WO2018230136A1 - 窒化物半導体装置及びその製造方法 - Google Patents

窒化物半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2018230136A1
WO2018230136A1 PCT/JP2018/015785 JP2018015785W WO2018230136A1 WO 2018230136 A1 WO2018230136 A1 WO 2018230136A1 JP 2018015785 W JP2018015785 W JP 2018015785W WO 2018230136 A1 WO2018230136 A1 WO 2018230136A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
semiconductor layer
semiconductor device
resistance region
high resistance
Prior art date
Application number
PCT/JP2018/015785
Other languages
English (en)
French (fr)
Inventor
英之 大来
柳原 学
正洋 引田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019525150A priority Critical patent/JP7113233B2/ja
Publication of WO2018230136A1 publication Critical patent/WO2018230136A1/ja
Priority to US16/708,051 priority patent/US11171228B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/26546Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a structure of a semiconductor device and a manufacturing method thereof, and more particularly to a device that can be used as a power transistor or the like, particularly a device using a group III nitride semiconductor, and a manufacturing method thereof.
  • Group III nitride semiconductors particularly GaN and AlGaN, have a high breakdown voltage due to their wide band gap. Moreover, it is possible to easily form a heterostructure such as AlGaN / GaN, and high mobility on the GaN layer side of the AlGaN / GaN interface due to the difference in piezoelectric charge and band gap generated from the difference in lattice constant between AlGaN and GaN.
  • a high concentration electron channel (two-dimensional electron gas, 2DEG) can be generated.
  • HEMT High Electron Mobility Transistor
  • group III nitride semiconductors Due to these characteristics of high breakdown voltage, high speed, and large current, group III nitride semiconductors have been applied to electronic devices such as field effect transistors (FETs) and diodes for power applications.
  • a normally-off operation in which no current flows between the source and the drain when the gate voltage is 0 V is required from the viewpoint of safety.
  • a p-type group III nitride semiconductor is provided between the gate electrode and AlGaN, thereby forming a pn junction immediately under the gate and depleting the 2DEG channel only immediately under the gate. This can be realized.
  • the gate forward voltage (Vf, forward voltage through which a constant forward current between the gate and the source flows) of this structure is 3 V when the gate electrode is ohmically connected to the p-type group III nitride semiconductor. (A forward voltage of 100 ⁇ A per 1 mm of gate width between the gate and the source).
  • Vf is generally several tens of volts because a thermal oxide film (SiO 2 ) is sandwiched between a gate electrode and a channel. Therefore, the silicon-based MOSFET has a high forward voltage gate reliability, and the drive voltage for driving the gate with the gate driver is as high as about 10V. For this reason, simply replacing the GaN-FET with a silicon-based MOSFET circuit for power use could not be driven because a large amount of forward current flowed because the Vf of the GaN-FET was low. For the above reasons, the conventional GaN-FET drive requires a gate driver exclusively for GaN. In order to drive a GaN-FET with a silicon MOSFET driver on a silicon MOSFET circuit for power use, at least GaN- The Vf of the FET needs to be 7V or more.
  • FIG. 13 shows an example of a cross-sectional structure of a semiconductor device 901 described in Patent Document 1.
  • An appropriate buffer layer 2 is formed on an appropriate substrate 1 (Si, etc.), a first nitride semiconductor layer 3 (GaN, etc.) to be a channel layer is further formed thereabove, and a first layer is further formed thereon.
  • a second nitride semiconductor layer 4 (AlGaN or the like) serving as a barrier layer having a band gap larger than that of the nitride semiconductor layer 3 is formed.
  • AlGaN or the like serving as a barrier layer having a band gap larger than that of the nitride semiconductor layer 3 is formed.
  • the two-dimensional electron gas layer 8 is generated by the band gap difference between the second nitride semiconductor layer 4 and the first nitride semiconductor layer 3 and the piezoelectric charge in the second nitride semiconductor layer 4.
  • a p-type third nitride semiconductor layer 5 (p-GaN or the like) is selectively formed on the second nitride semiconductor layer 4.
  • a gate electrode 7 that is in Schottky contact with the p-type third nitride semiconductor layer 5 is formed above the p-type third nitride semiconductor layer 5, and the second nitride semiconductor layer is spaced apart on both sides thereof.
  • a source electrode 9 and a drain electrode 10 that are in ohmic contact with 4 are formed.
  • Patent Document 1 by providing the p-type third nitride semiconductor layer 5, a depletion layer by a pn junction can be formed between the gate electrode 7 and the two-dimensional electron gas layer 8, It is said that a normally-off operation can be easily realized, and at the same time, a semiconductor device capable of reducing the gate leakage current by making the gate electrode 7 in Schottky contact can be produced.
  • FIG. 1 An example of a cross-sectional structure of a semiconductor device 902 described in Patent Document 2 is shown in FIG.
  • a gate insulating film 16 such as SiO 2 is formed between the p-type third nitride semiconductor layer 5 of the semiconductor device 901 described in Patent Document 1 and the upper gate electrode 7.
  • the gate current can be made substantially zero by forming the gate insulating film 16.
  • FIG. 15 shows an example of a cross-sectional structure of a semiconductor device 903 described in Patent Document 3.
  • the p-type high resistance region 17 having a thickness of about 10 to 20 nm is formed on the entire upper surface of the p-type third nitride semiconductor layer 5 of the semiconductor device 901 described in Patent Document 1 by plasma irradiation. Form.
  • Patent Document 3 by forming the p-type high resistance region 17, it is possible to suppress the flow of the gate current when a positive voltage is applied to the gate electrode.
  • JP 2011-29247 A Japanese Patent No. 4041075 Japanese Patent No. 5707463
  • the MOS structure since the gate insulating film 16 such as SiO 2 is formed between the p-type third nitride semiconductor layer 5 and the upper gate electrode 7, the MOS structure Thus, Vf can be easily obtained as 10 V or more.
  • a thermal oxide film cannot be formed in the gate insulating film of a group III nitride semiconductor, an oxide film formed by plasma CVD or an oxide film formed by thermal CVD is formed later.
