 50 downward.
  • the base 11 On the base 11, a dust collection main body including a housing 50 is mounted.
  • the base 11 includes a disk-like seat 11a, a leg 11b for supporting the seat 11a, and a caster 11c provided at the lower end of the leg 11b.
  • a hole 11d is formed in the seat portion 11a.
  • the hopper 10 is placed on the seat portion 11 a in a state of being inserted into the hole 11 d.
  • Three legs 11b are provided in this example, and each is fixed to the seat 11a. You may provide four (or more) legs 11b as needed. Since the base 11 includes the casters 11 c, the base 11 is movable in a state where the dust collecting apparatus main body is mounted.
  • FIG. 3 shows an exploded perspective view of the dust collection device 100.
  • 4 (a) is a cross-sectional view taken along the line AA of FIG. 2 (a)
  • FIG. 4 (b) is a cross-sectional view taken along the line BB of FIG. 2 (b).
  • the input chute 2, the outer cylinder 6, the inner cylinder 8, and the discharge chute 9 are accommodated inside the dust collecting apparatus 100, and the granular filter medium 21 shown in FIG. Be done.
  • the feeding chute 2 is a member for guiding the granular filter material 21 loaded from the loading port 1b of the lid 1 to the filling space 20 (FIG. 4) between the outer cylinder 6 and the inner cylinder 8. As shown in FIG. 4, it is disposed above the inner cylinder 8 and detachably mounted on the upper portion of the inner cylinder 8.
  • the feed chute 2 is provided with an opening 2a communicating with the opening 1a of the lid 1 and a guide slope 2b inclined downward.
  • the outer cylinder 6 is a cylindrical member whose upper and lower ends are open, and in this example, is formed of a mesh of metal or resin through which the fluid to be filtered can pass.
  • the pore diameter of the mesh of the outer cylinder 6 is smaller than the outer diameter of the particulate filter medium 21.
  • a groove 6a is formed at a position corresponding to the protrusion 7a (first support portion) provided on the inner surface of the lower housing 7.
  • a plurality of grooves 6a and protrusions 7a are provided.
  • the outer cylinder 6 is detachably supported by the lower housing 7 by the grooves 6a being fitted to the protrusions 7a.
  • the inner cylinder 8 is a cylindrical member having a smaller diameter than the outer cylinder 6 and whose upper and lower ends are open, and is disposed inside the outer cylinder 6. For this reason, as shown in FIG. 4, a filling space 20 for filling the granular filter medium 21 (FIG. 5) is formed between the inner cylinder 8 and the outer cylinder 6.
  • the central axis of the inner cylinder 8 coincides with the central axis of the outer cylinder 6, and the inner cylinder 8 and the outer cylinder 6 are arranged concentrically.
  • the inner cylinder 8 is formed of a mesh of metal or resin through which the fluid to be filtered can pass, like the outer cylinder 6, and the pore size of the mesh is smaller than the outer diameter of the granular filter medium 21.
  • a plurality of spacers 8 a and grooves 8 b are formed in the lower portion of the inner cylinder 8.
  • the discharge chute 9 is a member for guiding the particulate filter medium 21 filled in the filling space 20 to the discharge port 10 a, and is disposed below the inner cylinder 8.
  • a plurality of projections 9 a (second support portions) are formed on the discharge chute 9 at positions corresponding to the grooves 8 b of the inner cylinder 8.
  • the inner cylinder 8 is detachably supported by the discharge chute 9 by the grooves 8b being fitted to the protrusions 9a. Further, as shown in FIG. 4, the discharge chute 9 is provided with a guide slope 9b inclined downward.
  • the hopper 10 is a member for guiding the granular filter medium 21 filled in the filling space 20 to the discharge port 10 a together with the discharge chute 9, and is disposed below the outer cylinder 6.
  • a plurality of protrusions 10 b are provided on the inner surface of the hopper 10 at positions corresponding to the protrusions 9 a of the discharge chute 9.
  • the ejection chute 9 is detachably supported by the hopper 10 by the projections 9a being engaged with the projections 10b from the upper side. Further, as shown in FIG. 4, the hopper 10 is provided with a guiding slope 10 c which is inclined downward. Between the guiding slope 9 b of the discharge chute 9 and the guiding slope 10 c of the hopper 10, a discharge path 22 communicating with the filling space 20 and the discharge port 10 a is formed.
  • the dust collecting apparatus 100 basically has a boltless and packingless structure, and thereby has advantages as described later.
  • the filter medium comprises a packing of a number of particulate filter media 21.
  • glass beads having a diameter of about 1 to 3 mm are used as the particulate filter medium 21.
  • the glass beads of this example are true spheres, they may be spheres having a predetermined aspect ratio (ratio of major diameter to minor diameter) other than true spheres.
  • the glass material include alkali glass, quartz glass, borosilicate glass and the like, and in this example, borosilicate glass is used. The reason is that borosilicate glass is more resistant to acids, alkalis, organic solvents and the like than alkali glass, and is cheaper than quartz glass.
  • An example of borosilicate glass distributed in the market is Pyrex (registered trademark).
  • the particulate filter medium 21 is fed from the feeding port 1 b of the lid 1. While being guided by the guide slope 2b of the input chute 2, the granular filter material 21 introduced into the inlet 1b flows down to the filling space 20 between the outer cylinder 6 and the inner cylinder 8 and is filled in the space (see FIG. 5). Under the present circumstances, the filling state of the granular filter medium 21 can be visually confirmed through the confirmation window 1c provided in the lid
  • FIG. 6 shows the flow of fluid inside the dust collection device 100.
  • the fluid to be filtered in a pharmaceutical factory and the like include air containing dust of a high pharmacologically active substance, a solvent (vapor) containing a high pharmacologically active substance, and the like.
  • the fluid X to be filtered introduced from the suction port 1 a of the lid 1 flows into the inner space of the inner cylinder 8 and then passes through the mesh of the inner cylinder 8 and flows into the packed bed of the granular filter material 21.
  • the fluid X flowing into the packed bed comes in contact with the particulate filter medium 21 while passing through the gaps of the particulate filter medium 21.
  • the highly pharmacologically active substance contained in the fluid is collected by the particulate filter medium 21 and the fluid Is filtered.
  • the filtered fluid passes through the mesh of the outer cylinder 6, becomes a clean fluid Y containing no highly pharmacologically active substance, and is discharged from the discharge port 5a.
  • the flow of fluid inside the dust collector is from the narrow inside to the wide outside. For this reason, the flow velocity of the fluid becomes gentler toward the outside. And, in the case of the dust collection device 100 of the present embodiment, the collection efficiency is higher when the flow velocity is slower, so the highly pharmacologically active substance contained in the fluid having a low flow velocity passing through the particulate filter material 21 is efficiently used by the particulate filter material 21. It can be collected.
  • an advantage of using the particulate filter medium 21 is that the maximum air volume can be increased compared to the bag filter.
  • the surface velocity is 1 to 2.5 m / min, whereas when a granular filter medium 21 is used, the surface velocity can be increased to about 30 to 60 m / min. It becomes. For this reason, the dust collector 100 having a larger air volume than the bag filter type dust collector can be realized.
  • the particulate filter medium 21 does not have to be used, and it is possible to collect dust even if it is wet. It is also possible to collect fluid containing droplets (mist). Therefore, the dust collection device 100 can be used as a mist collector.
  • the dust collection device 100 can be used as a mist collector.
  • the granular filter medium 21 made of borosilicate glass is used in this example, a granular filter medium 21 made of a material having gas adsorptivity such as silica gel or activated carbon can also be used.
  • gas adsorptivity such as silica gel or activated carbon
  • the surface of the granular filter medium 21 is always in a wet state by the deliquescence of sodium hydroxide, and the dust capturing ability is improved, and an acidic gas is adsorbed. It becomes possible.
  • FIG. 7 shows an example of the dust collection and exhaust system according to the present invention.
  • the dust collection / exhaust system 200 is connected to the aforementioned dust collection apparatus 100, a flexible suction duct 31 whose one end is connected to the suction port 1a of the dust collection apparatus 100, and the other end of the suction duct 31.
  • the suction hood 32 and exhaust means such as the ducts 33 and 34 for exhausting the fluid sucked from the suction hood and removed by the dust collector 100 and the fan 37 are provided.
  • the dust collector 100 is installed at a work site such as a pharmaceutical plant handling high pharmacologically active substances, for example.
  • the dust Q of the highly pharmacologically active substance generated during the operation is sucked by the suction hood 32, taken into the inside of the dust collection apparatus 100 through the suction duct 31, and collected by the particulate filter medium 21.
  • the air from which the dust Q has been removed is discharged from the discharge port 5a and then exhausted through the exhaust duct 33 connected to the discharge port 5a.
  • the discharge port 5 a of the dust collection device 100 is directly connected to the existing local exhaust duct 34 via the exhaust duct 33. Therefore, the air discharged from the discharge port 5a is exhausted to the outside of the work site or the outside of the factory through the local exhaust duct 34.
  • the dust collection apparatus 100 or the dust collection / exhaust system 200 installed at the site does not need to be equipped with the explosion proof electrical instrumentation. It can be used in more dangerous hazard areas.
  • the discharge port 5 a of the dust collection device 100 is connected to the local exhaust duct 34 via the filter device 35 and the exhaust duct 33.
  • the filter device 35 incorporates, for example, a high efficiency HEPA filter (High Efficiency Particulate Air Filter) 36. Therefore, even if a trace amount of dust remains in the air discharged from the discharge port 5a, the dust is almost 100% removed by the HEPA filter 36 having a high collection rate.
  • HEPA filter 36 Low Efficiency Particulate Air Filter
  • the HEPA filter 36 may be provided on the main body of the dust collection device 100.
  • a higher performance ULPA filter Ultra Low Penetration Air Filter
  • the discharge port 5 a of the dust collection device 100 is connected to the fan 37 via the filter device 35 and the exhaust duct 33. Therefore, the air discharged from the discharge port 5 a is exhausted from the fan 37 through the filter device 35 and the exhaust duct 33.
  • the air exhausted from the fan 37 may be exhausted to the outside through the existing duct or may be exhausted as it is to the work site. As described above, since the air passing through the HEPA filter 36 has almost 100% of dust removed, and the air exhausted from the fan 37 contains almost no harmful dust that may affect the human body, it is directly from the fan 37. There is no harm in venting the room.
  • FIG. 8 shows an example of use of the dust collector 100 in a pharmaceutical factory or the like.
  • a production site of a highly pharmacologically active drug is shown.
  • the dust collector 100 by installing the dust collector 100 at each work site, the risk of such exposure can be avoided, and the worker W can be protected from health hazards, and contamination with other processes of high pharmacologically active substances or And diffusion to the outside can be effectively prevented.
  • the dust collecting apparatus 100 removes not only the dust Q generated from the raw material or the product but also the highly pharmacologically active substance contained in the vapor (solvent) generated in the tank 41, for example, by the particulate filter medium 21 for removal can do.
  • the dust collecting apparatus 100 is provided with the movable base 11 (FIG. 1), it can be easily moved to the work site where the exposure control is required.
  • the place where exposure control is required in addition to each work site shown in Fig. 8, the site where weighing operation of raw materials is performed, and the work site where it is easy to generate dust inherently installed with sieving device etc.
  • FIG. 9 shows an operation example of the dust collection / exhaust system 200.
  • the system of FIG. 7C is taken as an example.
  • the fan 37 is additionally provided with an inverter 45 for controlling the number of rotations of the fan 37 and an operation unit 46 for operating the inverter 45. These may be provided in the vicinity of the fan 37 or may be provided at a distance from the fan 37.
  • a cap 38 for closing the suction port is attached to the suction hood 32.
  • FIG. 9A is a flowchart showing the procedure.
  • step S1 when the inverter 45 is driven by the operation of the operation unit 46 and the fan 37 is rotated to start the operation of the dust collection / exhaust system 200 (step S1), the dust Q is discharged from the suction hood 32.
  • the sucked and sucked dust passes through the suction duct 31 and is collected by the dust collecting apparatus 100 (step S2).
  • step S3 the operation unit 46 is operated to reduce the number of rotations of the fan 37 to, for example, 50% or less at the time of operation (step S4). In response to this, the suction power of the suction hood 32 also decreases.
  • the suction hood 32 and the suction duct 31 maintain the suction state while being weak, so the dust remaining in the suction duct 31 is scattered from the suction hood 32 There is no risk of falling or falling.
  • the cap 38 is attached to the suction hood 32 (step S5).
  • the rotation of the fan 37 is stopped, and the operation of the dust collection / exhaust system 200 is stopped (step S6). In this way, exposure by residual dust in the suction hood 32 can be prevented.
  • the suction hood 32 is provided with a sensor (not shown), and when the cap 38 approaches the suction hood 32, the sensor detects this and the number of rotations of the fan 37 is automatically reduced.
  • a method may be adopted in which the fan 37 is stopped when mounted on the
  • a damper (not shown) is provided between the fan 37 and the dust collection device 100, and the suction force of the suction hood 32 is reduced by limiting the air volume with the damper without reducing the rotational speed of the fan 37. You may do so.
  • an orifice may be further provided in addition to the damper. The combined use of the orifices has the advantage that the opening and closing control of the dampers can be simplified since the orifices can secure a suction path for air even if the dampers are completely closed.
  • FIG. 10 shows another operation example of the dust collection / exhaust system 200.
  • a booth 48 is provided at the site of the weighing operation of the highly pharmacologically active substance, and the dust collecting apparatus 100 is installed inside the booth 48 together with the suction duct 31 and the suction hood 32.
  • the suction hood 32 needs to be disposed inside the booth 48.
  • the dust collecting apparatus 100 may be disposed outside the booth 48 if the risk of contamination due to scattering of dust is high.
  • the booth 48 has six sides, and the inside is substantially closed.
  • a weighing device 49 is installed in the booth 48, and the worker W performs a weighing operation of the high pharmacologically active substance by the weighing device 49.
  • the dust Q generated during this work is sucked from the suction hood 32, but at the same time the air in the booth 48 is also sucked, so the internal space of the booth 48 has a negative pressure lower than that of the outside. Become. For this reason, it is possible to prevent the dust Q in the booth 48 from leaking out or scattering from the gap of the booth 48 or the like.
  • the booth 48 may be made of a flexible material or the like to be a temporary booth that can be assembled at a work site.
  • a simple type temporary booth can be freely installed anywhere, so a negative pressure environment can be easily constructed without changing the current situation of the work site.
  • FIG. 11 is a schematic view for explaining these operations.
  • a supply box 53 containing the granular filter medium 21 is provided above the inlet 1 b via the first valve 51.
  • the first valve 51 is basically provided on the side of the dust collecting apparatus 100 in order to prevent the leakage of dust from the apparatus main body and to ensure the airtightness of the apparatus main body.
  • the granular filter medium 21 in the supply box 53 falls downward through the inlet 1 b and fills the filling space 20 between the outer cylinder 6 and the inner cylinder 8.
  • a recovery box 54 is provided below the discharge port 10a through which the particulate filter medium 21 is recovered via the second valve 52.
  • the second valve 52 is also basically provided on the side of the dust collecting apparatus 100 in order to prevent the leakage of dust from the apparatus main body and to ensure the airtightness of the apparatus main body.
  • the particulate filter material 21 recovered in the recovery box 54 may be discarded, but may be reused. In the case of reuse, the recovered granular filter medium 21 is transferred to another place to be washed and then dried, and is again charged from the inlet 1b and filled inside. In this manner, by cleaning and reusing the particulate filter medium 21, the dust collection apparatus 100 can be made into an environmentally friendly apparatus in consideration of the global environment.
  • a sanitary valve in which at least the second valve 52 among the first and second valves 51 and 52 has a pocket portion as small as possible at a portion in contact with the particulate filter medium 21 to be discharged.
  • a sanitary valve a commercially available pocketless valve, a pinch valve, a sanitary butterfly valve etc. are used, for example.
  • a split butterfly valve and the like that have excellent containment performance.
  • FIG. 12 shows a schematic view of a pinch valve.
  • the pinch valve PV includes a hollow tube 60 made of an elastic material such as silicone rubber, and a pair of pressing members 62a and 62b pressing the tube 60 from both sides.
  • the pressing members 62a and 62b are driven by an actuator (not shown).
  • FIG. 12A shows a state in which the pressing members 62 a and 62 b do not press the tube 60. In this state, the flow path 61 of the tube 60 is released, and a fluid (not shown) can pass through the flow path 61. In order to block the passage of fluid, as shown in FIG. 12 (b), the pressing members 62a and 62b are moved in the arrow direction.
  • the tube 60 is pressed from both sides by the pressing members 62a and 62b, the flow passage 61 narrows, and finally the tube 60 is crushed by the pressing members 62a and 62b as shown in FIG. 12 (c).
  • the flow path 61 is completely closed and the passage of fluid is blocked. In order to resume the passage of fluid, the procedure is reversed.
  • Such a pinch valve PV does not have a pocket portion such as a groove, a recess, or a step on the inner wall of the flow path 61, that is, at a position in contact with the fluid. Therefore, if this pinch valve PV is used as the second valve 52 of FIG. 11, the granular filter medium 21 does not remain at the second valve 52 when the granular filter medium 21 is discharged, and the granular filter medium 21 in the main body is smoothed. It can be discharged.
  • the pinch valve PV can also be used for the first valve 51.
  • FIG. 13 shows a schematic view of a split butterfly valve.
  • the split butterfly valve SV is composed of a pair of half valves that can be separated and coupled.
  • One half valve consists of a disk 63a and a tube 64a supporting the disk 63a, and is attached to the opening of the hopper 65 or the like.
  • powder 67 is accommodated in the hopper 65.
  • the other half valve consists of a disk 63 b and a tube 64 b supporting the disk 63 b, and is attached to the opening of the storage box 66 or the like.
