WO2018235335A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2018235335A1
WO2018235335A1 PCT/JP2018/005997 JP2018005997W WO2018235335A1 WO 2018235335 A1 WO2018235335 A1 WO 2018235335A1 JP 2018005997 W JP2018005997 W JP 2018005997W WO 2018235335 A1 WO2018235335 A1 WO 2018235335A1
Authority
WO
WIPO (PCT)
Prior art keywords
sipe
tire
land portion
tread
intermediate land
Prior art date
Application number
PCT/JP2018/005997
Other languages
English (en)
French (fr)
Inventor
恒 谷口
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201880040356.4A priority Critical patent/CN110785295B/zh
Priority to EP18821188.2A priority patent/EP3643526B1/en
Publication of WO2018235335A1 publication Critical patent/WO2018235335A1/ja
Priority to US16/718,814 priority patent/US20200122517A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0083Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C11/1281Width of the sipe different within the same sipe, i.e. enlarged width portion at sipe bottom or along its length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/125Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern arranged at the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C2011/1286Width of the sipe being different from sipe to sipe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a tire.
  • This application claims the priority of Japanese Patent Application No. 2017-120006 filed in Japan on June 19, 2017, the entire contents of which are incorporated herein by reference.
  • the middle rib does not have a lug groove, and includes an outer middle sipe extending inward in the tire axial direction from the shoulder main groove and a middle sipe extending inward in the tire axial direction from the crown main groove.
  • the middle rib of the tread is provided with an inner middle sipe extending inward in the tire axial direction from the shoulder main groove and an outer middle sipe extending outward in the tire axial direction from the crown main groove.
  • the desired performance is not sufficiently exhibited especially at high speed turning.
  • the objective of this invention is providing the tire which improved the turning performance at the time of high speed driving
  • the gist of the present invention is as follows.
  • a tire having a plurality of land portions defined by a plurality of circumferential grooves extending along the circumferential direction of the tire and a tread end on a tread surface of the tire,
  • the first intermediate land portion on the vehicle mounting outer side has a sipe extending in the tire width direction,
  • the sipe communicates with the circumferential groove adjacent to the vehicle mounting outer side of the first intermediate land portion, and the first sipe terminates in the first intermediate land portion, and the vehicle mounting inner side of the first intermediate land portion
  • a second sipe in communication with the adjacent circumferential groove and terminating in the first intermediate land portion,
  • the first sipes and the second sipes alternately exist in the tire circumferential direction,
  • a tire wherein a sipe width of the first sipe is larger than a sipe width of the second sipe.
  • “tread tread surface” refers to a tire that is assembled to a rim and loaded with a predetermined internal pressure while applying a maximum load (hereinafter referred to as “maximum load condition”). When moving, it refers to the outer circumferential surface of the tire that will contact the road surface, and the “tread end” refers to the end of the tread surface in the tire width direction. Further, in the present specification, the “reference state” refers to a state in which the tire is assembled to the rim, filled with a predetermined internal pressure, and unloaded.
  • rim is an industrial standard effective for the area where tires are produced and used, and in Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, in Europe ETRTO (The European Tire and Rim Technical Organization standard STANDARDS MANUAL, in the United States TRA (The Tire and Rim Association, Inc.) YEAR BOOK etc., or will be described in the future, standard rims in application sizes (Measuring Rim in STANDARDS MANUAL in ETRTO, In the TRA's YEAR BOOK, it refers to Design Rim) (ie, the "rim” above includes in addition to the current size a size that may be included in the above industry standard in the future.
  • the sizes described as “FUTURE DEVELOPMENTS” in the STANDARDS MANUAL 2013 edition of ETRTO can be mentioned, but in the case of a size not described in the above-mentioned industry standard, it corresponds to the bead width of the tire.
  • width I say the rim of the.
  • predetermined internal pressure refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in application size and ply rating described in the above-mentioned JATMA YEAR BOOK etc.
  • the air pressure (maximum air pressure) corresponding to the maximum load capacity specified for each vehicle on which the tire is mounted.
  • air here can also be substituted by inert gas other than nitrogen gas etc., and others.
  • maximum load load shall mean the load corresponding to the above-mentioned maximum load capacity.
  • “sipe” does not always open like a normal groove, but has a width (sipe width) such that at least a portion of the tire is closed when the tire is rolled under the maximum load condition. Is a narrow groove of 0.5 mm or less.
  • the "sipe width” is measured perpendicular to the extending direction of the sipe in the tread surface view (hereinafter, also simply referred to as "extending direction") (ie, a cross section perpendicular to the extending direction of the sipe ) Refers to the shortest distance between opposing sipe wall surfaces, and when the shortest distance changes in the extension direction of the sipe, it refers to the maximum value.
  • the “vehicle-mounted inner side” refers to a side on the vehicle side in the tire width direction when mounted on a vehicle in a tire whose mounting direction to the vehicle is specified
  • “vehicle-mounted outer side” In the tire width direction indicates the side opposite to the inside of the vehicle installation.
  • an angle of the sipe with respect to the circumferential direction of the tire refers to an acute angle formed by the sipe and an imaginary line extending along the circumferential direction of the tire in the tread tread view.
  • the dimensions and the like of each element such as sipe are in the reference state (the dimensions and the like of each element in the tread surface view are on the developed view of the tread surface in the reference state) unless otherwise noted. It shall be measured.
  • FIG. 1 is a partially developed view showing a tread surface of a tire according to an embodiment of the present invention. It is a principal part enlarged view of FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2;
  • FIG. 3 is a cross-sectional view taken along the line BB of FIG. 2;
  • a sidewall portion extending outward in the tire radial direction from a pair of bead portions and a tread portion extending between both sidewall portions are connected, and from one bead portion
  • It comprises a conventional tire structure comprising a carcass consisting of a ply of organic fiber cords or steel cords extending through the tread and over the other bead part and a belt consisting of a steel cord layer arranged between the carcass and the tread rubber It can be applied to pneumatic tires.
  • FIG. 1 is a partially developed view showing a tread of a tire according to an embodiment of the present invention
  • FIG. 2 shows an enlarged view of a main part thereof.
  • the tire according to the present embodiment has a plurality of (four in the present embodiment) circumferential grooves 2a extending along the tire circumferential direction (that is, at an angle of 0 ° with respect to the tire circumferential direction) on the tread surface 1
  • a plurality of (five in the present embodiment) land portions 3a to 3d partitioned by 2d and a tread end TE are provided. More specifically, as shown in FIG.
  • the tread treads 1 have four circumferential grooves 2 a, 2 b, 2 c, 2 d having equal widths in the illustrated example, and a tread end TE First land portion 3a, first middle land portion 3b, second middle land portion 3c, and third middle land, in this order from the five land portions, that is, the vehicle mounting outer side (the left side in FIG. 1). It is divided into a part 3d and a second shoulder land part 3e.
  • the widths of the first middle land portion 3b, the second middle land portion 3c, and the third middle land portion 3d are equal to one another.
  • the tire according to the present embodiment is a tire in which the mounting direction to the vehicle is determined and the mounting direction to the vehicle is designated.
  • the tire of this embodiment is a pneumatic radial tire for passenger cars, it is also possible to apply this invention to tires for trucks and buses other than for passenger cars, for example.
  • the first shoulder land portion 3a divided by the tread end TE on the vehicle mounting outer side and the circumferential groove 2a on the outermost side of the vehicle mounting is a rib-like land portion continuously extending in the tire circumferential direction.
  • the first shoulder land portion 3a has a groove Lo extending in the tire width direction.
  • the tire width direction inner end of the groove Lo does not communicate with the circumferential groove 2a and terminates in the first shoulder land portion 3a.
  • the tire width direction outer end of the groove Lo is beyond the tread end TE and terminates in the land portion outside the tire width direction with respect to the tread end TE.
  • the groove Lo communicates with a groove extending in the tire circumferential direction at an outer end in the tire width direction, and has a substantially L-shaped groove as a whole.
  • the first intermediate land portion 3b on the vehicle mounting outer side is a first sipe So extending in the tire width direction and It has a second sipe Si.
  • the first sipe So communicates with the circumferential groove 2a adjacent to the vehicle mounting outer side of the first intermediate land portion 3b and terminates in the first intermediate land portion 3b.
  • the second sipe Si communicates with the circumferential groove 2b adjacent to the inside of the first intermediate land portion 3b on which the vehicle is mounted, and terminates in the first intermediate land portion 3b.
  • the first sipes So and the second sipes Si are alternately present (staggeredly) in the tire circumferential direction. That is, in the first intermediate land portion 3b, an adjacent second sipe Si is disposed at a position separated to one side in the tire circumferential direction on the inner side of the vehicle mounting with respect to one first sipe So positioned on the vehicle mounting outer side An array is formed continuously in the circumferential direction of the tire such that the other first sipes So adjacent to the second sipes Si are disposed at positions separated on one side in the tire circumferential direction on the vehicle mounting outer side. ing.