  • An oxide film formed by plasma CVD has many defect states, and an oxide film formed by thermal CVD does not form in-situ, so that there are many interface states at the interface between the oxide film and the nitride semiconductor. Since the power semiconductor device is driven at a high voltage, electrons are trapped at these levels, current collapse (slump) is generated, and there is a problem in reliability.
  • the p-type high resistance region 17 having a thickness of about 10 to 20 nm is formed on the entire upper surface of the p-type third nitride semiconductor layer 5 by plasma irradiation. Since the p-type high resistance region 17 is sandwiched between the gate electrode 7 and the p-type third nitride semiconductor layer 5, Vf can be increased. However, since the high-resistance region 17 is p-type, the resistivity is not high for the high-resistance region 17, and the effect of improving Vf is limited because the thickness is as thin as about 10 to 20 nm. Only Vf of about 4-6V can be obtained.
  • Mg is used as the p-type dopant of the p-type third nitride semiconductor layer 5.
  • the Mg—H bond hydrogen is desorbed and activated to activate Mg.
  • An annealing process (from 800 ° C.) is essential.
  • it is necessary to perform activation annealing before the selective dry etching of the p-type third nitride semiconductor layer 5 the heat treatment after the formation of the high resistance region returns the high resistance region to a low resistance).
  • the desorption of hydrogen from the side surface of the p-type third nitride semiconductor layer 5 is limited, and the activation rate of Mg is reduced.
  • the inactive p-type third nitride semiconductor layer 5 since the inactive p-type third nitride semiconductor layer 5 is used, the pn junction directly under the gate is not sufficiently formed, and the channel cannot be depleted, so that Vth is lowered and normally-off operation is performed. It becomes difficult.
  • the plasma-treated p-type high resistance region 17 covers the entire surface of the p-type third nitride semiconductor layer 5, the surface near the gate electrode 7 is p-type third nitride. It is not the physical semiconductor layer 5. Therefore, the total volume of the p-type third nitride semiconductor layer 5 is insufficient, the pn junction directly under the gate is not sufficiently formed, and the channel cannot be depleted, resulting in a decrease in Vth and a normally-off operation. May be difficult.
  • a nitride semiconductor device is formed on a substrate, a first nitride semiconductor layer formed on the substrate, and the first nitride semiconductor layer.
  • a gate electrode formed on the resistance region, wherein an end of the high resistance region is inside a surface end of the third nitride semiconductor layer.
  • the MOSFET of the conventional power MOSFET circuit can be driven simply by being transferred to the semiconductor device according to the present invention, and can be easily replaced.
  • low Ron can be obtained with a lower forward gate current in the on-resistance / gate current dependency (Ron-Ig).
  • Ron-Ig on-resistance / gate current dependency
  • the p-type region can be sufficiently secured, a decrease in Vth is suppressed, and a normally-off operation is facilitated.
  • FIG. 1 is a cross-sectional view showing a cross-sectional structure of a nitride semiconductor device according to an embodiment.
  • FIG. 2 is a graph showing the second impurity peak concentration dependency in the high resistance region of Vf of the nitride semiconductor device according to the embodiment.
  • FIG. 3 is a graph showing the dependence of Vf of the nitride semiconductor device according to the embodiment on the second average impurity concentration in the third nitride semiconductor layer.
  • FIG. 4A is a cross-sectional view illustrating the method for manufacturing the nitride semiconductor device according to the embodiment.
  • FIG. 4B is a cross-sectional view illustrating the method for manufacturing the nitride semiconductor device according to the embodiment.
  • FIG. 4C is a cross-sectional view illustrating the method for manufacturing the nitride semiconductor device according to the embodiment.
  • FIG. 4D is a cross-sectional view illustrating the method for manufacturing the nitride semiconductor device according to the embodiment.
  • FIG. 4E is a cross-sectional view illustrating the method for manufacturing the nitride semiconductor device according to the embodiment.
  • FIG. 4F is a cross-sectional view illustrating the method for manufacturing the nitride semiconductor device according to the embodiment.
  • FIG. 5 is a cross-sectional view showing a cross-sectional structure of the nitride semiconductor device according to the first modification of the embodiment.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure of a nitride semiconductor device according to a second modification of the embodiment.
  • FIG. 7 is a cross-sectional view showing a cross-sectional structure of a nitride semiconductor device according to a third modification of the embodiment.
  • FIG. 8 is a cross-sectional view showing a cross-sectional structure of a nitride semiconductor device according to a fourth modification of the embodiment.
  • FIG. 9 is a cross-sectional view showing a cross-sectional structure of a nitride semiconductor device according to a fifth modification of the embodiment.
  • FIG. 10 is a graph showing Vf characteristics of the nitride semiconductor devices according to the embodiment and the comparative example.
  • FIG. 10 is a graph showing Vf characteristics of the nitride semiconductor devices according to the embodiment and the comparative example.
  • FIG. 11A is a graph showing Ids-Vds characteristics of the nitride semiconductor device according to the comparative example.
  • FIG. 11B is a graph showing Ids-Vds characteristics of the nitride semiconductor device according to the embodiment.
  • FIG. 12 is a graph showing Ron-Igs characteristics of the nitride semiconductor device according to the embodiment and the comparative example.
  • FIG. 13 is a cross-sectional view showing a cross-sectional structure of the semiconductor device of Patent Document 1.
  • FIG. 14 is a cross-sectional view showing a cross-sectional structure of the semiconductor device of Patent Document 2.
  • FIG. 15 is a cross-sectional view showing a cross-sectional structure of the semiconductor device of Patent Document 3.
  • FIG. 1 shows a cross-sectional structure of nitride semiconductor device 100 according to the embodiment, in which the end of the high resistance region is inside the surface of the third nitride semiconductor layer.
  • the group III nitride semiconductor is described, but the present invention is not limited thereto.
  • the nitride semiconductor device 100 includes an appropriate buffer layer 2 (for example, GaN, AlGaN, which is a group III nitride semiconductor, etc.) on an appropriate Si substrate 1 (in addition, for example, a substrate such as Sapphire, SiC, GaN, or AlN).
