WO2018230696A1 - 活性ガス照射装置及びヒトを除く動物の治療方法 - Google Patents

活性ガス照射装置及びヒトを除く動物の治療方法 Download PDF

Info

Publication number
WO2018230696A1
WO2018230696A1 PCT/JP2018/022868 JP2018022868W WO2018230696A1 WO 2018230696 A1 WO2018230696 A1 WO 2018230696A1 JP 2018022868 W JP2018022868 W JP 2018022868W WO 2018230696 A1 WO2018230696 A1 WO 2018230696A1
Authority
WO
WIPO (PCT)
Prior art keywords
active gas
plasma
internal electrode
tubular dielectric
gas
Prior art date
Application number
PCT/JP2018/022868
Other languages
English (en)
French (fr)
Inventor
悠 長原
貴也 大下
喜重 瀧川
上原 剛
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019525560A priority Critical patent/JP6677855B2/ja
Priority to EP18816666.4A priority patent/EP3639891A4/en
Priority to CN201880031730.4A priority patent/CN110662577A/zh
Priority to US16/333,468 priority patent/US20190209854A1/en
Publication of WO2018230696A1 publication Critical patent/WO2018230696A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/44Applying ionised fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1213Generators therefor creating an arc
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • A61B2018/162Indifferent or passive electrodes for grounding located on the probe body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3463Oblique nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/32Surgery, e.g. scalpels, blades or bistoury; Treatments inside the body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/34Skin treatments, e.g. disinfection or wound treatment