  • the sipe width wo (see FIG. 3) of the first sipe So is made larger (wo> wi) than the sipe width wi (see FIG. 3) of the second sipe Si.
  • the first intermediate land portion 3b includes the first sipe So and the second sipe Si that communicate with the adjacent circumferential groove and terminate in the land portion,
  • the sipes So and the second sipes Si alternately exist in the tire circumferential direction, and the sipes width wo of the first sipes So are made larger than the sipes width wi of the second sipes Si.
  • the land portion of the first middle land portion 3b has a large sipe width at the vehicle mounting outer side of the first middle land portion 3b to which a large load is applied at the time of high speed turning.
  • the compression rigidity of the first intermediate land portion 3b can be lowered to suppress the occurrence of slippage by being able to expand into one sipe So.
  • the second sipes Si are arranged in a staggered manner with respect to the first sipes So in order to avoid the occurrence of an extreme rigidity step in the tire circumferential direction on the land portions.
  • the land portion of the first intermediate land portion 3b is deformed in the direction in which the second sipe Si is expanded.
  • the sipe width wi of the second sipe Si is smaller than the sipe width wo of the first sipe So, in the vehicle mounting inside of the first intermediate land portion 3b due to the widening deformation of the second sipe Si. It is possible to suppress a decrease in shear rigidity. As described above, according to the tire of the present embodiment, the shear rigidity can be maintained while lowering the compression rigidity of the first intermediate land portion to which a large load is applied at the time of high speed turning, and thus the turning performance at high speed traveling is improved. be able to.
  • the groove walls do not contact with each other with respect to shear deformation ( Because they do not support each other, shear rigidity is reduced, and high-speed turning performance is impaired. Furthermore, a configuration in which at least one of the first sipes So and the second sipes Si communicates with both ends in the extending direction to the circumferential groove adjacent to each other, or a configuration in which both ends in the extending direction terminate in the land portion In the case of the above, the shear rigidity is reduced or the compression rigidity is increased, which also impairs the high speed turning performance.
  • the ratio (Wo / Wb) of the extended length Wo (see FIG. 1) is preferably 0.25 to 0.35, and more preferably 0.30 to 0.35. With such a configuration, it is possible to further suppress the reduction in shear rigidity while sufficiently reducing the compression rigidity.
  • the sipe width wo (see FIG. 3) of the first sipe So is preferably 0.2 mm to 0.8 mm, and more preferably 0.3 mm to 0.45 mm. With such a configuration, it is possible to further suppress the reduction in shear rigidity while sufficiently reducing the compression rigidity.
  • the ratio (Wi / Wb) of the tire width direction length Wi (see FIG. 1) of the second sipe Si to the tire width direction length Wb of the first intermediate land portion 3b should be 0.25 to 0.35. Is preferable, and 0.30 to 0.35 is more preferable. With such a configuration, it is possible to further suppress the reduction in shear rigidity while sufficiently reducing the compression rigidity.
  • the sipe width wi (see FIG. 3) of the second sipe Si is preferably 0.2 mm to 0.8 mm, and more preferably 0.25 mm to 0.35 mm. With such a configuration, it is possible to further suppress the reduction in shear rigidity while sufficiently reducing the compression rigidity.
  • the angle of the first sipes So with respect to the tire circumferential direction is larger than the angle of the second sipes Si with respect to the tire circumferential direction.
  • the angle of the first sipe So with respect to the tire circumferential direction is preferably larger than the angle of the second sipe Si with respect to the tire circumferential direction, but the angle of the first sipe So is the second sipe Si.
  • the angle may be the same as the angle, and the angle of the first sipe So may be smaller than the angle of the second sipe Si.
  • the angle of the first sipes So with respect to the tire circumferential direction is preferably 60 ° to 80 °, and more preferably 65 ° to 70 °. With such a configuration, it is possible to further suppress the reduction in shear rigidity while sufficiently reducing the compression rigidity.
  • the angle with respect to the tire circumferential direction of the second sipes Si is preferably 50 ° to 70 °, and more preferably 55 ° to 65 °. With such a configuration, it is possible to further suppress the reduction in shear rigidity while sufficiently reducing the compression rigidity.
  • the first sipes So and the second sipes Si have bends in the cross section perpendicular to their extending direction.
  • the first sipe So and the second sipe Si each having a bending portion can further suppress a decrease in shear rigidity of the first intermediate land portion 3b, and by having the bending portion, in a plane parallel to the tread surface. Since the distance between the sipe wall surfaces can be increased, compressive deformation of the land portion of the first intermediate land portion 3b sandwiching the first sipe So can be made easier, and therefore, the turning performance at high speed traveling can be improved. It can be raised more.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2 and shows the cross-sectional shape of the first sipe So (and the first chamfered portion To described later).
  • reference symbols in parentheses in FIG. 3 “(Si)”, “(wi ) And "(Ti)” are inserted.
  • the sipes width wo of the first sipes So and the sipes width wi of the second sipes Si are not equal (wo> wi).
  • the description of the tread surface 1 is omitted.
  • the first sipe So includes a vertical portion V and an amplitude portion K connected to the sipe bottom side of the vertical portion V.
  • the vertical portion V and the amplitude portion K are formed by both sipe wall surfaces facing each other across the center line C in the cross section of FIG. 3 of the sipe width wo of the first sipe So. More specifically, the vertical portion V is linear along the normal direction of the tread surface 1 (the Z direction shown in FIG. 3) from the opening end on the tread surface 1 side of the first sipe So toward the sipe bottom side. It consists only of the 1st perpendicular part V1 currently formed.
  • the amplitude portion K continues to the sipe bottom side of the first vertical portion V1 in order and is formed to be inclined with respect to the normal direction of the tread surface 1, a first inclined portion K1, a second inclined portion K2, It consists of a third inclined portion K3 and a fourth inclined portion K4.
  • the first inclined portion K1 is a portion inclined from the first vertical portion V1 to one side with respect to the normal direction of the tread surface 1 via the first bent portion Q1 (in FIG. And formed as an inclined portion).
  • the second inclined portion K2 is a portion inclined from the first inclined portion K1 to the other side opposite to the one side with respect to the normal direction of the tread surface 1 via the second bending portion Q2 ( In FIG.
  • the third inclined portion K3 is a portion inclined to the one side with respect to the normal direction of the tread surface 1 from the second inclined portion K2 through the third bending portion Q3 (in FIG. It is formed as a portion inclined downward).
  • the fourth inclined portion K4 is a portion inclined from the third inclined portion K3 to the other side with respect to the normal direction of the tread surface 1 via the fourth bending portion Q4 (in FIG. 3, the lower left side in the drawing) Is formed as an inclined portion).
  • the distance between the second bent portion Q2 and the third bent portion Q3 in the normal direction of the tread surface 1 is the same as the normal direction of the tread portion 1 between the third bent portion Q3 and the fourth bent portion Q4. It is equal to the distance.
  • the ratio (P / D) of the distance P in the normal direction of the tread surface 1 of the second bending portion Q2 and the fourth bending portion Q4 to the amplitude D (see FIG. 3) of the amplitude portion K is 1.5 It is preferably -2.5.
  • bent portions Q1 to Q4 are formed in the first sipe So, but the bent portions may be one to three or five or more (for example, five).
  • the number of bent portions is preferably 3 to 5, and particularly 4 as in the present example.
  • the bent portions Q1 to Q4 are formed to be curved respectively, but at least one of them may be formed to be angular.
  • the first sipe So does not have a bending portion as described above, and extends from the sipe opening to the sipe bottom, along or normal to the normal direction of the tread surface 1, It may be formed in a straight line.
  • the cross-sectional shape of the first sipe So in the present embodiment and the operation effect thereby have the sipe width wo of the first sipe So larger than the sipe width w i of the second sipe Si.
  • the cross-sectional shape of the first sipes So and the cross-sectional shape of the second sipes Si may be different.
  • a first chamfered portion To which is wider than the first sipe So is provided between the open end of the first sipe so on the tread surface 1 side and the tread surface 1. It is done. Further, the width of the first chamfered portion To in the tread surface 1 of the first chamfered portion To is larger at the vehicle mounting outer side than at the vehicle mounting inner side (see FIGS. 1 and 2). That is, in the tread surface view, the distance between the tire circumferential direction edge of the first chamfered portion To is measured along the tire circumferential direction is the inner side of the first chamfered portion To of the vehicle (in FIGS.
  • the first sipe So may be directly opened to the tread surface 1 without providing the first chamfered portion To, and the width of the first chamfered portion To at the tread surface 1 is the vehicle mounting on the vehicle mounting outer side It does not have to be larger than the inside.
  • the extension direction terminal end Toe in the tread surface 1 of the first chamfered portion To is angular in a tread surface view (see FIGS. 1 and 2)
  • the extension direction terminal end Toe is a tread It may consist of a circular arc (more specifically, a part of a circular arc) by tread surface view.