  • the upper half valve ascends to separate the tubular body 64a and the tubular body 64b, and separate the disc 63a from the disc 63b.
  • the powder 67 can be transferred from the hopper 65 to the storage box 66 in a contained state.
  • Such a split butterfly valve SV is also designed to reduce the number of pocket portions in contact with the powder 67. Therefore, if this split butterfly valve SV is used as the second valve 52 of FIG. 11, the granular filter medium 21 does not remain at the second valve 52 when the granular filter medium 21 is discharged, and the granular filter medium 21 in the main body is smoothed. Can be discharged.
  • the split butterfly valve SV can also be used for the first valve 51.
  • FIG. 14 (a) is a view for explaining the cleaning operation of the particulate filter material 21.
  • the particulate filter medium 21 contaminated by filtration can be washed after being collected in the collection box 54 as described in FIG. 11, but can also be washed in the state of being filled in the filling space 20.
  • As the washing solution water, warm water, an organic solvent, an acid or an alkaline solution or the like can be used.
  • the cleaning solution is injected from the suction port 1a of the lid 1.
  • the discharge port 5a is in a closed state.
  • the discharge port 10a is attached with a mesh member (not shown) that does not pass the granular filter material 21 so that only the cleaning liquid flows out. Then, in a state where the particulate filter medium 21 is left inside, the cleaning fluid is continuously injected from the suction port 1a.
  • the cleaning solution injected from the suction port 1a flows through the inner cylinder 8 into the filling space 20 of the granular filter medium 21 and flows through the gaps of the granular filter medium 21 to wash away dust adhering to the granular filter medium 21, and then discharged. It flows out of the exit 10a. It is desirable to connect a drain pipe (not shown) to the discharge port 10a to supply water to a tank or the like in a state of containing the drain water because dust is mixed in the drain water flowing out from the discharge port 10a.
  • the cleaning liquid is injected from the suction port 1a, but the cleaning liquid may be injected from the inlet 1b shown in FIG. Further, although the cleaning liquid is drained from the discharge port 10a in FIG. 14 (a), a drain port for draining the cleaning liquid may be provided separately from the discharge port 10a. Alternatively, the cleaning liquid may be drained from the discharge port 5a.
  • the particulate filter medium 21 by washing the particulate filter medium 21 in the packed state, the particulate filter medium 21 can be washed without taking it out, so the highly pharmacologically active substance attached to the particulate filter medium 21 during the washing operation. Exposure can be effectively prevented.
  • the mesh member When it is necessary to discharge the particulate filter medium 21, the mesh member is removed after washing of the filter medium (or wet-down to be described next) is completed. At this time, since the granular filter medium 21 discharged from the discharge port 10a and the removed mesh member are both wet by the cleaning liquid, the high pharmacology attached to the granular filter medium 21 and the mesh member at the time of replacement. Scattering of the active substance is suppressed and exposure risk can be reduced.
  • the above description relates to the cleaning of the particulate filter material 21.
  • a wet-down process in which the particulate filter material 21 is wetted and discharged can also be used.
  • wet-down it is not necessary to completely wash the particulate filter medium 21 with water (remove the powder etc.), and with the outlet 10a closed and filled with the particulate filter medium 21, a fixed amount from the suction port 1a The risk of exposure from the respiratory pathway can be reduced by filling the interior with water.
  • the granular filter medium 21 inside is discharged from the discharge port 10a, but since the granular filter medium 21 is in a wet state at this time, the highly pharmacologically active substance attached to the granular filter medium 21 Can be controlled to prevent exposure.
  • the liquid discharged together with the particulate filter medium 21 contains a highly active pharmacological substance, wear protective equipment such as gloves to prevent it from being absorbed from the skin, and spill on the floor In order to prevent re-dispersion of the highly active pharmacological substance due to the drying of the liquid, it is important to thoroughly wipe the floor.
  • FIG. 14 (b) shows another embodiment.
  • the upper housing 3 is provided with a water injection port 3a, and a water injection valve 56 is attached to the water injection port 3a. Further, an opening 1 d communicating with the filling space 20 is formed in the lid 1, and a drain 55 is connected to the opening 1 d.
  • the water injection valve 56 is opened with the discharge port 10a closed and water is supplied from the water injection port 3a. Inject. After the injection, when the inside becomes full of water, the water flows out from the drain pipe 55, so that the full water can be confirmed.
  • FIG. 14 (b) it is also possible to wash the particulate filter medium 21 as well as the wet-down as described above.
  • the cleaning liquid is continuously injected from the water injection port 3 a in a state where the discharge port 10 a is closed, and the cleaning is performed while draining from the drain pipe 55.
  • water is pumped continuously from the suction port 1 a by pumping without providing the water injection port 3 a and the water injection valve 56, and the granular filter medium 21 is washed by draining from the drainage pipe 55. It is also good.
  • the drain pipe 55 may be connected to the inlet 1 b shown in FIG. 1 or the like without providing the opening 1 d in the lid 1.
  • FIG. 15 shows the disassembling procedure of the dust collecting apparatus 100.
  • (a) has shown the dust collector 100 after an assembly.
  • the procedure of (b) to (h) is followed.
  • the lid 1 is removed from the upper housing 3 and the upper housing 3 is removed from the intermediate housing 4.
  • the input chute 2 is removed from the inner cylinder 8 and the side lid 5 is removed from the intermediate housing 4.
  • the intermediate housing 4 is removed from the lower housing 7 as shown in (d).
  • the lower housing 7 is removed from the hopper 10 with the outer cylinder 6 supported, and then the outer cylinder 6 and the lower housing 7 are separated as shown in (f).
  • the inner cylinder 8, the discharge chute 9, and the hopper 10 are arranged as shown in (h). To separate.
  • the disassembling operation of the dust collection apparatus 100 is completed. When assembling the disassembled parts, follow the reverse procedure described above.
  • Exposure control In this embodiment, granular filter media 21 (glass beads) are used as a filter material of the dust collector 100, and a bag filter is not used.
  • the particulate filter medium 21 does not have to be cleaned or replaced in the open state as in the case of a bag filter, and it is possible to perform the cleaning / replacement operation in the closed state (FIGS. 11 and 14).
  • the dust collection device 100 according to the present embodiment significantly reduces the exposure risk compared to the bag filter type dust collection device, and particularly in the case of a pharmaceutical plant etc., the worker is exposed to the high pharmacologically active substance. Protect and contribute to the establishment of occupational safety and health.
  • the dust collecting apparatus 100 includes the outer cylinder 6 provided inside the housing 50, the inner cylinder 8 disposed inside the outer cylinder 6, the outer cylinder 6, and the inner cylinder. It has a very simple structure provided with a filling space 20 formed between the two and an inlet 1b and an outlet 10a of the granular filter medium 21 filled in the filling space 20 (FIG. 4). , Figure 5). For this reason, the large filter and the removal mechanism etc. in the bag filter type dust collector are unnecessary, and the granular filter medium 21 can secure a large surface speed as compared with the bag filter, so the bag filter type can be compared with the same air volume. The entire device can be smaller and lighter than the dust collector.
  • the dust collecting apparatus 100 is small and light, and hence the apparatus main body is a base 11 with casters 11c. It can be mounted on and freely moved anywhere. For this reason, in a pharmaceutical factory or the like, the dust collecting apparatus 100 can be installed beside the device that handles the high pharmacologically active substance, and the generated dust can be collected on the spot (FIG. 8).
  • the dust Q of the highly pharmacologically active substance is contained between the suction hood 32 and the dust collection device 100 (or the filter device 35). Therefore, the worker W can be prevented from being exposed to the dust Q during work, and the dust Q can be prevented from being mixed into other processes or being diffused to the outside. Furthermore, secondary scattering due to dust Q entering and staying in a local exhaust duct or the like installed in a factory can be prevented.
  • the input chute 2 is detachably mounted on the upper portion of the inner cylinder 8, and the outer cylinder 6 is detachably supported by the lower housing 7 by the projection 7a.
  • a discharge chute 9 is detachably supported by a projection 9 a on the discharge chute 9, and the discharge chute 9 is detachably supported by a projection 10 b on the hopper 10.
  • the upper housing 3 and the intermediate housing 4 are detachably connected by a rule joint or the like, and the intermediate housing 4 and the lower housing 7 are detachably connected by a rule joint or the like.
  • the boltless structure and the packingless structure as described above are realized.
  • each part when disassembling the dust collecting apparatus 100, each part can be easily separated, and when assembling the dust collecting apparatus 100, each part can be easily combined. Can.
  • the dust collection device 100 can be easily disassembled and cleaned, and can be easily assembled even after the cleaning.
  • the dust collection device 100 according to the present embodiment has a simple internal structure and no complicated structure inside the device (FIG. 4), and thus is excellent in the cleaning property. This leads to avoiding risks such as secondary scattering of highly pharmacologically active substances and contamination in the next process.
  • the dust collection device 100 since there is no place where the liquid is accumulated inside the apparatus, it is possible to prevent the remaining of the cleaning liquid.
  • the number of parts since the number of parts is small and there are no consumables such as packing inside, the frequency of part replacement can be reduced.
  • the problem of the uncertainty of the seal in the conventional bag filter type dust collector can be solved. Specifically, it is as follows.
  • a packing is provided between the housing and the filter in order to prevent the dust-containing air flow from leaking to the outside of the housing (see, for example, a packing 33 of Patent Document 8). Due to the aged deterioration of the packing, a slight gap may be generated between the housing and the filter, and the dust-containing air stream may leak, but it is not easy to check this gap. Even in the case of the packing immediately after replacement, the sealability may be lowered due to the powder biting in the packing, but this confirmation is also not easy. As a result, the problem of the uncertainty of the seal is always accompanied by the fact that the packing is an essential part of the bag filter type dust collector and there is no guarantee that the seal will be secure.
  • the dust collecting apparatus 100 of the present embodiment if the particulate filter medium 21 is filled inside, for example, air leakage between the lid 1, the upper housing 3 and the outer cylinder 6 can be prevented. Packing becomes unnecessary. Even if the air flow leaks, no problem occurs because the air flow filtered by the particulate filter medium 21 is clean.
  • the packingless structure by adopting the packingless structure, not only reduction of consumables and facilitation of cleaning but also a seal that has been a fatal defect of the bag filter type dust collector The problem of uncertainty can also be solved.
  • the packing is used at the above-mentioned location, even if a gap is generated due to the deterioration of the packing, the inside of the apparatus has a negative pressure and only suctions the external air, so the problem of contamination occurs. Absent.
  • the dust collecting apparatus 100 has a simple internal structure and can be disassembled into easy-to-clean parts, so that it has the advantage of being easy to evaluate for cleaning. For example, in the case of a swab (wipe) inspection, since there is no part that is difficult to wipe off, such as bolts and protrusions, the hand reaches all the places and the whole can be wiped out, so that the washing evaluation can be performed easily and accurately.
  • the dust collecting apparatus 100 not only collects dust in the air but also has a function of filtering a solvent (vapor) containing harmful substances, so it is necessary to take measures for both dust and solvent. It is possible to cope with one at manufacturing site, and it is effective as a concrete solution to risk assessment.
  • the material and shape of the filter medium used by this invention can be arbitrarily selected according to the objective or a use.
  • resin pellets may be used in place of glass beads.
  • Such resin pellets are inexpensive compared to glass, so they are suitable for single use without reuse and easy to handle.
  • the resin pellets may be reused after washing and drying in the same manner as glass beads.
  • the material of the resin pellet is not particularly limited, but for example, the filler of the pellet (PE resin pellet) made of polyethylene resin has superior performance as a filter medium as compared with the filler of glass beads. It has been confirmed by performance tests conducted by
  • the particulate filter medium 21 is a sphere, but the shape of the particulate filter medium 21 is not limited to a sphere, and may be, for example, an ellipsoid, a polyhedron, a cylinder, a prism, or the like. Moreover, the size of the particulate filter medium 21 can also be arbitrarily selected according to the application. Further, the filter medium used in the present invention is not limited to the granular filter medium, but may be an irregularly shaped filter medium not having a fixed shape, for example, a chip-like filter medium obtained by cutting metal, resin, fibers and the like into random pieces, The filter medium etc. which consist of things may be used. Moreover, in order to further improve the collection performance, a granular filter medium and an irregular-shaped filter medium may be mixed within the range that does not impair the flowability of the filter medium, and the mixture may be used as the filter medium.
  • borosilicate glass was used as a raw material of the granular filter medium 21, it may replace with this and may use alkali glass and quartz glass, and may use resin other than glass.
  • zeolite zeolite
  • the suction port 1a is open above the housing 50, the discharge port 5a is open laterally of the housing 50, and the fluid introduced from the upper suction port 1a is the inner cylinder 8
  • the particulate filter medium 21 and the outer cylinder 6 are passed in this order and discharged from the side discharge port 5a, but the present invention is not limited to this.
  • the suction port is opened to the side of the housing 50, the discharge port is opened to the upper side of the housing 50, and the fluid introduced from the side suction port is the outer cylinder 6, the particulate filter medium 21, It may be configured to pass through the cylinder 8 in this order and discharge from the upper discharge port.
  • insertion opening 1b which inserts granular filter material 21
  • a plurality of insertion openings 1b may be provided.
  • the insertion port 1b is provided in the lid
  • the outer cylinder 6 and the inner cylinder 8 are made of metal or resin net, but instead of the net, a metal plate or resin sheet having many holes punched is formed into a cylindrical shape. You may use what was processed. It is also possible to use a metal plate or a resin plate provided with a large number of narrow slits (for example, a width of 1 mm or less).
  • the outer cylinder 6 and the inner cylinder 8 are not limited to cylindrical but may be square cylinders. The same applies to the housing 50.
  • the housing 50 is divided into the upper housing 3, the intermediate housing 4, and the lower housing 7 into three parts, but the housing 50 may be divided into two parts or four parts, for example.
  • the intermediate housing 4 and the side lid 5 may be integrated.
  • the groove 6a of the outer cylinder 6 is fitted to the projection 7a of the lower housing 7, but conversely, the projection provided on the outer cylinder 6 is fitted to the groove provided on the lower housing 7 May be Similarly, in the above embodiment, the groove 8b of the inner cylinder 8 is fitted to the projection 9a of the discharge chute 9, but conversely, the projection provided on the inner cylinder 8 is formed in the groove provided on the discharge chute 9 It may be fitted. Furthermore, in the above embodiment, the projection 9a of the discharge chute 9 is engaged with the projection 10b of the hopper 10. However, one of the projections 9a and 10b may be a groove.
  • FIG. 16 (a) is a cross-sectional view corresponding to FIG. 4 (a)
  • FIG. 16 (b) is a cross-sectional view corresponding to FIG. 4 (b).
  • a ferrule joint is exemplified as a means for connecting the lid 1 and the upper housing 3, the upper housing 3 and the intermediate housing 4, the intermediate housing 4 and the lower housing 7, and the lower housing 7 and the hopper 10, respectively.
  • a catch clip senap lock
  • FIG. 17 shows an example thereof.
  • the structures of the upper housing 3 ′ and the intermediate housing 4 ′ are slightly different from the structures of the upper housing 3 and the intermediate housing 4 of FIG. 3.
  • a plurality of catch clips 15 are provided on the outer peripheral upper portion of the intermediate housing 4 '.
  • a plurality of locking portions 16 for locking the catch clip 15 are provided at the lower part of the outer periphery of the upper housing 3 '. Furthermore, in the present example, the annular member 17 and the packing 18 are used. A flange portion 17 a is formed on the inner peripheral surface of the annular member 17. A groove 18 a extending in the circumferential direction is formed on the outer peripheral surface of the packing 18. By fitting the groove 18 a of the packing 18 into the flange portion 17 a of the annular member 17, the packing 18 is supported by the annular member 17.
  • the lower portion of the upper housing 3 'and the upper portion of the intermediate housing 4' are respectively fitted to the annular member 17 in which the packing 18 is fitted, and the packing 18 is interposed between the two housings 3 'and 4'
  • the catch clip 15 is locked to the locking portion 16.
  • the upper housing 3 'and the intermediate housing 4' are connected, and the packing 18 is elastically sandwiched between the two housings 3 'and 4', and the connection between the two housings 3 'and 4' is sealed. Be done.
  • the same structure can be employed also for the connection between the upper housing 3 ′ and the lid (not shown), and the connection between the intermediate housing 4 ′ and the lower housing (not shown).
  • the catch clip 15 when used as the connection means, it can be configured inexpensively and compactly as compared with the case where the ferrule joint is used, and since the operation is easy, it is suitable for frequent disassembly. Has the advantage of
  • pinch valve PV and split butterfly valve SV were mentioned as an example as a sanitary valve used for the 1st valve 51 and the 2nd valve 52, you may use other sanitary valves.
  • the dust collection device having a local exhaust function and the dust collection / exhaust system using the same according to the present invention include a pharmaceutical plant handling high pharmacologically active substances, an agricultural chemical plant handling high pharmacologically active substances, and other chemical substances. It can be widely used in places where exposure control is required, such as chemical product factories to handle.