  • a first nitride semiconductor layer 3 made of GaN for example, a group III nitride semiconductor such as InGaN, AlGaN, AlInGaN, etc.
  • a second nitride semiconductor layer 4 made of AlGaN (in addition, for example, a group III nitride semiconductor such as GaN, InGaN, AlGaN, AlInGaN, etc.).
  • the nitride semiconductor device 100 includes a third nitride semiconductor layer 5 including a p-type first impurity selectively made of p-GaN on the second nitride semiconductor layer 4 (in addition, for example, a group III A nitride semiconductor such as p-InGaN, p-AlGaN, or p-AlInGaN).
  • the second nitride semiconductor layer 4 has a larger band gap than the first nitride semiconductor layer 3.
  • the second nitride semiconductor layer 4 is AlGaN and the first nitride semiconductor layer 3 is GaN
  • AlGaN / GaN is caused by the difference between the piezoelectric charge generated from the lattice constant difference between AlGaN and GaN and the band gap.
  • a high concentration two-dimensional electron gas layer 8 is generated on the GaN layer side near the interface.
  • the third nitride semiconductor layer 5 containing the p-type first impurity a pn junction is formed, and when the gate voltage is not applied, the two-dimensional electron gas layer 8 is depleted and is in a normally-off state. It becomes.
  • the nitride semiconductor device 100 includes a part of the third nitride semiconductor layer 5 containing the p-type first impurity and a ratio higher than the specific resistance of the third nitride semiconductor layer containing the second impurity.
  • a source electrode 9 and a drain electrode 10 electrically connected to each other.
  • the AlGaN film thickness needs to be in the range of 10 to 20 nm, preferably 15 nm.
  • the film thickness may be in the range of 50 to 300 nm, preferably 100 nm.
  • the impurity is Mg
  • the concentration may be in the range of 1 ⁇ 10 19 cm ⁇ 3 to 10 ⁇ 10 19 cm ⁇ 3 , preferably 5 ⁇ 10 19 cm ⁇ 3 .
  • the second impurity contained in the high resistance region 6 is at least one of F, B, Ar, He, Fe, Cr, Zn, Ca and Ti, preferably an n-type or p-type nitride such as F or Fe. Any element that completely inactivates a semiconductor and increases resistance can be used.
  • FIG. 2 is a graph showing the second impurity peak concentration dependency in the high resistance region 6 of Vf of the nitride semiconductor device 100. From FIG. 2, in order to inactivate the high resistance region 6 and increase the resistance to obtain a sufficiently high Vf of 7 V or higher, the peak concentration of the second impurity is 1 ⁇ 10 18 cm ⁇ 3 or higher, preferably 2 It may be ⁇ 10 18 cm ⁇ 3 or more.
  • FIG. 3 is a graph showing the dependence of Vf of the nitride semiconductor device 100 on the second impurity average concentration in the third nitride semiconductor layer 5.
  • the second impurity average concentration in the third nitride semiconductor layer 5 is a value obtained by converting the amount of the second impurity contained per total volume of the third nitride semiconductor layer 5 into a concentration.
  • the average concentration of the second impurity in the third nitride semiconductor layer 5 is desirably 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the high resistance region 6 may be anywhere in the third nitride semiconductor layer 5 containing the p-type first impurity under the gate electrode 7, for example, on the outermost surface of the third nitride semiconductor layer 5. It may be present in the center, or may be mottled (distributed) in the third nitride semiconductor layer 5. However, in order to improve Vf efficiently, it is desirable that the high resistance region 6 is on the outermost surface of the third nitride semiconductor layer 5 and is in contact with the gate electrode 7.
  • the lateral end portion of the high resistance region 6 is located inside the end portion on the surface side of the third nitride semiconductor layer 5.
  • the edge part of the bottom face of the gate electrode 7 may be inside the horizontal edge part of the high resistance region 6, flush or outside, the Vf can be improved efficiently.
  • the end of the bottom surface of the gate electrode 7 is inside the end of the high resistance region 6 in the lateral direction (FIG. 1).
  • the width (lateral dimension) of the gate electrode 7 is preferably narrower than the width (lateral dimension) of the high resistance region 6.
  • the lateral direction is a direction that crosses the nitride semiconductor device 100 through the source electrode 9 and the drain electrode 10.
  • the thickness of the high resistance region 6 containing the second impurity is 20 nm or more, preferably 70 nm. That's better.
  • the film thickness including the second impurity of 1 ⁇ 10 17 cm ⁇ 3 or more is defined as the film thickness of the high resistance region 6.
  • the thickness of the high resistance region 6 is 20 nm or more, and the second impurity peak It is desirable that the concentration satisfy both of 2 ⁇ 10 18 cm ⁇ 3 or more.
  • the gate electrode 7 in contact with a part of the high resistance region 6 is made of one or more metals such as Ti, Ni, Pd, Pt, Au, W, WSi, Ta, TiN, Al, Mo, Hf, and Zr. Any combination of electrodes may be used. However, when a metal that makes a Schottky contact with the third nitride semiconductor layer 5 containing the p-type first impurity is used for the gate electrode 7, the gate is destroyed when a gate voltage of 6 V or more is applied. There is a high possibility of problems in reliability.
  • Ni that is a metal that has ohmic contact with the third nitride semiconductor layer 5 containing the p-type first impurity or that has a low contact resistance to the gate electrode 7. It is desirable to use an electrode in which one or a combination of two or more metals such as Pt, Pd, Au, Ti, Cr, In, and Sn.
  • the contact resistance when the electrode that is in ohmic contact with the third nitride semiconductor layer 5 containing the p-type first impurity contacts the high-resistance region 6 is preferably higher to some extent in order to improve Vf. Specifically, 200 ⁇ mm or more is desirable.
  • the source electrode 9 and the drain electrode 10 are made of a metal such as Ti, Al, Mo, and Hf in ohmic contact with any one of the two-dimensional electron gas layer 8, the second nitride semiconductor layer 4, and the first nitride semiconductor layer 3. It is only necessary that the electrode is composed of one electrode or a combination of two or more and is electrically connected to the two-dimensional electron gas layer 8. For example, it may be formed on the surface of the second nitride semiconductor layer 4, and the two-dimensional electron gas layer 8 and the second nitride semiconductor layer may be formed using a known ohmic recess technique (not shown). 4. It may be in contact with a part of the first nitride semiconductor layer 3.