  • the second chamfered portion Ti which is wider than the second sipe Si is also between the tread foot 1 and the opening end on the tread tread 1 side of the second sipe Si. It is provided.
  • the extension direction termination part Tie in the tread surface 1 of the said 2nd chamfering part Ti consists of circular arcs (more specifically, a part of circular arcs) by tread surface view.
  • the first intermediate land portion 3b is deformed in the direction to open the second sipe Si during high speed turning, stress in the compression direction is locally concentrated at the end portion Tie in the extension direction of the second chamfered portion Ti, and the extension direction
  • the second sipe Si may be directly opened to the tread surface 1 without providing the second chamfered portion Ti
  • the extension direction end portion Tie in the tread surface 1 of the second chamfered portion Ti may be a tread It may be square in a tread view.
  • the width (tire circumferential width) in the tread surface 1 of the second chamfered portion Ti is substantially constant from the inside of the vehicle installation to the outside of the vehicle installation (see FIGS. 1 and 2). May not be constant.
  • the radius of curvature of the arc is preferably 0.5 mm to 1.5 mm.
  • FIG. 4 shows a cross-sectional view taken along the line BB in FIG.
  • the first intermediate land portion 3 b is formed in a convex shape in which the outer contour in the tire width direction cross section is convex toward the outer side in the tire radial direction.
  • the outer contour is a curvature of the first arc A1 (shown in FIG. 4 in a straight line for simplification) located at the center of the first intermediate land portion 3b in the tire width direction and a curvature more than the first arc A1.
  • Including a second arc A2 shown in FIG.
  • a tire circumferential area RA1 (see FIG. 4) corresponding to the first arc A1 in the first intermediate land portion 3b is an area R continuous in the tire circumferential direction in which the first sipes So and the second sipes Si do not exist.
  • first sipes So and the second sipes Si are provided between the first sipes So and the second sipes Si and the tread surface 1, respectively, as described above.
  • the “first sipes So” and the “second sipes Si” of the “region R continuous in the tire circumferential direction where the first sipes So and the second sipes Si do not exist” have a first chamfered portion To and a second chamfered portion Ti.
  • the region R is a region which is continuous in the tire circumferential direction without the first sipe So, the first chamfered portion To, the second sipe Si and the second chamfered portion Ti (see FIG. 2).
  • the region RA1 has the region R means that the region RA1 includes the entire region R (RA1 ⁇ R), including the coincidence.
  • the radius of curvature of the first arc A1 is preferably 800 mm to 1200 mm, and the radius of curvature of the second arc A2 is preferably 400 mm to 600 mm.
  • the ratio (Wr / Wb) of the tire width direction length Wr of the region R to the tire width direction length Wb of the first intermediate land portion 3b is preferably 0.1 to 0.3.
  • the center in the tire width direction of the region R and the center in the tire width direction of the region RA1 coincide with the center in the tire width direction of the first intermediate land portion 3b. More specifically, in the tire width direction cross section shown in FIG. 4, the outer contour of the first intermediate land portion 3b has a symmetrical shape with respect to the tire width direction center line (not shown) of the first intermediate land portion 3b. It is done.
  • the first arc A1 and the second arc A2 drawn in a straight line for convenience in the drawing are continuous through the angular border portion, but in the present embodiment, in fact, in the present embodiment, The first arc A1 and the second arc A2 are smoothly continuous. It is preferable that the first arc A1 and the second arc A2 be smoothly continuous.
  • the distance h between the virtual straight line connecting the vehicle mounting outer side end X and the vehicle mounting inner side end Y of the first intermediate land portion 3b and the maximum diameter position of the region R, and the circumferential groove 2a is preferably 0.1 to 0.2.
  • the outer contour of the first intermediate land portion 3b in the tire width direction cross-section preferably comprises two arcs different in radius of curvature as in this embodiment, but three or more arcs different in radius of curvature from each other It may be composed of However, the outer contour may consist of only one arc of a single radius of curvature, for example.
  • the second intermediate land portion 3 c divided by the circumferential groove 2 b and the circumferential groove 2 c is a rib-like land portion continuously extending in the tire circumferential direction.
  • the center in the tire width direction of the second intermediate land portion 3c is located on the tire equatorial plane CL, and extends in the tire circumferential direction on the tire equatorial plane CL.
  • the second intermediate land portion 3c has a shallow groove Lc extending in the tire width direction.
  • the shallow groove Lc communicates with the circumferential groove 2c adjacent to the inside of the second intermediate land portion 3c on which the vehicle is mounted, and terminates in the second intermediate land portion 3c.
  • the depth of the shallow groove Lc is smaller than that of the circumferential grooves 2a to 2d and the first sipes So and the second sipes Si.
  • the third intermediate land portion 3d partitioned by the circumferential groove 2c and the innermost circumferential groove 2d mounted on the vehicle is divided in the tire circumferential direction by the shallow groove Ld. It is considered to be a block-like land area.
  • the third intermediate land portion 3d has the shallow groove Ld extending in the tire width direction.
  • the shallow groove Ld communicates with the circumferential grooves 2c and 2d adjacent to the third intermediate land portion 3d.
  • the depth of the shallow groove Ld is smaller than that of the circumferential grooves 2a to 2d and the first sipes So and the second sipes Si.
  • the shallow groove Ld has a sipe Sm at the groove bottom.
  • the sipe Sm communicates with the circumferential groove 2d, and terminates in the third intermediate land portion 3d in the tread surface view.
  • the ratio (Wm / Wd) of the tire width direction length Wm (see FIG. 1) of the sipe Sm to the tire width direction length Wd of the third intermediate land portion 3d is preferably 0.25 to 0.4 .
  • the depths of the shallow grooves Lc and Ld are preferably 0.3 mm to 0.6 mm. With such a configuration, it is possible to more sufficiently suppress the reduction in shear rigidity while lowering the compressive rigidity of the second intermediate land portion 3c and the third intermediate land portion 3d at the time of high speed traveling.
  • the second shoulder land portion 3 e divided by the inner circumferential groove 2 d on the inner side of the vehicle and the tread end TE on the inner side of the vehicle is continuous in the tire circumferential direction. It is considered to be an extending rib-like land.
  • the second shoulder land 3e has a groove Li1 extending in the tire width direction.
  • the tire width direction inner end of the groove Li1 does not communicate with the circumferential groove 2d and terminates in the second shoulder land portion 3e.
  • the tire width direction outer end of the groove Li1 extends beyond the tread end TE and terminates in a land portion continuous to the outside of the tread end TE of the second shoulder land portion 3e.
  • a groove Li2 extending in the tire width direction is formed.
  • the tire width direction inner end of the groove Li2 does not reach the tread end TE.
  • a sipe extending in the tire width direction that does not reach the tread end TE is continuously formed at the tire width direction inner end of the groove Li2.
  • a tire of size 205 / 55R16 basically conforming to the tread pattern shown in FIG. 1 was produced under each specification shown in Table 1 respectively.
  • the depth of the circumferential groove 2a and the circumferential groove 2d is 7.2 mm
  • the depth of the circumferential groove 2b and the circumferential groove 2c is 7.5 mm
  • the shallow groove Lc and the shallow groove Ld The depth of the first sipes So, the second sipes Si and the sipes Sm is 5.6 mm.
  • the width of the first sipes So is 0.4 mm
  • the widths of the second sipes Si and the sipes Sm are 0.3 mm.
  • the widths (tire circumferential width) of the first chamfered portion To and the second chamfered portion Ti are respectively set to 3.5 mm at the maximum.
  • the first and second sipes alternately exist means that the first sipes So and the second sipes Si alternately exist in the tire circumferential direction
  • the width of the first chamfered portion Means that the width of the first chamfered portion To at the tread surface of the first chamfered portion To is larger at the vehicle mounting outer side than at the vehicle mounting inner side
  • the end of the second chamfered portion is a circular arc means It means that the extension direction end part in the tread surface of 2 chamfering part Ti consists of circular arcs in a tread surface view.
  • “(circle)” means having provided said structure
  • "x" means not providing said structure.
  • outside sipe angle is the angle of the first sipe So with respect to the tire circumferential direction
  • inside sipe angle is the angle of the second sipe Si with respect to the tire circumferential direction.
  • number of bent portions is the number of bent portions in the cross section (the cross section shown in FIG. 3) of each of the first sipes So and the second sipes Si
  • no means the first sipes. It means that So and the second sipe Si do not have the bend.
  • Each prototype tire is assembled on a rim (size: 8J-18), filled with internal pressure 240 kPa, and then assembled on a rear wheel drive vehicle with a displacement of 2000 cc, with 1 driver and 1 passenger on board
  • Turning performance and drainage performance were evaluated by traveling at high speed on a test course (dry road surface and wet road surface). More specifically, it is as follows.
  • [Swing performance evaluation] With respect to each of the above-mentioned test tires, the turning performance when traveling on a dry road surface was evaluated by the function of the driver. The results are shown in Table 1 as relative values when the evaluation result of the tire of Comparative Example 1 is 100. The larger the value, the better the turning performance.
  • the tire according to the present invention can be used for various tires such as a pneumatic radial tire for passenger cars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