Abstract

集塵装置(100)は、ハウジング(50)と、このハウジング(50)の内部に設けられ、濾過対象の流体が通過可能な外筒(6)と、この外筒(6)の内側に配置され、濾過対象の流体が通過可能な内筒(8)と、外筒(6)と内筒(8)との間に形成された充填空間(20)に充填された多数の粒状または不定形状の濾材(21)と、濾過対象の流体をハウジング(50)の内部へ導入する吸込口(1a)と、濾材(21)と接触して濾過された流体を吐出する吐出口(5a)と、充填空間(20)に濾材(21)を上方から投入して充填するための投入口(1b)と、充填空間(20)に充填された濾材(21)を下方へ排出するための排出口(10a)とを備えている。

Description

局所排気機能を備えた集塵装置、およびそれを用いた集塵・排気システム
 本発明は、濾材として粒状または不定形状の充填物を用いた集塵装置に関し、特に、高薬理活性物質を取り扱う医薬品工場や化学製品工場などに好適な、局所排気機能を備えた集塵装置に関する。
 医薬原料や農薬原料である高薬理活性物質は、少量で人体に強い薬効を与えたり毒性を有したりすることから、これを取り扱う製造現場では、さまざまな対策が講じられている。たとえば、作業者を健康障害から保護するため、作業中の薬理活性物質のばく露を防止する対策や、高薬理活性物質が飛散して他の製造工程に異物として混入したり、外部へ拡散したりするのを防止する対策などがそれである。高薬理活性物質のばく露防止は、労働安全衛生を確立する上で不可欠であり、他工程への飛散・混入防止は、製品の品質管理の点で重要である。また、高薬理活性物質の外部への拡散防止は、環境保護のために必要である。
 医薬品工場などの製造現場では、高薬理活性物質を秤量する作業や、当該物質をタンクに投入する作業や、遠心分離機から製品を排出する作業などが行われ、これらの作業時に、高薬理活性物質の粉塵が飛散するリスクが高い。そこで、この粉塵を捕集するために集塵装置が用いられるが、現在市場に存在する高薬理活性物質用の集塵装置は、一般の集塵装置(たとえば特許文献1)と同様に、濾材としてバグフィルタを用いたものである。
 しかしながら、バグフィルタを用いた集塵装置(以下、「バグフィルタ式集塵装置」という。)の場合、フィルタの交換時に使用済のフィルタを取り出さねばならず、この作業は装置本体を開放した状態で行われることから、フィルタに付着した粉塵が飛散して作業者がばく露を受けるおそれがある。このばく露のリスクを回避するため、回収用のビニール袋をフィルタの取出口に取り付けて使用済フィルタを回収した後、新しいフィルタが入ったビニール袋をフィルタの取出口に取り付けて、袋越しにフィルタを挿入するという手順(バグイン・バグアウト)を踏むことでばく露を防止する必要があり、フィルタの交換作業が煩雑となる。また、このような手順を踏んでも、交換作業が煩雑であることから操作ミスによりばく露を受ける可能性が残る。さらに、フィルタの交換時だけでなく、装置内のダストを排出して回収・廃棄する際にもばく露の可能性があるので、そのための対策も必要となる。
 また、バグフィルタ式集塵装置では、装置の内部に、フィルタを固定するための機構や、フィルタに付着した粉塵を払い落とすための機構などが存在し、複雑な構成となっていることから、隅々まできれいに洗浄することが困難であるとともに、内部に洗浄液が残留しやすくなる。
 また、バグフィルタ式集塵装置は、フィルタを通過できる風の面速度の制約上、大きな風量を確保しようとすると、フィルタ自体の形状が大きくなることに加えて、払い落し機構などが内蔵されるため、装置全体が大型化・重量化し、何処へでも自由に移動することができないという難点がある。
 一方、バグフィルタの替わりに、多数の粒状濾材(球状体や柱状体など)の充填物を用いた集塵装置(以下、「粒状濾材式集塵装置」という。)が知られている。たとえば、特許文献2~5および非特許文献1では、粒状濾材を構成する微小粒体を流動させながら、高温ガスを濾材中へ導入してガス中のダスト等を除去するようにしている。特許文献6では、粒状濾材を構成する微小粒体が充填された容器を回転させながら、排ガスを濾材と接触させるようにしている。特許文献7では、流体の導入口から導出口に至る途中の定位置に保持された粒状濾材に、流体を通過させることによって流体中の不純物を除去するようにしている。
 また、特許文献4、6、7には、ダスト等が付着した濾材を再生する方法が記載されている。特許文献4、6では、濾材を構成する微小粒体の充填空間の下部に設けられた弁を開いて粒体を排出し、排出された粒体を再生装置へ送って再生処理を施した後、充填空間の上部から充填して再利用するようにしている。特許文献7では、濾材を構成する微小粒体を圧力エアによって攪拌することで、粒体表面の付着物を除去し、濾材を再生している。
 集塵装置において、濾材としてバグフィルタを用いた場合は、フィルタを設置状態のまま洗浄したり装置本体から取り外して洗浄することに困難を伴うことや、フィルタを濡れたまま使用することができないこと、あるいはフィルタの耐熱性・耐薬品性が低いことなどの問題があるが、上述したような粒状濾材を用いると、これらの問題がかなり改善される。したがって、医薬品工場などにおいても、従来のバグフィルタ式集塵装置に代えて、粒状濾材式集塵装置を採用する余地がある。
 しかしながら、特許文献2~6や非特許文献1に示されている粒状濾材式集塵装置は、いずれも、高温の燃焼ガスなどを濾過対象としており、粒状濾材を流動させながら、高温の気体を粒状濾材に接触させて除塵を行う装置である。これに対して、医薬品工場などで高薬理活性物質の粉塵を濾過する場合は、使用条件が異なる。本発明が対象としている医薬品などの高薬理活性物質の取り扱い作業中に発生する粉塵は、作業員が触れることのできないほど高温ではなく、連続ガス処理プラントに比べて量も少ないので、燃焼ガスの場合のように粒状濾材を流動させる必要はなく、そのための装置も不要である。また、大型連続プラントに比べて発塵量が少ないことに加えて、作業時間は個々の操作単位となり比較的短いことから、集塵装置の運転中に濾材に付着する粉塵の量も、連続プラントに比べれば限られている。したがって、濾材の再生にあたって、特許文献4、6、7のような専用の再生装置や攪拌装置などの設備を設ける必要性も乏しい。
 こうしたことから、上述した各文献に示されている粒状濾材式集塵装置を、そのまま医薬品工場などの高薬理活性物質を取り扱う現場に設置するのは、機能、コスト、スペースのいずれの点からみても、現実的ではないと言える。それよりも重要なことは、冒頭でも述べた通り、高薬理活性物質のばく露をいかにして防止するかということである。粒状濾材式集塵装置においても、濾材の交換時などにおいて、ばく露の危険性は当然存在するが、上述した各文献では、このばく露対策に関してなんら言及がされていない。
 また、医薬品工場などにおいて、作業現場で発生した高薬理活性物質の粉塵が、工場内に敷設されている局所排気用のダクトに入り込むと、ダクト内に長距離にわたって粉塵が滞留し、二次飛散が発生するという問題がある。この対策として最も有効なのは、作業現場の直近で粉塵を捕集して封じ込めることであるが、そのためには、集塵装置として小型で移動式のものが求められる。しかるに、従来の粒状濾材式集塵装置は、専ら高温ガス等を対象としているため、装置が大掛りであり、単位操作が行われる医薬品工場などには適していない。
 さらに、粒状濾材式集塵装置にあっては、ばく露を防止しつつも、濾材や各部品の交換・洗浄、および装置の分解・組立を容易に行えるようにして、メンテナンス作業の効率化を図ることも重要である。たとえば、特許文献7の集塵装置では、上下方向に区分けされた複数の収容空間のそれぞれに粒状濾材が収容されているが、このような構造では、濾材の交換・洗浄は容易ではなく、分解・組立にも手間がかかる。
 また、従来の粒状濾材式集塵装置は、基本的には粉塵を対象としており、ガス成分の低減の目的は担っていない。医薬品工場などでは、粉塵を操作する場所で溶媒雰囲気も共存することがある。このため、集塵のための気流の流れを利用してガス成分も吸い込むことで、ガスの有効成分を低減できる装置やシステムが望まれるが、作業場所に自在に持ち運べる小型の集塵装置と局所排気装置の双方の機能を備えた装置は、前記の各文献に示されたシステムでは実現することができない。
特開2014-50821号公報 特開2001-259329号公報 特開平9-239221号公報 特開平9-220434号公報 特開2001-129338号公報 特開2001-25644号公報 特開2005-46738号公報 特開2013-94691号公報
室蘭工業大学紀要第53号(2003年11月)、7-13頁「環状グラフィルタの微粒子捕集特性」(http://hdl.handle.net/10258/79)
 本発明は、前記のような問題点に鑑み、ばく露を効果的に防止ないし低減しつつ、小型軽量化が可能で、しかも洗浄性や組立・分解性などのメンテナンス性にも優れた、局所排気機能を備えた集塵装置およびそれを用いた集塵・排気システムを提供することを課題とする。
 本発明に係る集塵装置は、ハウジングと、このハウジングの内部に収容された濾材と、濾過対象の流体をハウジングの内部へ導入する吸込口と、濾材と接触して濾過された流体を吐出する吐出口とを備えた局所排気機能を有する集塵装置であって、濾材は多数の粒状または不定形状の濾材の充填物からなる。本発明では、このような集塵装置において、ハウジングの内部に設けられ、流体が通過可能な外筒と、この外筒の内側に配置され、流体が通過可能な内筒と、外筒と内筒との間に形成された充填空間に、濾材を上方から投入して充填するための投入口と、充填空間に充填された濾材を下方へ排出するための排出口とがさらに備わっている。
 本発明に係る集塵・排気システムは、上述した局所排気機能を備えた集塵装置と、この集塵装置の吸込口に一端が接続される吸引ダクトと、この吸引ダクトの他端に接続される吸引フードと、この吸引フードから吸引され集塵装置で除塵された流体を排気する排気手段とを備えている。また、本発明に係る集塵・排気システムは、上述した局所排気機能を備えた集塵装置と、この集塵装置の吐出口から吐出される流体中に残存している粉塵を除去するためのフィルタ装置とから構成することもできる。
 本発明の集塵装置によれば、バグフィルタを用いないため、濾材の交換や洗浄に際して、乾燥した粉体等が開放状態となる作業を最小化することが可能となり、ばく露のリスクが大幅に低減する。また、本発明の集塵装置は、構造がシンプルなため、装置全体が小型で軽量なものとなる。さらに、本発明の集塵装置は、簡単に分解や組立ができるように設計されているため、洗浄作業も容易であり、メンテナンス性に優れている。
 本発明の集塵・排気システムによれば、作業現場で発生した粉塵は、吸引フードから集塵装置までの間に封じ込められる。このため、作業者が粉塵のばく露を受けるのを回避できるとともに、粉塵が他工程へ混入したり外部へ拡散したりするのを防止することができる。また、局所排気用ダクトなどに粉塵が入り込んで滞留することによる二次飛散も防止できる。
本発明の集塵装置の一例を示す外観図である。 同集塵装置の上面図、正面図および側面図である。 同集塵装置の分解斜視図である。 図2のA-A断面図およびB-B断面図である。 粒状濾材が充填された状態を示す断面図である。 集塵装置内部の流体の流れを示す図である。 本発明の集塵システムの一例を示す図である。 医薬品工場などにおける集塵装置の使用例を示す図である。 集塵システムの運用例を示す図である。 集塵システムの他の運用例を示す図である。 粒状濾材の充填および排出を説明する模式図である。 ピンチバルブの模式図である。 スプリットバタフライバルブの模式図である。 粒状濾材の洗浄作業を説明する図である。 集塵装置の分解手順を示す図である。 集塵装置の他の例を示す断面図である。 集塵装置の他の例を示す要部分解斜視図である。
 以下、本発明の実施形態につき図面を参照しながら説明する。各図において、同一の部分または対応する部分には、同一の符号を付してある。
 本発明の局所排気機能を備えた集塵装置(以下、単に「集塵装置」という。)の一例を、図1および図2に示す。図1は、装置全体の外観図であり、図2の(a)は上面図、(b)は正面図、(c)は側面図である。集塵装置100は、蓋1、上ハウジング3、中間ハウジング4、側蓋5、下ハウジング7、ホッパ10、および基台11を備えている。上ハウジング3と、中間ハウジング4と、下ハウジング7とによって、ハウジング50が構成される。また、蓋1と、ハウジング50と、ホッパ10とによって、集塵装置100の本体が構成される。本体の内部には、後述する各種の部材が収容されている。
 図1および図2において、蓋1は、上ハウジング3の上部を塞ぐように、上ハウジング3に着脱自在に取り付けられている。蓋1と上ハウジング3との連結には、内面に段差や溝のないヘルール継手などが用いられる。蓋1には、濾過対象の流体をハウジング50の内部へ導入する吸込口1aと、ハウジング50内に充填される粒状濾材21(図5)を投入するための投入口1bと、粒状濾材21の充填状態を確認するための確認窓1cとが設けられている。吸込口1aと投入口1bは、ハウジング50の上方へ開口しており、確認窓1cは、透明なガラスや樹脂板で覆われている。
 各ハウジング3、4、7は、上下が開口した筒状の管体からなる。上ハウジング3は、中間ハウジング4の上部に着脱自在に連結されており、下ハウジング7は、中間ハウジング4の下部に着脱自在に連結されている。これらの連結にも、前述のヘルール継手などが用いられる。
 中間ハウジング4の側部には、図3に示すような開口部4aが形成されており、この開口部4aを覆うように、側蓋5が中間ハウジング4に着脱自在に取り付けられている。側蓋5の取り付けには、ネジなどの固定部材が用いられる。側蓋5には、濾過された流体を吐出する吐出口5aが、開口部4aと連通して設けられている。吐出口5aは、中間ハウジング4の側方に開口している。
 ホッパ10は、下ハウジング7の下部に着脱自在に連結されている。この連結にも、ヘルール継手などが用いられる。ホッパ10には、ハウジング50内の粒状濾材21を下方へ排出するための排出口10aが設けられている。