  • a metal such as Ti, Al, Mo, and Hf
  • FIGS. 4A to 4F sectional views showing the manufacturing method of this structure are shown in FIGS. 4A to 4F.
  • this manufacturing method has demonstrated the minimum structure, and is not limited to this.
  • the order of this manufacturing method is not limited to this.
  • an appropriate buffer layer 2 (on the Si substrate 1 having an appropriate (111) surface (other than that, for example, a substrate such as Sapphire, SiC, GaN, or AlN) using an epitaxial growth technique such as a known MOCVD method.
  • a group III nitride semiconductor GaN, AlGaN, AlN, InGaN, AlInGaN or the like is formed on a single layer or a plurality of layers, and the first nitride semiconductor layer 3 made of GaN (in addition to, for example, III A group nitride semiconductor InGaN, AlGaN, AlInGaN, etc.) is formed, and a second nitride semiconductor layer 4 made of AlGaN having a larger band gap than the first nitride semiconductor layer 3 (in addition,
  • a group III nitride semiconductor such as GaN, InGaN, or AlInGaN is formed, and a p-type first layer made of p-Ga
  • Third nitride semiconductor layer 5 containing an impurity (Additional example p-InGaN a III group nitride semiconductor, p-AlGaN, and the like p-AlInGaN) a continuously formed (Fig. 4A).
  • the AlGaN film thickness is 10 to 20 nm depending on the set threshold voltage (Vth). In this range, it is desirable to be 15 nm.
  • the third nitride semiconductor layer 5 containing the p-type first impurity is p-GaN
  • the film thickness may be in the range of 50 to 300 nm, preferably 100 nm.
  • the impurity of Mg is Mg
  • the concentration may be in the range of 1 to 10 ⁇ 10 19 cm ⁇ 3 , preferably 5 ⁇ 10 19 cm ⁇ 3 .
  • a resist pattern 14 is formed using a known photolithography technique, and the third nitride semiconductor layer 5 containing the p-type first impurity is selectively removed using a known dry etching technique ( FIG. 4B).
  • activation annealing is performed in nitrogen gas at a temperature of 800 ° C. for about 30 minutes. (Not shown). The activation annealing is performed after the third nitride semiconductor layer 5 containing the p-type first impurity is selectively removed because the bond of hydrogen deactivating the p-type element Mg is cut off. This is because hydrogen can be efficiently desorbed from the side surfaces of the third nitride semiconductor layer 5 in addition to the surface of the third nitride semiconductor layer 5.
  • a resist pattern 15 having an opening on the upper surface of the third nitride semiconductor layer 5 containing the p-type first impurity is provided.
  • the second impurity is implanted into the second nitride semiconductor layer 4 through a known ion implantation technique through the opening of the resist pattern 15, and has a specific resistance higher than that of the third nitride semiconductor layer.
  • a high resistance region 6 is formed (FIG. 4C).
  • the second impurity contained in the high-resistance region 6 inactivates the high-resistance region 6 and increases the resistance to obtain a sufficiently high Vf of 7 V or more to obtain F, B, Ar, He, Fe, Cr , Zn, Ca, and Ti, preferably F or Fe, and any element that completely inactivates an n-type or p-type nitride semiconductor and increases resistance.
  • the peak concentration of the second impurity is 1 ⁇ 10 18 cm ⁇ 3 or higher, preferably 2 ⁇ 10 8 It may be 18 cm ⁇ 3 or more (FIG. 2).
  • the second impurity amount is set to the average concentration of the second impurity contained in the entire third nitride semiconductor layer 5 (the second impurity amount contained in the total volume of the third nitride semiconductor layer 5). In terms of concentration, it is preferably 1 ⁇ 10 17 cm ⁇ 3 or more (FIG. 3).
  • ion implantation is performed by selecting F, BF 2 gas, or the like.
  • the acceleration energy for ion implantation needs to be in the range of 10 to 100 keV, preferably about 40 keV, and the dose amount is 1 ⁇ 10 13 cm ⁇ 2 or more, preferably about 5 ⁇ 10 13 cm ⁇ 2 .
  • the implantation depth penetrates the third nitride semiconductor layer 5 and reaches the second nitride semiconductor layer 4
  • the two-dimensional electron gas layer 8 immediately below the gate during the ON operation decreases, and Vth shifts. This is not desirable. Therefore, the implantation depth of the second impurity does not exceed the bottom of the third nitride semiconductor layer 5, preferably about 10 nm above the bottom of the third nitride semiconductor layer 5 in consideration of process variations. It is important to stop.
  • the opening of the resist pattern 15 needs to be inside the upper end of the selectively formed third nitride semiconductor layer 5 in order to increase the resistance by ion implantation.
  • the resistance of the first nitride semiconductor layer 3 or the second nitride semiconductor layer 4 is increased by ion implantation.
  • the on-resistance of the device is greatly deteriorated and the FET does not operate.
  • the resist pattern 15 is removed using a known oxygen ashing technique, an organic resist removal technique, or the like (FIG. 4D).
  • the source electrode 9 and the drain electrode 10 are formed using a known photolithography technique, vapor deposition technique, lift-off technique, sputtering technique, dry etching technique, and the like (FIG. 4E).
  • the source electrode 9 and the drain electrode 10 are made of a metal such as Ti, Al, Mo, and Hf in ohmic contact with any one of the two-dimensional electron gas layer 8, the second nitride semiconductor layer 4, and the first nitride semiconductor layer 3. It is only necessary that the electrode is composed of one electrode or a combination of two or more and is electrically connected to the two-dimensional electron gas layer 8.
  • the two-dimensional electron gas layer 8 and the second nitride semiconductor layer may be formed using a known ohmic recess technique (not shown). 4. It may be in contact with a part of the first nitride semiconductor layer 3.
  • the source electrode 9 and the drain electrode 10 may be annealed to reduce contact resistance.