タイヤは、最も車両装着外側の第1中間陸部3bが、タイヤ幅方向に延びるサイプを有し、サイプは、第1中間陸部3bの車両装着外側に隣接する周方向溝2aに連通し、第1中間陸部3b内で終端する第1サイプSoと、第1中間陸部3bの車両装着内側に隣接する周方向溝2bに連通し、第1中間陸部3b内で終端する第2サイプSiとを含み、第1サイプSoと第2サイプSiとは、タイヤ周方向に交互に存在し、第1サイプSoのサイプ幅は、第2サイプSiのサイプ幅よりも大きい。

Description

タイヤ
 この発明は、タイヤに関する。
 本願は、2017年6月19日に、日本に出願された特願2017-120006号に基づく優先権を主張するものであり、その内容の全文をここに援用する。
 従来、操縦安定性を向上させた空気入りタイヤとして、下記特許文献1に記載のものが知られている。このタイヤでは、ミドルリブは、ラグ溝を備えず、ショルダー主溝からタイヤ軸方向内側にのびる外のミドルサイプと、クラウン主溝からタイヤ軸方向外側にのびる内のミドルサイプとを具える。
日本国特開2015-209189号公報
 しかし、特許文献1に記載のタイヤのように、トレッドのミドルリブを、ショルダー主溝からタイヤ軸方向内側にのびる内のミドルサイプと、クラウン主溝からタイヤ軸方向外側にのびる外のミドルサイプとを具えるようにしただけでは、特に高速旋回時に所期の性能が十分発揮されない問題があった。
 そこで、本発明の目的は、高速走行時の旋回性能を向上させたタイヤを提供することにある。
 本発明の要旨は、以下のとおりである。
 タイヤのトレッド踏面に、タイヤ周方向に沿って延びる複数の周方向溝及びトレッド端にて区画される、複数の陸部を有するタイヤであって、
 複数の前記周方向溝のみで区画される中間陸部のうち最も車両装着外側の第1中間陸部は、タイヤ幅方向に延びるサイプを有し、
 前記サイプは、前記第1中間陸部の車両装着外側に隣接する前記周方向溝に連通し、前記第1中間陸部内で終端する第1サイプと、前記第1中間陸部の車両装着内側に隣接する前記周方向溝に連通し、前記第1中間陸部内で終端する第2サイプとを含み、
 前記第1サイプと前記第2サイプとは、タイヤ周方向に交互に存在し、
 前記第1サイプのサイプ幅は、前記第2サイプのサイプ幅よりも大きいことを特徴とする、タイヤ。
 ここで、本明細書において、「トレッド踏面」とは、リムに組み付けるとともに所定の内圧を充填したタイヤに最大負荷荷重を負荷した状態(以下、「最大負荷状態」という。)で、タイヤを転動した際に、路面と接触することになる、タイヤの全周に亘る外周面を指し、「トレッド端」とは、トレッド踏面のタイヤ幅方向端を指す。
 また、本明細書において、「基準状態」とは、タイヤをリムに組み付け、所定の内圧を充填し、無負荷とした状態を指す。
 上記の「リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会)のJATMA YEAR BOOK、欧州ではETRTO (The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA (The Tire and Rim Association, Inc.)のYEAR BOOK等に記載されている又は将来的に記載される、適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(すなわち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTOのSTANDARDS MANUAL 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいうものとする。
 また、上記の「所定の内圧」とは、上記JATMA YEAR BOOK 等に記載されている、適用サイズ・プライレーティングにおける単輪の最大負荷能力に対応する空気圧(最高空気圧)を指し、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。なお、ここでいう空気は、窒素ガス等の不活性ガスその他に置換することもできる。
 さらに、上記の「最大負荷荷重」とは、上記最大負荷能力に対応する荷重をいうものとする。
 本明細書において、「サイプ」とは、通常の溝のように常時開口するものではなく、タイヤを最大負荷状態で転動させた際にその少なくとも一部分が閉塞する程度の、幅(サイプ幅)が0.5mm以下の細溝をいう。ここで、「サイプ幅」とは、サイプのトレッド踏面視での延在方向(以下、単に「延在方向」ともいう。)に垂直に測定した(即ち、サイプの延在方向に垂直な断面における)、対向するサイプ壁面間の最短距離を指し、サイプの延在方向で当該最短距離が変化する場合は、その最大値を指すものとする。
 本明細書において、「車両装着内側」とは、車両への装着方向が指定されたタイヤにおいて、車両へ装着した際にタイヤ幅方向において車両側となる側を指し、「車両装着外側」とは、タイヤ幅方向において車両装着内側に対し反対となる側を指す。
 本明細書において、「サイプのタイヤ周方向に対する角度」は、トレッド踏面視において、当該サイプとタイヤ周方向に沿って延びる仮想線とがなす、鋭角側の角度を指す。
 また、本明細書において、サイプ等の各要素の寸法等は、特に断りのない限り、基準状態で(各要素のトレッド踏面視での寸法等は、基準状態におけるトレッド踏面の展開図上で)測定されるものとする。
 本発明によれば、高速走行時の旋回性能を向上させたタイヤを提供することができる。
本発明の一実施形態に係るタイヤのトレッド踏面を示す、部分展開図である。 図1の要部拡大図である。 図2のA―A線に沿う断面図である。 図2のB-B線に沿う断面図である。
 以下、図面を参照しながら、本発明のタイヤについて、その実施形態を例示して詳細に説明する。
 なお、図示は省略するが、本発明は、例えば、一対のビード部からそれぞれタイヤ径方向外側に延びるサイドウォール部と、両サイドウォール部間に跨るトレッド部と、が連なり、一方のビード部からトレッド部を通り他方のビード部にわたって延びる、有機繊維コード或いはスチールコードのプライからなるカーカスと、このカーカスとトレッドゴム間に配置したスチールコード層からなるベルトと、を備える、通常のタイヤ構造を備える空気入りタイヤに適用することができる。
 図1は、本発明の一実施形態に係るタイヤのトレッドを示す、部分展開図であり、図2に、その要部拡大図を示す。
 本実施形態のタイヤは、トレッド踏面1に、タイヤ周方向に沿って(即ち、タイヤ周方向に対して0°の角度で)延びる複数(本実施形態では、4本)の周方向溝2a~2d及びトレッド端TEにて区画される、複数(本実施形態では、5本)の陸部3a~3dを有している。より具体的に、図1に示すように、本実施形態のタイヤは、トレッド踏面1が、図示例では互いに幅が等しい、4本の周方向溝2a、2b、2c、2dと、トレッド端TEとによって、5本の陸部、即ち、車両装着外側(図1では、紙面左側)から順に、第1 ショルダ陸部3a、第1中間陸部3b、第2中間陸部3c、第3中間陸部3d及び第2ショルダ陸部3eに、区画されている。ここで、図示例では、第1中間陸部3b、第2中間陸部3c及び第3中間陸部3dの幅は互いに等しくされている。
 図示例のタイヤでは、4本の周方向溝を境として5本の陸部が形成されているが、周方向溝は2本若しくは3本又は5本以上(例えば、5本)であってもよい。但し、トレッド踏面における陸部の剛性バランス等の観点から、周方向溝は3~5本(陸部が4~6本)が好ましく、本例のように4本(陸部が5本)であることが、特に好ましい。
 なお、本実施形態のタイヤは、所期する性能を発揮するための車両への装着方向が定まっている、車両への装着方向が指定されたタイヤである。
 また、本実施形態のタイヤは、乗用車用の空気入りラジアルタイヤであるが、本発明は、乗用車用以外の、例えば、トラック・バス用のタイヤに適用することも可能である。
 車両装着外側のトレッド端TEと車両装着最外側の周方向溝2aとで区画された、第1ショルダ陸部3aは、タイヤ周方向に連続して延びるリブ状陸部とされている。第1ショルダ陸部3aは、タイヤ幅方向に延びる溝Loを有している。溝Loのタイヤ幅方向内側端は、周方向溝2aには連通せず第1ショルダ陸部3a内で終端している。溝Loのタイヤ幅方向外側端は、トレッド端TEを越えトレッド端TEよりもタイヤ幅方向外側で陸部内で終端している。さらに、図1に示すように、溝Loは、タイヤ幅方向外側端において、タイヤ周方向に延びる溝と連通し、全体として略L字の溝とすることが好ましい。