 基台11には、ハウジング50を含む集塵装置本体が搭載される。基台11は、円盤状の座部11aと、この座部11aを支持する脚部11bと、この脚部11bの下端に設けられたキャスター11cとを備えている。座部11aには、図3に示すように、穴11dが形成されている。ホッパ10は、この穴11dに嵌入された状態で、座部11aに載置される。脚部11bは、本例では3本設けられており、それぞれが座部11aに固着されている。脚部11bは、必要に応じて4本(あるいはそれ以上)設けてもよい。基台11は、キャスター11cを備えているので、集塵装置本体を搭載した状態で移動自在となっている。
 次に、集塵装置100の内部構造について説明する。図3は、集塵装置100の分解斜視図を示している。図4(a)は、図2(a)のA-A断面図であり、図4(b)は、図2(b)のB-B断面図である。図3と図4に示すように、集塵装置100の内部には、投入シュート2、外筒6、内筒8、および排出シュート9が収容され、また、図5に示す粒状濾材21が収容される。
 図3において、投入シュート2は、蓋1の投入口1bから投入された粒状濾材21を、外筒6と内筒8との間の充填空間20(図4)へ案内するための部材であり、図4に示すように内筒8の上方に配置されて、内筒8の上部に着脱自在に装着される。投入シュート2には、蓋1の開口部1aに連通する開口部2aと、下方に向って傾斜した案内斜面2bとが設けられている。
 外筒6は、上下端が開放された円筒状の部材であり、本例では、濾過対象の流体が通過可能な、金属または樹脂の網から構成されている。外筒6の網目の孔径は、粒状濾材21の外径より小さくなっている。外筒6の下端には、下ハウジング7の内面に設けられた突起7a(第1支持部)と対応する位置に、溝6aが形成されている。溝6aと突起7aとは、それぞれ複数設けられている。各溝6aが各突起7aに嵌合することで、外筒6は、下ハウジング7に着脱自在に支持される。
 内筒8は、外筒6よりも小径で、上下端が開放された円筒状の部材であり、外筒6の内側に配置される。このため、内筒8と外筒6との間には、図4に示すように、粒状濾材21(図5)を充填するための充填空間20が形成される。内筒8の中心軸は、外筒6の中心軸と一致しており、内筒8と外筒6は同心状に配置されている。内筒8は、外筒6と同様に、濾過対象の流体が通過可能な、金属または樹脂の網から構成されており、網目の孔径は、粒状濾材21の外径より小さくなっている。内筒8の下部には、スペーサ8aと溝8bとがそれぞれ複数形成されている。
 排出シュート9は、充填空間20に充填されている粒状濾材21を排出口10aへ案内するための部材であり、内筒8の下方に配置される。排出シュート9には、内筒8の各溝8bと対応する位置に、突起9a(第2支持部)が複数形成されている。各溝8bが各突起9aに嵌合することで、内筒8は、排出シュート9に着脱自在に支持される。また、排出シュート9には、図4に示すように、下方に向って傾斜した案内斜面9bが設けられている。
 ホッパ10は、排出シュート9とともに、充填空間20に充填されている粒状濾材21を排出口10aへ案内するための部材であり、外筒6の下方に配置される。ホッパ10の内面には、排出シュート9の各突起9aと対応する位置に、突起10b(第3支持部)が複数設けられている。各突起9aが各突起10bに上側から係合することで、排出シュート9はホッパ10に着脱自在に支持される。また、ホッパ10には、図4に示すように、下方に向って傾斜した案内斜面10cが設けられている。排出シュート9の案内斜面9bと、ホッパ10の案内斜面10cとの間には、充填空間20と排出口10aとに連通する、排出路22が形成されている。
 なお、上述した集塵装置100においては、確認窓1cを覆う部材や、側蓋5およびキャスター11cなどを除いて、各部品の組み立てにボルトが用いられていない。また、上述した集塵装置100においては、各ハウジング3、4、7の連結部分(ヘルール継手)などを除いて、シールのためのパッキンが用いられていない。このように、集塵装置100は基本的にボルトレスおよびパッキンレスの構造となっており、これによって後述するような利点を有している。
 次に、濾材について説明する。図5でも示したように、濾材は多数の粒状濾材21の充填物からなる。本例では、粒状濾材21として、たとえば直径が1~3mm程度のガラスビーズを用いる。本例のガラスビーズは真球であるが、真球以外の所定のアスペクト比(長径と短径の比)を持った球体でもよい。ガラス素材には、アルカリガラス、石英ガラス、ホウケイ酸ガラスなどがあるが、本例ではホウケイ酸ガラスを用いる。その理由は、ホウケイ酸ガラスは、アルカリガラスに比べて、酸・アルカリ・有機溶剤などに対する耐性があり、また、石英ガラスに比べて安価なためである。市場に流通しているホウケイ酸ガラスとしては、たとえばパイレックス(登録商標)がある。
 前述のように、粒状濾材21は、蓋1の投入口1bから投入される。投入口1bに投入された粒状濾材21は、投入シュート2の案内斜面2bに案内されながら、外筒6と内筒8との間の充填空間20へ流下し、当該空間に充填される(図5)。この際、蓋1に設けられている確認窓1cを通して、粒状濾材21の充填状態を目視で確認することができる。なお、粒状濾材21を充填空間20へ充填した後、投入口1bおよび排出口10aは、図示しない蓋あるいはバルブなどによって閉塞される。
 図6は、集塵装置100の内部における流体の流れを示している。医薬品工場などにおける濾過対象の流体としては、たとえば、高薬理活性物質の粉塵を含む空気や、高薬理活性物質を含む溶媒(蒸気)などがある。蓋1の吸込口1aから導入された濾過対象の流体Xは、内筒8の内部空間へ流入した後、内筒8の網目を通過して粒状濾材21の充填層に流入する。充填層に流入した流体Xは、粒状濾材21の隙間を通過しながら粒状濾材21と接触し、この過程で、流体に含まれている高薬理活性物質が粒状濾材21に捕集されて、流体が濾過される。濾過された流体は、外筒6の網目を通過し、高薬理活性物質を含まない清浄な流体Yとなって、吐出口5aから吐出される。
 図6からわかるように、集塵装置内部の流体の流れは、狭い内側から広い外側へ向うようになっている。このため、流体の流速は、外側に近づくほど緩やかになる。そして、本実施形態の集塵装置100の場合、流速が遅いほうが捕集効率が高くなるので、粒状濾材21を通過する流速の遅い流体に含まれる高薬理活性物質を、粒状濾材21で効率良く捕集することができる。
 ここで、粒状濾材21を用いる利点として、バグフィルタと比べて最大風量を大きく取れる点が挙げられる。一例として、バグフィルタを用いた場合は、面速度が1~2.5m/minであるのに対し、粒状濾材21を用いた場合は、面速度を30~60m/min程度まで上げることが可能となる。このため、バグフィルタ式集塵装置よりも大風量の集塵装置100を実現することができる。
 また、バグフィルタの場合は、濡れた際に完全に乾かす必要があり、濡れたままでの使用は不可能であるが、粒状濾材21はその必要がなく、濡れていても集塵が可能であり、液滴(ミスト)を含む流体を集塵することもできる。このため、集塵装置100をミストコレクタとして使用することができる。このように、粒状濾材21は、濡れた状態で集塵が可能であることから、乾式集塵に制限されるバグフィルタと比べて、乾いた粉体の飛散によるばく露のリスクを大幅に低減することができる。
 なお、本例では、ホウケイ酸ガラスからなる粒状濾材21を用いたが、シリカゲルや活性炭のようなガス吸着性を有する素材からなる粒状濾材21を用いることもできる。この場合は、粉塵の捕集効果に加えて、流体中の有害物質の濃度を低減したり、臭気を低減したりすることが可能となる。このため、粉体のばく露リスクがあり、かつ溶媒雰囲気も存在する現場において、集塵装置100は、小型で移動式の特徴を生かして、1台の装置で対応することが可能である。
 また、粒状濾材21を水酸化ナトリウム液に浸漬することで、粒状濾材21の表面は水酸化ナトリウムの潮解により常に濡れた状態となり、粉塵捕捉能力が向上するとともに、酸性のガスを吸着することも可能となる。
 次に、上述した集塵装置100を用いた集塵・排気システムについて説明する。図7は、本発明による集塵・排気システムの一例を示している。集塵・排気システム200は、前述の集塵装置100と、この集塵装置100の吸込口1aに一端が接続された可撓性の吸引ダクト31と、この吸引ダクト31の他端に接続された吸引フード32と、この吸引フードから吸引され集塵装置100で除塵された流体を排気するダクト33、34やファン37などの排気手段とを備えている。
 集塵装置100は、たとえば高薬理活性物質を取り扱う医薬品工場などの作業現場に設置される。作業中に発生する高薬理活性物質の粉塵Qは、吸引フード32に吸引され、吸引ダクト31を通って集塵装置100の内部に取り込まれ、粒状濾材21で捕集される。粉塵Qが除去された空気は、吐出口5aから吐出した後、吐出口5aに接続された排気ダクト33を介して排気される。
 図7(a)の例では、集塵装置100の吐出口5aが、排気ダクト33を介して、直接、既設の局所排気用ダクト34に接続されている。このため、吐出口5aから吐出した空気は、局所排気用ダクト34を通って、作業現場の外部や工場の外部へ排気される。このように、吸引源として工場の局所排気系統を利用することで、現場に設置される集塵装置100ないし集塵・排気システム200は、防爆対応の電気計装品を装備しなくて済むため、より危険性の高いハザードエリアでの使用が可能となる。
 図7(b)の例では、集塵装置100の吐出口5aが、フィルタ装置35と排気ダクト33を介して、局所排気用ダクト34に接続されている。フィルタ装置35には、たとえば高性能のHEPAフィルタ(High Efficiency Particulate Air Filter)36が内蔵されている。このため、吐出口5aから吐出した空気に微量の粉塵が残存していても、この粉塵は、捕集率の高いHEPAフィルタ36によって、ほぼ100%除去される。本例では、HEPAフィルタ36が1つだけ設けられているが、HEPAフィルタ36を複数設けてもよい。また、HEPAフィルタ36は、集塵装置100の本体に設けてもよい。さらに、HEPAフィルタ36の替わりに、より高性能のULPAフィルタ(Ultra Low Penetration Air Filter)を用いてもよい。これらの代替案は、次に述べる図7(c)の例にも当てはまる。
 図7(c)の例では、集塵装置100の吐出口5aが、フィルタ装置35と排気ダクト33を介して、ファン37に接続されている。このため、吐出口5aから吐出した空気は、フィルタ装置35と排気ダクト33を通って、ファン37から排気される。ファン37から排気される空気は、既設のダクトを通して外部へ排出してもよいし、作業現場にそのまま排気してもよい。前述したように、HEPAフィルタ36を通った空気は、粉塵がほぼ100%除去されており、ファン37から排気される空気は人体に影響のある有害な粉塵をほとんど含まないため、ファン37から直接室内に排気しても差し支えはない。気流中に粉塵以外のガス成分が含まれる場合は、局所排気装置の近傍に排気することで、ガスの処理を工場のスクラバ(洗浄集塵装置)に負担させる設計が可能である。なお、ファン37を防爆対応品とすることで、防爆エリアでの使用も可能となる。
 図7(a)、(b)のように、集塵装置100を既設の局所排気用ダクト34と組み合わせることにより、集塵装置100にファンを付設する必要がなくなる。このため、システム構成が簡略化されるとともに、電気系統がないため、防爆エリアにおいても使用することが可能となる。
 図8は、医薬品工場などにおける集塵装置100の使用例を示している。ここでは、高薬理活性医薬品の製造現場の例を示している。このような現場では、タンク(反応缶)41の仕込み口から原料を投入する場合や、遠心分離機42からの製品排出時や、乾燥機43からの製品排出時などに、高薬理活性物質の粉塵Qが飛散して、作業者Wがばく露を受けるリスクがある。しかるに、それぞれの作業現場に集塵装置100を設置することで、このようなばく露のリスクを回避し、作業者Wを健康障害から保護できるとともに、高薬理活性物質の他工程への混入や、外部への拡散を有効に防止することができる。また、集塵装置100は、原料や製品から発塵した粉塵Qだけでなく、たとえばタンク41で発生する蒸気(溶媒)中に含まれる高薬理活性物質も、粒状濾材21で捕集して除去することができる。
 さらに、集塵装置100は移動自在な基台11(図1)を備えているため、ばく露対策が必要な作業現場へ容易に移動させることができる。ばく露対策が要求される場所としては、図8で示した各作業現場のほか、原料の秤量作業を行う現場や、篩分け装置などが設置された本質的に粉塵が発塵しやすい作業現場や、作業者が粉塵の付着した衣服を脱衣する脱衣室などが挙げられる。
 図9は、集塵・排気システム200の運用例を示している。ここでは、図7(c)のシステムを例に挙げている。図9(a)において、ファン37には、このファン37の回転数を制御するインバータ45と、このインバータ45を作動させるための操作部46とが付設されている。これらは、ファン37の近傍に設けられていてもよいし、ファン37から離れた場所に設けられていてもよい。また、吸引フード32には、吸引口を閉塞するキャップ38が付設される。
 吸引フード32による粉塵Qの吸引が終了した時点で、集塵・排気システム200の運転を直ちに停止(ファン37を停止)すると、停止から吸引フード32にキャップ38をかぶせるまでの間に、吸引ダクト31内に残留している粉塵が吸引フード32から飛散したり落下したりして、作業者がばく露を受ける可能性がある。そこで、図9(a)のシステムでは、集塵・排気システム200の運転を停止する前に、インバータ45によってファン37の回転数を低下させ、その後に集塵・排気システム200の運転を停止するようにしている。図9(b)は、その手順を示したフローチャートである。