  • the gate electrode 7 is formed using a known photolithography technique, vapor deposition technique, lift-off technique, sputtering technique, dry etching technique, etc. (FIG. 4F).
  • the high resistance region 6 may be anywhere in the third nitride semiconductor layer 5 containing the p-type first impurity under the gate electrode 7, for example, on the outermost surface of the third nitride semiconductor layer 5. It may be present in the center, and may be present in the third nitride semiconductor layer 5 in a mottled manner (distributed). In order to improve Vf efficiently, however, The resistance region 6 is preferably on the outermost surface of the third nitride semiconductor layer 5 and is in contact with the gate electrode 7. Moreover, although the edge part of the bottom face of the gate electrode 7 may be inside the horizontal edge part of the high resistance region 6, flush or outside, the Vf can be improved efficiently. It is desirable to be inside.
  • the gate electrode 7 in contact with a part of the high resistance region 6 is made of one or more metals such as Ti, Ni, Pd, Pt, Au, W, WSi, Ta, TiN, Al, Mo, Hf, and Zr. Any combination of electrodes may be used. However, when a metal that makes a Schottky contact with the third nitride semiconductor layer 5 containing the p-type first impurity is used for the gate electrode 7, the gate is destroyed when a gate voltage of 6 V or more is applied. There is a high possibility of problems in reliability.
  • Ni, Pt, Pd, Au which are metals that are in ohmic contact with the third nitride semiconductor layer 5 containing the p-type first impurity or that have a low contact resistance. It is desirable to use an electrode in which one or a combination of two or more metals such as Ti, Cr, In, and Sn.
  • the contact resistance when the electrode that is in ohmic contact with the third nitride semiconductor layer 5 containing the p-type first impurity contacts the high-resistance region 6 is preferably higher to some extent in order to improve Vf. Specifically, 200 ⁇ mm or more is desirable.
  • the operation of the nitride semiconductor device 100 will be described.
  • the gate electrode 7 is 0 V
  • the depletion layer due to the pn junction spreads immediately below the third nitride semiconductor layer 5, and therefore the two-dimensional electron gas layer 8 does not exist and is in the off state.
  • a positive gate voltage is applied to the gate electrode 7 in a state where the source electrode 9 is grounded and a positive drain voltage as a load is applied to the drain electrode 10
  • the depletion layer is reduced and the gate voltage is reduced.
  • Vth is exceeded, drain current begins to flow and the device is turned on.
  • the effect of the nitride semiconductor device 100 will be described.
  • a normally-off operation can be easily realized, and at the same time, since the resistivity of the high resistance region 6 is high, Vf can be improved to 7V or more.
  • the MOSFET of the conventional power MOSFET circuit can be driven simply by being transferred to the nitride semiconductor device 100, and can be easily replaced.
  • Ron-Ig on-resistance / gate current dependency
  • a low Ron can be obtained with a lower forward gate current.
  • the switching operation can be performed with low power consumption, and the switching loss on the circuit can be reduced.
  • the high resistance region 6 is a semiconductor layer, the reliability of the gate is higher than a silicon oxide film or the like deposited by plasma CVD or the like.
  • the high resistance region does not cover the entire surface of the p-type third nitride semiconductor layer 5, the p-type region can be sufficiently secured, a decrease in Vth is suppressed, and a normally-off operation is facilitated.
  • activation annealing can be performed after the p-type third nitride semiconductor layer 5 is selectively etched, and hydrogen is desorbed from the lateral direction of the p-type third nitride semiconductor layer 5. As a result, the Mg activation rate is improved, the decrease in Vth is suppressed, and the normally-off operation is facilitated.
  • the end portion of the high resistance region which is a first modification of the embodiment, is inside the surface end of the third nitride semiconductor layer, and the width of the gate electrode is the same as the width of the high resistance region.
  • 2 shows a cross-sectional structure of a nitride semiconductor device 101. Moreover, although this modification is described using a group III nitride semiconductor, the present invention is not limited thereto. Further, this structure shows a minimum configuration, and is not limited to this.
  • the nitride semiconductor device 101 has a high resistance region 6 in which the width of the gate electrode 7 in the nitride semiconductor device 100 shown in FIG. 1 has a specific resistance higher than the specific resistance of the third nitride semiconductor layer. Is the same as the width of That is, the bottom surface end of the gate electrode 7 is the same as the horizontal end of the high resistance region 6 in the horizontal direction (the same level). In other words, the width (lateral dimension) of the gate electrode 7 is the same as the width (lateral dimension) of the high resistance region 6.
  • the lateral direction is a direction that crosses the nitride semiconductor device 101 through the source electrode 9 and the drain electrode 10.
  • the nitride semiconductor device 101 By using the nitride semiconductor device 101, in addition to the effect of the nitride semiconductor device 100 shown in FIG. 1, while keeping Vf high, the p-GaN region is large, so that the decrease in Vth is suppressed, and normally-off operation is achieved. It becomes easier. Further, since the gate electrode 7 is close to the third nitride semiconductor layer 5 containing the p-type first impurity, the gate current can be made to flow minutely, and the gate voltage is applied in the forward direction by 6 V or more. Even if it is not destroyed, the gate reliability is improved.
  • the end of the high resistance region which is a second modification of the embodiment, is inside the surface end of the third nitride semiconductor layer, and the width of the gate electrode is larger than the width of the high resistance region.
  • 2 shows a cross-sectional structure of the nitride semiconductor device 102 which is also outside.
  • this modification is described using a group III nitride semiconductor, the present invention is not limited thereto. Further, this structure shows a minimum configuration, and is not limited to this.
  • the nitride semiconductor device 102 has a high resistance region 6 in which the width of the gate electrode 7 in the nitride semiconductor device 100 shown in FIG. 1 has a specific resistance higher than the specific resistance of the third nitride semiconductor layer. Wider than the width of. That is, the bottom end of the gate electrode 7 is outside the lateral end of the high resistance region 6. That is, the outside of the gate electrode 7 is in contact with the third nitride semiconductor layer 5 containing the p-type first impurity. In other words, the width (lateral dimension) of the gate electrode 7 is wider than the width (lateral dimension) of the high resistance region 6.