 複数の周方向溝2a~2dのみで区画される第1~第3中間陸部3b~3dのうち、最も車両装着外側の第1中間陸部3bは、タイヤ幅方向に延びる第1サイプSo及び第2サイプSiを有している。図1及び図2に示すように、第1サイプSoは、第1中間陸部3bの車両装着外側に隣接する周方向溝2aに連通し、第1中間陸部3b内で終端している。また、第2サイプSiは、第1中間陸部3bの車両装着内側に隣接する周方向溝2bに連通し、第1中間陸部3b内で終端している。
 第1サイプSo及び第2サイプSiは、タイヤ周方向に交互に(千鳥状に)存在している。即ち、第1中間陸部3b内において、車両装着外側に位置する1つの第1サイプSoに対し、車両装着内側でタイヤ周方向一方側に離隔した位置に、隣接する第2サイプSiが配置され、当該第2サイプSiに対し、車両装着外側でタイヤ周方向一方側に離隔した位置に、隣接する他の第1サイプSoが配置される、という配列が、タイヤ周方向に連続して形成されている。
 第1サイプSoのサイプ幅wo(図3参照)は、第2サイプSiのサイプ幅wi(図3参照)よりも大きくされている(wo>wi)。
 次に、本実施形態のタイヤの作用効果について、説明する。
 高速旋回時にタイヤのトレッド踏面に荷重が加わると、特に旋回外側のタイヤにおける車両装着外側の陸部には、大きな荷重がかかる。このとき、当該陸部の圧縮剛性が過大であると、当該陸部のトレッド踏面と路面との間で滑りが発生して操縦安定性を損なう。この点に関し、当該陸部にサイプを設けることで圧縮剛性を下げて、滑りの発生を抑制することはできるが、単にサイプを設けただけでは、サイプを設けることで陸部のせん断剛性が低下して、やはり旋回性能が低下してしまう問題がある。
 一方、前述の通り、本実施形態のタイヤでは、第1中間陸部3bが、隣接する周方向溝に連通し当該陸部内で終端する第1サイプSo及び第2サイプSiを有し、第1サイプSo及び第2サイプSiが、タイヤ周方向に交互に存在し、かつ、第1サイプSoのサイプ幅woが第2サイプSiのサイプ幅wiよりも大きくされている。このように構成することで、本実施形態によれば、高速旋回時に大きな荷重がかかる第1中間陸部3bの車両装着外側においては、第1中間陸部3bの陸部分がサイプ幅の大きい第1サイプSo内に膨出できるようにして、第1中間陸部3bの圧縮剛性を下げて滑りの発生を抑制することができる。一方、第1中間陸部3bの車両装着内側においては、当該陸部にタイヤ周方向における極端な剛性段差が生じるのを避けるため、第2サイプSiを第1サイプSoに対して千鳥状に配置しているが、そのため、荷重により第1中間陸部3bの陸部分が第2サイプSiを拡げる方向に変形する。しかし、本実施形態では、第2サイプSiのサイプ幅wiが第1サイプSoのサイプ幅woより小さくされているので、第2サイプSiの拡幅変形による第1中間陸部3bの車両装着内側におけるせん断剛性の低下を抑制することができる。以上により、本実施形態のタイヤによれば、高速旋回時に大きな荷重のかかる第1中間陸部の圧縮剛性を下げながらせん断剛性を維持することができ、ひいては、高速走行時の旋回性能を向上させることができる。
 なお、上記の第1サイプSo及び第2サイプSiのいずれか少なくとも一方を、これらより幅の広い、タイヤ幅方向に延びる溝に替えた構成では、せん断変形に対して溝壁同士が接触しない(支え合わない)ため、せん断剛性が低下して、高速旋回性能を損なうこととなる。
 さらに、上記の第1サイプSo及び第2サイプSiのいずれか少なくとも一方を、延在方向の両端が隣接する周方向溝に連通する構成、又は、延在方向の両端が陸部内で終端する構成に替えた場合には、せん断剛性が低下し、又は、圧縮剛性が高まって、やはり高速旋回性能を損なうことになる。
 第1中間陸部3bのタイヤ幅方向長さWb(図1参照)に対する、第1サイプSoのタイヤ幅方向長さ(トレッド踏面視での(即ち、図1上での)、タイヤ幅方向の延在長さ。以下同様)Wo(図1参照)の比(Wo/Wb)は、0.25~0.35とすることが好ましく、0.30~0.35とすることがより好ましい。このような構成により、圧縮剛性をより十分に下げながら、せん断剛性の低下をより抑制することができる。
 また、第1サイプSoのサイプ幅wo(図3参照)は、0.2mm~0.8mmとすることが好ましく、0.3mm~0.45mmとすることがより好ましい。このような構成により、圧縮剛性をより十分に下げながら、せん断剛性の低下をより抑制することができる。
 第1中間陸部3bのタイヤ幅方向長さWbに対する、第2サイプSiのタイヤ幅方向長さWi(図1参照)の比(Wi/Wb)は、0.25~0.35とすることが好ましく、0.30~0.35とすることがより好ましい。このような構成により、圧縮剛性をより十分に下げながら、せん断剛性の低下をより抑制することができる。
 また、第2サイプSiのサイプ幅wi(図3参照)は、0.2mm~0.8mmとすることが好ましく、0.25mm~0.35mmとすることがより好ましい。このような構成により、圧縮剛性をより十分に下げながら、せん断剛性の低下をより抑制することができる。
 本実施形態では、第1サイプSoのタイヤ周方向に対する角度は、第2サイプSiのタイヤ周方向に対する角度よりも大きくされている。
 第1サイプSoの上記角度を第2サイプSiの上記角度よりも大きくすることで、陸部がより大きく変形する第1中間陸部3bの車両装着外側において、陸部の圧縮変形を容易にして圧縮剛性をより下げることができるとともに、第1サイプSoと第2サイプSiのタイヤ周方向に対する角度を異ならせることで、第1中間陸部3bのタイヤ幅方向のせん断剛性をより高めることができ、従って、高速走行時の旋回性能をさらに向上させることができる。
 本実施形態のように、第1サイプSoのタイヤ周方向に対する角度は、第2サイプSiのタイヤ周方向に対する角度よりも大きいことが好ましいが、第1サイプSoの当該角度が第2サイプSiの当該角度と同一であってもよく、第1サイプSoの当該角度が第2サイプSiの当該角度より小さくてもよい。
 第1サイプSoのタイヤ周方向に対する角度は、60°~80°とすることが好ましく、65°~70°とすることがより好ましい。このような構成により、圧縮剛性をさらに十分に下げながら、せん断剛性の低下をさらに抑制することができる。
 第2サイプSiのタイヤ周方向に対する角度は、50°~70°とすることが好ましく、55°~65°とすることがより好ましい。このような構成により、圧縮剛性をさらに十分に下げながら、せん断剛性の低下をさらに抑制することができる。
 本実施形態では、第1サイプSo及び第2サイプSiは、それらの延在方向に垂直な断面において、屈曲部を有している。第1サイプSo及び第2サイプSiがそれぞれ屈曲部を有することで、第1中間陸部3bのせん断剛性の低下をより抑制できるとともに、当該屈曲部を有することによりトレッド踏面に平行な面内におけるサイプ壁面間の距離を大きくすることができるため、特に第1サイプSoを挟む第1中間陸部3bの陸部分の圧縮変形をより容易にすることができ、従って、高速走行時の旋回性能をより高めることができる。
 サイプの延在方向に垂直な断面における、上記屈曲部を含むサイプ形状の好適な例を、図3に示す。図3は、図2のA-A線に沿う断面図である。
 なお、図3は、図2のA-A線に沿う断面図であり、第1サイプSo(及び、後述する第1面取り部To)の断面形状を示すが、説明の都合上、本例の第1サイプSoと同様の構成の第2サイプSiの例における、サイプ幅wi及び後述する第2面取り部Tiについて明示するために、図3にかっこ書きの符号「(Si)」、「(wi)」及び「(Ti)」を挿入してある。但し、前述の通り、第1サイプSoのサイプ幅woと第2サイプSiのサイプ幅wiとが、等しいわけではない(wo>wi)。また、図3では、トレッド踏面1の記載は省略している。
 図3に示す通り、本実施形態では、第1サイプSoは、垂直部Vと、当該垂直部Vのサイプ底側に連なる振幅部Kとからなっている。垂直部Vと振幅部Kとは、第1サイプSoのサイプ幅woの図3の断面における中心線Cを挟んで対向する、両サイプ壁面により形成されている。
 より具体的に、垂直部Vは、第1サイプSoのトレッド踏面1側の開口端からサイプ底側に向かって、トレッド踏面1の法線方向(図3で示すZ方向)に沿って直線状に形成されている、第1垂直部V1のみからなっている。また、振幅部Kは、第1垂直部V1のサイプ底側に順に連なり、トレッド踏面1の法線方向に対して傾斜して形成されている、第1傾斜部K1、第2傾斜部K2、第3傾斜部K3及び第4傾斜部K4からなっている。
 第1傾斜部K1は、第1垂直部V1から、第1屈曲部Q1を介して、トレッド踏面1の法線方向に対して一方側に傾斜する部分(図3では、紙面右下側に向かって傾斜する部分)として形成されている。
 続いて、第2傾斜部K2は、第1傾斜部K1から、第2屈曲部Q2を介して、トレッド踏面1の法線方向に対して前記一方側とは反対の他方側に傾斜する部分(図3では、紙面左下側に向かって傾斜する部分)として形成されている。