Definitions

  • the present invention relates to an active gas irradiation apparatus and a method for treating animals other than humans.
  • This application claims priority based on Japanese Patent Application No. 2017-119153 filed in Japan on June 16, 2017, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a dental medical device in which a plasma jet irradiation means is mounted on an instrument that performs dental treatment, and the treatment affected area can be irradiated with the plasma jet. According to the invention described in Patent Document 1, healing of wounds and the like is attempted by directly irradiating the affected part with the generated plasma.
  • plasma irradiation apparatuses there are a plasma jet irradiation apparatus and an active gas irradiation apparatus.
  • the plasma jet irradiation apparatus generates plasma, and directly irradiates the irradiated object with the generated plasma and active species generated by reacting with the gas in or around the plasma.
  • the active species include hydroxyl radical, singlet oxygen, ozone, hydrogen peroxide, superoxide anion radical, and other active oxygen species, such as nitric oxide, nitrogen dioxide, peroxynitrite, peroxynitrite, and dinitrogen trioxide. Active nitrogen species can be mentioned.
  • the active gas irradiation apparatus generates plasma, and irradiates an irradiation object with an active gas containing active species generated by reacting with the generated plasma or a surrounding gas.
  • it is necessary to stably generate plasma at a relatively low voltage in order to suppress an increase in the temperature of the irradiation target surface and enhance effects such as wound healing.
  • an object of this invention is to provide the active gas irradiation apparatus which can raise the effect of a plasma further.
  • An instrument comprising a plasma generating unit and an irradiation port for discharging an active gas activated by plasma, the plasma generating unit including a tubular dielectric into which a plasma generating gas is introduced, An internal electrode provided inside the tubular dielectric and extending in a tube axis direction of the tubular dielectric; an external electrode provided outside the tubular dielectric and facing the internal electrode via the on-tube dielectric; , And the internal electrode includes a shaft portion extending in the tube axis direction and a helical thread formed on the outer peripheral surface of the shaft portion.
  • the active gas irradiation device according to [1], wherein the protruding end of the ridge has an acute angle.
  • active gas refers to a gas having high chemical activity including any of active species such as radicals, excited atoms and molecules, and ions.
  • the plasma effect can be further enhanced.
  • FIG. 3 is a sectional view taken along line xx of the instrument of FIG. It is a side view of the internal electrode which concerns on other embodiment.
  • the active gas irradiation apparatus of the present invention includes an instrument including a plasma generation unit and an irradiation port for discharging an active gas activated by plasma.
  • an example of the active gas irradiation apparatus of this invention is shown.
  • the active gas irradiation apparatus 100 of FIG. 1 includes an instrument 10, a power supply unit 20, a gas pipe 30, and an electrical wiring 40.
  • the gas pipeline 30 is connected to the instrument 10 and the power supply unit 20.
  • the electrical wiring 40 is connected to the instrument 10 and the power supply unit 20.
  • the gas pipeline 30 and the electrical wiring 40 are independent from each other, but the gas pipeline 30 and the electrical wiring 40 may be bundled.
  • the power supply unit 20 is connected to a plasma generation gas supply source (not shown).
  • FIG. 2 is a cross-sectional (longitudinal cross-sectional) view of the surface along the axis in the instrument 10.
  • the instrument 10 is an irradiation instrument that irradiates active species.
  • the instrument 10 includes a long cowling 2, a nozzle 1 provided at the tip of the cowling 2, and a plasma generation unit 12 provided in the cowling 2.
  • the cowling 2 includes a cylindrical body part 2b and a head part 2a provided at the tip of the body part 2b.
  • drum 2b is not restricted to a cylindrical shape, Polygonal cylinder shapes, such as a square cylinder, a hexagonal cylinder, and an octagonal cylinder, may be sufficient.
  • the head portion 2a is gradually narrowed toward the tip. That is, the head portion 2a in the present embodiment has a conical shape.
  • the head portion 2a is not limited to a conical shape, and may be a polygonal pyramid shape such as a quadrangular weight, a hexagonal weight, or an octagonal weight.
  • a fitting hole 2c into which the nozzle 1 is inserted is formed at the tip of the head portion 2a.
  • the nozzle 1 is detachably provided on the head portion 2a.
  • Reference symbol O1 represents a tube axis of the body portion 2b.
  • a first active gas passage 7 extending in the direction of the tube axis O1 is formed inside the head portion 2a.
  • a switch 9 is provided on the outer peripheral surface of the body portion 2b.
  • the plasma generation unit 12 includes a tubular dielectric 3, an internal electrode 4, and an external electrode 5.
  • the tubular dielectric 3 is a cylindrical member extending in the direction of the tube axis O1.
  • a gas flow path 6 extending in the direction of the tube axis O1 is formed inside the tubular dielectric 3.
  • the first active gas channel 7 and the gas channel 6 communicate with each other.
  • the tube axis O1 is the same as the tube axis of the tubular dielectric 3.
  • An internal electrode 4 is provided in the tubular dielectric 3.
  • the internal electrode 4 is a substantially columnar member extending in the direction of the tube axis O1. The internal electrode 4 is separated from the inner surface of the tubular dielectric 3.
  • An outer electrode 5 along the inner electrode 4 is provided on the outer peripheral surface of the tubular dielectric 3.
  • the external electrode 5 goes around the outer periphery of the tubular dielectric 3. That is, the external electrode 5 is provided outside the tubular dielectric 3.
  • the shape of the external electrode 5 of this embodiment is a cylindrical shape.
  • the shape of the external electrode 5 is not limited to a cylindrical shape, and may be a rod shape or a plate shape. When the external electrode 5 is rod-shaped or plate-shaped, the number of external electrodes 5 may be one or two or more.
  • the tubular dielectric 3, the internal electrode 4, and the external electrode 5 are located concentrically around the tube axis O1.
  • the outer peripheral surface of the internal electrode 4 and the inner peripheral surface of the external electrode 5 are opposed to each other with the tubular dielectric 3 interposed therebetween.
  • the nozzle 1 includes a pedestal portion 1b that fits in the fitting hole 2c and an irradiation tube 1c.
  • the pedestal portion 1b and the irradiation tube 1c are integrally formed.
  • a second active gas channel 8 is formed, and an irradiation port 1a is formed at the tip.
  • the second active gas channel 8 and the first active gas channel 7 are in communication.
  • drum 2b is not specifically limited, The material which has insulation is preferable.
  • the insulating material include thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene; thermosetting resins such as phenol resins, melamine resins, urea resins, epoxy resins, and unsaturated polyester resins.
  • the size of the body portion 2b is not particularly limited, and is a size that can be easily gripped with fingers.
  • the material of the head part 2a is not specifically limited, It may have insulation and does not need to have insulation.
  • the material of the head part 2a is preferably a material excellent in wear resistance and corrosion resistance. Examples of the material having excellent wear resistance and corrosion resistance include metals such as stainless steel.
  • the material of the head part 2a and the body part 2b may be the same or different.
  • the size of the head portion 2a is determined in consideration of the use of the active gas irradiation device 100 and the like. For example, when the active gas irradiation device 100 is an intraoral therapeutic instrument, the size of the head portion 2a is set to a size that can be inserted into the oral cavity.
  • a dielectric material used in a known plasma apparatus can be applied.
  • the material of the tubular dielectric 3 include glass, ceramics, and synthetic resin.
  • the dielectric constant of the tubular dielectric 3 is preferably as low as possible.
  • the inner diameter R of the tubular dielectric 3 is appropriately determined in consideration of the outer diameter d of the internal electrode 4.
  • the inner diameter R is determined so that a distance s described later is within a desired range.
  • the internal electrode 4 includes a shaft portion extending in the direction of the tube axis O1 and a thread formed on the outer peripheral surface of the shaft portion. That is, the internal electrode 4 includes a shaft portion and a spiral ridge formed on the outer peripheral surface of the shaft portion.
  • the shaft portion may be solid or hollow. Among these, the shaft portion is preferably solid. If the shaft portion is solid, processing is easy and mechanical durability can be improved.
  • the thread of the internal electrode 4 is a spiral thread that circulates in the circumferential direction of the shaft portion.
  • the form of the internal electrode 4 is the same form as the male screw.
  • the internal electrode 4 may be a so-called parallel screw or a taper screw.
  • the parallel screw is a screw having the same thickness from the proximal end to the distal end.
  • the taper screw is a screw that gradually narrows from the proximal end to the distal end.
  • the turning direction of the thread in the internal electrode 4 is not particularly limited.
  • the screw shape of the internal electrode 4 may be a so-called right screw (a screw that advances in the distal direction when rotated to the right) or a left screw.
  • the shape of the thread of the internal electrode 4 is not particularly limited, and may be a so-called triangular screw, a square screw, or a trapezoidal screw.
  • the triangular screw is a screw having a triangular cross-sectional shape in the longitudinal section of the male screw.
  • the square screw is a screw having a square cross section of a screw thread in a longitudinal section of the male screw.
  • a trapezoidal screw is a screw in which the cross-sectional shape of a screw thread gradually narrows toward the tip of a square screw.
  • the shape of the thread is preferably a triangular screw, a trapezoidal screw or the like, and more preferably a triangular screw.
  • the tip of the thread is preferably an acute angle (less than 90 °).
  • the angle of the thread tip is more preferably 30 to 90 °, and further preferably 45 to 70 °. When the thread tip is within the above range, plasma can be generated more efficiently.
  • the angle of the thread tip is the angle of the thread tip in a cross section perpendicular to the direction in which the thread extends.
  • the thread of the internal electrode 4 is a single thread (i.e., a thread groove) in which one thread is formed between one pitch (the distance between an arbitrary thread peak and the adjacent thread peak). Or a multi-threaded screw in which two or more threads are formed in one pitch (that is, a screw in which two or more adjacent thread grooves are formed).
  • the outer diameter d of the internal electrode 4 is appropriately determined in consideration of the application of the active gas irradiation device 100 (that is, the size of the instrument 10) and the like.