 図9(b)において、操作部46の操作によりインバータ45が駆動し、ファン37が回転して集塵・排気システム200の運転が開始されると(ステップS1)、吸引フード32から粉塵Qが吸引され、吸引された粉塵は吸引ダクト31を通って、集塵装置100で集塵される(ステップS2)。集塵が終了すると(ステップS3)、操作部46を操作して、インバータ45により、ファン37の回転数をたとえば運転時の50%以下に低下させる(ステップS4)。これに応じて、吸引フード32の吸引力も低下する。ファン37の回転数の低下は一定時間継続され、この間、吸引フード32および吸引ダクト31は、弱いながらも吸引状態を維持するので、吸引ダクト31内に残留している粉塵が吸引フード32から飛散したり落下したりすることはない。そして、ファン37が低速で回転している間に、吸引フード32にキャップ38を装着する(ステップS5)。その後、一定時間が経過した時点で、ファン37の回転が止まり、集塵・排気システム200の運転が停止される(ステップS6)。このようにして、吸引フード32内の残留粉塵によるばく露を防止することができる。
 なお、ファン37の回転数を低下させるにあたっては、操作部46を操作する以外にも方法が考えられる。たとえば、吸引フード32にセンサ(図示省略)を設け、吸引フード32にキャップ38が近づくと、センサがこれを検知して、自動的にファン37の回転数が低下し、キャップ38が吸引フード32に装着されると、ファン37が停止するような方法を採用してもよい。
 また、ファン37と集塵装置100との間にダンパー(図示省略)を設け、ファン37の回転数は低下させずに、ダンパーで風量を制限することで、吸引フード32の吸引力を低下させるようにしてもよい。この場合、ダンパーに加えて、オリフィスをさらに設けてもよい。オリフィスを併用すると、ダンパーを完全に閉じても、オリフィスによって空気の吸引通路を確保できるので、ダンパーの開閉制御が簡単になるという利点がある。
 図10は、集塵・排気システム200の他の運用例を示している。ここでは、高薬理活性物質の秤量作業の現場に、ブース48が設けられており、このブース48の内部に、吸引ダクト31および吸引フード32とともに、集塵装置100が設置されている。なお、吸引フード32は、ブース48の内部に配置する必要があるが、集塵装置100は、粉塵の飛散による汚染リスクが高い場合は、ブース48の外部に配置してもよい。
 ブース48は6面からなり、内部が実質的に閉空間となっている。ブース48内には、秤量器49が設置されており、作業者Wは、この秤量器49により高薬理活性物質の秤量作業を行う。この作業中に発生した粉塵Qは、吸引フード32から吸引されるが、このとき同時に、ブース48内の空気も吸引されるので、ブース48の内部空間は、外部より気圧の低い陰圧状態となる。このため、ブース48内の粉塵Qが、ブース48の隙間などから外部へ漏出・飛散するのを阻止することができる。
 また、ブース48をフレキシブル素材などで構成して、作業現場で組み立てが可能な仮設ブースとしてもよい。このような簡易型の仮設ブースは、どこにでも自由に設置できるので、作業現場の現状を改変することなく、陰圧環境を容易に構築することができる。
 次に、集塵装置100における粒状濾材21の充填作業および排出作業について説明する。
 図11は、これらの作業を説明する模式図である。粒状濾材21を充填する場合は、投入口1bの上方に、第1バルブ51を介して、粒状濾材21が収容された供給ボックス53が設けられる。第1バルブ51は、装置本体からの粉塵の漏出を防止し、また装置本体の気密性を確保するために、基本的には集塵装置100側に設けられる。第1バルブ51を開くことで、供給ボックス53内の粒状濾材21は、投入口1bを通って下方へ落下し、外筒6と内筒8の間の充填空間20に充填される。
 また、濾過の繰り返しによって汚れた粒状濾材21を、交換や洗浄のために取り出す場合は、排出口10aの下方に、第2バルブ52を介して、粒状濾材21が回収される回収ボックス54が設けられる。第2バルブ52も、装置本体からの粉塵の漏出を防止し、また装置本体の気密性を確保するために、基本的には集塵装置100側に設けられる。第2バルブ52を開くことで、充填空間20内の粒状濾材21は、排出路22を通って排出口10aから下方へ落下し、回収ボックス54内に回収される。このとき、排出口10aから第2バルブ52を経て回収ボックス54へ至る経路は、閉空間となっているので、粒状濾材21の排出時に、粒状濾材21に付着した粉塵が飛散することがなく、作業者がばく露を受けるのを回避することができる。
 回収ボックス54に回収された粒状濾材21は、廃棄してもよいが、再利用することも可能である。再利用の場合は、回収された粒状濾材21は、別の場所へ移されて洗浄された後、乾燥され、再び投入口1bから投入されて内部に充填される。このようにして、粒状濾材21を洗浄して再利用することで、集塵装置100を地球環境に配慮した環境配慮型の装置とすることができる。
 本例では、第1および第2バルブ51、52のうち、少なくとも第2バルブ52に、排出される粒状濾材21と接触する箇所にポケット部が極力存在しないサニタリーバルブを用いる。サニタリーバルブとしては、たとえば、市販のポケットレス弁、ピンチバルブ、サニタリーバタフライ弁などを用いる。また、ばく露リスク低減の観点から、封じ込め性能に優れているスプリットバタフライバルブなどを用いることができる。
 図12は、ピンチバルブの模式図を示している。ピンチバルブPVは、シリコンゴムなどの弾性材料からなる中空のチューブ60と、このチューブ60を両側から押圧する一対の押圧部材62a、62bとを備えている。押圧部材62a、62bは、図示しないアクチュエータにより駆動される。図12(a)は、押圧部材62a、62bがチューブ60を押圧していない状態を示している。この状態では、チューブ60の流路61が解放されていて、図示しない流体が流路61を通過可能となっている。流体の通過を遮断するには、図12(b)のように、押圧部材62a、62bを矢印方向に移動させる。すると、チューブ60が押圧部材62a、62bにより両側から押圧されて、流路61が狭まってゆき、最終的には図12(c)のように、チューブ60が押圧部材62a、62bで押しつぶされた状態となって、流路61が完全に閉鎖され、流体の通過が遮断される。流体の通過を再開させるには、上記と逆の手順を経る。
 このようなピンチバルブPVは、流路61の内壁、すなわち流体と接触する箇所に、溝・窪み・段差などのポケット部が存在しない。このため、図11の第2バルブ52としてこのピンチバルブPVを用いれば、粒状濾材21の排出時に、第2バルブ52の箇所に粒状濾材21が残留せず、本体内の粒状濾材21をスムーズに排出することができる。なお、第1バルブ51にも、このピンチバルブPVを用いることができる。
 図13は、スプリットバタフライバルブの模式図を示している。スプリットバタフライバルブSVは、分離および結合が可能な一対のハーフバルブから構成される。一方のハーフバルブは、円盤63aと、この円盤63aを支持した管体64aとからなり、ホッパ65などの開口部に取り付けられる。ホッパ65内には、たとえば粉体67が収容されている。他方のハーフバルブは、円盤63bと、この円盤63bを支持する管体64bとからなり、貯溜ボックス66などの開口部に取り付けられる。
 図13において、(a)のように、上下のハーフバルブが分離した状態では、管体64a、64bは、それぞれ円盤63a、63bにより閉塞されている。この状態から、上側のハーフバルブが下降すると、(b)のように、管体64a、64bが結合する。このとき、円盤63a、63bも結合し、両者により回転弁63が構成される。そして、(c)のように、この回転弁63が90°回転すると、ホッパ65と貯溜ボックス66とが連通し、ホッパ65内の粉体67が、貯溜ボックス66内に供給される。供給が終わると、(d)のように、回転弁63は元の位置に復帰する。その後、(e)のように、上側のハーフバルブが上昇して、管体64aと管体64bとが分離するとともに、円盤63aと円盤63bとが分離する。このようにして、粉体67をホッパ65から貯溜ボックス66へ、封じ込めた状態で移すことができる。
 このようなスプリットバタフライバルブSVも、粉体67と接触する箇所にポケットとなる部分が少なくなるように設計されている。このため、図11の第2バルブ52としてこのスプリットバタフライバルブSVを用いれば、粒状濾材21の排出時に、第2バルブ52の箇所に粒状濾材21が残留せず、本体内の粒状濾材21をスムーズに排出することができる。なお、第1バルブ51にも、このスプリットバタフライバルブSVを用いることができる。
 次に、集塵装置100における粒状濾材21の洗浄作業について説明する。
 図14(a)は、粒状濾材21の洗浄作業を説明する図である。濾過により汚れた粒状濾材21は、図11で説明したように回収ボックス54に回収した後、洗浄することができるが、充填空間20に充填したままの状態で洗浄することもできる。洗浄液としては、水、温水、有機溶媒、酸またはアルカリ溶液などを用いることができる。
 洗浄にあたっては、図14(a)に示すように、蓋1の吸込口1aから洗浄液を注入する。このとき、吐出口5aは閉鎖状態にしておく。また、排出口10aは、粒状濾材21を通さないメッシュ部材(図示省略)を取り付けるなどして、洗浄液だけが流出するようにしておく。そして、粒状濾材21を内部に残した状態で、吸込口1aから洗浄液を連続的に注入する。
 吸込口1aから注入された洗浄液は、内筒8を通って粒状濾材21の充填空間20に流入し、粒状濾材21の隙間を通って流れ、粒状濾材21に付着した粉塵を洗い流した後、排出口10aから流出する。排出口10aから流出する排水には粉塵が混入しているため、排出口10aに排水管(図示省略)を接続して、排水を封じ込めた状態でタンク等へ送水するのが望ましい。
 図14(a)では、洗浄液を吸込口1aから注入したが、洗浄液は図1などに示されている投入口1bから注入してもよい。また、図14(a)では、洗浄液を排出口10aから排水したが、排出口10aとは別に、洗浄液を排水するための排水口を設けてもよい。あるいは、洗浄液を吐出口5aから排水するようにしてもよい。
 図14(a)のように、粒状濾材21を充填状態のまま洗浄することにより、粒状濾材21を外部に取り出さずに洗浄ができるので、洗浄作業時に、粒状濾材21に付着した高薬理活性物質のばく露を効果的に防止することができる。
 なお、粒状濾材21を排出する必要が生じた場合は、濾材の洗浄(あるいは次に述べるウェットダウン)が終了した後に、前記のメッシュ部材を取り外す。このとき、排出口10aから排出される粒状濾材21と、取り外されたメッシュ部材は、いずれも洗浄液によって湿潤状態となっているため、粒状濾材21やメッシュ部材の交換時に、これらに付着した高薬理活性物質の飛散が抑制され、ばく露リスクを低減することができる。
 以上の説明は、粒状濾材21の洗浄に関するものであったが、図14(a)においては、粒状濾材21を湿潤状態にして排出するウェットダウン処理も可能である。ウェットダウンの場合は、粒状濾材21を通水によって完全に洗浄する(粉体等を除去する)必要はなく、排出口10aを閉鎖し粒状濾材21を充填した状態で、吸込口1aから一定量の水を注入して内部を満水にすることで、呼吸経路からのばく露リスクを下げることができる。この満水状態で排出口10aを開放すると、内部の粒状濾材21は排出口10aから排出されるが、このとき粒状濾材21は湿潤状態となっているので、粒状濾材21に付着した高薬理活性物質の飛散が抑制され、ばく露を防止することができる。なお、粒状濾材21と一緒に排出される液には、高活性薬理物質が含まれているので、これが皮膚から吸収されるのを防ぐためにグローブなどの保護具を着用し、また、床にこぼれた液の乾燥による高活性薬理物質の再飛散を防ぐために、床のふき取り作業を徹底することが肝要である。
 図14(b)は、他の実施形態を示している。上ハウジング3には、注水口3aが設けられており、この注水口3aに注水バルブ56が取り付けられている。また、蓋1に充填空間20と連通する開口1dが形成されており、この開口1dに排水管55が接続されている。ウェットダウンを行う場合、図14(a)では、吸込口1aから水を注入したが、図14(b)では、排出口10aを閉鎖した状態で注水バルブ56を開いて、注水口3aから水を注入する。注入後、内部が満水になると排水管55から水が流出するので、これによって満水を確認することができる。
 図14(b)においては、上述したようなウェットダウンだけでなく、粒状濾材21の洗浄を行うことも可能である。この場合は、排出口10aを閉鎖した状態で注水口3aから洗浄液を連続的に注入し、排水管55から排水しながら洗浄を行う。この場合、洗浄液を圧送することで、排水管55から確実に排水することができる。なお、図14(b)において、注水口3aおよび注水バルブ56を設けずに、水を圧送により吸込口1aから連続的に注入し、排水管55から排水することで粒状濾材21を洗浄してもよい。また、蓋1に開口1dを設けずに、図1などに示されている投入口1bに排水管55を接続してもよい。
 最後に、集塵装置100の分解・組立作業について説明する。
 図15は、集塵装置100の分解手順を示している。図15において、(a)は組立後の集塵装置100を示している。この集塵装置100の各部品を洗浄したり交換したりする場合は、(b)~(h)の手順に従う。
 まず、(b)のように、蓋1を上ハウジング3から取り外すとともに、上ハウジング3を中間ハウジング4から取り外す。続いて、(c)のように、投入シュート2を内筒8から取り外すとともに、側蓋5を中間ハウジング4から取り外す。次に、(d)のように、中間ハウジング4を下ハウジング7から取り外す。さらに、(e)のように、下ハウジング7を、外筒6を支持した状態でホッパ10から取り外し、その後、(f)のように、外筒6と下ハウジング7とを分離する。また、(g)のように、ホッパ10を、内筒8を支持した状態で基台11から取り外した後、(h)のように、内筒8と、排出シュート9と、ホッパ10とを分離する。以上により、集塵装置100の分解作業が終了する。分解した各部品を組み立てる場合は、上記と逆の手順に従う。
 以上説明した実施形態によれば、以下のような種々の効果が得られる。
(1)ばく露防止