 続いて、第3傾斜部K3は、第2傾斜部K2から、第3屈曲部Q3を介して、トレッド踏面1の法線方向に対して前記一方側に傾斜する部分(図3では、紙面右下側に向かって傾斜する部分)として形成されている。
 さらに、第4傾斜部K4は、第3傾斜部K3から、第4屈曲部Q4を介して、トレッド踏面1の法線方向に対して前記他方側に傾斜する部分(図3では、紙面左下側に向かって傾斜する部分)として形成されている。
 本例では、第2屈曲部Q2と第3屈曲部Q3とのトレッド踏面1の法線方向の距離は、同じく、第3屈曲部Q3と第4屈曲部Q4とのトレッド踏面1の法線方向の距離と等しくされている。
 上記振幅部Kの振幅D(図3参照)に対する、上記第2屈曲部Q2と第4屈曲部Q4とのトレッド踏面1の法線方向の距離Pの比(P/D)は、1.5~2.5であることが好ましい。このように構成することで、第1サイプSoにより分断された対向するサイプ壁面同士が互いに接触して陸部の倒れ込みを十分抑制しながら、陸部の圧縮変形の余地を十分に生むことができる。
 本例では、第1サイプSoに4つの屈曲部Q1~Q4が形成されているが、屈曲部は1~3つ又は5つ以上(例えば、5つ)であってもよい。但し、トレッド踏面における陸部の剛性バランス及び生産性等の観点から、屈曲部は3~5つが好ましく、本例のように4つであることが、特に好ましい。
 また、本例では、屈曲部Q1~Q4は、それぞれ湾曲して形成されているが、いずれか少なくとも一つが角張って形成されていてもよい。
 さらに、第1サイプSoは、上記のような屈曲部を有さず、サイプ開口からサイプ底に至るまで、トレッド踏面1の法線方向に沿って又は当該法線方向に対して傾斜して、直線状に形成されていてもよい。
 図3を参照して上記の通り説明した、本実施形態における第1サイプSoの断面形状及びそれによる作用効果は、第1サイプSoのサイプ幅woが第2サイプSiのサイプ幅wiよりも大きい点を除き、本実施形態における第2サイプSiにおいても、基本的に同様である。
 但し、第1サイプSoの断面形状と第2サイプSiの断面形状とが、異なっていてもよい。
 本実施形態では、図1~3に示すように、第1サイプSoのトレッド踏面1側の開口端とトレッド踏面1との間に、第1サイプSoより拡幅された第1面取り部Toが設けられている。また、当該第1面取り部Toのトレッド踏面1における幅は、車両装着外側において車両装着内側よりも大きくされている(図1、2参照)。即ち、トレッド踏面視において、第1面取り部Toのタイヤ周方向両縁間をタイヤ周方向に沿って測った距離が、当該第1面取り部Toの、車両装着内側(図1、2では、右側)から車両装着外側(図1、2では、左側)に向かうにつれて、減少することなく漸次増大(本例では、単調に増大)している。このような構成により、第1中間陸部3bの車両装着外側における圧縮変形を容易にして圧縮剛性をより下げることができ、高速走行時の旋回性能をより高めることができる。
 但し、第1面取り部Toが設けられずに第1サイプSoがトレッド踏面1に直接開口していてもよく、また、第1面取り部Toのトレッド踏面1における幅が、車両装着外側において車両装着内側よりも大きくされていなくてもよい。
 また、本例では、第1面取り部Toのトレッド踏面1における延在方向終端部Toeが、トレッド踏面視で角張っているが(図1、2参照)、当該延在方向終端部Toeが、トレッド踏面視で円弧(より具体的には、円弧の一部)からなっていてもよい。
 本実施形態では、図1~3に示すように、第2サイプSiのトレッド踏面1側の開口端とトレッド踏面1との間にも、第2サイプSiより拡幅された第2面取り部Tiが設けられている。また、当該第2面取り部Tiのトレッド踏面1における延在方向終端部Tieは、トレッド踏面視で円弧(より具体的には、円弧の一部)からなっている。高速旋回時に第1中間陸部3bは第2サイプSiを開く方向に変形するため、第2面取り部Tiの延在方向終端部Tieに局所的に圧縮方向の応力が集中し、当該延在方向終端部Tieを起点としたクラックの発生のおそれがあるが、上記のような構成により、応力の集中を防いでクラックの発生を抑制することができ、ひいては、タイヤの耐久性を向上させることができる。
 但し、第2面取り部Tiが設けられずに第2サイプSiがトレッド踏面1に直接開口していてもよく、また、第2面取り部Tiのトレッド踏面1における延在方向終端部Tieが、トレッド踏面視で角張っていてもよい。
 また、本例では、第2面取り部Tiのトレッド踏面1における幅(タイヤ周方向幅)が、車両装着内側から車両装着外側に向かってほぼ一定であるが(図1、2参照)、当該幅は、一定でなくてもよい。
 第2面取り部Tiの延在方向終端部Tieがトレッド踏面視で円弧からなっている場合、当該円弧の曲率半径は、0.5mm~1.5mmとすることが好ましい。このような構成により、より効果的に当該延在方向終端部Tieへの応力の集中を防いで、クラックの発生をより抑制することができる。
 次に、図2のB-B線に沿う断面図を、図4に示す。
 図4に示すように、本実施形態では、第1中間陸部3bは、タイヤ幅方向断面における外輪郭がタイヤ径方向外側に向かって凸となる凸形状に形成されている。また、前記外輪郭は、第1中間陸部3bのタイヤ幅方向中央に位置する第1円弧A1(図4では、簡略化のため直線状に示している)と、第1円弧A1よりも曲率半径が小さく第1中間陸部3bのタイヤ幅方向両端に位置する第2円弧A2(図4では、簡略化のため直線状に示している)とを含んで(本例では、第1円弧A1と第2円弧A2のみからなって)いる。さらに、第1中間陸部3bにおける第1円弧A1に対応するタイヤ周方向領域RA1(図4参照)は、第1サイプSoと第2サイプSiとが存在しないタイヤ周方向に連続する領域Rを有している(図2参照)。なお、本実施形態では、第1サイプSo及び第2サイプSiとトレッド踏面1との間に、それぞれ、第1面取り部To、第2面取り部Tiが設けられているので、前述の通り、上記「第1サイプSoと第2サイプSiとが存在しないタイヤ周方向に連続する領域R」の「第1サイプSo」及び「第2サイプSi」は、第1面取り部To及び第2面取り部Tiを含めたものを指す。即ち、領域Rは、第1サイプSo、第1面取り部To、第2サイプSi及び第2面取り部Tiが存在しない、タイヤ周方向に連続する領域である(図2参照)。また、「領域RA1が領域Rを有する」とは、一致も含め、領域RA1が領域Rの全体を内包する(RA1⊇R)ことを意味する。
 このような構成により、第1中間陸部3bの領域Rの接地圧を第1中間陸部3bの他の領域よりも高くして、第1中間陸部3bの他の領域の接地圧を下げることができる。これにより、第1中間陸部3bの他の領域の圧縮変形の余地を大きくして圧縮剛性を下げることで滑りの発生を抑制し、ひいては、高速走行時の旋回性能をより向上させることができる。
 第1円弧A1の曲率半径は、800mm~1200mmとすることが好ましく、また、第2円弧A2の曲率半径は、400mm~600mmとすることが好ましい。このような構成により、より効果的に領域Rの接地圧を高くして、第1中間陸部3bの他の領域の圧縮剛性をより下げることができる。
 第1中間陸部3bのタイヤ幅方向長さWbに対する、領域Rのタイヤ幅方向長さWrの比(Wr/Wb)は、0.1~0.3とすることが好ましい。このような構成により、より効果的に領域Rの接地圧を高くして、第1中間陸部3bの他の領域の圧縮剛性をより下げることができる。
 なお、本実施形態では、領域RA1が領域Rの全体を完全に含んでおり(RA1⊃R)、領域RA1のタイヤ幅方向長さWra1は領域Rのタイヤ幅方向長さWrより大きい(Wra1>Wr)が、領域RA1が領域Rと一致し(RA1=R)、領域RA1のタイヤ幅方向長さWra1が領域Rのタイヤ幅方向長さWrと等しく(Wra1=Wr)てもよい。さらに効果的かつ局所的に領域Rの接地圧を高くするという観点からは、領域RA1が領域Rと一致している(RA1=R、Wra1=Wr)ことが特に好ましい。
 本実施形態では、領域Rのタイヤ幅方向中心と領域RA1のタイヤ幅方向中心とが、第1中間陸部3bのタイヤ幅方向中心に一致している。より具体的に、図4に示すタイヤ幅方向断面において、第1中間陸部3bの外輪郭は、第1中間陸部3bのタイヤ幅方向中心線(図示せず)に対して、対称形状とされている。
 なお、図4では、図面上便宜のため直線状に描かれた第1円弧A1と第2円弧A2とが、角張った境界部分を介して連続しているが、本実施形態では、実際には、第1円弧A1と第2円弧A2とが、滑らかに連続している。第1円弧A1と第2円弧A2とは、滑らかに連続していることが好ましい。