  • the outer diameter d is preferably 0.5 to 20 mm, and more preferably 1 to 10 mm. If the outer diameter d is equal to or greater than the lower limit, the internal electrode can be easily manufactured. In addition, if the outer diameter d is equal to or greater than the lower limit, the surface area is increased, plasma is generated more efficiently, and healing and the like can be further promoted. If the outer diameter d is less than or equal to the above upper limit value, plasma can be generated more efficiently without causing the instrument 10 to be excessively large, and healing and the like can be further promoted.
  • the height h of the thread (projection) of the internal electrode 4 can be appropriately determined in consideration of the outer diameter d of the internal electrode 4.
  • the thread height h is preferably, for example, 0.1 to 3.0 mm. If the height h is greater than or equal to the lower limit, plasma can be generated more efficiently. If the height h is not more than the above upper limit value, the strength of the internal electrode 4 can be increased.
  • the height h of the thread is a height in a direction perpendicular to the tube axis O1, and is a length from the bottom of the valley formed between the threads to the tip of the thread. The interval between the protruding ends of the thread in the tube axis O1 direction is the thread pitch p.
  • the thread pitch p of the internal electrode 4 can be appropriately determined in consideration of the length of the internal electrode 4 and the outer diameter d.
  • the thread pitch p is preferably 0.2 to 3.0 mm, more preferably 0.2 to 2.5 mm, and still more preferably 0.2 to 2.0 mm. If the pitch p is greater than or equal to the lower limit, plasma is more likely to be generated. If the pitch p is less than or equal to the above upper limit value, plasma can be generated more efficiently by increasing the number of plasma generation locations.
  • the pitch p is not the distance between the protrusions of the same thread, but the protrusions of a predetermined thread and the protrusions of another thread adjacent to this. (I.e., the spacing between adjacent thread tips, regardless of whether they are the same thread tip).
  • the material of the internal electrode 4 is not particularly limited as long as it is a conductive material, and a metal used for an electrode of a known plasma device can be applied.
  • Examples of the material of the internal electrode 4 include metals such as stainless steel, copper, and tungsten, and carbon.
  • JIS B 0205 2001 metric screw standard products (M2, M2.2, M2.5, M3, M3.5, etc.), JIS B 2016: 1987 metric trapezoidal screw standard products (Tr8 ⁇ 1.5, Tr9 ⁇ 2, Tr9 ⁇ 1.5 etc.), JIS B 0206: 1973 unified coarse thread standard products (No.1-64UNC, No.2-56UNC, No.3-48UNC etc.) A specification equivalent to the above is preferable. If the specifications are equivalent to those of these standard products, the cost is superior.
  • the distance s between the outer surface of the internal electrode 4 (the top of the thread) and the inner surface of the tubular dielectric 3 is preferably 0.05 to 5 mm, more preferably 0.1 to 1 mm. If the distance s is equal to or greater than the lower limit, a desired amount of gas can be easily passed. If the distance s is not more than the above upper limit value, plasma can be generated more efficiently and the temperature of the active gas can be further lowered.
  • the length L3 of the region facing the external electrode 5 in the internal electrode 4 is preferably 1 to 50 mm, more preferably 3 to 40 mm, and even more preferably 5 to 30 mm. If the length L3 is equal to or greater than the lower limit, plasma can be generated more efficiently by increasing the number of plasma generation locations.
  • the length L3 is equal to the length of the external electrode 5.
  • the external electrode 5 may be divided into two or more in the direction of the tube axis O1.
  • the length L3 is equal to the length from the rear end to the front end of the two external electrodes and includes the distance between the two external electrodes.
  • the shape of the internal electrode is not limited to the same form as the male screw.
  • the internal electrode may be the internal electrode 40 of FIG.
  • the internal electrode 40 includes a shaft portion 42 and a spiral ridge 44.
  • the internal electrode 40 includes a ridge 44 that is wider than the internal electrode 4.
  • the internal electrode 40 has the same form as a drill.
  • the pitch p2 in the internal electrode 40 is longer than the pitch p in the internal electrode 4, for example.
  • the pitch p2 is, for example, 3 to 20 mm.
  • the protrusion 44 has a flat tip. For this reason, the pitch p ⁇ b> 2 is the interval between the edges 46 in the ridge 44.
  • the edge 46 is an edge on the tip side of the internal electrode 40 in the ridge 44.
  • the form of the internal electrode is preferably the same form as the external thread. If the form is the same as that of the male screw, since the pitch is short, more plasma generation points can be formed in the region where the internal electrode and the external electrode face each other. For this reason, the internal electrode having the same form as the male screw can generate plasma more efficiently.
  • the material of the external electrode 5 is not particularly limited as long as it is a conductive material, and a metal used for an electrode of a known plasma device can be applied.
  • Examples of the material of the external electrode 5 include metals such as stainless steel, copper, and tungsten, and carbon.
  • the material of the nozzle 1 is not particularly limited, but may have insulating properties or may not have insulating properties.
  • the material of the nozzle 1 is preferably a material excellent in wear resistance and corrosion resistance. Examples of the material having excellent wear resistance and corrosion resistance include metals such as stainless steel.
  • the length of the flow path in the irradiation tube 1c (that is, the distance L2) can be appropriately determined in consideration of the application of the active gas irradiation device 100 and the like.
  • the opening diameter of the irradiation port 1a is preferably 0.5 to 5 mm, for example. If the opening diameter is not less than the above lower limit, the pressure loss of the active gas can be suppressed.
  • the flow rate of the active gas to be irradiated can be increased to further promote healing and the like.
  • the irradiation tube 1c is bent with respect to the tube axis O1.
  • the angle ⁇ formed between the tube axis O2 and the tube axis O1 of the irradiation tube 1c can be determined in consideration of the application of the active gas irradiation device 100 and the like.
  • the angle ⁇ is preferably 0 to 90 °, and more preferably 10 to 60 °.
  • the sum of the distance L1 from the tip center point Q1 of the external electrode 5 to the tip Q2 of the head portion 2a and the distance L2 from the tip Q2 to the irradiation port 1a (that is, the distance from the internal electrode 4 to the irradiation port 1a) is It is determined appropriately in consideration of the size of the active gas irradiation device 100, the temperature of the active gas on the surface irradiated with the active gas (irradiated surface), and the like. If the sum of the distance L1 and the distance L2 is long, the temperature of the active gas on the irradiated surface can be further lowered.
  • the radical density of the active gas can be further increased, and effects such as cleaning, activation, and healing on the irradiated surface can be further increased.
  • the tip Q2 is an intersection of the tube axis O1 and the tube axis O2.
  • the temperature of the active gas on the irradiated surface is measured by a thermocouple.
  • the power supply unit 20 is a device that transmits power to the instrument 10.
  • the power supply unit 20 of this embodiment includes a pump that sends a plasma generating gas to the instrument 10 via a gas pipe 30.
  • the power supply unit 20 can adjust the voltage and frequency applied between the external electrode 5 and the internal electrode 4.
  • the power supply unit 20 may not include a pump. In this case, a pump may be provided independently of the power supply unit 20. Further, the plasma generating gas may be supplied to the instrument 10 by the pressure in the plasma generating gas supply source.
  • the gas pipe line 30 is a path for supplying plasma generating gas from the power supply unit 20 to the instrument 10.
  • the gas conduit 30 is connected to the rear end of the tubular dielectric 3 of the instrument 10.
  • the material in particular of the gas pipe line 30 is not restrict
  • the electrical wiring 40 is a wiring for supplying electricity from the power supply unit 20 to the instrument 10.
  • the electrical wiring 40 is connected to the internal electrode 4, the external electrode 5, and the switch 9 of the instrument 10.
  • the material of the electrical wiring 40 is not particularly limited, and a material used for a known electrical wiring can be applied. Examples of the material of the electrical wiring 40 include a metal conductor covered with an insulating material.
  • a plasma generating gas is supplied to the instrument 10 through the power supply unit 20.
  • the plasma generating gas supplied to the instrument 10 is introduced from the rear end portion of the tubular dielectric 3 into the inner space of the tubular dielectric 3.
  • electricity is supplied from the power supply unit 20 to the instrument 10, and a voltage is applied between the internal electrode 4 and the external electrode 5.
  • the plasma generating gas introduced into the inner space of the tubular dielectric 3 is ionized at a position where the internal electrode 4 and the external electrode 5 face each other, and becomes plasma. At this time, electric field concentration occurs on the outer peripheral surface of the internal electrode 4.
  • the thread is formed in the internal electrode 4 of the present embodiment, the electric field concentration is distributed at a plurality of locations at the top of the thread. As a result, the internal electrode 4 to which a voltage is applied is prevented from being excessively heated locally, and low voltage and low temperature plasma can be easily and stably generated.
  • the active gas irradiation apparatus 100 of the present embodiment can generate plasma stably. For this reason, the active gas irradiation apparatus 100 can increase the density of the active species in the active gas to be irradiated to further promote the cleaning, activation, and healing of the irradiated surface.
  • the internal electrode 4 and the external electrode 5 face each other in a direction orthogonal to the direction in which the plasma generating gas flows.
  • the plasma generated at the position where the outer peripheral surface of the internal electrode 4 and the inner peripheral surface of the external electrode 5 face each other includes the gas flow path 6, the first active gas flow path 7, and the second active gas flow path 8. In this order.
  • the plasma flows while changing the gas composition, and becomes an active gas containing active species such as radicals.
  • the generated active gas is released from the irradiation port 1a and activates a part of the gas in the vicinity of the irradiation port 1a to be an active species.
  • An active gas containing these active species is irradiated to an object to be irradiated.
  • Examples of the irradiated object include cells, living tissues, and living organisms.
