WO2018230472A1 - 六角板状酸化亜鉛の製造方法 - Google Patents

六角板状酸化亜鉛の製造方法 Download PDF

Info

Publication number
WO2018230472A1
WO2018230472A1 PCT/JP2018/022073 JP2018022073W WO2018230472A1 WO 2018230472 A1 WO2018230472 A1 WO 2018230472A1 JP 2018022073 W JP2018022073 W JP 2018022073W WO 2018230472 A1 WO2018230472 A1 WO 2018230472A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
hexagonal plate
oxide particles
raw material
zinc acetate
Prior art date
Application number
PCT/JP2018/022073
Other languages
English (en)
French (fr)
Inventor
遼平 吉田
充央 橋本
一貴 村井
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to US16/615,629 priority Critical patent/US11203530B2/en
Priority to CN201880039124.7A priority patent/CN110740975A/zh
Priority to KR1020197035240A priority patent/KR102502534B1/ko
Priority to CA3063323A priority patent/CA3063323A1/en
Priority to EP18816985.8A priority patent/EP3640214A4/en
Priority to JP2018544139A priority patent/JP6451912B1/ja
Publication of WO2018230472A1 publication Critical patent/WO2018230472A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing hexagonal plate-like zinc oxide. More specifically, the present invention relates to a method for producing hexagonal plate-like zinc oxide that can be suitably used for cosmetics and the like.
  • ingredients for protecting skin from ultraviolet rays and infrared rays contained in solar rays and the like have been often added to cosmetics, and various components are used as components that absorb or reflect ultraviolet rays and infrared rays. Yes.
  • One of them is zinc oxide, which uses hexagonal plate-like zinc oxide particles having excellent ultraviolet and infrared reflectivity as compared to amorphous zinc oxide particles, and flaky zinc oxide as a cosmetic ingredient. (See Patent Documents 1 to 4).
  • Zinc oxide blended in cosmetics is required to have excellent touch when used in addition to the ability to shield ultraviolet rays and infrared rays.
  • the resulting particles are thick, and commercially available flaky zinc oxide is inferior in particle uniformity. For this reason, there is room for developing a method capable of producing hexagonal plate-like zinc oxide particles having a small thickness and a small variation in particle size and excellent in touch when used.
  • This invention is made
  • the present inventor examined a method for producing hexagonal plate-like zinc oxide having a small thickness and a small variation in particle size, and prepared a mixed slurry containing raw material zinc oxide particles, a zinc acetate solution, and chloride. Hexagonal plate-like zinc oxide having a small thickness and a small variation in particle size when a production method including a step and a step of heating and aging the mixed slurry obtained in the step at 60 ° C. to 100 ° C. is used The inventors have found that particles can be obtained and have completed the present invention.
  • the present invention is a method for producing hexagonal plate-like zinc oxide, which comprises steps (1) and (1) of preparing a mixed slurry containing raw material zinc oxide particles, zinc acetate solution, and chloride. ) Is a method for producing hexagonal plate-like zinc oxide, which includes the step (2) of heating and aging the mixed slurry obtained at 60 to 100 ° C.
  • the chloride content in the mixed slurry obtained in the step (1) is preferably a ratio of 0.3 mol% or more with respect to the raw material zinc oxide particles used in the step (1).
  • the chloride is preferably at least one selected from sodium chloride, ammonium chloride, and lithium chloride.
  • the production method preferably further includes a step (3) of washing the solid content obtained from the reaction slurry obtained in the step (2) with water at 70 ° C. to less than 100 ° C.
  • the present invention is also hexagonal plate-like zinc oxide having an aspect ratio of 4.5 or more and D90 / D10 of 2.5 or less.
  • the method for producing hexagonal plate-like zinc oxide of the present invention can produce hexagonal plate-like zinc oxide having a small thickness and a small variation in the size of the particles. This is a preferred method for producing hexagonal plate-like zinc oxide used for applications that are required to be excellent.
  • FIG. 2 is an electron micrograph of hexagonal plate-like zinc oxide particles obtained in Example 1.
  • FIG. 2 is an electron micrograph of hexagonal plate-like zinc oxide particles obtained in Example 2.
  • FIG. 4 is an electron micrograph of hexagonal plate-like zinc oxide particles obtained in Example 4.
  • 2 is an electron micrograph of hexagonal plate-like zinc oxide particles obtained in Comparative Example 1.
  • 4 is an electron micrograph of hexagonal plate-like zinc oxide particles obtained in Comparative Example 2.
  • 4 is an electron micrograph of hexagonal plate-like zinc oxide particles obtained in Comparative Example 3.
  • 4 is an electron micrograph of hexagonal plate-like zinc oxide particles obtained in Comparative Example 4.
  • 6 is an electron micrograph of hexagonal plate-like zinc oxide particles obtained in Comparative Example 5.
  • the method for producing hexagonal plate-like zinc oxide of the present invention includes a step (1) of preparing a mixed slurry containing raw material zinc oxide particles, a zinc acetate solution, and a chloride, and the mixed slurry obtained in step (1) in 60 steps.
  • the method includes a step (2) of aging at a temperature of from 100 ° C. to 100 ° C.
  • the order of mixing these is not particularly limited, and the raw material zinc oxide particles and zinc acetate solution are mixed.
  • Chloride may be mixed after mixing first, and either the raw zinc oxide particles or zinc acetate solution and the chloride are mixed first, and then the remaining one of the raw zinc oxide particles or zinc acetate solution is mixed. Also good. Moreover, you may mix these three simultaneously. When mixing, you may mix by adding another component with respect to any one component of a raw material zinc oxide particle, a zinc acetate solution, and a chloride, 2 of these three components with respect to a solvent. You may mix by adding one or three. Moreover, when mixing, these components may be added all at once or may be added separately.
  • the mixing of these components for preparing a mixed slurry containing raw material zinc oxide particles, zinc acetate solution and chloride is preferably carried out with stirring.
  • the method for stirring is not particularly limited.
  • the raw material zinc oxide particles and chloride may be mixed in powder when mixed, or may be mixed in the form of a slurry or solution. From the viewpoint of reducing the distribution, it is preferable to mix in a slurry or solution state.
  • the solvent used in the slurry or solution state is preferably water.
  • the solvent used when mixing by adding two or three of the three components of the raw material zinc oxide particles, the zinc acetate solution, and the chloride to the solvent is also preferably water.
  • the amount of the solvent to be used is not particularly limited, but is preferably 1 to 500 ml with respect to 1 g of the raw material zinc oxide particles and chloride. . More preferably, it is 5 to 100 ml.
  • the solvent is not particularly limited, but is preferably water. That is, it is preferable to use an aqueous zinc acetate solution in step (1).
  • the concentration of the zinc acetate solution used in step (1) is preferably 0.1 to 4 mol / l. More preferably, it is 0.3-3 mol / l, and still more preferably 0.5-2 mol / l.
  • the raw material zinc oxide particles used in the step (1) preferably have a specific surface area converted particle diameter of 0.001 to 1 ⁇ m.
  • the manufactured hexagonal plate-like zinc oxide has excellent ultraviolet and infrared shielding properties, and can be suitably used for various uses such as cosmetics.
  • the particle diameter of the raw material zinc oxide particles is more preferably 0.002 to 0.1 ⁇ m.
  • the specific surface area converted particle diameter of the raw material zinc oxide particles corresponds to the diameter of a sphere having the same surface area as that obtained by the BET method.
  • the specific surface area equivalent particle diameter is calculated from the following specific formula based on the specific surface area: Sg and the true specific gravity of zinc oxide: ⁇ determined by measuring with a fully automatic BET specific surface area measuring device Macsorb Model HM-1200 (manufactured by Mounttech) It is the value calculated
  • Specific surface area equivalent particle diameter of raw material zinc oxide particles ( ⁇ m) [6 / (Sg ⁇ ⁇ )] (Sg (m 2 / g): specific surface area, ⁇ (g / cm 3 ): true specific gravity of particles) Note that the true specific gravity of the particles: ⁇ was 5.6, which is the value of the true specific gravity of zinc oxide.
  • the amount of the zinc acetate solution used for preparing the mixed slurry containing the raw material zinc oxide particles, the zinc acetate solution and the chloride is included in the zinc acetate solution with respect to 1 mol of the raw material zinc oxide particles.
  • the amount of zinc acetate is preferably 0.1 to 3 mol. By using a zinc acetate solution at such a ratio, uniform hexagonal particles can be obtained. More preferably, the amount of zinc acetate is 0.2 to 1 mol.