 図4に示すタイヤ幅方向断面において、第1中間陸部3bの車両装着外側端X及び車両装着内側端Yを結ぶ仮想直線と領域Rの最大径位置との距離hと、周方向溝2aの溝底の最小径位置を基準とする領域Rの最大径位置の高さHとの比(h/H)は、0.1~0.2とすることが好ましい。このような構成により、より効果的に、領域Rの接地圧を高くして、第1中間陸部3bの他の領域の圧縮剛性をより下げることができる。
 第1中間陸部3bのタイヤ幅方向断面における外輪郭は、本実施形態のように、曲率半径の異なる2種の円弧からなっていることが好ましいが、互いに曲率半径の異なる3種以上の円弧からなっていてもよい。但し、当該外輪郭は、例えば単一の曲率半径の1つの円弧のみからなるものであってもよい。
 図1に示すように、本実施形態において、周方向溝2bと周方向溝2cとで区画された、第2中間陸部3cは、タイヤ周方向に連続して延びるリブ状陸部とされている。第2中間陸部3cは、そのタイヤ幅方向中心がタイヤ赤道面CL上に位置し、タイヤ赤道面CL上をタイヤ周方向に延びている。
 第2中間陸部3cは、タイヤ幅方向に延びる浅溝Lcを有している。浅溝Lcは、第2中間陸部3cの車両装着内側に隣接する周方向溝2cに連通し、第2中間陸部3c内で終端している。浅溝Lcの深さは、周方向溝2a~2d並びに第1サイプSo及び第2サイプSiよりも小さくされている。このような浅溝Lcを第2中間陸部3cに設けることにより、第2中間陸部3cにおいても、圧縮剛性を下げるともにせん断剛性の低下を抑制することで、高速走行時の旋回性能をより向上させることができる。
 また、第2中間陸部3c内で終端する浅溝Lcの終端部は、トレッド踏面視で円弧からなっている(図1参照)。このような構成により、当該終端部への応力の集中を防いで、クラックの発生を抑制することができる。
 図1に示すように、本実施形態において、周方向溝2cと車両装着最内側の周方向溝2dとで区画された、第3中間陸部3dは、浅溝Ldによりタイヤ周方向に分断されたブロック状陸部とされている。
 第3中間陸部3dは、上記の通り、タイヤ幅方向に延びる浅溝Ldを有している。浅溝Ldは、第3中間陸部3dに隣接する両周方向溝2c及び2dに連通している。浅溝Ldの深さは、周方向溝2a~2d並びに第1サイプSo及び第2サイプSiよりも小さくされている。このような浅溝Ldを第3中間陸部3dに設けることにより、第3中間陸部3dにおいても、圧縮剛性を下げるともにせん断剛性の低下を抑制することで、高速走行時の旋回性能をより向上させることができるとともに、トレッド踏面1における車両装着内側の接地性を改善して、タイヤの乗り心地性能を向上させることができる。
 浅溝Ldは、溝底にサイプSmを有している。サイプSmは、周方向溝2dに連通し、トレッド踏面視において、第3中間陸部3d内で終端している。このような構成により、第3中間陸部3dにおいて、圧縮剛性をより下げるともにせん断剛性の低下を抑制することで、高速走行時の旋回性能をさらに向上させることができるとともに、トレッド踏面1における車両装着内側の接地性をより改善して、タイヤの乗り心地性能をより向上させることができる。
 第3中間陸部3dのタイヤ幅方向長さWdに対する、サイプSmのタイヤ幅方向長さWm(図1参照)の比(Wm/Wd)は、0.25~0.4とすることが好ましい。このような構成により、第3中間陸部3dにおいて、圧縮剛性をさらに下げるともにせん断剛性の低下を抑制することで、高速走行時の旋回性能をさらに向上させることができるとともに、トレッド踏面1における車両装着内側の接地性をさらに改善して、タイヤの乗り心地性能をさらに向上させることができる。
 浅溝Lc及びLdの深さは、0.3mm~0.6mmとすることが好ましい。このような構成により、第2中間陸部3c及び第3中間陸部3dの、高速走行時の圧縮剛性をより下げながら、せん断剛性の低下をより十分に抑制することができる。
 図1に示すように、本実施形態において、車両装着最内側の周方向溝2dと車両装着内側のトレッド端TEとで区画された、第2ショルダ陸部3eは、タイヤ周方向に連続して延びるリブ状陸部とされている。第2ショルダ陸部3eは、タイヤ幅方向に延びる溝Li1を有している。溝Li1のタイヤ幅方向内側端は、周方向溝2dに連通せず第2ショルダ陸部3e内で終端している。溝Li1のタイヤ幅方向外側端は、トレッド端TEを越え、第2ショルダ陸部3eのトレッド端TEの外側に連続する陸部内で終端している。また、当該陸部内には、タイヤ幅方向に延びる溝Li2が形成されている。溝Li2のタイヤ幅方向内側端は、トレッド端TEには達していない。溝Li2のタイヤ幅方向内側端には、トレッド端TEに達しないタイヤ幅方向に延びるサイプが、連続して形成されている。
 以下、本発明の実施例について説明するが、本発明は以下の例に限定されるものではない。
 図1に示すトレッドパターンに基本的に従う、サイズ205/55R16のタイヤを、表1に示す各諸元の下でそれぞれ試作した。
 なお、全ての供試タイヤで、周方向溝2a及び周方向溝2dの深さは7.2mm、周方向溝2b及び周方向溝2cの深さは7.5mm、浅溝Lc及び浅溝Ldの深さは0.5mm、第1サイプSo、第2サイプSi及びサイプSmの深さは5.6mmとしている。
 また、全ての供試タイヤで、第1サイプSoのサイプ幅を0.4mm、第2サイプSi及びサイプSmのサイプ幅を0.3mmとしている。
 また、第1面取り部To及び第2面取り部Tiの幅(タイヤ周方向幅)を、それぞれ最大3.5mmとしている。
 表1中、「第1・2サイプが交互に存在」とは、第1サイプSoと第2サイプSiとが、タイヤ周方向に交互に存在することを意味し、「第1面取り部の幅が外側で大」とは、第1面取り部Toのトレッド踏面における幅が、車両装着外側において車両装着内側よりも大きいことを意味し、「第2面取り部の端部が円弧」とは、第2面取り部Tiのトレッド踏面における延在方向終端部が、トレッド踏面視で円弧からなることを意味している。また、「○」は、上記の構成を備えていることを意味し、「×」は、上記の構成を備えていないことを意味している。
 さらに、表1中、「外側サイプ角度」とは、第1サイプSoのタイヤ周方向に対する角度のことであり、「内側サイプ角度」とは、第2サイプSiのタイヤ周方向に対する角度のことである。また、「屈曲部の個数」とは、第1サイプSo及び第2サイプSiそれぞれの、断面(図3に示す断面)における屈曲部の個数のことであり、「なし」とは、第1サイプSo及び第2サイプSiに、当該屈曲部がないことを意味している。
 試作した各供試タイヤを、リム(サイズ:8J-18)に組み付け、内圧240kPaを充填した後、排気量2000ccの後輪駆動車両に組み付け、ドライバー1名と同乗者1名が乗車した状態でテストコース(ドライ路面及びウェット路面)を高速走行することにより、旋回性能及び排水性能を評価した。より具体的には、次の通りである。
[旋回性能評価]
 上記各供試タイヤについて、ドライ路面上を走行した際の旋回性能を、ドライバーによる官能により評価した。結果を、表1に、比較例1のタイヤの評価結果を100とした場合の相対値で示す。数値が大きい方が、旋回性能に優れていることを示す。
[排水性能評価]
 上記各供試タイヤについて、ウェット路面上(水深1mm)を走行した際の走行性能を、ドライバーによる官能により評価した。結果を、表1に、比較例1のタイヤ評価結果を100とした場合の相対値で示す。数値が大きい方が、排水性能に優れていることを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、発明例に係るタイヤは、いずれも比較例1及び2に係るタイヤに比べて、高速走行時の旋回性能が向上していることがわかる。
 本発明に係るタイヤは、例えば乗用車用空気入りラジアルタイヤ等、各種のタイヤに利用できるものである。
1:トレッド踏面、 2a、2b、2c、2d:周方向溝、 3a:第1ショルダ陸部(陸部)、 3b:第1中間陸部(中間陸部)、 3c:第2中間陸部(中間陸部)、 3d:第3中間陸部(中間陸部)、 3e:第2ショルダ陸部(陸部)、 A1:第1円弧、 A2:第2円弧、 C:中心線、 CL:タイヤ赤道面、 K:振幅部、 K1:第1傾斜部、 K2:第2傾斜部、 K3:第3傾斜部、 K4:第4傾斜部、 Lc、Ld:浅溝、 Lo、Li1、Li2:溝、 Q1:第1屈曲部(屈曲部)、 Q2:第2屈曲部(屈曲部)、 Q3:第3屈曲部(屈曲部)、 Q4:第1屈曲部(屈曲部)、 R:第1サイプと第2サイプとが存在しないタイヤ周方向に連続する領域、 RA1:第1円弧に対応するタイヤ周方向領域、 Si:第2サイプ、 So:第1サイプ、 Sm:サイプ、 TE:トレッド端、 Ti:第2面取り部、 Tie:第2面取り部の終端部、 To:第1面取り部、 Toe:第1面取り部の終端部、 V:垂直部、 V1:第1垂直部、 wi:第2サイプのサイプ幅、 wo:第1サイプのサイプ幅