  • Examples of living tissues include organs such as internal organs, epithelial tissues that cover the surface of the body and body cavities, gums, alveolar bone, periodontal tissues such as periodontal ligament and cementum, teeth, bones, and the like.
  • the living organism may be any of mammals such as humans, dogs, cats and pigs; birds; fishes and the like.
  • the plasma generating gas examples include noble gases such as helium, neon, argon, and krypton; nitrogen; and the like. These gases may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the plasma generating gas is preferably composed mainly of nitrogen.
  • nitrogen as a main component means that nitrogen contained in the plasma generation gas is more than 50% by volume. That is, the nitrogen contained in the plasma generating gas is preferably more than 50% by volume, more preferably 70% by volume or more, further preferably 80 to 100% by volume, particularly preferably 90 to 100% by volume.
  • gas components other than nitrogen are not particularly limited, and examples thereof include oxygen and rare gases.
  • nitrogen As a main component, cleaning, activation, or healing of the irradiated object can be further promoted.
  • nitrogen as a main component, oxygen in the plasma generating gas can be reduced, and ozone in the active gas can be reduced.
  • the active gas irradiation device 10 is used for treatment in the oral cavity, it is preferable to reduce ozone in the active gas.
  • the conventional plasma generating unit it is difficult to generate plasma when a plasma generating gas containing nitrogen is used.
  • an internal electrode having a spiral ridge on the outer peripheral surface is used, plasma can be easily generated.
  • the oxygen concentration of the plasma generating gas introduced into the tubular dielectric 3 is preferably 1% by volume or less. If the oxygen concentration is less than or equal to the upper limit value, generation of ozone can be further reduced.
  • the flow rate of the plasma generating gas introduced into the tubular dielectric 3 is preferably 1 to 10 L / min.
  • the flow rate of the plasma generating gas introduced into the tubular dielectric 3 is equal to or higher than the lower limit, it is easy to suppress an increase in the temperature of the irradiated surface in the irradiated object. It is easy to accelerate
  • the AC voltage applied between the internal electrode 4 and the external electrode 5 is preferably 5 kVpp to 20 kVpp.
  • the unit “Vpp (Volt peak to peak)” representing the AC voltage is a potential difference between the highest value and the lowest value of the AC voltage waveform. If the applied AC voltage is equal to or lower than the upper limit value, the temperature of the generated plasma can be kept low. If the AC voltage to be applied is equal to or higher than the lower limit value, plasma can be generated more efficiently.
  • the frequency of alternating current applied between the internal electrode 4 and the external electrode 5 is preferably 0.5 kHz or more and less than 20 kHz, more preferably 1 kHz or more and less than 15 kHz, further preferably 2 kHz or more and less than 10 kHz, and particularly preferably 3 kHz or more and less than 9 kHz. 4 kHz or more and less than 8 kHz is most preferable. If the AC frequency is less than the upper limit, the temperature of the generated plasma can be kept low. If the AC frequency is equal to or higher than the lower limit, plasma can be generated more efficiently.
  • the temperature of the active gas irradiated from the irradiation port 1a of the nozzle 1 is preferably 50 ° C. or lower, more preferably 45 ° C. or lower, and further preferably 40 ° C. or lower.
  • the temperature of the irradiated surface is easily set to 40 ° C. or lower.
  • the lower limit value of the temperature of the active gas irradiated from the irradiation port 1a of the nozzle 1 is not particularly limited, and is, for example, 10 ° C. or higher.
  • the temperature of the active gas is a value obtained by measuring the temperature of the active gas at the irradiation port 1a with a thermocouple.
  • the distance (irradiation distance) from the irradiation port 1a to the irradiated surface is preferably 0.01 to 10 mm, for example. If irradiation distance is more than the said lower limit, the temperature of a to-be-irradiated surface can be made low and the irritation
  • the temperature of the active gas on the irradiated surface at a position away from the irradiation port 1a by a distance of 1 mm or more and 10 mm or less is preferably 40 ° C. or less. If the temperature of the active gas on the surface to be irradiated is 40 ° C. or less, stimulation to the surface to be irradiated can be reduced.
  • the lower limit value of the temperature of the active gas on the surface to be irradiated is not particularly limited, but is, for example, 10 ° C. or higher.
  • the temperature of the active gas on the surface to be irradiated is the AC voltage applied between the internal electrode 4 and the external electrode 5, the discharge amount of the active gas to be irradiated, the distance from the tip p of the internal electrode 4 to the irradiation port 1a, etc. Can be adjusted by combination.
  • the active species (radicals, etc.) contained in the active gas include hydroxy radicals, singlet oxygen, ozone, hydrogen peroxide, superoxide anion radical, nitric oxide, nitrogen dioxide, peroxynitrite, peroxynitrite, and trioxide. Examples include dinitrogen.
  • the type of active species contained in the active gas can be adjusted by, for example, the type of plasma generation gas.
  • the density (radical density) of hydroxy radicals in the active gas is preferably 0.1 to 300 ⁇ mol / L.
  • the radical density is equal to or higher than the lower limit value, it is easy to promote cleaning, activation, or healing of an object to be irradiated selected from cells, living tissues, and living organisms.
  • the amount is not more than the upper limit value, stimulation to the irradiated surface can be reduced.
  • the radical density is measured, for example, by the following method.
  • An active gas is irradiated for 30 seconds to 0.2 mL of DMPO (5,5-dimethyl-1-pyrroline-N-oxide) 0.2 mol / L solution.
  • the distance from the irradiation port to the liquid surface is set to 5.0 mm.
  • concentration is measured by an electron spin resonance (ESR) method, and this is made into a radical density.
  • ESR electron spin resonance
  • the density of singlet oxygen (singlet oxygen density) in the active gas is preferably 0.1 to 300 ⁇ mol / L.
  • the singlet oxygen density is equal to or higher than the lower limit, it is easy to promote cleaning, activation, or healing of an irradiation object selected from cells, living tissues, and living organisms.
  • the amount is not more than the upper limit value, stimulation to the irradiated surface can be reduced.
  • the singlet oxygen density is measured by the following method, for example.
  • An active gas is irradiated for 30 seconds to 0.4 mL of a TPC (2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide) 0.1 mol / L solution.
  • the distance from the irradiation port to the liquid surface is set to 5.0 mm.
  • the singlet oxygen concentration is measured by an electron spin resonance (ESR) method, and this is defined as a singlet oxygen density.
  • ESR electron spin resonance
  • the flow rate of the active gas irradiated from the irradiation port 1a is preferably 1 to 10 L / min.
  • the flow rate of the active gas irradiated from the irradiation port 1a is not less than the lower limit, the effect of the active gas acting on the irradiated surface can be sufficiently enhanced.
  • the flow rate of the active gas irradiated from the irradiation port 1a is less than the upper limit, it is possible to prevent the temperature of the surface irradiated with the active gas from excessively increasing.
  • the irradiated surface is wet, rapid drying of the irradiated surface can be prevented.
  • the irradiated surface is an affected area, stimulation to the patient can be suppressed.
  • the flow rate of the active gas irradiated from the irradiation port 1 a is adjusted by the supply amount of the plasma generating gas to the tubular dielectric 3.
  • the active gas generated by the active gas irradiation device 100 has an effect of promoting the healing of trauma and abnormalities.
  • the irradiated portion can be cleaned, activated, or healed.
  • the living tissue include internal organs, epithelial tissues covering the body surface and inner surfaces of body cavities, gums, alveolar bone, periodontal tissues such as periodontal ligament and cementum, teeth, bones and the like.
  • diseases and symptoms that can be treated by irradiation with active gas include oral diseases such as gingivitis and periodontal disease, skin wounds, and the like.
  • the irradiation frequency, the number of irradiations and the irradiation period are not particularly limited.
  • the irradiation conditions such as 1 to 5 times a day, 10 seconds to 10 minutes each time, and 1 to 30 days promote healing. From the viewpoint of
  • the active gas irradiation apparatus since the active gas irradiation apparatus according to the present embodiment includes the internal electrode having a specific shape, it is possible to generate low-temperature plasma more stably and irradiate the affected area with the active gas generated by the plasma. For this reason, the effect of plasma can be further enhanced.
  • the active gas irradiation apparatus of this embodiment irradiates active gas.
  • the irradiated active gas can promote tissue repair without damaging the tissue to be irradiated.
  • the active gas irradiation apparatus of the present invention is useful as a medical treatment instrument, particularly an intraoral treatment instrument and a dental treatment instrument.
  • the active gas irradiation device of the present invention is also suitable as an animal treatment instrument.
  • thermocouple measuring part In a room at 25 ° C., a thermocouple measuring part was positioned at a position 3 mm away from the irradiation port. The irradiation of the active gas was started, and the temperature read 60 seconds after that was taken as the temperature of the irradiation gas.
  • Example 1 An active gas irradiation device similar to the active gas irradiation device 100 was manufactured except that the following specifications were used. Using the produced active gas irradiation device, the healing effect of the wound was evaluated.
  • the internal electrode is in the form of the internal electrode 4 of FIG.
  • the clinical symptom score (initial) was 13.0 points
  • the clinical symptom score (after 14 days) was 1.0 point
  • the score improvement rate was 92.3%.
  • External electrode 5 copper plate. -Angle ⁇ : 20 °.
  • Example 1 The temperature of the irradiation gas in Example 1 was 34.9 ° C., the radical density was 3 ⁇ mol / L, and the singlet oxygen density was 3 ⁇ mol / L.
  • the score improvement rate of Example 1 was 92.3%, and healing was obviously promoted.
  • the applied AC voltage was set to 7 kVpp and 16 kVpp, and generation of plasma in the active gas irradiation apparatus was attempted.
  • plasma was generated at both 7 kVpp and 16 kVpp.
  • Comparative Example 1 plasma was generated at 16 kVpp, and plasma was not generated at 7 kVpp. From this result, it was found that the plasma effect can be further enhanced by applying the present invention.
  • the active gas irradiation device of the present invention can further enhance the plasma effect.
  • the active gas irradiation apparatus of this invention is suitable as a medical treatment instrument or an animal treatment instrument except a human.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Fluid Mechanics (AREA)
  • Plasma Technology (AREA)
  • Electrotherapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