  • the chloride used in step (1) is not particularly limited as long as hexagonal plate-like zinc oxide is produced, but one or more of aluminum chloride, sodium chloride, ammonium chloride, lithium chloride and the like are used. Can be used. Among these, the chloride is preferably at least one selected from sodium chloride, ammonium chloride, and lithium chloride.
  • the chloride content in the mixed slurry obtained in the step (1) is preferably a ratio of 0.3 mol% or more with respect to the raw material zinc oxide particles used in the step (1). By using it in such a ratio, the obtained hexagonal plate-like zinc oxide particles can be made thinner and have a uniform particle size. More preferably, it is 0.4 mol% or more with respect to the raw material zinc oxide particle used at a process (1), More preferably, it is 0.5 mol% or more. From the viewpoint of reducing impurities and productivity, the chloride content in the mixed slurry obtained in the step (1) is 300 mol% with respect to the raw material zinc oxide particles used in the step (1). The following is preferable. More preferably, it is 250 mol% or less, More preferably, it is 200 mol% or less.
  • the zinc acetate concentration in the mixed slurry containing the raw material zinc oxide particles, the zinc acetate solution and the chloride prepared in step (1) is preferably 0.1 to 3 mol / l. More preferably, it is 0.2 to 1 mol / l.
  • the mixing temperature of the slurry containing the raw material zinc oxide particles, the zinc acetate solution and the chloride is not particularly limited, but is preferably 3 to 50 ° C. More preferably, it is 10 to 40 ° C.
  • the mixing time of the slurry containing the raw material zinc oxide particles, the zinc acetate solution and the chloride is not particularly limited, and may be set as appropriate according to the amount of the raw material, etc. Is preferred. More preferably, it is 30 to 360 minutes.
  • the time for mixing the particles is not particularly limited, but it is preferably 10 to 420 minutes. More preferably, it is 30 to 300 minutes.
  • Step (2) is a step in which the mixed slurry obtained in step (1) is heated and aged at 60 to 100 ° C.
  • the heating temperature may be 60-100 ° C, but is preferably 70-100 ° C. More preferably, the temperature is 80 to 100 ° C, and still more preferably 90 to 100 ° C.
  • the heat aging may be performed while stirring the mixed slurry or may be allowed to stand, but is preferably performed while stirring.
  • the heating and aging time in the step (2) is not particularly limited, but is preferably 10 to 540 minutes in consideration of the yield and productivity of hexagonal plate-like zinc oxide. More preferably, it is 20 to 420 minutes, and further preferably 30 to 300 minutes.
  • the heating rate when the mixed slurry obtained in the step (1) is heated to 60 to 100 ° C. is preferably 10 ° C./min or less. By setting such a temperature rising rate, sufficient crystal growth time can be taken, and an aluminum-doped hexagonal plate-like zinc oxide with uniform and small variation in particle size can be obtained. More preferably, it is 5 degrees C / min or less, More preferably, it is 3 degrees C / min or less.
  • the method for producing hexagonal plate-like zinc oxide of the present invention further includes a step (3) of washing the solid content obtained from the reaction slurry obtained in the step (2) with water at 70 ° C. to less than 100 ° C. preferable.
  • Such step (3) is carried out by stirring the solid content (cake) obtained by filtering the reaction slurry obtained in step (2) in water at 70 ° C. to less than 100 ° C. Can do.
  • the temperature in step (3) may be 70 ° C to less than 100 ° C, but is preferably 80 ° C to less than 100 ° C. More preferably, it is 90 ° C. to less than 100 ° C.
  • filtration and washing are performed after step (2) (between steps (2) and (3)) or after step (3). May be.
  • excess salts such as an unreacted raw material
  • the amount of water used for washing after step (2) and after step (3) and washing in step (3) should be 1000% by mass or more with respect to 100% by mass of the solid content to be washed. Is preferred. Thereby, excess salts contained in the solid content can be more sufficiently removed.
  • the time for performing the step (3) may be appropriately set according to the solid content and the amount of water used, but is preferably 10 to 540 minutes. More preferably, it is 30 to 480 minutes.
  • the method for producing hexagonal plate-like zinc oxide of the present invention may further include a step of drying the hexagonal plate-like zinc oxide.
  • the temperature in the step of drying the hexagonal plate-like zinc oxide is not particularly limited as long as the hexagonal plate-like zinc oxide is dried, but it is preferably 100 to 200 ° C. More preferably, it is 110 to 150 ° C.
  • the drying time is not particularly limited, but is preferably 6 to 200 hours. More preferably, it is 12 to 170 hours.
  • the method for producing hexagonal plate-like zinc oxide of the present invention may include other steps other than the steps (1) to (3), the washing step, the filtration step, and the drying step. As other processes, a surface treatment process performed as necessary is included. Other steps may be performed before or after any of the steps (1) to (3).
  • the above steps (1) to (3), the washing step, the filtration step, the drying step, and other steps may be performed once. It may be more than once.
  • the hexagonal plate-like zinc oxide of the present invention is characterized in that the aspect ratio is 4.5 or more and D90 / D10 is 2.5 or less. By having such an aspect ratio and D90 / D10, the hexagonal plate-like zinc oxide of the present invention has excellent slipperiness and feel derived from the shape.
  • the hexagonal plate-like zinc oxide of the present invention may have an aspect ratio of 4.5 or more, but is preferably 4.7 or more. More preferably, it is 5.0 or more, More preferably, it is 5.2 or more. Although there is no upper limit to the aspect ratio, the aspect ratio of hexagonal plate-like zinc oxide is usually 100 or less.
  • the hexagonal plate-like zinc oxide of the present invention may have D90 / D10 of 2.5 or less, but is preferably 2.3 or less. More preferably, it is 2.2 or less.
  • the hexagonal plate-like zinc oxide of the present invention preferably has a median diameter of 0.05 to 5 ⁇ m. With such a median diameter, hexagonal plate-like zinc oxide has an excellent ultraviolet and infrared shielding effect.
  • the median diameter of hexagonal plate-like zinc oxide is more preferably 0.07 to 4 ⁇ m, and still more preferably 0.08 to 3.5 ⁇ m.
  • the median diameter in the present invention is a 50% cumulative particle diameter (D50) based on the number, and is measured by the method described in Examples.
  • the hexagonal plate-like zinc oxide of the present invention preferably has a BET specific surface area of 1.1 m 2 / g or more. When it has such a BET specific surface area, the ultraviolet shielding ability and the concealing property are in a preferable range.
  • the BET specific surface area is more preferably 2.2 m 2 / g or more, and still more preferably 2.3 m 2 / g or more.
  • the hexagonal plate-like zinc oxide of the present invention preferably has a total light transmittance at a wavelength of 350 nm of 60% or less. It can be said that it has the outstanding ultraviolet-ray shielding ability as it is such a value. More preferably, the total light transmittance at a wavelength of 350 nm is 58% or less, and further preferably 57% or less.
  • the hexagonal plate-like zinc oxide of the present invention preferably has a parallel light transmittance of 35% or less at a wavelength of 400 nm. With such a value, the concealing property of the hexagonal plate-like zinc oxide particles becomes high, and it becomes more suitable for applications in which the hue of cosmetics or the like is important. More preferably, the parallel light transmittance at a wavelength of 400 nm is 33% or less, and more preferably 32% or less.
  • the hexagonal plate-like zinc oxide of the present invention may be doped with a different element or may be subjected to surface treatment as necessary.
  • the surface treatment is not particularly limited, for example, an inorganic surface treatment for forming an inorganic oxide layer such as a silica layer, an alumina layer, a zirconia layer, a titania layer, an organic silicon compound, an organic aluminum compound, an organic titanium compound, a higher fatty acid, Examples include organic surface treatments such as metal soaps, polyhydric alcohols, and alkanolamines. Moreover, what performed multiple types of surface treatment may be used.
  • the hexagonal plate-like zinc oxide of the present invention has excellent slipperiness and feel due to its thinness and small particle size variation, and is suitable as a raw material for cosmetics.
  • heat dissipation filler heat dissipation resin composition
  • heat dissipation grease heat dissipation grease
  • rubber vulcanization accelerator paint / ink pigments
  • electronic parts such as ferrite and varistors
  • pharmaceuticals It can be suitably used for applications such as films.