 本実施形態では、集塵装置100の濾材として粒状濾材21(ガラスビーズ)を用いており、バグフィルタを用いていない。粒状濾材21は、バグフィルタのように開放状態で洗浄や交換を行う必要がなく、密閉状態で洗浄・交換作業を行うことが可能である(図11、図14)。このため、本実施形態による集塵装置100は、バグフィルタ式集塵装置に比べてばく露のリスクが大幅に低減し、特に、医薬品工場などでは、作業者を高薬理活性物質のばく露から保護して、労働安全衛生の確立に資するものとなる。
(2)小型軽量化
 本実施形態による集塵装置100は、ハウジング50の内部に設けられた外筒6と、この外筒6の内側に配置された内筒8と、外筒6と内筒8との間に形成された充填空間20と、この充填空間20に充填される粒状濾材21の投入口1bおよび排出口10aとが設けられた、きわめてシンプルな構造を有している(図4、図5)。このため、バグフィルタ式集塵装置における大型フィルタや払い落し機構などが不要であることや、粒状濾材21がバグフィルタと比較して面速度を大きく確保できることにより、同じ風量で比較するとバグフィルタ式集塵装置に比べて、装置全体を小型で軽量なものとすることができる。
(3)可搬性
 従来のバグフィルタ式集塵装置は、大型で可搬性に欠けるが、本実施形態による集塵装置100は、小型軽量であるがゆえに、装置本体をキャスター11c付きの基台11に搭載して、どこへでも自由に移動させることができる。このため、医薬品工場などにおいて、高薬理活性物質を取り扱う機器の傍に集塵装置100を設置して、発生した粉塵をその場で捕集することができる(図8)。
(4)混入拡散防止
 本実施形態による集塵・排気システム200では、高薬理活性物質の粉塵Qは、吸引フード32から集塵装置100(あるいはフィルタ装置35)までの間に封じ込められる。このため、作業者Wが作業中に粉塵Qのばく露を受けることを回避できるとともに、粉塵Qが他工程へ混入したり外部へ拡散したりするのを防止することができる。さらに、工場内に敷設された局所排気用ダクトなどに粉塵Qが入り込んで滞留することによる二次飛散も防止できる。
(5)メンテナンス性
 本実施形態による集塵装置100では、投入シュート2が内筒8の上部に着脱自在に装着され、外筒6が下ハウジング7に突起7aで着脱自在に支持され、内筒8が排出シュート9に突起9aで着脱自在に支持され、排出シュート9がホッパ10に突起10bで着脱自在に支持されている。また、上ハウジング3と中間ハウジング4とがへルール継手などで着脱自在に連結され、中間ハウジング4と下ハウジング7とがへルール継手などで着脱自在に連結されている。さらに、濾材として粒状濾材21を用いたことの利点を生かして、前述したようなボルトレス構造およびパッキンレス構造を実現している。
 ボルトレス構造によると、図15で説明したように、集塵装置100を分解する場合は、各部品を容易に分離することができ、集塵装置100を組み立てる場合は、各部品を容易に組み合わせることができる。これにより、集塵装置100は、簡単に分解して洗浄できるとともに、洗浄後も簡単に組み立てることができる。特に、本実施形態の集塵装置100は、ボルトレス構造と相俟って、内部構造が簡単で装置内部に複雑な構造物がないので(図4)、洗浄性に優れている。このことは、高薬理活性物質の二次飛散や次工程への混入などのリスクを回避することにつながる。また、装置内部に液体が溜まる箇所もないので、洗浄液の残留を防止することができる。加えて、部品点数が少なく、内部にパッキンなどの消耗品もないので、部品交換の頻度が少なくて済む。
 また、パッキンレス構造を採用したことで、従来のバグフィルタ式集塵装置におけるシールの不確実さの問題を解消することができる。具体的には以下の通りである。バグフィルタ式集塵装置では、ハウジングの外部に含塵気流が漏れるのを防止するため、ハウジングとフィルタとの間にパッキンが設けられる(たとえば、特許文献8のパッキン33参照)。このパッキンの経年劣化に基因して、ハウジングとフィルタとの間に微妙に隙間が生じ、含塵気流が漏れることがあるが、この隙間を確認することは容易ではない。また、交換直後のパッキンであっても、パッキンに粉体が噛んでいることに基因して、シール性が低下することもあるが、この確認もまた容易ではない。こうしたことから、バグフィルタ式集塵装置ではパッキンが必須部品であるがゆえに、シールが確実にできていることの保証がないという、シールの不確実さの問題が常に付き纏う。
 これに対し、本実施形態の集塵装置100では、粒状濾材21を内部に充填してしまえば、たとえば、蓋1と上ハウジング3と外筒6との間に、気流の漏れを防ぐためのパッキンは不要となる。仮に気流が漏れたとしても、粒状濾材21で濾過された気流は清浄であるため、問題は生じない。このようにして、本実施形態によれば、パッキンレス構造を採用したことで、消耗品の削減や洗浄の容易化だけにとどまらず、バグフィルタ式集塵装置の致命的欠点であったシールの不確実さの問題も解決することができる。なお、本実施形態において上述の箇所にパッキンを用いたと仮定して、パッキンの劣化等により隙間が生じたとしても、装置内部は負圧であり外部の空気を吸い込むだけなので、汚染の問題は生じない。
(6)洗浄評価
 本実施形態の集塵装置100は、上述したように内部構造がシンプルであり、洗浄しやすい部品単位に分解できるため、洗浄に対する評価がしやすいという利点がある。たとえばスワブ(拭き取り)検査の場合、ボルトや突起などの拭き取りにくい箇所がなく、すべての場所に手が届いて全体をくまなく拭き取ることができるため、洗浄評価を容易かつ正確に行うことができる。
(7)リスクアセスメントへの対応
 2016年6月1日に施行された改正労働安全衛生法では、特定の化学物質(640物質)の製造や取り扱いを行う全ての事業場に対して、リスクアセスメント(危険性・有害性の調査)が義務付けられており、その結果に基づいて必要な措置を講じることが求められている(同法第57条の3)。本実施形態の集塵装置100は、空気中の粉塵を捕集するだけでなく、有害物質を含む溶媒(蒸気)を濾過する機能も備えているため、粉塵と溶媒の両方について対策が必要な製造現場において1台で対応することができ、リスクアセスメントに対する具体的解決手段として有効なものとなる。
(8)地球環境への配慮
 本実施形態では、前述したように粒状濾材21を洗浄して再利用することで、リサイクルが可能な環境配慮型の集塵装置100を実現することができる。また、バグフィルタや消耗品である内部パッキンなどを用いないため、これらの廃棄物を極力なくして廃棄物処理に伴うエネルギーを低減でき、二酸化炭素の削減による地球温暖化防止に貢献することができる。
 本発明では、前述した実施形態以外にも、以下のような種々の実施形態を採用することができる。
 前述の実施形態では、濾材としてガラスビーズを用いたが、本発明で用いる濾材の材質や形状は、目的や用途に応じて任意に選定することができる。たとえば、ガラスビーズに代えて樹脂製のペレットを用いてもよい。このような樹脂ペレットは、ガラスに比べて安価なため、再利用せずに使い捨てとする場合に適しており、取り扱いが容易である。勿論、樹脂ペレットは、ガラスビーズと同じように洗浄・乾燥後に再利用してもよい。樹脂ペレットの材質に関して特に制限はないが、たとえば、ポリエチレン樹脂からなるペレット(PE樹脂ペレット)の充填物は、ガラスビーズの充填物と比較して、濾材としての性能が優れていることが、発明者らが行った性能試験により確認されている。
 前述の実施形態では、粒状濾材21を球体としたが、粒状濾材21の形状は球体に限らず、たとえば楕円体、多面体、円柱体、角柱体などであってもよい。また、粒状濾材21の大きさも、用途に応じて任意に選定することができる。さらに、本発明で用いる濾材は、粒状の濾材に限らず、定まった形状を有しない不定形状の濾材、たとえば金属や樹脂や繊維などをランダムな小片に裁断したチップ状の濾材や、鉱石の粉砕物からなる濾材などであってもよい。また、捕集性能をより向上させるために、濾材の流動性を損わない範囲で、粒状の濾材と不定形状の濾材とを混合し、当該混合物を濾材として用いてもよい。
 前述の実施形態では、粒状濾材21の素材にホウケイ酸ガラスを用いたが、これに代えて、アルカリガラスや石英ガラスを用いてもよく、ガラス以外に樹脂を用いてもよい。また、ガス吸着性を有する素材を用いる場合は、先に挙げたシリカゲルや活性炭以外に、たとえばゼオライト(沸石)などを用いることも可能である。また、ガラスや樹脂の表面に、ガス吸着性物質などをコーティングした濾材を用いてもよい。
 前述の実施形態では、吸込口1aがハウジング50の上方に開口しており、吐出口5aがハウジング50の側方に開口しており、上方の吸込口1aから導入された流体が、内筒8、粒状濾材21、外筒6をこの順序で通過して、側方の吐出口5aから吐出するようになっているが、本発明はこれに限定されない。たとえば、吸込口がハウジング50の側方に開口しており、吐出口がハウジング50の上方に開口しており、側方の吸込口から導入された流体が、外筒6、粒状濾材21、内筒8をこの順序で通過して、上方の吐出口から吐出する構成であってもよい。
 前述の実施形態では、粒状濾材21を投入する投入口1bが1つだけ設けられているが、投入口1bは、複数設けてもよい。また、前述の実施形態では、投入口1bが蓋1に設けられているが、たとえば上ハウジング3に投入口1bを設けてもよい。
 前述の実施形態では、外筒6と内筒8を、金属または樹脂の網で構成した例を挙げたが、網の替わりに、多数の孔が打ち抜かれた金属板や樹脂板を円筒状に加工したものを用いてもよい。また、多数の細いスリット(たとえば幅が1mm以下)が設けられた金属板や樹脂板を用いることも可能である。なお、外筒6と内筒8は、円筒形に限らず、角形の筒体であってもよい。ハウジング50についても同様である。
 前述の実施形態では、ハウジング50が、上ハウジング3と、中間ハウジング4と、下ハウジング7に3分割されているが、ハウジング50を、たとえば2分割や4分割などの構成としてもよい。また、中間ハウジング4と側蓋5とは一体化してもよい。
 前述の実施形態では、外筒6の溝6aを下ハウジング7の突起7aに嵌合したが、これとは逆に、外筒6に設けた突起を下ハウジング7に設けた溝に嵌合してもよい。同様に、前述の実施形態では、内筒8の溝8bを排出シュート9の突起9aに嵌合したが、これとは逆に、内筒8に設けた突起を排出シュート9に設けた溝に嵌合してもよい。さらに、前述の実施形態では、排出シュート9の突起9aをホッパ10の突起10bに係合させたが、これらの突起9a、10bの一方を溝としてもよい。
 前述の実施形態では、下ハウジング7とホッパ10とが別体で構成されているが、図16に示すように、下ハウジング7とホッパ10とを一体化してもよい。図16(a)は、図4(a)に対応する断面図であり、図16(b)は、図4(b)に対応する断面図である。
 前述の実施形態では、蓋1と上ハウジング3、上ハウジング3と中間ハウジング4、中間ハウジング4と下ハウジング7、および下ハウジング7とホッパ10のそれぞれを連結する手段として、ヘルール継手を例に挙げたが、ヘルール継手の替わりに、たとえばキャッチクリップ(スナップ錠)を用いてもよい。図17は、その一例を示している。図17では、上ハウジング3’および中間ハウジング4’の構造が、図3の上ハウジング3および中間ハウジング4の構造と若干異なっている。中間ハウジング4’の外周上部には、キャッチクリップ15が複数設けられている。上ハウジング3’の外周下部には、キャッチクリップ15が係止する係止部16が複数設けられている。さらに、本例では、環状部材17およびパッキン18が用いられる。環状部材17の内周面には、フランジ部17aが形成されている。パッキン18の外周面には、周方向に延びる溝18aが形成されている。パッキン18の溝18aを環状部材17のフランジ部17aに嵌め込むことで、パッキン18は環状部材17に支持される。
 パッキン18が嵌め込まれた環状部材17に、上ハウジング3’の下部と中間ハウジング4’の上部とをそれぞれ嵌合して、両ハウジング3’、4’間にパッキン18を介在させた状態で、キャッチクリップ15を係止部16に係止させる。これにより、上ハウジング3’と中間ハウジング4’とが連結されるとともに、パッキン18が両ハウジング3’、4’により弾性的に挟着されて、両ハウジング3’、4’の連結部がシールされる。上ハウジング3’と蓋(図示省略)との連結や、中間ハウジング4’と下ハウジング(図示省略)との連結などにおいても、同様の構造を採用することができる。このように、連結手段としてキャッチクリップ15を用いた場合は、ヘルール継手を用いた場合に比べて、安価かつ小型に構成することができ、また、操作が容易なため頻繁な分解作業にも適しているという利点がある。
 前述の実施形態では、第1バルブ51や第2バルブ52に用いるサニタリーバルブとして、ピンチバルブPVとスプリットバタフライバルブSVを例に挙げたが、これら以外のサニタリーバルブを用いてもよい。たとえば、単一の弁体を有するバタフライバルブなどを用いることも可能である。
 本発明の局所排気機能を備えた集塵装置およびそれを用いた集塵・排気システムは、高薬理活性物質を取り扱う医薬品工場のほか、高薬理活性物質を取り扱う農薬工場や、その他の化学物質を取り扱う化学製品工場など、ばく露対策が必要な場所において広く利用することができる。
  1  蓋
  1a 吸込口
  1b 投入口
  1c 確認窓
  2  投入シュート
  3  上ハウジング
  4  中間ハウジング
  5a 吐出口
  6  外筒
  7  下ハウジング
  7a 突起(第1支持部)
  8  内筒
  9  排出シュート
  9a 突起(第2支持部)
  10 ホッパ
  10a 排出口
  10b 突起(第3支持部)
  11 基台
  20 充填空間
  21 粒状濾材
  22 排出路
  31 吸引ダクト
  32 吸引フード
  34 局所排気用ダクト
  37 ファン
  48 ブース
  50 ハウジング
  51 第1バルブ
  52 第2バルブ
  53 供給ボックス
  54 回収ボックス
  100 集塵装置
  200 集塵・排気システム