プラズマ発生部(12)と、プラズマにより活性化された活性ガスを吐出する照射口(1a)と、を備えるインスツルメント(10)を備え、前記プラズマ発生部(12)は、プラズマ発生ガスが導入される管状誘電体(3)と、前記管状誘電体(3)の内部に設けられ、前記管状誘電体(3)の管軸(O1)方向に延びる内部電極(4)と、前記管状誘電体(3)の外側に設けられ、前記内部電極(4)に対向する外部電極(5)と、を備え、前記内部電極(4)は、前記管軸方向に延びる軸部と、前記軸部の外周面に形成されたらせん状の凸条とを備えることよりなる。

Description

活性ガス照射装置及びヒトを除く動物の治療方法
 本発明は、活性ガス照射装置及びヒトを除く動物の治療方法に関する。
 本願は、2017年6月16日に、日本に出願された特願2017-119153号に基づき優先権を主張し、その内容をここに援用する。
 従来、歯科治療等の医療用途において、プラズマを患部に照射し、創傷等の治癒を図る装置が知られている。
 例えば、特許文献1には、歯科治療を行うインスツルメントにプラズマジェット照射手段を搭載し、治療患部にプラズマジェット照射を可能にした歯科用診療装置が開示されている。
 特許文献1に記載の発明によれば、発生したプラズマを患部に直接照射することで、創傷等の治癒を図っている。
特許第5441066号公報
 いわゆるプラズマ照射装置としては、プラズマジェット照射装置と活性ガス照射装置とがある。
 プラズマジェット照射装置は、プラズマを発生し、発生したプラズマと、プラズマ中又は周辺の気体と反応して生成した活性種とを被照射物に直接照射する。活性種としては、ヒドロキシルラジカル、一重項酸素、オゾン、過酸化水素、スーパーオキシドアニオンラジカル等の活性酸素種、一酸化窒素、二酸化窒素、ペルオキシナイトライト、過酸化亜硝酸、三酸化二窒素等の活性窒素種が挙げられる。
 活性ガス照射装置は、プラズマを発生し、発生したプラズマ中又は周辺の気体と反応して生成した活性種を含む活性ガスを被照射物に照射する。
 加えて、照射対象面の温度の上昇を抑制し、かつ創傷の治癒等の効果を高めるには、比較的低い電圧で、安定してプラズマを発生する必要がある。
 そこで、本発明は、プラズマの効果をさらに高められる活性ガス照射装置を提供することを目的とする。
 本発明は、以下の態様を有する。
[1]プラズマ発生部と、プラズマにより活性化された活性ガスを吐出する照射口と、を備えるインスツルメントを備え、前記プラズマ発生部は、プラズマ発生ガスが導入される管状誘電体と、前記管状誘電体の内部に設けられ、前記管状誘電体の管軸方向に延びる内部電極と、前記管状誘電体の外側に設けられ、前記管上誘電体を介して前記内部電極に対向する外部電極と、を備え、前記内部電極は、前記管軸方向に延びる軸部と、前記軸部の外周面に形成されたらせん状のねじ山とを備える、活性ガス照射装置。
[2]前記凸条の突端は、鋭角である、[1]に記載の活性ガス照射装置。
[3]前記管軸方向における前記凸条の突端同士の間隔は、0.2~3.0mmである、[1]又は[2]に記載の活性ガス照射装置。
[4]前記凸条の高さは、0.1~3.0mmである、[1]~[3]のいずれかに記載の活性ガス照射装置。
[5]前記内部電極における前記外部電極と対向している領域の長さは、1~50mmである、請求項1~4のいずれか一項に記載の活性ガス照射装置。
[6]前記プラズマ発生ガスが窒素を含有する、[1]~[5]のいずれかに記載の活性ガス照射装置。
[7]前記窒素の含有量は、前記プラズマ発生ガスの総体積に対し、80~100体積%である、[6]に記載の活性ガス照射装置。
[8]医療用治療器具である、[1]~[7]のいずれかに記載の活性ガス照射装置。
[9]ヒトを除く動物治療用器具である、[1]~[7]のいずれかに記載の活性ガス照射装置。
[10][1]~[7]のいずれかに記載の活性ガス照射装置を用い、ヒトを除く動物の組織に、前記活性ガスを照射する、ヒトを除く動物の治療方法。
 本稿において、「活性ガス」とはラジカル等の活性種、励起した原子及び分子、イオン等のいずれかを含む化学活性の高いガスを指す。
 本発明の活性ガス照射装置によれば、プラズマの効果をさらに高められる。
本発明の一実施形態に係る活性ガス照射装置を示す模式図である。 本発明の一実施形態に係る活性ガス照射装置のインスツルメントの部分断面図である。 図2のインスツルメントのx-x断面図である。 他の実施形態に係る内部電極の側面図である。
 本発明の活性ガス照射装置は、プラズマ発生部と、プラズマにより活性化された活性ガスを吐出する照射口と、を備えるインスツルメントを備える。
 以下、本発明の活性ガス照射装置の一例を示す。
 図1の活性ガス照射装置100は、インスツルメント10と、給電ユニット20と、ガス管路30と電気配線40とを備える。
 ガス管路30は、インスツルメント10と給電ユニット20とに接続されている。電気配線40は、インスツルメント10と給電ユニット20とに接続されている。
 本実施形態において、ガス管路30と電気配線40とは、各々独立しているが、ガス管路30と電気配線40とが束ねられていてもよい。
 給電ユニット20は、プラズマ発生ガスの供給源(不図示)と接続されている。
 図2は、インスツルメント10における軸線に沿う面の断面(縦断面)図である。インスツルメント10は、活性種を照射する照射器具である。
 図2に示すように、インスツルメント10は、長尺状のカウリング2と、カウリング2の先端に設けられたノズル1と、カウリング2内に設けられたプラズマ発生部12とを備える。
 カウリング2は、円筒形の胴体部2bと、胴体部2bの先端に設けられたヘッド部2aとを備える。なお、胴体部2bは、円筒形に限られず、四角筒、六角筒、八角筒等の多角筒形でもよい。
 ヘッド部2aは、先端に向かい漸次窄んでいる。即ち、本実施形態におけるヘッド部2aは、円錐形である。なお、ヘッド部2aは、円錐形に限られず、四角錘、六角錘、八角錘等の多角錘形でもよい。
 ヘッド部2aの先端には、ノズル1が挿入される嵌合孔2cが形成されている。ノズル1は、ヘッド部2aに着脱可能に設けられている。符号O1は、胴体部2bの管軸である。ヘッド部2aの内部には、管軸O1方向に延びる第一の活性ガス流路7が形成されている。
 胴体部2bの外周面には、スイッチ9が設けられている。
 図2及び3に示すように、プラズマ発生部12は、管状誘電体3と、内部電極4と、外部電極5とを備える。
 管状誘電体3は、管軸O1方向に延びる円筒状の部材である。管状誘電体3の内部には、管軸O1方向に延びるガス流路6が形成されている。第一の活性ガス流路7とガス流路6とは連通している。なお、管軸O1は、管状誘電体3の管軸と同じである。
 管状誘電体3内には、内部電極4が設けられている。内部電極4は、管軸O1方向に延びる略円柱状の部材である。内部電極4は、管状誘電体3の内面と離間している。
 管状誘電体3の外周面には、内部電極4に沿う外部電極5が設けられている。外部電極5は、管状誘電体3の外周を周回している。即ち、外部電極5は、管状誘電体3の外側に設けられている。
 本実施形態の外部電極5の形状は、円筒状である。外部電極5の形状は、円筒状に限られず、棒状でもよいし、板状でもよい。外部電極5が棒状又は板状である場合、外部電極5の数は、1つでもよいし、2つ以上でもよい。
 図3に示すように、管状誘電体3と内部電極4と外部電極5とは、管軸O1を中心として同心円状に位置している。
 本実施形態において、内部電極4の外周面と外部電極5の内周面とは、管状誘電体3を挟んで互いに対向している。
 ノズル1は、嵌合孔2cに嵌合する台座部1bと、照射管1cとを備える。台座部1bと照射管1cとは一体に形成されている。ノズル1の内部には、第二の活性ガス流路8が形成され、先端に照射口1aが形成されている。第二の活性ガス流路8と第一の活性ガス流路7とは、連通している。
 胴体部2bの材料は、特に限定されないが、絶縁性を有する材料が好ましい。絶縁性の材料としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン等の熱可塑性樹脂;フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂等が挙げられる。
 胴体部2bの大きさは、特に限定されず、手指で把持しやすい大きさとされる。
 ヘッド部2aの材料は、特に限定されず、絶縁性を有してもよいし、絶縁性を有しなくてもよい。ヘッド部2aの材料は、耐摩耗性、耐腐食性に優れる材料が好ましい。耐摩耗性、耐腐食性に優れる材料としては、ステンレス等の金属が挙げられる。ヘッド部2aと胴体部2bとの材料は、同じでもよく、異なってもよい。
 ヘッド部2aの大きさは、活性ガス照射装置100の用途等を勘案して決定される。例えば、活性ガス照射装置100が口腔内治療器具である場合、ヘッド部2aの大きさは、口腔内に挿入できる大きさとされる。
 管状誘電体3の材料としては、公知のプラズマ装置に使用される誘電体材料が適用できる。管状誘電体3の材料としては、例えば、ガラス、セラミックス、合成樹脂等が挙げられる。管状誘電体3の誘電率は低いほど好ましい。
 管状誘電体3の内径Rは、内部電極4の外径dを勘案して適宜決定される。内径Rは、後述する距離sを所望の範囲とするように、決定される。
 内部電極4は、管軸O1方向に延びる軸部と、軸部の外周面に形成されたねじ山とを備える。即ち、内部電極4は、軸部と、軸部の外周面に形成されたらせん状の凸条とを備える。軸部は、中実でもよいし、中空でもよい。中でも、軸部は中実が好ましい。軸部が中実であれば、加工が容易であり、かつ機械的な耐久性を高められる。内部電極4のねじ山は、軸部の周方向に周回する螺旋状のねじ山である。内部電極4の形態は、雄ねじと同様の形態である。
 内部電極4は、いわゆる平行ねじでもよいし、テーパねじでもよい。平行ねじは、基端から先端に向かい、同じ太さのねじである。テーパねじは、基端から先端に向かい漸次窄むねじである。
 内部電極4におけるねじ山の旋回方向は、特に限定されない。内部電極4のねじ形状は、いわゆる右ねじ(右に回転すると先端方向に進むねじ)でもよいし、左ねじでもよい。
 内部電極4のねじ山の形状は、特に限定されず、いわゆる三角ねじでもよいし、角ねじでもよいし、台形ねじでもよい。三角ねじは、雄ねじの縦断面において、ねじ山の断面形状が三角形のねじである。角ねじは、雄ねじの縦断面において、ねじ山の断面形状が四角形のねじである。台形ねじは、角ねじの内、ねじ山の断面形状が先端にむかい漸次窄まるねじである。
 内部電極4のねじ山の頂点が先鋭であるほうが、プラズマを発生しやすい。このため、ねじ山の形状は、三角ねじ、台形ねじ等が好ましく、三角ねじがより好ましい。加えて、ねじ山の突端は、鋭角(90°未満)が好ましい。ねじ山の突端の角度は、30~90°がより好ましく、45~70°がさらに好ましい。ねじ山の突端が上記範囲内であると、より効率的にプラズマを発生できる。ねじ山の突端の角度は、ねじ山の延びる方向に直交する断面におけるねじ山の突端の角度である。