  • Example 1 78.4 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of a zinc acetate aqueous solution having a concentration as zinc acetate of 1.30 mol / l was prepared, and 1.15 g of sodium chloride (2 mol% based on the raw material zinc oxide particles) was added thereto. The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry of sodium chloride was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C and stirred for 2 hours, filtered, washed (washed with water), and dried at 20 ° C for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Example 2 78.4 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 1.05 g of ammonium chloride (2 mol% based on the raw material zinc oxide particles) was added thereto. The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • Example 3 76.8 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 2.30 g of sodium chloride (4.2 mol% based on the raw material zinc oxide particles) was added thereto. The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry with sodium chloride was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Example 4 64 g of raw material zinc oxide particles (FINEX-50, manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle size: 0.02 ⁇ m) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of a zinc acetate aqueous solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 11.49 g of sodium chloride (25 mol% with respect to the raw material zinc oxide particles) was added thereto. The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • FINEX-50 manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle size: 0.02 ⁇ m
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry with sodium chloride was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Example 5 76.8 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of a zinc acetate aqueous solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 1.67 g of lithium chloride (4.2 mol% based on the raw material zinc oxide particles) was added thereto. The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry with lithium chloride was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Example 6 79.2 g of raw material zinc oxide particles (FINEX-50, manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle diameter: 0.02 ⁇ m) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 2.37 g of aluminum chloride hexahydrate (1 mol% of aluminum chloride with respect to the raw material zinc oxide particles) was added thereto. . The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle diameter: 0.02 ⁇ m
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry with aluminum chloride was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Example 7 79.6 g of raw material zinc oxide particles (FINEX-50 manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle diameter 0.02 ⁇ m) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 1.19 g of aluminum chloride hexahydrate (0.5 mol% of aluminum chloride with respect to the raw material zinc oxide particles) was added. . The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50 manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle diameter 0.02 ⁇ m
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry with aluminum chloride was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Example 8 78.4 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 4.75 g of aluminum chloride hexahydrate (2 mol% of aluminum chloride with respect to the raw material zinc oxide particles) was added thereto. . The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry with aluminum chloride was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Example 9 80 g of raw material zinc oxide particles (FINEX-50, manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle diameter: 0.02 ⁇ m) were repulped into 399 ml of water to obtain a slurry. Also, 601 ml of a zinc acetate aqueous solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 11.49 g of sodium chloride (sodium chloride was 20 mol% with respect to the raw zinc oxide particles), aluminum chloride hexahydrate 0.07 g (aluminum chloride was 0.03 mol% with respect to the raw material zinc oxide particles) was added.
  • FINEX-50 manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle diameter: 0.02 ⁇ m
  • the slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry with aluminum chloride was obtained.
  • the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed.
  • the resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Comparative Example 1 80 g of raw material zinc oxide particles (FINEX-50, manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle diameter: 0.02 ⁇ m) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared. The above-mentioned slurry and zinc acetate aqueous solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes, and the zinc acetate aqueous solution having a concentration of 0.65 mol / l zinc acetate and raw material zinc oxide are added.
  • raw material zinc oxide particles FINEX-50, manufactured by Sakai Chemical Industry Co., Ltd., specific surface area equivalent particle diameter: 0.02 ⁇ m
  • a mixed slurry was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • Comparative Example 2 78.4 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 2.79 g of sodium sulfate (2 mol% of sodium sulfate with respect to the raw material zinc oxide particles) was added thereto. The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • Comparative Example 3 78.4 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 2.60 g of ammonium sulfate (ammonium sulfate was 2 mol% based on the raw material zinc oxide particles) was added thereto.
  • FINEX-50 specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • the above slurry and zinc acetate aqueous solution were added in 120 minutes while mixing in 200 ml of water controlled at 30 ° C., and the zinc acetate aqueous solution, raw material zinc oxide particles and ammonium sulfate having a concentration of 0.65 mol / l as zinc acetate were added. And mixed slurry. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed.
  • the resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. As a result, hexagonal plate-like zinc oxide particles were obtained.
  • Comparative Example 4 78.4 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 1.67 g of sodium nitrate (2 mol% of sodium nitrate with respect to the raw material zinc oxide particles) was added thereto. The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • Comparative Example 5 76.8 g of raw material zinc oxide particles (FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.) were repulped into 399 ml of water to obtain a slurry. Further, 601 ml of an aqueous zinc acetate solution having a concentration of 1.30 mol / l as zinc acetate was prepared, and 4.17 g of sodium carbonate (4.2 mol% of sodium carbonate with respect to the raw zinc oxide particles) was added. The slurry and the aqueous zinc acetate solution are simultaneously added to 200 ml of water controlled at 30 ° C. and added in a total amount in 120 minutes.
  • raw material zinc oxide particles FINEX-50, specific surface area equivalent particle diameter 0.02 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.
  • the zinc acetate aqueous solution having a concentration of zinc acetate of 0.65 mol / l, raw material zinc oxide particles, A mixed slurry of sodium carbonate was obtained. Subsequently, the mixed slurry was heated to 95 ° C. over 65 minutes with stirring, and aged at 95 ° C. for 2 hours with stirring. Immediately after ripening, immediately cooled, filtered and washed. The resulting cake was repulped into water, heated to 95 ° C., stirred for 2 hours, filtered, washed (washed with water), and dried at 120 ° C. for 16 hours. By doing so, hexagonal plate-like zinc oxide particles were obtained.
  • ⁇ Aspect ratio> The diagonal diameter of a particle whose hexagonal plate-like surface of the hexagonal plate-like zinc oxide particles faces straight in the field of view of 2000 to 50000 times that of a photograph taken with a scanning electron microscope JSM-6510A (manufactured by JEOL Ltd.)
  • the average value obtained by measuring the particle diameter ( ⁇ m) defined by 100 of the three diagonals of the hexagonal plate-like surface of the plate-like zinc oxide particles for 100 particles is L
  • hexagonal The average value obtained by measuring the thickness ( ⁇ m) (the length of the shorter side of the rectangle) of the particles whose plate-like zinc oxide particles are facing the front (particles that look rectangular) for 100 particles is T.
  • the ratio of these values; the value obtained as L / T was taken as the aspect ratio.
  • ⁇ D10, D50 (median diameter), D90> Diagonal diameter in a field of view 2000 to 50000 times that of a photograph taken with a scanning electron microscope JSM-6510A (manufactured by JEOL Ltd.) (any one of the three diagonal lines of the hexagonal plate-like surface of hexagonal plate-like zinc oxide particles)
  • the particle diameter ( ⁇ m) defined by the length of one diagonal line), the diagonal diameter of 100 particles was measured in the SEM photograph, and the cumulative distribution was calculated.
  • the cumulative particle diameters of 10%, 50%, and 90% on the basis of the number were defined as D10, D50, and D90, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cosmetics (AREA)