Claims (18)

  1.  ハウジングと、
     前記ハウジングの内部に収容された濾材と、
     濾過対象の流体を前記ハウジングの内部へ導入する吸込口と、
     前記濾材と接触して濾過された流体を吐出する吐出口と、を備え、
     前記濾材が、多数の粒状または不定形状の濾材の充填物からなる、局所排気機能を備えた集塵装置において、
     前記ハウジングの内部に設けられ、前記流体が通過可能な外筒と、
     前記外筒の内側に配置され、前記流体が通過可能な内筒と、
     前記外筒と前記内筒との間に形成された充填空間に、前記濾材を上方から投入して充填するための投入口と、
     前記充填空間に充填された前記濾材を下方へ排出するための排出口と、をさらに備えたことを特徴とする集塵装置。
  2.  前記吸込口は、前記ハウジングの上方に開口しており、
     前記吐出口は、前記ハウジングの側方に開口しており、
     前記吸込口から導入された前記流体が、前記内筒と前記濾材と前記外筒をこの順序で通過して前記吐出口から吐出する、請求項1に記載の集塵装置。
  3.  前記内筒の上方に配置され、前記投入口から投入された前記濾材を前記充填空間へ案内する投入シュートと、
     前記内筒の下方に配置され、前記充填空間に充填されている前記濾材を前記排出口へ案内する排出シュートと、
     前記外筒の下方に配置され、前記充填空間に充填されている前記濾材を前記排出口へ案内するホッパと、をさらに備え、
     前記排出シュートと前記ホッパとの間に、前記充填空間と前記排出口とに連通する排出路が形成されている、請求項1または2に記載の集塵装置。
  4.  前記投入シュートは、前記内筒の上部に着脱自在に装着され、
     前記外筒は、前記ハウジングに設けられた第1支持部により、前記ハウジングに着脱自在に支持され、
     前記内筒は、前記排出シュートに設けられた第2支持部により、前記排出シュートに着脱自在に支持され、
     前記排出シュートは、前記ホッパに設けられた第3支持部により、前記ホッパに着脱自在に支持されている、請求項3に記載の集塵装置。
  5.  前記ハウジングは、上ハウジングと、下ハウジングと、これらの間に設けられる中間ハウジングとから構成され、
     前記上ハウジングと前記中間ハウジング、および前記下ハウジングと前記中間ハウジングとは、それぞれ着脱自在に連結されている、請求項1ないし4のいずれかに記載の集塵装置。
  6.  前記ハウジングは、上ハウジングと、下ハウジングと、これらの間に設けられる中間ハウジングとから構成され、
     前記下ハウジングに前記ホッパが一体に設けられている、請求項3または4に記載の集塵装置。
  7.  前記ハウジングの上部を閉塞する蓋をさらに備え、
     前記蓋に、前記吸込口と、前記投入口と、前記濾材の充填状態を確認するための確認窓とが設けられている、請求項1ないし6のいずれかに記載の集塵装置。
  8.  前記外筒および前記内筒は、金属または樹脂の網からなる、請求項1ないし7のいずれかに記載の集塵装置。
  9.  前記投入口の上方に、第1バルブを介して、前記濾材が収容された供給ボックスが設けられ、
     前記排出口の下方に、第2バルブを介して、前記濾材が回収される回収ボックスが設けられる、請求項1ないし8のいずれかに記載の集塵装置。
  10.  前記第1バルブおよび前記第2バルブのうち、少なくとも第2バルブは、排出される濾材と接触する箇所にポケット部が存在しないサニタリーバルブである、請求項9に記載の集塵装置。
  11.  前記ハウジングが搭載される移動自在な基台をさらに備えた、請求項1ないし10のいずれかに記載の集塵装置。
  12.  請求項1ないし11のいずれかに記載の集塵装置と、
     前記集塵装置の前記吸込口に一端が接続される吸引ダクトと、
     前記吸引ダクトの他端に接続される吸引フードと、
     前記吸引フードから吸引され前記集塵装置で除塵された流体を排気する排気手段と、
    を備えたことを特徴とする集塵・排気システム。
  13.  請求項1ないし11のいずれかに記載の集塵装置と、
     前記集塵装置の前記吐出口から吐出される流体中に残存している粉塵を除去するためのフィルタ装置と、
    を備えたことを特徴とする集塵・排気システム。
  14.  前記フィルタ装置を通過した流体を排気する排気手段をさらに備えた、請求項13に記載の集塵・排気システム。
  15.  前記排気手段は、既設の局所排気用ダクトを含み、前記集塵装置で除塵された流体を、前記局所排気用ダクトを通して排気する、請求項12または14に記載の集塵・排気システム。
  16.  前記排気手段は、ファンを含み、前記集塵装置で除塵された流体を、前記ファンを通して排気する、請求項12または14に記載の集塵・排気システム。
  17.  前記集塵装置の運転を停止する前に、前記吸引フードの吸引力を低下させ、その後に前記集塵装置の運転を停止する、請求項12ないし16のいずれかに記載の集塵・排気システム。
  18.  前記集塵装置が内部または外部に設置されるブースをさらに備え、
     前記吸引フードから前記ブース内の空気を吸引することにより、前記ブースの内部空間を外部より気圧の低い陰圧状態にする、請求項12ないし17のいずれかに記載の集塵・排気システム。
PCT/JP2018/022510 2017-06-20 2018-06-13 局所排気機能を備えた集塵装置、およびそれを用いた集塵・排気システム WO2018235686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18820708.8A EP3643389B1 (en) 2017-06-20 2018-06-13 Dust collection device with local exhaust ventilation function, and dust collection and exhaust ventilation system using same
JP2019525473A JP7197083B2 (ja) 2017-06-20 2018-06-13 局所排気用の集塵装置、およびそれを用いた集塵・排気システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017120131 2017-06-20
JP2017-120131 2017-06-20