 内部電極4のねじ山は、1ピッチ(任意のねじ山の頂点と、これに隣接するねじ山の頂点との距離)の間に1条のねじ山が形成された一条ねじ(即ち、ねじ溝が1本のみ形成されたねじ)でもよいし、1ピッチの間に2以上のねじ山が形成された多条ねじ(即ち、隣接する2本以上のねじ溝が形成されたねじ)でもよい。
 内部電極4の外径dは、活性ガス照射装置100の用途(即ち、インスツルメント10の大きさ)等を勘案して、適宜決定される。活性ガス照射装置100が口腔内用治療器具である場合、外径dは、0.5~20mmが好ましく、1~10mmがより好ましい。外径dが上記下限値以上であれば、内部電極を容易に製造できる。加えて、外径dが上記下限値以上であれば、表面積が大きくなり、プラズマをより効率的に発生して、治癒等をより促進できる。外径dが上記上限値以下であれば、インスツルメント10を過度に大きくすることなく、プラズマをより効率的に発生し、治癒等をより促進できる。
 内部電極4のねじ山(凸条)の高さhは、内部電極4の外径dを勘案して適宜決定できる。ねじ山の高さhは、例えば、0.1~3.0mmが好ましい。高さhが上記下限値以上であれば、プラズマをより効率的に発生できる。高さhが上記上限値以下であれば、内部電極4の強度を高められる。ねじ山の高さhは、管軸O1に対して垂直な方向の高さであり、ねじ山同士の間に形成された谷の底からねじ山の突端までの長さである。
 管軸O1方向におけるねじ山の突端同士の間隔は、ねじ山のピッチpである。
 内部電極4のねじ山のピッチpは、内部電極4の長さや外径d等を勘案して適宜決定できる。ねじ山のピッチpは、例えば、0.2~3.0mmが好ましく、0.2~2.5mmがより好ましく、0.2~2.0mmがさらに好ましい。ピッチpが上記下限値以上であれば、プラズマをさらに発生しやすい。ピッチpが上記上限値以下であれば、プラズマの発生個所を増やして、より効率的にプラズマを発生できる。なお、内部電極4のねじ山が多条ねじである場合、ピッチpは、同じねじ山の突端同士の間隔ではなく、所定のねじ山の突端と、これに隣接する他のねじ山の突端との間隔(即ち、同じねじ山の突端であるかに関係なく、隣接するねじ山の突端同士の間隔)を意味する。
 内部電極4の材料は、導電材であれば特に限定されず、公知のプラズマ装置の電極に使用される金属が適用できる。内部電極4の材料としては、ステンレス、銅、タングステン等の金属及びカーボン等が挙げられる。
 内部電極4としては、JIS B 0205:2001のメートルねじの規格品(M2、M2.2、M2.5、M3、M3.5等)、JIS B 2016:1987のメートル台形ねじの規格品(Tr8×1.5、Tr9×2、Tr9×1.5等)、JIS B 0206:1973のユニファイ並目ねじの規格品(No.1-64UNC、No.2-56UNC、No.3-48UNC等)等と同等の仕様が好ましい。これらの規格品と同等の仕様であれば、コスト面で優位である。
 内部電極4の外面(ねじ山の頂点)と管状誘電体3の内面との距離sは、0.05~5mmが好ましく、0.1~1mmがより好ましい。距離sが上記下限値以上であれば、所望量のガスを容易に通流できる。距離sが上記上限値以下であれば、プラズマをより効率的に発生し、活性ガスの温度をより低められる。
 内部電極4における外部電極5と対向している領域の長さL3は、1~50mmが好ましく、3~40mmがより好ましく、5~30mmがさらに好ましい。長さL3が上記下限値以上であれば、プラズマの発生個所を増やして、より効率的にプラズマを発生できる。長さL3が上記上限値以下であれば、活性ガスの温度の上昇をより良好に抑制できる。本実施形態において、長さL3は、外部電極5の長さと等しい。
 なお、外部電極5は、管軸O1方向に2つ以上に分かれていてもよい。外部電極5が管軸O1方向に分かれている場合、長さL3は、2つの外部電極の後端から先端までの長さに等しく、2つの外部電極の間の距離を含むものとする。
 内部電極の形状は、雄ねじと同様の形態に限定されない。内部電極は、図4の内部電極40でもよい。内部電極40は、軸部42と、らせん状の凸条44とを備える。内部電極40は、内部電極4に比べて幅広の凸条44を備える。内部電極40は、ドリルと同様の形態である。内部電極40におけるピッチp2は、例えば、内部電極4におけるピッチpに比較して長い。ピッチp2は、例えば、3~20mmである。凸条44は、突端が平坦である。このため、ピッチp2は、凸条44におけるエッジ46同士の間隔とされる。エッジ46は、凸条44における内部電極40の先端側のエッジである。
 内部電極の形態は、雄ねじと同様の形態が好ましい。雄ねじと同様の形態であれば、ピッチが短いため、内部電極と外部電極とが対向する領域の中で、プラズマの発生個所をより多く形成できる。このため、雄ねじと同様の形態の内部電極は、より効率的にプラズマを発生できる。
 外部電極5の材料は、導電材であれば特に限定されず、公知のプラズマ装置の電極に使用される金属が適用できる。外部電極5の材料としては、ステンレス、銅、タングステン等の金属及びカーボン等が挙げられる。
 ノズル1の材料は、特に限定されないが、絶縁性を有してもよいし、絶縁性を有しなくてもよい。ノズル1の材料は、耐摩耗性、耐腐食性に優れる材料が好ましい。耐摩耗性、耐腐食性に優れる材料としては、ステンレス等の金属が挙げられる。
 照射管1c内の流路の長さ(即ち、距離L2)は、活性ガス照射装置100の用途等を勘案して、適宜決定できる。
 照射口1aの開口径は、例えば、0.5~5mmが好ましい。開口径が上記下限値以上であれば、活性ガスの圧力損失を抑えられる。開口径が上記上限値以下であれば、照射される活性ガスの流速を高めて、治癒等をより促進できる。
 照射管1cは、管軸O1に対して屈曲している。
 照射管1cの管軸O2と管軸O1とのなす角度θは、活性ガス照射装置100の用途等を勘案して決定できる。角度θは、例えば、0~90°が好ましく、10~60°がより好ましい。
 外部電極5の先端中心点Q1からヘッド部2aの先端Q2までの距離L1と、先端Q2から照射口1aまでの距離L2との合計(即ち、内部電極4から照射口1aまでの道のり)は、活性ガス照射装置100の大きさや、活性ガスが照射された面(被照射面)における活性ガスの温度等を勘案して適宜決定される。距離L1と距離L2の合計が長ければ、被照射面における活性ガスの温度をより低くできる。距離L1と距離L2の合計が短ければ、活性ガスのラジカル密度をより高めて、被照射面における清浄化、賦活化、治癒等の効果をより高められる。なお、先端Q2は、管軸O1と管軸O2との交点である。
 被照射面における活性ガスの温度は、熱電対により測定される。
 給電ユニット20は、インスツルメント10に送電する装置である。本実施形態の給電ユニット20は、ガス管路30を介して、インスツルメント10にプラズマ発生ガスを送るポンプを備える。給電ユニット20は、外部電極5と内部電極4との間に印加する電圧及び周波数を調節できる。
 なお、給電ユニット20は、ポンプを備えなくてもよい。この場合、給電ユニット20とは独立して、ポンプを備えてもよい。また、プラズマ発生ガスの供給源における圧力によって、インスツルメント10にプラズマ発生ガスを供給してもよい。
 ガス管路30は、給電ユニット20からインスツルメント10にプラズマ発生ガスを供給する経路である。ガス管路30は、インスツルメント10の管状誘電体3の後端部に接続されている。ガス管路30の材料は特に制限されず、公知のガス管に用いられる材料を適用できる。ガス管路30の材料としては、例えば、樹脂製の配管、ゴム製のチューブ等が挙げられ、可撓性を有する材料が好ましい。
 電気配線40は、給電ユニット20からインスツルメント10に電気を供給する配線である。電気配線40は、インスツルメント10の内部電極4、外部電極5及びスイッチ9に接続されている。電気配線40の材料は特に制限されず、公知の電気配線に用いられる材料を適用できる。電気配線40の材料としては、絶縁材料で被覆された金属導線等が挙げられる。
 次に、活性ガス照射装置100の使用方法を説明する。
 まず、給電ユニット20を介して、インスツルメント10にプラズマ発生ガスを供給する。
 インスツルメント10に供給されたプラズマ発生ガスは、管状誘電体3の後端部から管状誘電体3の内空部へと導入される。
 次に、給電ユニット20からインスツルメント10に電気を供給し、内部電極4と外部電極5との間に電圧を印加する。管状誘電体3の内空部に導入されたプラズマ発生ガスは、内部電極4と外部電極5とが対向する位置において電離され、プラズマになる。
 この際、内部電極4の外周面で電界集中が生じる。本実施形態の内部電極4には、ねじ山が形成されているため、電界集中は、ねじ山の頂点の複数個所に分散される。
 この結果、電圧を印加された内部電極4が局所的に過度に加熱されることが防止され、低電圧で低温のプラズマを容易に安定して発生できる。
 加えて、本実施形態の活性ガス照射装置100は、安定してプラズマを発生できる。このため、活性ガス照射装置100は、照射する活性ガス中の活性種の密度を高めて、被照射面の清浄化、賦活化、治癒をより促進できる。
 本実施形態においては、内部電極4と外部電極5とが、プラズマ発生ガスの流れる方向と直交する向きに対向している。内部電極4の外周面と外部電極5の内周面とが対向する位置で発生したプラズマは、ガス流路6と、第一の活性ガス流路7と、第二の活性ガス流路8とをこの順に通流する。この間、プラズマは、ガス組成を変化しつつ通流し、ラジカル等の活性種を含む活性ガスとなる。
 生じた活性ガスは、照射口1aから放出され、照射口1a近傍の気体の一部を活性化して活性種とする。これらの活性種を含む活性ガスは、被照射物に照射される。
 被照射物としては、例えば、細胞、生体組織、生物個体が挙げられる。
 生体組織としては、内蔵等の各器官、体表や体腔の内面を覆う上皮組織、歯肉、歯槽骨、歯根膜及びセメント質等の歯周組織、歯、骨等が挙げられる。
 生物個体としては、ヒト、犬、猫、豚等の哺乳類;鳥類;魚類等のいずれでもよい。
 プラズマ発生ガスとしては、例えば、ヘリウム、ネオン、アルゴン、クリプトン等の希ガス;窒素;等が挙げられる。これらのガスは、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 プラズマ発生ガスは、窒素を主成分とすることが好ましい。ここで、窒素を主成分とするとは、プラズマ発生ガスに含まれる窒素が50体積%超であることをいう。即ち、プラズマ発生ガスに含まれる窒素は、50体積%超が好ましく、70体積%以上がより好ましく、80~100体積%がさらに好ましく、90~100体積%が特に好ましい。プラズマ発生ガス中、窒素以外のガス成分は、特に限定されず、例えば、酸素や希ガス等が挙げられる。窒素を主成分とすることで、被照射物の清浄化、賦活化又は治癒をより促進できる。加えて、窒素を主成分とすることで、プラズマ発生ガス中の酸素を低減して、活性ガス中のオゾンを低減できる。活性ガス照射装置10を口腔内の治療に用いる場合、活性ガス中のオゾンを低減することが好ましい。