Abstract

本発明は厚みが薄く、かつ粒子の大きさのばらつきが少ない六角板状酸化亜鉛を製造することができる方法を提供する。 本発明は六角板状酸化亜鉛を製造する方法であって、該製造方法は、原料酸化亜鉛粒子と酢酸亜鉛溶液と、塩化物を含む混合スラリーを調製する工程(1)および工程(1)で得られた混合スラリーを60℃~100℃にて加熱熟成する工程(2)を含む六角板状酸化亜鉛の製造方法である。

Description

六角板状酸化亜鉛の製造方法
本発明は、六角板状酸化亜鉛の製造方法に関する。より詳しくは、化粧品等の用途に好適に用いることができる六角板状酸化亜鉛の製造方法に関する。
近年、太陽光線等に含まれる紫外線や赤外線から肌を守るための成分が化粧料に配合されることが多くなってきており、紫外線や赤外線を吸収又は反射する成分として様々な成分が使用されている。その中の1つに酸化亜鉛があり、不定形の酸化亜鉛粒子に比べて優れた紫外線や赤外線の反射能を有する六角板状酸化亜鉛粒子や、薄片状酸化亜鉛を化粧料の成分として使用することが開示されている(特許文献1~4参照)。
国際公開第2012/147886号 国際公開第2015/118777号 特開2015-182892号公報 特開2012-176860号公報
化粧料に配合される酸化亜鉛には、紫外線や赤外線の遮蔽能に加え、使用した際の感触に優れることも求められる。感触に優れたものとするためには、酸化亜鉛粒子をなるべく薄い板状の形状にし、また、粒子の大きさのばらつきが少ないものとすることが好ましいが、従来の六角板状酸化亜鉛の製造方法では、得られる粒子に厚みがあり、また市販の薄片状酸化亜鉛は粒子の均一性に劣る。このため、厚みが薄く、かつ粒子の大きさのばらつきが少なく、使用した際の感触に優れる六角板状酸化亜鉛粒子を製造することができる方法を開発する余地があった。
本発明は、上記現状に鑑みてなされたものであり、厚みが薄く、かつ粒子の大きさのばらつきが少ない六角板状酸化亜鉛を製造することができる方法を提供することも目的とする。
本発明者は、厚みが薄く、かつ粒子の大きさのばらつきが少ない六角板状酸化亜鉛の製造方法について検討したところ、原料酸化亜鉛粒子と酢酸亜鉛溶液と、塩化物を含む混合スラリーを調製する工程と、該工程で得られた混合スラリーを60℃~100℃にて加熱熟成する工程とを含む製造方法を用いると、厚みが薄く、かつ粒子の大きさのばらつきが少ない六角板状酸化亜鉛粒子が得られることを見出し、本発明を完成するに至った。
すなわち本発明は、六角板状酸化亜鉛を製造する方法であって、該製造方法は、原料酸化亜鉛粒子と酢酸亜鉛溶液と、塩化物を含む混合スラリーを調製する工程(1)および工程(1)で得られた混合スラリーを60℃~100℃にて加熱熟成する工程(2)を含む六角板状酸化亜鉛の製造方法である。
上記工程(1)で得られた混合スラリー中の塩化物の含有量は、工程(1)で使用する原料酸化亜鉛粒子に対して、0.3モル%以上となる割合であることが好ましい。
上記塩化物は、塩化ナトリウム、塩化アンモニウム、塩化リチウムから選ばれる少なくとも1種であることが好ましい。
上記製造方法は、さらに、工程(2)で得られた反応スラリーから得られた固形分を、70℃~100℃未満の水で洗浄する工程(3)を含むことが好ましい。
本発明はまた、アスペクト比が4.5以上、かつ、D90/D10が2.5以下である六角板状酸化亜鉛でもある。
本発明の六角板状酸化亜鉛の製造方法は、厚みが薄く、かつ粒子の大きさのばらつきが少ない六角板状酸化亜鉛を製造することができるため、化粧料等の、使用した際の感触に優れることが求められる用途に使用する六角板状酸化亜鉛の好適な製造方法である。
実施例1で得た六角板状酸化亜鉛粒子の電子顕微鏡写真である。 実施例2で得た六角板状酸化亜鉛粒子の電子顕微鏡写真である。 実施例4で得た六角板状酸化亜鉛粒子の電子顕微鏡写真である。 比較例1で得た六角板状酸化亜鉛粒子の電子顕微鏡写真である。 比較例2で得た六角板状酸化亜鉛粒子の電子顕微鏡写真である。 比較例3で得た六角板状酸化亜鉛粒子の電子顕微鏡写真である。 比較例4で得た六角板状酸化亜鉛粒子の電子顕微鏡写真である。 比較例5で得た六角板状酸化亜鉛粒子の電子顕微鏡写真である。
以下、本発明の一例について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲で適宜変更して適用することができる。
<六角板状酸化亜鉛の製造方法>
本発明の六角板状酸化亜鉛の製造方法は、原料酸化亜鉛粒子と酢酸亜鉛溶液と、塩化物を含む混合スラリーを調製する工程(1)と、工程(1)で得られた混合スラリーを60℃~100℃にて加熱熟成する工程(2)を含むことを特徴とする。
工程(1)は、原料酸化亜鉛粒子と酢酸亜鉛溶液と塩化物を含む混合スラリーが調製されることになる限り、これらを混合する順番は特に制限されず、原料酸化亜鉛粒子と酢酸亜鉛溶液を先に混合した後に塩化物を混合してもよく、原料酸化亜鉛粒子又は酢酸亜鉛溶液のいずれかと塩化物とを先に混合した後に原料酸化亜鉛粒子又は酢酸亜鉛溶液の残りの一方を混合してもよい。また、これら3つを同時に混合してもよい。
混合する際には、原料酸化亜鉛粒子、酢酸亜鉛溶液、塩化物のいずれか1つの成分に対して他の成分を添加することで混合してもよく、溶媒に対してこれら3つの成分の2つ又は3つを添加することで混合してもよい。
また、混合する際には、これらの成分を一括で添加してもよく、分割して添加してもよい。
工程(1)において、原料酸化亜鉛粒子と酢酸亜鉛溶液と塩化物を含む混合スラリーを調製するためのこれらの成分の混合は攪拌して行うことが好ましい。攪拌する方法は特に制限されない。
工程(1)において、原料酸化亜鉛粒子や塩化物は、混合する際、粉末で混合してもよく、スラリーや溶液の状態にして混合してもよいが、得られる六角板状酸化亜鉛の粒度分布を小さくする点から、スラリーや溶液の状態にして混合することが好ましい。
スラリーや溶液の状態にする場合に使用する溶媒は、水が好ましい。
また、原料酸化亜鉛粒子、酢酸亜鉛溶液、塩化物の3つの成分の2つ又は3つを溶媒に対して添加することで混合する場合に使用する溶媒も、水が好ましい。
原料酸化亜鉛粒子や塩化物をスラリーや溶液の状態にして混合する場合、使用する溶媒の量は特に制限されないが、原料酸化亜鉛粒子や塩化物1gに対して、1~500mlであることが好ましい。より好ましくは、5~100mlである。
工程(1)において用いられる酢酸亜鉛溶液は、酢酸亜鉛を溶解した溶液であれば溶媒は特に制限されないが、水であることが好ましい。すなわち、工程(1)において酢酸亜鉛水溶液が用いられることが好ましい。
工程(1)において用いられる酢酸亜鉛溶液の濃度は、0.1~4mol/lであることが好ましい。より好ましくは、0.3~3mol/lであり、更に好ましくは、0.5~2mol/lである。
工程(1)において用いられる原料酸化亜鉛粒子は、比表面積換算粒子径が0.001~1μmであるものが好ましい。このような粒子径のものを用いることで、製造される六角板状酸化亜鉛が紫外線や赤外線の遮蔽性により優れたものとなり、化粧料等の各種用途により好適に使用できるものとなる。上記原料酸化亜鉛粒子の粒子径は、より好ましくは、0.002~0.1μmである。
上記原料酸化亜鉛粒子の比表面積換算粒子径は、BET法によって求められる比表面積と同一の表面積を有する球の直径に相当する。すなわち、比表面積換算粒子径は、全自動BET比表面積測定装置Macsorb  Model  HM-1200(Mountech社製)により測定して求めた比表面積:Sgと、酸化亜鉛の真比重:ρから、下記計算式により求めた値である。