  • the lateral direction is a direction that crosses the nitride semiconductor device 102 through the source electrode 9 and the drain electrode 10.
  • the nitride semiconductor device 102 in addition to the effect of the nitride semiconductor device 100 shown in FIG. 1, while keeping Vf to a certain extent, the p-GaN region is further widened to suppress the decrease in Vth. Normally-off operation is facilitated.
  • the third nitride semiconductor layer 5 containing the p-type first impurity can be directly accessed from the end of the gate electrode 7, a gate current can flow to some extent, and the gate voltage can be destroyed even when the gate voltage is applied to 6V or more in the forward direction. Without increasing the gate reliability.
  • FIG. 7 shows a cross-sectional structure of a recessed gate type nitride semiconductor device 103 in which the end of the high resistance region is inside the surface end of the third nitride semiconductor layer, which is the third modification of the embodiment. .
  • this modification is described using a group III nitride semiconductor, the present invention is not limited thereto. Further, this structure shows a minimum configuration, and is not limited to this.
  • the nitride semiconductor device 103 is the first of the nitride semiconductor devices 100, 101, and 102 shown in FIGS. 1, 5, and 6 below the third nitride semiconductor layer 5 containing the p-type first impurity.
  • the two nitride semiconductor layers 4 have a recess 11 structure.
  • the remaining thickness of the second nitride semiconductor layer 4 immediately below the recess 11 is set to a threshold value when the second nitride semiconductor layer 4 is AlGaN and the Al composition is 20% for normally-off operation.
  • Vth value voltage
  • the AlGaN film thickness needs to be in the range of 10 to 20 nm, preferably 15 nm.
  • the second nitride semiconductor layer 4 other than the recess portion is thicker than the remaining thickness of the second nitride semiconductor layer 4 immediately below the recess 11 portion, preferably 40 nm or more.
  • the epitaxial growth is once completed on the second nitride semiconductor layer 4, and then the recess 11 is formed on the second nitride semiconductor layer 4 using a known photolithography technique and dry etching technique. Forming part.
  • the third nitride semiconductor layer 5 containing the p-type first impurity is epitaxially grown so as to fill the recess 11, and the subsequent manufacturing method is the same as that in FIG.
  • the third nitride semiconductor layer 5 containing the p-type first impurity needs to be formed so as to completely embed the recess 11 by lateral growth. It is desirable that the thickness is 200 nm or more.
  • the surface of the second nitride semiconductor layer 4 other than the recess is used.
  • the two-dimensional electron gas layer 8 can be physically separated, the influence of electrons trapped on the surface level of the second nitride semiconductor layer 4 surface can be removed, and current collapse can be greatly reduced.
  • FIG. 8 shows a cross-sectional structure of a through-recessed gate type nitride semiconductor device 104 according to a fourth modification of the embodiment, in which the end portion of the high resistance region is inside the surface end of the third nitride semiconductor layer. Show. In the present embodiment, the group III nitride semiconductor is described, but the present invention is not limited thereto. Further, this structure shows a minimum configuration, and is not limited to this.
  • the nitride semiconductor device 104 is the first of the nitride semiconductor devices 100 and 101 to 103 shown in FIGS. 1 and 5 to 7 below the third nitride semiconductor layer 5 containing the p-type first impurity.
  • the second nitride semiconductor layer 4 has a recess 11 structure that penetrates through the second nitride semiconductor layer 4 and has the bottom surface reaching the first nitride semiconductor layer 3.
  • the epitaxial growth is once completed in the second nitride semiconductor layer 4 during the manufacturing process shown in FIG. 4A, and then the bottom surface penetrates through the second nitride semiconductor layer 4.
  • a recess 11 reaching the first nitride semiconductor layer 3 is formed by using a known photolithography technique and dry etching technique.
  • the divided two-dimensional electron gas layer 8 grows a fourth nitride semiconductor layer 12 such as AlGaN by re-epitaxial growth, and reconnects the divided second nitride semiconductor layer 4 to form a two-dimensional electron gas.
  • Reconnect layer 8 Subsequently, the third nitride semiconductor layer 5 containing the p-type first impurity is epitaxially grown so as to fill the recess 11, and the subsequent manufacturing method is the same as that in FIG.
  • the regrown fourth nitride semiconductor layer 12 has an AlGaN film thickness of 10 to 20 nm, depending on the threshold voltage (Vth) to be set when the Al composition ratio is 20%. It should be within the range, preferably 15 nm.
  • the sum of the film thicknesses of the second nitride semiconductor layer 4 and the fourth nitride semiconductor layer 12 other than the recess part is thicker than the remaining thickness of the second nitride semiconductor layer 4 immediately below the recess 11 part, Desirably, it may be 40 nm or more.
  • the third nitride semiconductor layer 5 containing the p-type first impurity needs to be formed so as to embed the recess 11 by lateral growth. Therefore, a certain film thickness is required, and it is desirable that the maximum thickness portion is 200 nm or more.
  • nitride semiconductor device 104 By using the nitride semiconductor device 104, in addition to the effects of the nitride semiconductor devices 100, 101, 102 shown in FIGS. 1, 5, and 6, a two-dimensional electron gas is emitted from the surface of the second nitride semiconductor layer 4.
  • the layer 8 can be physically separated, the influence of electrons trapped on the surface level of the surface of the fourth nitride semiconductor layer 12 can be removed, and current collapse can be greatly reduced.
  • the nitride semiconductor device 103 shown in FIG. 7 since the Vth in the wafer surface can be controlled only by the fourth nitride semiconductor layer 12 that has been regrown, there is a variation in Vth in the wafer surface. small.
  • FIG. 9 shows a cross-sectional structure of a vertical nitride semiconductor device 105 according to a fifth modification of the embodiment, in which the end portion of the high resistance region is inside the surface end of the third nitride semiconductor layer.
  • the group III nitride semiconductor is described, but the present invention is not limited thereto. Further, this structure shows a minimum configuration, and is not limited to this.
  • the substrate 1 is made of n-type GaN
  • the drain electrode 10 is provided on the back surface of the substrate 1
  • a source electrode 9 that is formed on the side of the gate electrode 7 so as to be separated from the gate electrode 7 and is electrically connected to the two-dimensional electron gas layer 8.