 従来のプラズマ発生部では、窒素を含むプラズマ発生ガスを用いると、プラズマを発生しにくかった。本実施形態においては、外周面にらせん状の凸条を備える内部電極を用いるため、容易にプラズマを発生できる。
 活性ガス照射装置100が口腔内用治療器具である場合、管状誘電体3に導入するプラズマ発生ガスの酸素濃度は、1体積%以下が好ましい。酸素濃度が上限値以下であれば、オゾンの発生をより低減できる。
 管状誘電体3に導入されるプラズマ発生ガスの流量は、1~10L/minが好ましい。
 管状誘電体3に導入されるプラズマ発生ガスの流量が前記下限値以上であると、被照射物における被照射面の温度の上昇を抑制しやすい。前記上限値以下であると、被照射物の清浄化、賦活化又は治癒をより促進しやすい。
 内部電極4と外部電極5との間に印加する交流電圧は、5kVpp以上20kVpp以下が好ましい。ここで、交流電圧を表す単位「Vpp(Volt peak to peak)」は、交流電圧波形の最高値と最低値との電位差である。
 印加する交流電圧が前記上限値以下であれば、発生するプラズマの温度を低く抑えることができる。印加する交流電圧が前記下限値以上であれば、より効率的にプラズマを発生できる。
 内部電極4と外部電極5との間に印加する交流の周波数は、0.5kHz以上20kHz未満が好ましく、1kHz以上15kHz未満がより好ましく、2kHz以上10kHz未満がさらに好ましく、3kHz以上9kHz未満が特に好ましく、4kHz以上8kHz未満が最も好ましい。
 交流の周波数が前記上限値未満であれば、発生するプラズマの温度を低く抑えることができる。交流の周波数が前記下限値以上であれば、より効率的にプラズマを発生できる。
 ノズル1の照射口1aから照射される活性ガスの温度は、50℃以下が好ましく、45℃以下がより好ましく、40℃以下がさらに好ましい。
 ノズル1の照射口1aから照射される活性ガスの温度が前記上限値以下であると、被照射面の温度を40℃以下にしやすい。被照射面の温度を40℃以下にすることで、被照射部分が患部である場合にも、患部への刺激を低減できる。
 ノズル1の照射口1aから照射される活性ガスの温度の下限値は、特に制限されず、例えば、10℃以上である。
 活性ガスの温度は、照射口1aにおける活性ガスの温度を熱電対で測定した値である。
 照射口1aから被照射面までの距離(照射距離)は、例えば、0.01~10mmが好ましい。照射距離が上記下限値以上であれば、被照射面の温度を低くし、被照射面への刺激をより緩和できる。照射距離が上記上限値以下であれば、治癒等の効果をより高められる。
 照射口1aから1mm以上10mm以下の距離で離れた位置の被照射面における活性ガスの温度は、40℃以下が好ましい。被照射面における活性ガスの温度が40℃以下であれば、被照射面への刺激を低減できる。被照射面における活性ガスの温度の下限値は特に限定されないが、例えば10℃以上とされる。
 被照射面における活性ガスの温度は、内部電極4と外部電極5との間に印加する交流電圧、照射される活性ガスの吐出量、内部電極4の先端pから照射口1aまでの道のり等の組み合わせにより調節できる。
 活性ガスに含まれる活性種(ラジカル等)としては、ヒドロキシラジカル、一重項酸素、オゾン、過酸化水素、スーパーオキシドアニオンラジカル、一酸化窒素、二酸化窒素、ペルオキシナイトライト、過酸化亜硝酸、三酸化二窒素等が挙げられる。活性ガスに含まれる活性種の種類は、例えば、プラズマ発生ガスの種類等により調節できる。
 活性ガス中におけるヒドロキシラジカルの密度(ラジカル密度)は、0.1~300μmol/Lが好ましい。ラジカル密度が前記下限値以上であると、細胞、生体組織及び生物個体から選ばれる被照射物の清浄化、賦活化又は異常の治癒を促進しやすい。前記上限値以下であると、被照射面への刺激を低減できる。
 ラジカル密度は、例えば、以下の方法で測定される。
 DMPO(5,5-ジメチル-1-ピロリン-N-オキシド)0.2mol/L溶液0.2mLに対して、活性ガスを30秒間照射する。この際、照射口から液面までの距離を5.0mmとする。活性ガスが照射された前記溶液について、電子スピン共鳴(ESR)法によりヒドロキシルラジカル濃度を測定し、これをラジカル密度とする。
 活性ガス中における一重項酸素の密度(一重項酸素密度)は、0.1~300μmol/Lが好ましい。一重項酸素密度が前記下限値以上であると、細胞、生体組織及び生物個体から選ばれる被照射物の清浄化、賦活化又は異常の治癒を促進しやすい。前記上限値以下であると、被照射面への刺激を低減できる。
 一重項酸素密度は、例えば、以下の方法で測定される。
 TPC(2,2,5,5-テトラメチル-3-ピロリン-3-カルボキサミド)0.1mol/L溶液0.4mLに対して、活性ガスを30秒間照射する。この際、照射口から液面までの距離を5.0mmとする。活性ガスが照射された前記溶液について、電子スピン共鳴(ESR)法により一重項酸素濃度を測定し、これを一重項酸素密度とする。
 照射口1aから照射される活性ガスの流量は、1~10L/minが好ましい。
 照射口1aから照射される活性ガスの流量が前記下限値以上であると、活性ガスが被照射面に作用する効果を充分に高められる。照射口1aから照射される活性ガスの流量が前記上限値未満であると、活性ガスの被照射面の温度が過度に高まることを防止できる。加えて、被照射面が濡れている場合には、被照射面の急速な乾燥を防止できる。さらに、被照射面が患部である場合には、患者への刺激を抑制できる。
 なお、活性ガス照射装置100において、照射口1aから照射される活性ガスの流量は、管状誘電体3へのプラズマ発生ガスの供給量により調節される。
 活性ガス照射装置100によって生じる活性ガスは、外傷や異常の治癒を促進する効果を有する。活性ガスを細胞、生体組織又は生物個体に照射することによって、その被照射部分の清浄化、賦活化、又はその被照射部分の治癒を促進できる。
 前記生体組織としては、内蔵等の各器官、体表や体腔の内面を覆う上皮組織、歯肉、歯槽骨、歯根膜及びセメント質等の歯周組織、歯、骨等が挙げられる。
 活性ガスの照射によって処理可能な疾患及び症状としては、例えば、歯肉炎、歯周病等の口腔内の疾患、皮膚の創傷等が挙げられる。
 外傷や異常の治癒を促進する目的で活性ガスを照射する場合、その照射頻度、照射回数及び照射期間は特に限定されない。例えば、1~5.0L/minの照射量で活性ガスを患部に照射する場合、1日1~5回、毎回10秒~10分、1~30日間、等の照射条件が、治癒を促進する観点から好ましい。
 上述の通り、本実施形態の活性ガス照射装置は、特定の形状の内部電極を備えるため、低温のプラズマをより安定的に発生し、プラズマにより生じた活性ガスを患部等に照射できる。このため、プラズマの効果をより高められる。
 本実施形態の活性ガス照射装置は、活性ガスを照射する。照射された活性ガスは、照射対象の組織を損傷せずに、組織の修復を促進できる。
 本発明の活性ガス照射装置は、医療用治療器具、特に口腔内用治療器具、歯科用治療器具として有用である。
 また、本発明の活性ガス照射装置は、動物治療用器具としても好適である。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(評価方法)
<創傷の治癒効果>
 各例の活性ガス照射装置を用い、活性ガスをブタの創傷に照射した。活性ガス照射前(初期)と、14日間の活性ガス照射後(14日後)の創傷を下記臨床症状スコアに分類し、下記(1)式によりスコア改善率を求めた。
 スコア改善率(%)=((臨床症状スコア(初期)-臨床症状スコア(14日後))/臨床症状スコア(初期))×100 ・・・(1)
[条件]
・印加交流電圧:16kVpp。
・印加周波数:7.5kHz。
・活性ガス:窒素(純度99.9%)。
・活性ガスの流量:3L/min。
・照射時間:60秒/回。1回/日。
・照射期間:14日間。
[臨床症状スコア]
 臨床症状スコアは、それぞれの創傷に、発赤、紅斑、丘疹、滲出液(膿汁含)、膿疱が認められるかを目視で確認した。5項目の症状について、下記指標に基づいて、4人の評価者が点数化し、合計した。評価結果は、4人の評価者の平均値で表した。
 0点:認めない。
 1点:軽度。
 2点:中度。
 3点:重度。
<活性ガスの温度>
 25℃の室内において、照射口から3mm離れた位置に熱電対の測定部を位置させた。
活性ガスの照射を開始し、その60秒後に読み取られた温度を照射ガスの温度とした。
(実施例1)
 下記仕様とした以外は、活性ガス照射装置100と同様の活性ガス照射装置を作製した。作製した活性ガス照射装置を用い、創傷の治癒効果を評価した。内部電極は、図2の内部電極4の形態である。
 その結果、臨床症状スコア(初期)は13.0点、臨床症状スコア(14日後)は1.0点、スコア改善率は92.3%であった。
<仕様>
・管状誘電体3:ガラス製、内径R=3mm。
・内部電極4:ステンレス製。平行ねじ、一条ねじ。外径d=2mm、ピッチp=0.4mm、ねじ山高さh=0.214mm。
・外部電極5:銅板。
・角度θ:20°。
(比較例1)
 内部電極を下記仕様とした以外は、実施理恵1と同様の活性ガス照射装置を作成した。作製した活性ガス照射装置を用い、創傷の治癒効果を評価した。
<仕様>
・内部電極:ステンレス製。外径d=2mm、凸条なし。
 実施例1の照射ガスの温度は、34.9℃であり、ラジカル密度は3μmol/Lであり、一重項酸素密度は3μmol/Lであった。
 実施例1のスコア改善率は、92.3%であり、明らかに治癒が促進されていた。
 実施例1及び比較例1について、印加交流電圧を7kVpp、16kVppとして、活性ガス照射装置でのプラズマの発生を試みた。実施例1は、7kVpp及び16kVppのいずれでも、プラズマを生じた。比較例1は、16kVppではプラズマを生じたもの、7kVppではプラズマを生じなかった。
 この結果から、本発明を適用することで、プラズマの効果をより高められることが分かった。
 本発明の活性ガス照射装置は、プラズマの効果をさらに高められる。このため、本発明の活性ガス照射装置は、医療用治療器具又はヒトを除く動物治療用器具として好適である。
1 ノズル
1a 照射口
3 管状誘電体
4、40 内部電極
5 外部電極
12 プラズマ発生部
42 軸部
44 凸条
O1 管軸