原料酸化亜鉛粒子の比表面積換算粒子径(μm)=[6/(Sg×ρ)]
(Sg(m/g):比表面積、ρ(g/cm):粒子の真比重)
なお、粒子の真比重:ρは、酸化亜鉛の真比重の値である5.6を上記計算に用いた。
工程(1)において、原料酸化亜鉛粒子と酢酸亜鉛溶液と塩化物を含む混合スラリーを調製するために使用される酢酸亜鉛溶液の量は、原料酸化亜鉛粒子1molに対して酢酸亜鉛溶液に含まれる酢酸亜鉛が0.1~3molとなる量であることが好ましい。このような割合で酢酸亜鉛溶液を使用することで、均一な六角形状の粒子が得られる。より好ましくは、酢酸亜鉛が0.2~1molとなる量である。
工程(1)において使用される塩化物は、六角板状酸化亜鉛が製造されることになる限り特に制限されないが、塩化アルミニウム、塩化ナトリウム、塩化アンモニウム、塩化リチウム等の1種又は2種以上を用いることができる。この中でも、塩化物としては、塩化ナトリウム、塩化アンモニウム、塩化リチウムから選ばれる少なくとも1種であることが好ましい。
工程(1)で得られた混合スラリー中の塩化物の含有量は、工程(1)で使用する原料酸化亜鉛粒子に対して、0.3モル%以上となる割合であることが好ましい。このような割合で使用されることで、得られる六角板状酸化亜鉛粒子をより厚みが薄く、粒子の大きさの揃ったものとすることができる。より好ましくは、工程(1)で使用する原料酸化亜鉛粒子に対して、0.4モル%以上であり、更に好ましくは、0.5モル%以上である。また、不純物を減らすことと生産性の点から、工程(1)で得られた混合スラリー中の塩化物の含有量は、工程(1)で使用する原料酸化亜鉛粒子に対して、300モル%以下であることが好ましい。より好ましくは、250モル%以下であり、更に好ましくは、200モル%以下である。
工程(1)において調製される、原料酸化亜鉛粒子と酢酸亜鉛溶液と塩化物を含む混合スラリーにおける酢酸亜鉛の濃度は、0.1~3mol/lであることが好ましい。より好ましくは、0.2~1mol/lである。
工程(1)において、原料酸化亜鉛粒子と酢酸亜鉛溶液と塩化物を含むスラリーの混合温度は、特に制限されないが、3~50℃であることが好ましい。より好ましくは、10~40℃である。
工程(1)において、原料酸化亜鉛粒子と酢酸亜鉛溶液と塩化物を含むスラリーの混合時間は特に制限されず、原料の量等に応じて適宜設定すればよいが、1~480分で行うことが好ましい。より好ましくは、30~360分である。
工程(1)を、予め酢酸亜鉛溶液に塩化物を添加し、得られた溶液と原料酸化亜鉛粒子とを混合することにより行う場合の、酢酸亜鉛溶液に塩化物を添加した溶液と原料酸化亜鉛粒子とを混合する工程の時間も特に制限されないが、10~420分で行うことが好ましい。より好ましくは、30~300分である。
工程(2)は、工程(1)で得られた混合スラリーを60~100℃で加熱熟成する工程である。加熱熟成をすることで、粒子形状が六角板状に整った粒子を得ることができる。加熱温度は、60~100℃であればよいが、70~100℃であることが好ましい。より好ましくは、80~100℃であり、更に好ましくは、90~100℃である。なお、加熱熟成は混合スラリーを撹拌しながら行ってもよいし、静置していてもよいが、撹拌しながら行うことが好ましい。
工程(2)における加熱熟成の時間は特に制限されないが、六角板状酸化亜鉛の収率と生産性とを考慮すると、10~540分であることが好ましい。より好ましくは、20~420分であり、更に好ましくは、30~300分である。
工程(1)で得られた混合スラリーを60~100℃に加熱する際の昇温速度は、10℃/分以下であることが好ましい。このような昇温速度とすることで、十分な結晶成長の時間を取ることができ、均一で粒径のばらつきの少ないアルミニウムドープ六角板状酸化亜鉛を得ることができる。より好ましくは、5℃/分以下であり、更に好ましくは、3℃/分以下である。
本発明の六角板状酸化亜鉛の製造方法はさらに、工程(2)で得られた反応スラリーから得られた固形分を70℃~100℃未満の水で洗浄する工程(3)を含むことが好ましい。このような工程(3)は、工程(2)で得られた反応スラリーをろ過して得られた固形分(ケーキ)を、70℃~100℃未満の水中にて撹拌する方法にて行うことができる。このような工程を行うことで、未反応の酢酸亜鉛等の余分な塩類をより充分に除去し、均一で粒径のばらつきの少ない六角板状酸化亜鉛を得ることができる。
工程(3)の温度は、70℃~100℃未満であればよいが、80℃~100℃未満であることが好ましい。より好ましくは、90℃~100℃未満である。
本発明の六角板状酸化亜鉛の製造方法では、工程(2)の後に(工程(2)と工程(3)の間に)、または工程(3)の後に、ろ過、洗浄(水洗)を行ってもよい。これにより、未反応の原料等の余分な塩類を除去して、得られる六角板状酸化亜鉛の純度を高めることができる。また、ろ過の前に液を冷却する工程を行ってもよい。
工程(2)の後や工程(3)の後の洗浄、及び、工程(3)における洗浄に使用する水の量は、洗浄する固形分100質量%に対して、1000質量%以上であることが好ましい。これにより、固形分中に含まれる余分な塩類をより充分に除去することができる。
工程(3)を行う時間は、固形分の量や使用する水の量に応じて適宜設定すればよいが、10~540分であることが好ましい。より好ましくは、30~480分である。
本発明の六角板状酸化亜鉛の製造方法は、更に六角板状酸化亜鉛を乾燥する工程を含んでいてもよい。
六角板状酸化亜鉛を乾燥する工程の温度は、六角板状酸化亜鉛が乾燥される限り特に制限されないが、100~200℃であることが好ましい。より好ましくは、110~150℃である。
また乾燥する時間も特に制限されないが、6~200時間であることが好ましい。より好ましくは、12~170時間である。
本発明の六角板状酸化亜鉛の製造方法は、上記工程(1)~(3)、洗浄工程、ろ過工程、乾燥工程以外のその他の工程を含んでいてもよい。その他の工程としては、必要に応じて行われる表面処理工程が含まれる。その他の工程は、工程(1)~(3)のいずれの工程の前又は後に行ってもよい。
本発明の六角板状酸化亜鉛の製造方法において、上記工程(1)~(3)、洗浄工程、ろ過工程、乾燥工程、及び、その他の工程を行う回数は1回であってもよく、2回以上であってもよい。
<六角板状酸化亜鉛>
本発明の六角板状酸化亜鉛は、アスペクト比が4.5以上、かつ、D90/D10が2.5以下であることを特徴とする。
本発明の六角板状酸化亜鉛は、このようなアスペクト比、かつ、D90/D10を有することで、形状に由来する優れたすべり性や感触を有するものとなる。
本発明の六角板状酸化亜鉛は、アスペクト比が4.5以上であればよいが、4.7以上であることが好ましい。より好ましくは、5.0以上であり、更に好ましくは、5.2以上である。アスペクト比に上限はないが、六角板状酸化亜鉛のアスペクト比は通常100以下である。
本発明の六角板状酸化亜鉛は、D90/D10が2.5以下であればよいが、2.3以下であることが好ましい。より好ましくは、2.2以下である。
本発明の六角板状酸化亜鉛は、メジアン径が0.05~5μmであることが好ましい。このようなメジアン径のものであると、六角板状酸化亜鉛が紫外線や赤外線の遮蔽効果にも優れたものとなる。六角板状酸化亜鉛のメジアン径は、より好ましくは、0.07~4μmであり、更に好ましくは、0.08~3.5μmである。本発明におけるメジアン径は、個数基準での50%積算粒径(D50)であり、実施例に記載の方法で測定したものである。