Claims (6)

  1.  タイヤのトレッド踏面に、タイヤ周方向に沿って延びる複数の周方向溝及びトレッド端にて区画される、複数の陸部を有するタイヤであって、
     複数の前記周方向溝のみで区画される中間陸部のうち最も車両装着外側の第1中間陸部は、タイヤ幅方向に延びるサイプを有し、
     前記サイプは、前記第1中間陸部の車両装着外側に隣接する前記周方向溝に連通し、前記第1中間陸部内で終端する第1サイプと、前記第1中間陸部の車両装着内側に隣接する前記周方向溝に連通し、前記第1中間陸部内で終端する第2サイプとを含み、
     前記第1サイプと前記第2サイプとは、タイヤ周方向に交互に存在し、
     前記第1サイプのサイプ幅は、前記第2サイプのサイプ幅よりも大きいことを特徴とする、タイヤ。
  2.  前記第1サイプのタイヤ周方向に対する角度は、前記第2サイプのタイヤ周方向に対する角度よりも大きいことを特徴とする、請求項1に記載のタイヤ。
  3.  前記第1サイプ及び前記第2サイプは、それらの延在方向に垂直な断面において、屈曲部を有することを特徴とする、請求項1に記載のタイヤ。
  4.  前記第1サイプのトレッド踏面側の開口端とトレッド踏面との間に、前記第1サイプより拡幅された第1面取り部が設けられており、前記第1面取り部のトレッド踏面における幅は、車両装着外側において車両装着内側よりも大きいことを特徴とする、請求項1に記載のタイヤ。
  5.  前記第2サイプのトレッド踏面側の開口端とトレッド踏面との間に、前記第2サイプより拡幅された第2面取り部が設けられており、前記第2面取り部のトレッド踏面における延在方向終端部は、トレッド踏面視で円弧からなることを特徴とする、請求項1に記載のタイヤ。
  6.  前記第1中間陸部は、タイヤ幅方向断面における外輪郭がタイヤ径方向外側に向かって凸となる凸形状に形成されており、
     前記外輪郭は、前記第1中間陸部のタイヤ幅方向中央に位置する第1円弧と、前記第1円弧よりも曲率半径が小さく前記第1中間陸部のタイヤ幅方向両端に位置する第2円弧とを少なくとも含み、
     前記第1中間陸部における前記第1円弧に対応するタイヤ周方向領域は、前記第1サイプと前記第2サイプとが存在しないタイヤ周方向に連続する領域を有することを特徴とする、請求項1に記載のタイヤ。
PCT/JP2018/005997 2017-06-19 2018-02-20 タイヤ WO2018235335A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880040356.4A CN110785295B (zh) 2017-06-19 2018-02-20 轮胎
EP18821188.2A EP3643526B1 (en) 2017-06-19 2018-02-20 Tire
US16/718,814 US20200122517A1 (en) 2017-06-19 2019-12-18 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-120006 2017-06-19
JP2017120006A JP6824832B2 (ja) 2017-06-19 2017-06-19 タイヤ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/718,814 Continuation US20200122517A1 (en) 2017-06-19 2019-12-18 Tire

Publications (1)

Publication Number Publication Date
WO2018235335A1 true WO2018235335A1 (ja) 2018-12-27

Family

ID=64736032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005997 WO2018235335A1 (ja) 2017-06-19 2018-02-20 タイヤ

Country Status (5)

Country Link
US (1) US20200122517A1 (ja)
EP (1) EP3643526B1 (ja)
JP (1) JP6824832B2 (ja)
CN (1) CN110785295B (ja)
WO (1) WO2018235335A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112810387B (zh) * 2019-11-18 2023-10-17 住友橡胶工业株式会社 轮胎
JP2021079938A (ja) * 2019-11-18 2021-05-27 住友ゴム工業株式会社 タイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252005A (ja) * 1984-05-26 1985-12-12 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2012017001A (ja) * 2010-07-07 2012-01-26 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2014180948A (ja) * 2013-03-19 2014-09-29 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2015134580A (ja) * 2014-01-17 2015-07-27 横浜ゴム株式会社 空気入りタイヤ
JP2015209189A (ja) 2014-04-30 2015-11-24 住友ゴム工業株式会社 空気入りタイヤ
JP2017052402A (ja) * 2015-09-09 2017-03-16 株式会社ブリヂストン タイヤ
JP2017120006A (ja) 2016-01-02 2017-07-06 株式会社祥陽 仮設手摺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337201B2 (ja) * 2011-06-20 2013-11-06 住友ゴム工業株式会社 空気入りタイヤ
JP5865071B2 (ja) * 2011-12-27 2016-02-17 株式会社ブリヂストン 空気入りタイヤ
CN204109688U (zh) * 2014-10-08 2015-01-21 安徽佳通轮胎有限公司 高湿抓安全驾控型轿车轮胎
JP6814638B2 (ja) * 2015-02-04 2021-01-20 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252005A (ja) * 1984-05-26 1985-12-12 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2012017001A (ja) * 2010-07-07 2012-01-26 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2014180948A (ja) * 2013-03-19 2014-09-29 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2015134580A (ja) * 2014-01-17 2015-07-27 横浜ゴム株式会社 空気入りタイヤ
JP2015209189A (ja) 2014-04-30 2015-11-24 住友ゴム工業株式会社 空気入りタイヤ
JP2017052402A (ja) * 2015-09-09 2017-03-16 株式会社ブリヂストン タイヤ
JP2017120006A (ja) 2016-01-02 2017-07-06 株式会社祥陽 仮設手摺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3643526A4

Also Published As

Publication number Publication date
EP3643526A1 (en) 2020-04-29
EP3643526A4 (en) 2021-03-03
US20200122517A1 (en) 2020-04-23
EP3643526B1 (en) 2022-11-30
JP2019001423A (ja) 2019-01-10
CN110785295B (zh) 2022-03-29
CN110785295A (zh) 2020-02-11
JP6824832B2 (ja) 2021-02-03

Similar Documents

Publication Publication Date Title
US9150056B2 (en) Pneumatic tire
JP5131248B2 (ja) 空気入りタイヤ
JP5667614B2 (ja) 空気入りタイヤ
JP6790663B2 (ja) タイヤ
JP3723764B2 (ja) 空気入りタイヤ
WO2015005194A1 (ja) 空気入りタイヤ
JP5177180B2 (ja) 空気入りタイヤ
JP6393216B2 (ja) 空気入りタイヤ
US10780743B2 (en) Tire
JP2018001941A (ja) 空気入りタイヤ
CN111433051B (zh) 充气轮胎
JP4367667B1 (ja) 空気入りタイヤ
US11535066B2 (en) Tire
WO2016017543A1 (ja) 空気入りタイヤ
JP7095371B2 (ja) タイヤ
JP6824832B2 (ja) タイヤ
JP7400429B2 (ja) タイヤ
CN111741856B (zh) 充气轮胎
JP7056333B2 (ja) タイヤ
WO2020179137A1 (ja) 二輪車用タイヤ
WO2020153011A1 (ja) 空気入りタイヤ
JP7035550B2 (ja) 空気入りタイヤ
US20220402308A1 (en) Tire and tire-vehicle combination
US12030344B2 (en) Tire
EP4144540B1 (en) Tyre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018821188

Country of ref document: EP

Effective date: 20200120