Publications (1)

Publication Number Publication Date
WO2018235686A1 true WO2018235686A1 (ja) 2018-12-27

Family

ID=64735960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022510 WO2018235686A1 (ja) 2017-06-20 2018-06-13 局所排気機能を備えた集塵装置、およびそれを用いた集塵・排気システム

Country Status (3)

Country Link
EP (1) EP3643389B1 (ja)
JP (1) JP7197083B2 (ja)
WO (1) WO2018235686A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110141908A (zh) * 2019-05-28 2019-08-20 湖州吴兴翼猫科技发展有限公司 空气净化无风机径流式电除尘装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164473A (en) * 1974-10-21 1976-06-03 Barukan Shinshinatei Inc Kitairyuno kyuchakuseiseiyosochi
JPS5227867Y2 (ja) * 1974-11-18 1977-06-24
JPS5530586Y2 (ja) * 1974-11-12 1980-07-21
US5165900A (en) * 1989-05-05 1992-11-24 Ufi, Inc. Moving bed gas/solids contact apparatus
JPH09220434A (ja) 1996-02-16 1997-08-26 Ishikawajima Harima Heavy Ind Co Ltd 脱硫と脱塵の両方を行う乾式脱硫装置
JPH09239221A (ja) 1996-03-05 1997-09-16 Hiroshi Seto 移動層粒状集塵装置
JPH1170307A (ja) * 1997-06-16 1999-03-16 Anlet Co Ltd 集塵装置
JP2001025644A (ja) 1999-07-15 2001-01-30 Mitsubishi Heavy Ind Ltd 排ガス処理装置の触媒充填層
JP2001129338A (ja) 1999-11-02 2001-05-15 Nkk Corp 排ガスの集塵装置
JP2001259329A (ja) 2000-03-21 2001-09-25 Kunio Kato 流動層を用いた集塵方法
JP2005046738A (ja) 2003-07-29 2005-02-24 Toray Ind Inc 粒状濾材の濾過機能再生可能な濾過装置および方法
JP2009202069A (ja) * 2008-02-27 2009-09-10 Shin Nippon Air Technol Co Ltd 局所空間の空気清浄化装置
JP2013094691A (ja) 2011-10-28 2013-05-20 Horkos Corp 集塵機用フィルタ装置、集塵機、フィルタ交換方法
JP2014050821A (ja) 2012-09-10 2014-03-20 Amano Corp 粉粒体回収機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH382528A (de) * 1959-03-20 1964-09-30 Licencia Talalmanyokat Verfahren und Einrichtung zum Ausfiltern des dispersen Anteils aus gasförmigen Medien
NL286973A (ja) * 1961-12-27
GB1597332A (en) * 1977-05-26 1981-09-03 Weiss V Filtering apparatus and methods of exchanging particulate filter materials
WO2005000745A2 (en) * 2003-06-13 2005-01-06 Martin John D Fluid treatment and media management device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164473A (en) * 1974-10-21 1976-06-03 Barukan Shinshinatei Inc Kitairyuno kyuchakuseiseiyosochi
JPS5530586Y2 (ja) * 1974-11-12 1980-07-21
JPS5227867Y2 (ja) * 1974-11-18 1977-06-24
US5165900A (en) * 1989-05-05 1992-11-24 Ufi, Inc. Moving bed gas/solids contact apparatus
JPH09220434A (ja) 1996-02-16 1997-08-26 Ishikawajima Harima Heavy Ind Co Ltd 脱硫と脱塵の両方を行う乾式脱硫装置
JPH09239221A (ja) 1996-03-05 1997-09-16 Hiroshi Seto 移動層粒状集塵装置
JPH1170307A (ja) * 1997-06-16 1999-03-16 Anlet Co Ltd 集塵装置
JP2001025644A (ja) 1999-07-15 2001-01-30 Mitsubishi Heavy Ind Ltd 排ガス処理装置の触媒充填層
JP2001129338A (ja) 1999-11-02 2001-05-15 Nkk Corp 排ガスの集塵装置
JP2001259329A (ja) 2000-03-21 2001-09-25 Kunio Kato 流動層を用いた集塵方法
JP2005046738A (ja) 2003-07-29 2005-02-24 Toray Ind Inc 粒状濾材の濾過機能再生可能な濾過装置および方法
JP2009202069A (ja) * 2008-02-27 2009-09-10 Shin Nippon Air Technol Co Ltd 局所空間の空気清浄化装置
JP2013094691A (ja) 2011-10-28 2013-05-20 Horkos Corp 集塵機用フィルタ装置、集塵機、フィルタ交換方法
JP2014050821A (ja) 2012-09-10 2014-03-20 Amano Corp 粉粒体回収機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Particle Deposition Characteristics in Annulus Granular Filter Beds", MURORAN INSTITUTE OF TECHNOLOGY JOURNAL, November 2003 (2003-11-01), pages 7 - 13, Retrieved from the Internet <URL:http://hdl.handle.net/10258/79>
See also references of EP3643389A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110141908A (zh) * 2019-05-28 2019-08-20 湖州吴兴翼猫科技发展有限公司 空气净化无风机径流式电除尘装置
CN110141908B (zh) * 2019-05-28 2021-06-15 广州市百成空调设备有限公司 空气净化无风机径流式电除尘装置

Also Published As

Publication number Publication date
EP3643389A4 (en) 2021-02-17
JPWO2018235686A1 (ja) 2020-04-30
JP7197083B2 (ja) 2022-12-27
EP3643389B1 (en) 2024-03-27
EP3643389A1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
WO2017152340A1 (zh) 一种制药及化工行业废气净化装置
CN103170484B (zh) 一种清除烟囱内部污染物的装置及方法
KR101525774B1 (ko) 도료의 분진제거장치
CN102350147A (zh) 一种一体化的吸附除尘装置
JP6397232B2 (ja) 有害物質含有塗装材除去システム
JP2014035286A (ja) 放射性ガス除去装置
JP7197083B2 (ja) 局所排気用の集塵装置、およびそれを用いた集塵・排気システム
KR200468627Y1 (ko) 다양한 기능성의 가스상 유해물질을 제거하는 장치
CN106693544A (zh) 一种用于喷涂房的过滤装置
JP5689255B2 (ja) 空気清浄用フィルタユニット及びアイソレーター装置
CN206519006U (zh) 焚烧炉烟气处理系统
KR20150076478A (ko) 집진기
JP2001174586A (ja) 放射性ダストの捕集方法および捕集装置
JP2014004186A (ja) 脱臭装置および該脱臭装置に使用する集塵ユニット
KR200486472Y1 (ko) 방사성 콘크리트 처리장치
CN211635824U (zh) 垃圾分拣用除臭装置
CN209771693U (zh) 一种铸造用高效湿式除尘器
KR102165847B1 (ko) 수직 방향 또는 수평 방향으로 배열 전환가능한 배기 정화 장치 및 IoT 기반 배기 정화 시스템
KR101404201B1 (ko) 도료 흡착을 방지하는 도료 분진 제거 장치
CN208742222U (zh) 一种颗粒活性炭空气净化装置
JP6001285B2 (ja) 空気浄化装置
CN202860360U (zh) 环保粉尘气体除污器
Lehmann et al. Safe Change Filter Systems for Containments in the Pharmaceutical Industry
CN205137715U (zh) 一种移动式等离子空气净化装置
KR102638313B1 (ko) 필터유닛 및 이를 포함하는 공기정화장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018820708

Country of ref document: EP

Effective date: 20200120