本発明の六角板状酸化亜鉛は、BET比表面積が1.1m/g以上であることが好ましい。このようなBET比表面積を有するものであると、紫外線遮蔽能や隠蔽性が好ましい範囲になる。
BET比表面積は、より好ましくは、2.2m/g以上であり、更に好ましくは、2.3m/g以上である。
本発明の六角板状酸化亜鉛は、波長350nmにおける全光線透過率が60%以下であることが好ましい。このような値であると、優れた紫外線遮蔽能を有するということができる。より好ましくは、波長350nmにおける全光線透過率が58%以下であることであり、更に好ましくは、57%以下である。
本発明の六角板状酸化亜鉛は、波長400nmにおける平行光透過率が35%以下であることが好ましい。このような値であると、六角板状酸化亜鉛粒子の隠蔽性が高くなり、化粧料等の色合いが重要な用途により好適なものとなる。より好ましくは、波長400nmにおける平行光透過率が33%以下であることであり、更に好ましくは、32%以下である。
本発明の六角板状酸化亜鉛は、異元素がドープされているものであってもよいし、必要に応じて表面処理を施したものであってもよい。表面処理としては特に限定されず、例えばシリカ層、アルミナ層、ジルコニア層、チタニア層等の無機酸化物層を形成する無機表面処理や、有機ケイ素化合物、有機アルミ化合物、有機チタン化合物、高級脂肪酸、金属石鹸、多価アルコール、アルカノールアミン等の有機表面処理が挙げられる。また、複数種の表面処理を行ったものであってもよい。
本発明の六角板状酸化亜鉛は、厚みが薄く、かつ粒子の大きさのばらつきが少ない粒子であることに起因して、優れたすべり性や感触を有するものであり、化粧料の原料として好適に使用することができるが、それ以外にも、放熱性フィラー、放熱性樹脂組成物、放熱性グリース、ゴムの加硫促進剤、塗料・インキ用顔料、フェライトやバリスタ等の電子部品、医薬品、フィルム等の用途に好適に使用することができる。
本発明を詳細に説明するために以下に実施例を挙げるが、本発明はこれらの例のみに限定されるものではない。特に断りのない限り、「%」は「質量%(重量%)」を、「部」は「質量部(重量部)」を、それぞれ意味する。
実施例1
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)78.4gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに塩化ナトリウム1.15g(原料酸化亜鉛粒子に対して2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化ナトリウムの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、20℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
実施例2
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)78.4gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに塩化アンモニウム1.05g(原料酸化亜鉛粒子に対して2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化アンモニウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
実施例3
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)76.8gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに塩化ナトリウム2.30g(原料酸化亜鉛粒子に対して4.2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化ナトリウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
実施例4
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)64gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに塩化ナトリウム11.49g(原料酸化亜鉛粒子に対して25mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化ナトリウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
実施例5
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)76.8gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに塩化リチウム1.67g(原料酸化亜鉛粒子に対して4.2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化リチウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
実施例6
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)79.2gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに塩化アルミニウム六水和物2.37g(原料酸化亜鉛粒子に対して塩化アルミニウムが1mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化アルミニウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
実施例7
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)79.6gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、塩化アルミニウム六水和物1.19g(原料酸化亜鉛粒子に対して塩化アルミニウムが0.5mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化アルミニウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
実施例8
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)78.4gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに塩化アルミニウム六水和物4.75g(原料酸化亜鉛粒子に対して塩化アルミニウムが2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化アルミニウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
実施例9
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)80gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに塩化ナトリウム11.49g(原料酸化亜鉛粒子に対して塩化ナトリウムが20mol%)、塩化アルミニウム六水和物0.07g(原料酸化亜鉛粒子に対して塩化アルミニウムが0.03mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と塩化アルミニウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