  • the well layer 13 is formed by forming a pn junction with the n-type substrate 1 or the first nitride semiconductor layer 3 made of n-GaN in order to suppress the through current between the source and drain.
  • p-type is desirable.
  • a recess structure may be used (not shown).
  • the breakdown voltage can be increased. It becomes possible. Also, the current density per chip area can be improved.
  • the third nitride semiconductor layer 5 of the through recess gate type nitride semiconductor device 104 shown here is p-GaN, and the maximum film thickness is about 250 nm in both the comparative example and the example.
  • the high resistance region 6 includes both B and F, the peak concentration of B is 1.3 ⁇ 10 19 cm ⁇ 3 , and the peak concentration of F is 2.6 ⁇ 10 19 cm ⁇ . 3 .
  • the average concentration of B contained in the entire p-GaN is 1.2 ⁇ 10 18 cm ⁇ 3 , and the average concentration of F is 2.3 ⁇ 10 18 cm ⁇ 3 .
  • the film thickness including the second impurity of 1 ⁇ 10 17 cm ⁇ 3 or more is defined as the film thickness of the high resistance region 6, the film thickness is approximately 70 nm, and the surface of the high resistance region 6 and the third resistance The surface of the nitride semiconductor layer 5 is on the same plane.
  • the width of the upper surface of the third nitride semiconductor layer 5 is approximately 1.4 ⁇ m, the width of the upper surface of the high resistance region 6 is approximately 0.9 ⁇ m, and the width of the bottom surface of the gate electrode 7 is approximately 0.8 ⁇ m.
  • the bottom end of the gate electrode 7 is inside the top end of the high resistance region 6, and the bottom end of the gate electrode 7 is all in contact with the top surface of the high resistance region 6.
  • FIG. 10 shows Vgs-Igs (Vf) characteristics of a comparative example in which the third nitride semiconductor layer 5 does not have the high resistance region 6 in the nitride semiconductor device 104 and an example in which the high resistance region 6 is provided.
  • the presence of the high resistance region 6 greatly improves Vf from 3.3 V in the comparative example to 11.2 V.
  • the requirement of Vf ⁇ 7 V is satisfied, and the GaN-FET can be driven by the silicon MOSFET driver on the silicon MOSFET circuit for power use.
  • 11A and 11B show Ids-Vds characteristics of the comparative example in which the third nitride semiconductor layer 5 does not have the high resistance region 6 and the example in which the high resistance region 6 is provided in the nitride semiconductor device 104, respectively.
  • a maximum drain current (Imax) of about 0.3 A / mm can be secured, and the FET operates normally.
  • Vf can be secured to 11 V or more, so even if +14 V is applied to Vgs, Ids does not leak and the FET can operate normally.
  • FIG. 12 shows the Ron-Igs characteristics of the comparative example in which the high resistance region 6 is not provided in the third nitride semiconductor layer 5 in the nitride semiconductor device 104 and the example in which the high resistance region 6 is provided.
  • a low Ron can be obtained at a lower Igs than in the comparative example without the high resistance region 6. That is, the switching operation can be performed with lower power consumption, and the switching loss on the circuit can be reduced.
  • the nitride semiconductor device As described above, the nitride semiconductor device according to one or more aspects of the present invention has been described based on the embodiment, but the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, one or more of the present invention may be applied to various modifications that can be conceived by those skilled in the art, or forms constructed by combining components in different embodiments. It may be included within the scope of the embodiments.