Claims (10)

  1.  プラズマ発生部と、プラズマにより活性化された活性ガスを吐出する照射口と、を備えるインスツルメントを備え、
     前記プラズマ発生部は、プラズマ発生ガスが導入される管状誘電体と、前記管状誘電体の内部に設けられ、前記管状誘電体の管軸方向に延びる内部電極と、前記管状誘電体の外側に設けられ、前記管状誘電体を介して前記内部電極に対向する外部電極と、を備え、
     前記内部電極は、前記管軸方向に延びる軸部と、前記軸部の外周面に形成されたらせん状の凸条とを備える、活性ガス照射装置。
  2.  前記凸条の突端は、鋭角である、請求項1に記載の活性ガス照射装置。
  3.  前記管軸方向における前記凸条の突端同士の間隔は、0.2~3.0mmである、請求項1又は2に記載の活性ガス照射装置。
  4.  前記凸条の高さは、0.1~3.0mmである、請求項1~3のいずれか一項に記載の活性ガス照射装置。
  5.  前記内部電極における前記外部電極と対向している領域の長さは、1~50mmである、請求項1~4のいずれか一項に記載の活性ガス照射装置。
  6.  前記プラズマ発生ガスが窒素を含有する、請求項1~5のいずれか一項に記載の活性ガス照射装置。
  7.  前記窒素の含有量は、前記プラズマ発生ガスの総体積に対して80~100体積%である、請求項6に記載の活性ガス照射装置。
  8.  医療用治療器具である、請求項1~7のいずれか一項に記載の活性ガス照射装置。
  9.  ヒトを除く動物治療用器具である、請求項1~7のいずれか一項に記載の活性ガス照射装置。
  10.  請求項1~7のいずれか一項に記載の活性ガス照射装置を用い、ヒトを除く動物の組織に、前記活性ガスを照射する、ヒトを除く動物の治療方法。
PCT/JP2018/022868 2017-06-16 2018-06-15 活性ガス照射装置及びヒトを除く動物の治療方法 WO2018230696A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019525560A JP6677855B2 (ja) 2017-06-16 2018-06-15 活性ガス照射装置及びヒトを除く動物の治療方法
EP18816666.4A EP3639891A4 (en) 2017-06-16 2018-06-15 ACTIVE GAS EXPOSURE DEVICE AND PROCESS FOR TREATMENT OF NON-HUMAN ANIMALS
CN201880031730.4A CN110662577A (zh) 2017-06-16 2018-06-15 活性气体喷射装置和除人类以外的动物的治疗方法
US16/333,468 US20190209854A1 (en) 2017-06-16 2018-06-15 Reactive gas application apparatus, and method of treating animals excluding humans

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-119153 2017-06-16
JP2017119153 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018230696A1 true WO2018230696A1 (ja) 2018-12-20

Family

ID=64660753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022868 WO2018230696A1 (ja) 2017-06-16 2018-06-15 活性ガス照射装置及びヒトを除く動物の治療方法

Country Status (6)

Country Link
US (1) US20190209854A1 (ja)
EP (1) EP3639891A4 (ja)
JP (2) JP6677855B2 (ja)
CN (1) CN110662577A (ja)
TW (1) TW201909853A (ja)
WO (1) WO2018230696A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020259578A1 (en) * 2019-06-24 2020-12-30 Evernew Biotech, Inc. Plasma device including two gas inlets
JP6919043B1 (ja) * 2020-10-13 2021-08-11 積水化学工業株式会社 照射器具及びプラズマ装置
WO2021256030A1 (ja) * 2020-06-19 2021-12-23 積水化学工業株式会社 照射器具及びプラズマ装置
CN113940145A (zh) * 2019-06-04 2022-01-14 日本特殊陶业株式会社 等离子体照射装置及等离子体照射方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4329653A1 (fr) * 2021-04-28 2024-03-06 Sorbonne Universite Outil pour dispositif de traitement medical par plasma et dispositif correspondant
KR102568541B1 (ko) * 2021-08-17 2023-08-22 주식회사 피글 구강질환 치료기 및 구강질환 치료 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342331A (ja) * 2003-05-12 2004-12-02 Sekisui Chem Co Ltd プラズマ放電電極及びプラズマ放電処理方法
JP2012528452A (ja) * 2008-05-30 2012-11-12 コロラド ステート ユニバーシティー リサーチ ファウンデーション プラズマ化学のための電極表面の材料および構造
JP2017050267A (ja) * 2015-08-31 2017-03-09 積水化学工業株式会社 プラズマ装置及びその使用方法並びに窒素ガスプラズマ及びその照射方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1689216A1 (en) * 2005-02-04 2006-08-09 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Atmospheric-pressure plasma jet
JP5980501B2 (ja) * 2011-12-22 2016-08-31 長田電機工業株式会社 プラズマ治療器
JP5526345B2 (ja) * 2012-03-02 2014-06-18 独立行政法人科学技術振興機構 気泡噴出部材及びその製造方法、気液噴出部材及びその製造方法、局所アブレーション装置及び局所アブレーション方法、インジェクション装置及びインジェクション方法
JP5993338B2 (ja) * 2013-05-07 2016-09-14 長田電機工業株式会社 プラズマ殺菌装置
CN203725046U (zh) * 2014-01-27 2014-07-23 贾绍昌 一种等离子消毒液制造设备
WO2016163007A1 (ja) * 2015-04-09 2016-10-13 株式会社オーラル28 プラズマ照射装置及びプラズマ照射方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342331A (ja) * 2003-05-12 2004-12-02 Sekisui Chem Co Ltd プラズマ放電電極及びプラズマ放電処理方法
JP2012528452A (ja) * 2008-05-30 2012-11-12 コロラド ステート ユニバーシティー リサーチ ファウンデーション プラズマ化学のための電極表面の材料および構造
JP2017050267A (ja) * 2015-08-31 2017-03-09 積水化学工業株式会社 プラズマ装置及びその使用方法並びに窒素ガスプラズマ及びその照射方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3639891A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113940145A (zh) * 2019-06-04 2022-01-14 日本特殊陶业株式会社 等离子体照射装置及等离子体照射方法
WO2020259578A1 (en) * 2019-06-24 2020-12-30 Evernew Biotech, Inc. Plasma device including two gas inlets
CN112638471A (zh) * 2019-06-24 2021-04-09 永进生物科技股份有限公司 包括二进气口的电浆装置
TWI766301B (zh) * 2019-06-24 2022-06-01 永進生物科技股份有限公司 包括二進氣口之電漿裝置
JP2022539070A (ja) * 2019-06-24 2022-09-07 エバーニュー・バイオテック・インコーポレイテッド 2つのガス入口部を有するプラズマ装置
EP3986543A4 (en) * 2019-06-24 2023-07-26 Evernew Biotech, Inc. PLASMA DEVICE COMPRISING TWO GAS INLETS
JP7333973B2 (ja) 2019-06-24 2023-08-28 エバーニュー・バイオテック・インコーポレイテッド 2つのガス入口部を有するプラズマ装置
WO2021256030A1 (ja) * 2020-06-19 2021-12-23 積水化学工業株式会社 照射器具及びプラズマ装置
JP6919043B1 (ja) * 2020-10-13 2021-08-11 積水化学工業株式会社 照射器具及びプラズマ装置
JP2022064220A (ja) * 2020-10-13 2022-04-25 積水化学工業株式会社 照射器具及びプラズマ装置

Also Published As

Publication number Publication date
JP6916331B2 (ja) 2021-08-11
JPWO2018230696A1 (ja) 2019-11-07
JP6677855B2 (ja) 2020-04-08
EP3639891A4 (en) 2021-03-10
CN110662577A (zh) 2020-01-07
JP2020096992A (ja) 2020-06-25
TW201909853A (zh) 2019-03-16
EP3639891A1 (en) 2020-04-22
US20190209854A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2018230696A1 (ja) 活性ガス照射装置及びヒトを除く動物の治療方法
JP6966617B2 (ja) 口腔内清浄化方法
JP6890198B2 (ja) 創傷治療用又は抗炎症用の細胞賦活化剤の生成方法
JP6936190B2 (ja) プラズマ式治療装置
WO2022054466A1 (ja) 照射器具、プラズマ照射装置、照射管
JP2020028384A (ja) プラズマ式治療装置
JP6916317B2 (ja) プラズマ式治療装置およびプラズマ式治療装置用のカバー
JP7032273B2 (ja) プラズマ照射装置
JP7088791B2 (ja) プラズマ式治療装置
WO2020059809A1 (ja) プラズマ照射装置
JP7016779B2 (ja) プラズマ式治療装置
JP2020000405A (ja) プラズマ式治療装置
JP2023142440A (ja) 糜爛又は潰瘍の予防方法、疾患の治療方法、糜爛又は潰瘍の予防用照射ガス及び糜爛又は潰瘍の予防用照射ガスの生成方法
JP2020039673A (ja) プラズマ式治療装置
WO2022202809A1 (ja) 医療用プラズマ発生装置、医療用照射ガスの生成方法、及び医療用プラズマの照射方法
JP2019217050A (ja) プラズマ式治療キット及び治療方法
JP2020030996A (ja) プラズマ照射装置、ノズル洗浄装置
JP2020000822A (ja) プラズマ式治療装置
JP2020039495A (ja) プラズマ式治療装置
JP2020155260A (ja) プラズマ装置
JP2019041959A (ja) プラズマ式治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018816666

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018816666

Country of ref document: EP

Effective date: 20200116