比較例1
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)80gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛との混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
比較例2
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)78.4gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに硫酸ナトリウム2.79g(原料酸化亜鉛粒子に対して硫酸ナトリウムが2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と硫酸ナトリウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
比較例3
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)78.4gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに硫酸アンモニウム2.60g(原料酸化亜鉛粒子に対して硫酸アンモニウムが2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に混合しながら120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と硫酸アンモニウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより六角板状酸化亜鉛粒子を得た。
比較例4
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)78.4gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、そこに硝酸ナトリウム1.67g(原料酸化亜鉛粒子に対して硝酸ナトリウムが2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と硝酸ナトリウムとの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより六角板状酸化亜鉛粒子を得た。
比較例5
原料酸化亜鉛粒子(堺化学工業社製 FINEX-50 比表面積換算粒子径0.02μm)76.8gを399mlの水にリパルプしてスラリーを得た。また、酢酸亜鉛としての濃度が1.30mol/lの酢酸亜鉛水溶液601mlを調製し、炭酸ナトリウム4.17g(原料酸化亜鉛粒子に対して炭酸ナトリウムが4.2mol%)を添加した。上述のスラリーと酢酸亜鉛水溶液を、30℃に制御した水200ml中に同時添加して120分で全量添加し、酢酸亜鉛としての濃度が0.65mol/lの酢酸亜鉛水溶液と原料酸化亜鉛粒子と炭酸ナトリウムの混合スラリーとした。続いて、その混合スラリーを撹拌しながら65分間で95℃に昇温し、撹拌しながら95℃で2時間熟成した。熟成後、直ちに急冷した後、ろ過、洗浄し、得られたケーキをさらに水にリパルプし、95℃に加熱して2時間撹拌した後、ろ過、洗浄(水洗)し、120℃で16時間乾燥することにより、六角板状酸化亜鉛粒子を得た。
酸化亜鉛粒子の物性評価
実施例1~9、比較例1~5で製造された酸化亜鉛粒子の各種物性を以下の方法で測定し、結果を表1に示した。
更に、実施例1、2、4、比較例1~5で製造された酸化亜鉛粒子について、走査型電子顕微鏡JSM-6510A(日本電子社製)観察で得られた電子顕微鏡写真を図1~8に示した。
<粒子の形状>
粒子の形状は走査型電子顕微鏡JSM-6510A(日本電子社製)で観察して確認した。
<アスペクト比>
走査型電子顕微鏡JSM-6510A(日本電子社製)で撮影した写真の2000~50000倍の視野において、六角板状酸化亜鉛粒子の六角板状面が真正面を向いている粒子のその対角線径(六角板状酸化亜鉛粒子の六角板状面の3本の対角線のうちの任意の1本の対角線の長さ)で定義される粒子径(μm)を粒子100個分計測した平均値をL、六角板状酸化亜鉛粒子の側面が真正面を向いている粒子(長方形に見える粒子)のその厚み(μm)(長方形の短い方の辺の長さ)を粒子100個分計測した平均値をTとしたとき、それらの値の比;L/Tとして求めた値をアスペクト比とした。
<D10、D50(メジアン径)、D90>
走査型電子顕微鏡JSM-6510A(日本電子社製)で撮影した写真の2000~50000倍の視野での対角線径(六角板状酸化亜鉛粒子の六角板状面の3本の対角線のうちの任意の1本の対角線の長さ)で定義される粒子径(μm)であって、SEM写真内で粒子100個分の対角線径を計測し、その累積分布を算出した。
個数基準での10%、50%、90%の積算粒径を各々D10、D50、D90とした。
<BET比表面積>
BET比表面積(m/g)は、全自動BET比表面積測定装置Macsorb(Mountech社製)により測定した。
<350nm全光透過率、400nm平行光透過率>
350nm全光透過率、400nm平行光透過率は分光光度計(日本分光社製V-570型)により測定した値である。実施例および比較例で得られた酸化亜鉛粒子2g、アクリルポリオール樹脂10g、キシレン5g、酢酸ブチル5g、1.5mmφガラスビーズ38gを75mlマヨネーズビンに入れ、ペイントコンディショナーにて90分振とうし分散液を得た。得られた分散液をスライドガラスにバーコーター#6で塗布し、分光光度計(日本分光社製V-570型)を用いて波長350nmにおける全光透過率、及び波長400nmにおける平行光透過率を測定した。
<感触>
少量の粉体を肌の上に置き、指で粉体を引き伸ばした時に感じる感触において、粉体の滑り性とざらつき感を示す指標である。滑り性が良くざらつきを感じないものほど点数が高く、滑り性が悪くざらつきを感じるものほど点数が低いものとし、比較例1の粉体を基準(5点)として、各試料について、1点~10点の10段階で点数をつけた。
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1. 六角板状酸化亜鉛を製造する方法であって、
    該製造方法は、原料酸化亜鉛粒子と酢酸亜鉛溶液と、塩化物を含む混合スラリーを調製する工程(1)および
    工程(1)で得られた混合スラリーを60℃~100℃にて加熱熟成する工程(2)を含む
    ことを特徴とする六角板状酸化亜鉛の製造方法。
  2. 前記工程(1)で得られた混合スラリー中の塩化物の含有量は、工程(1)で使用する原料酸化亜鉛粒子に対して、0.3モル%以上となる割合であることを特徴とする請求項1に記載の六角板状酸化亜鉛の製造方法。
  3. 前記塩化物は、塩化ナトリウム、塩化アンモニウム、塩化リチウムから選ばれる少なくとも1種であることを特徴とする請求項1又は2に記載の六角板状酸化亜鉛の製造方法。
  4. さらに、工程(2)で得られた反応スラリーから得られた固形分を、70℃~100℃未満の水で洗浄する工程(3)を含むことを特徴とする請求項1~3のいずれかに記載の六角板状酸化亜鉛の製造方法。
  5. アスペクト比が4.5以上、かつ、D90/D10が2.5以下であることを特徴とする六角板状酸化亜鉛。
     
PCT/JP2018/022073 2017-06-12 2018-06-08 六角板状酸化亜鉛の製造方法 WO2018230472A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/615,629 US11203530B2 (en) 2017-06-12 2018-06-08 Method for producing hexagonal plate-shaped zinc oxide
CN201880039124.7A CN110740975A (zh) 2017-06-12 2018-06-08 六角板状氧化锌的制造方法
KR1020197035240A KR102502534B1 (ko) 2017-06-12 2018-06-08 육각판상 산화아연의 제조 방법
CA3063323A CA3063323A1 (en) 2017-06-12 2018-06-08 Method for producing hexagonal plate-shaped zinc oxide
EP18816985.8A EP3640214A4 (en) 2017-06-12 2018-06-08 METHOD OF PRODUCING A ZINC OXIDE IN THE FORM OF A HEXAGONAL PLATE
JP2018544139A JP6451912B1 (ja) 2017-06-12 2018-06-08 六角板状酸化亜鉛の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-115411 2017-06-12
JP2017115411 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018230472A1 true WO2018230472A1 (ja) 2018-12-20

Family

ID=64659039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022073 WO2018230472A1 (ja) 2017-06-12 2018-06-08 六角板状酸化亜鉛の製造方法

Country Status (7)

Country Link
US (1) US11203530B2 (ja)
EP (1) EP3640214A4 (ja)
JP (1) JP6451912B1 (ja)
KR (1) KR102502534B1 (ja)
CN (1) CN110740975A (ja)
CA (1) CA3063323A1 (ja)
WO (1) WO2018230472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226481A (zh) * 2018-12-27 2021-08-06 花王株式会社 皮肤外用剂

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11449798B2 (en) 2019-09-30 2022-09-20 Amazon Technologies, Inc. Automated problem detection for machine learning models
US11468365B2 (en) * 2019-09-30 2022-10-11 Amazon Technologies, Inc. GPU code injection to summarize machine learning training data
CN116119707A (zh) * 2023-01-06 2023-05-16 瑞浦兰钧能源股份有限公司 用于N-甲基吡咯烷酮检测的ZnO纳米片的制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176860A (ja) 2011-02-25 2012-09-13 Kao Corp 薄片状酸化亜鉛粉末の製造方法
WO2012147886A1 (ja) 2011-04-28 2012-11-01 堺化学工業株式会社 六角板状酸化亜鉛粒子、その製造方法、それを配合した化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物
WO2015033990A1 (ja) * 2013-09-06 2015-03-12 堺化学工業株式会社 四角板状酸化亜鉛粒子及びその製造方法
WO2015098992A1 (ja) * 2013-12-27 2015-07-02 堺化学工業株式会社 酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料
WO2015098945A1 (ja) * 2013-12-24 2015-07-02 堺化学工業株式会社 酸化セリウム被覆酸化亜鉛粒子、その製造方法、紫外線遮蔽剤及び化粧料
WO2015118777A1 (ja) 2014-02-07 2015-08-13 堺化学工業株式会社 六角板状酸化亜鉛粒子、その製造方法、化粧料、フィラー、樹脂組成物、赤外線反射材及び塗料組成物
JP2015182892A (ja) 2014-03-20 2015-10-22 石原産業株式会社 酸化亜鉛及びその製造方法並びにその用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888863B1 (ko) * 2011-04-28 2018-08-17 사까이가가꾸고오교가부시끼가이샤 산화아연 입자, 그 제조 방법, 화장료, 방열성 필러, 방열성 수지 조성물, 방열성 그리스 및 방열성 도료 조성물
US9120681B2 (en) * 2011-04-28 2015-09-01 Sakai Chemical Industry Co., Ltd. Method for production of zinc oxide particles
CN104159850A (zh) 2012-03-08 2014-11-19 堺化学工业株式会社 板状集聚型球状氧化锌颗粒、其制造方法、化妆料和散热性填料
JP6065520B2 (ja) * 2012-10-24 2017-01-25 堺化学工業株式会社 酸化亜鉛粒子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176860A (ja) 2011-02-25 2012-09-13 Kao Corp 薄片状酸化亜鉛粉末の製造方法
WO2012147886A1 (ja) 2011-04-28 2012-11-01 堺化学工業株式会社 六角板状酸化亜鉛粒子、その製造方法、それを配合した化粧料、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物
WO2015033990A1 (ja) * 2013-09-06 2015-03-12 堺化学工業株式会社 四角板状酸化亜鉛粒子及びその製造方法
WO2015098945A1 (ja) * 2013-12-24 2015-07-02 堺化学工業株式会社 酸化セリウム被覆酸化亜鉛粒子、その製造方法、紫外線遮蔽剤及び化粧料
WO2015098992A1 (ja) * 2013-12-27 2015-07-02 堺化学工業株式会社 酸化亜鉛粒子、それらの製造方法、紫外線遮蔽剤及び化粧料
WO2015118777A1 (ja) 2014-02-07 2015-08-13 堺化学工業株式会社 六角板状酸化亜鉛粒子、その製造方法、化粧料、フィラー、樹脂組成物、赤外線反射材及び塗料組成物
JP2015182892A (ja) 2014-03-20 2015-10-22 石原産業株式会社 酸化亜鉛及びその製造方法並びにその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640214A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226481A (zh) * 2018-12-27 2021-08-06 花王株式会社 皮肤外用剂
EP3903887A4 (en) * 2018-12-27 2022-11-09 Kao Corporation EXTERNAL PREPARATION FOR THE SKIN

Also Published As

Publication number Publication date
US20200172407A1 (en) 2020-06-04
KR20200016848A (ko) 2020-02-17
US11203530B2 (en) 2021-12-21
CN110740975A (zh) 2020-01-31
EP3640214A1 (en) 2020-04-22
KR102502534B1 (ko) 2023-02-21
JP6451912B1 (ja) 2019-01-16
EP3640214A4 (en) 2021-03-24
JPWO2018230472A1 (ja) 2019-06-27
CA3063323A1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP6451912B1 (ja) 六角板状酸化亜鉛の製造方法
CA2752850C (en) Dispersion of particles of rutile titanium oxide, process for producing the same, and use of the same
RU2569083C2 (ru) Способ получения дисперсной системы частиц оксида титана рутила
US9120681B2 (en) Method for production of zinc oxide particles
CN108779000A (zh) 复合钨氧化物超微粒子及其分散液
EP3121150B1 (en) Plate-like aluminum oxide and preparation method therefor
WO2014126075A1 (ja) 高い比表面積を有する棒状の水酸化マグネシウム粒子、及び棒状の酸化マグネシウム粒子、並びにそれらの製造方法
JP4382607B2 (ja) 酸化チタン粒子
JP2017043505A (ja) 紫外線遮蔽材料微粒子の製造方法、紫外線遮蔽材料微粒子を用いた紫外線遮蔽材料微粒子分散体、並びに紫外線遮蔽体
JP2020033240A (ja) 粒子状シリカ及びその製造方法
WO2018230473A1 (ja) 3価金属ドープ六角板状酸化亜鉛及びその製造方法
JP4382872B1 (ja) 酸化チタン粒子の作製方法
JP5344131B2 (ja) 紫外線遮蔽材料微粒子の製造方法と紫外線遮蔽材料微粒子分散体、並びに紫外線遮蔽体
JP5644877B2 (ja) 光触媒粒子の分散液の製法
KR20140046796A (ko) 산화티타늄 분산졸 조성물 및 산화티타늄 분산졸 조성물의 제조방법
TWI832929B (zh) 經表面處理之紅外線吸收微粒子分散液及其製造方法
CN114368784B (zh) 一种二氧化钒/碳微球热致变色复合材料及其制备方法和应用
JP2010195599A (ja) 板状セリア粒子の製造方法
JPS61205622A (ja) 酸化錫系電導性微粉末の製造法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544139

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3063323

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197035240

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018816985

Country of ref document: EP

Effective date: 20200113