  • the present invention can provide a semiconductor layer that can greatly improve Vf simultaneously with the normally-off operation, thereby improving the performance of the power device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

窒化物半導体装置(100)は、基板(1)と、基板(1)の上に形成された第1の窒化物半導体層(3)と、第1の窒化物半導体層(3)の上に形成され、第1の窒化物半導体層(3)と比べてバンドギャップが大きい第2の窒化物半導体層(4)と、第2の窒化物半導体層(4)の上に選択的に形成され、p型の第1の不純物を含む第3の窒化物半導体層(5)と、第3の窒化物半導体層(5)に形成され、第2の不純物を含み、第3の窒化物半導体層(5)の比抵抗よりも高い比抵抗を有す高抵抗領域(6)と、高抵抗領域(6)の上に形成されたゲート電極(7)と、を有し、高抵抗領域(6)の端部が、第3の窒化物半導体層(5)の表面端の内側にある。

Description

窒化物半導体装置及びその製造方法
 本発明は、半導体装置の構造及びその製造方法、特にパワートランジスタ等として用いることができる半導体、特にIII族窒化物半導体を用いた装置、及びその製造方法に関する。
 III族窒化物半導体、特にGaNやAlGaNは、そのバンドギャップの広さから高い絶縁破壊電圧を有する。またAlGaN/GaN等のヘテロ構造を容易に形成することが可能であり、AlGaNとGaNの格子定数差から発生するピエゾ電荷とバンドギャップの差によりAlGaN/GaN界面のGaN層側に高移動度、かつ高濃度な電子のチャネル(二次元電子ガス、2DEG)を発生させることができる。この二次元電子ガスチャネルを制御することにより高電子移動度トランジスタ(HEMT、High Electron Mobility Transistor)を形成することが可能となる。これらの高耐圧、高速、大電流の特徴により、III族窒化物半導体はパワー用途の電界効果トランジスタ(FET)やダイオード等の電子デバイスへの応用がなされている。
 III族窒化物半導体をパワー用途のFET(例えば、GaN-FET)に用いる場合、安全性の観点から、ゲート電圧が0Vの時にソース・ドレイン間に電流が流れないというノーマリオフ動作が求められる。GaN-FETをノーマリオフ動作させるためには、p型のIII族窒化物半導体をゲート電極とAlGaNの間に設けることにより、p-n接合をゲート直下に形成し、2DEGチャネルをゲート直下のみ空乏化させることにより実現できる。この構造のゲート順方向電圧(Vf、ゲート・ソース間にある一定の順方向の電流が流れる順方向電圧)は、ゲート電極がp型のIII族窒化物半導体にオーミック接続している際は3V程度(ゲート・ソース間にゲート幅1mm当たり100μA流れる順方向電圧)である。
 パワー用途のシリコン系MOS(金属酸化物半導体)FETでは、ゲート電極とチャネルの間に熱酸化膜(SiO)を挟むために、一般的にVfは数十Vである。そのためシリコン系MOSFETでは順方向電圧のゲート信頼性が高く、ゲートドライバでゲート駆動させるためのドライブ電圧も10V程度と高い。そのためパワー用途のシリコン系MOSFET回路に、GaN-FETを載せ換えただけでは、GaN-FETのVfが低いために順方向電流が大量に流れ、駆動できなかった。上記の理由により従来GaN-FET駆動にはGaN専用のゲートドライバが必要であり、パワー用途のシリコン系MOSFET回路上でシリコン系MOSFET用のドライバでGaN-FETを駆動させるためには、少なくともGaN-FETのVfが7V以上必要である。
 特許文献1に記載されている半導体装置901の断面構造例を図13に示す。適宜な基板1(Si等)上に、適宜なバッファ層2を形成し、さらにその上方にチャネル層となる第1の窒化物半導体層3(GaN等)を形成し、さらにその上方に第1の窒化物半導体層3よりもバンドギャップの大きいバリア層となる第2の窒化物半導体層4(AlGaN等)を形成する。これにより、第2の窒化物半導体層4と第1の窒化物半導体層3のバンドギャップ差と第2の窒化物半導体層4中のピエゾ電荷により二次元電子ガス層8が発生する。
 次に、第2の窒化物半導体層4の上に選択的にp型の第3の窒化物半導体層5(p-GaN等)を形成する。p型の第3の窒化物半導体層5の上方にp型の第3の窒化物半導体層5にショットキ接触するゲート電極7を形成し、その両側方に離間して第2の窒化物半導体層4にオーミック性接触するソース電極9とドレイン電極10を形成する。
 特許文献1によれば、p型の第3の窒化物半導体層5を設けることにより、ゲート電極7と二次元電子ガス層8の間にp-n接合による空乏層を形成することができ、容易にノーマリオフ動作を実現すると同時に、ゲート電極7がショットキ接触することによりゲートリーク電流を低減できる半導体装置を作成できるとされる。
 特許文献2に記載されている半導体装置902の断面構造例を図14に示す。半導体装置902では、特許文献1に記載されている半導体装置901のp型の第3の窒化物半導体層5と、上方のゲート電極7の間に、SiO等のゲート絶縁膜16を形成する。特許文献2によれば、ゲート絶縁膜16を形成することにより、ゲート電流をほぼゼロにすることが可能であるとされる。
 特許文献3に記載されている半導体装置903の断面構造例を図15に示す。半導体装置903では、特許文献1に記載されている半導体装置901のp型の第3の窒化物半導体層5の上面全面にプラズマ照射により厚さ10~20nm程度のp型の高抵抗領域17を形成する。特許文献3によれば、p型の高抵抗領域17を形成することにより、ゲート電極に正電圧が印加されたときに、ゲート電流が流れることを抑制することができるとされる。
特開2011-29247号公報 特許第4041075号公報 特許第5707463号公報
 しかしながら、背景技術で記載した半導体装置901~903をパワー分野で用いる場合はいくつか問題がある。
 特許文献1に記されている半導体装置901では、p型の第3の窒化物半導体層5にショットキ接触するゲート電極7を形成するため、オーミック接触するゲート電極7を形成するよりも、Vfを高くできる。しかしながら、オーミック接触するゲート電極でのVfは3V程度なので、それにショットキ障壁分を付加しても4~6V程度のVfしか得られない。またショットキ接触では、順方向電圧を6V以上にした場合はゲート破壊を起こすため、ゲート信頼性に問題がある。
 特許文献2に記されている半導体装置902では、p型の第3の窒化物半導体層5と、上方のゲート電極7の間に、SiO等のゲート絶縁膜16を形成するため、MOS構造となり、Vfは10V以上を容易に得られる。しかしながら、III族窒化物半導体のゲート絶縁膜においては、熱酸化膜を形成できないため、後付けのプラズマCVDによる酸化膜や熱CVDによる酸化膜を形成する。プラズマCVDによる酸化膜は欠陥準位が多数あり、また熱CVDによる酸化膜もin-situで形成しないために酸化膜と窒化物半導体界面に界面準位が多数ある。パワー半導体装置は高電圧で駆動するため、これらの準位に電子がトラップされて、電流コラプス(スランプ)が発生し、信頼性に問題がある。
 特許文献3に記されている半導体装置903では、p型の第3の窒化物半導体層5の上面全面をプラズマ照射により厚さ10~20nm程度のp型の高抵抗領域17を形成する。p型の高抵抗領域17を、ゲート電極7とp型の第3の窒化物半導体層5の間に挟むため、Vfを高くすることが可能である。しかしながら高抵抗領域17がp型であるため、高抵抗領域17というには抵抗率が高くないこと、また厚さが10~20nm程度と極めて薄いためVfを向上させる効果としては限定的であり、4~6V程度のVfしか得られない。
 また、半導体装置903ではp型の第3の窒化物半導体層5のp型のドーパントとしてMgを用いているが、エピ成長後にMg-H結合の水素を脱離してMgを活性化させる活性化アニールプロセス(800℃~)が必須となる。半導体装置903では、活性化アニールをp型の第3の窒化物半導体層5を選択ドライエッチングする前に実施する必要があり(高抵抗領域形成後の熱処理は、高抵抗領域が低抵抗に戻ってしまうために不可である)、p型の第3の窒化物半導体層5の側面からの水素の脱離が限定され、Mgの活性化率を低減させる。つまり不活性なp型の第3の窒化物半導体層5を用いているため、ゲート直下のp-n接合が十分に形成されず、チャネルを空乏化できないためにVthが低下し、ノーマリオフ動作が困難となる。
 また、プラズマ処理されたp型の高抵抗領域17は、p型の第3の窒化物半導体層5の表面全面を覆っているために、ゲート電極7脇の表面がp型の第3の窒化物半導体層5ではない。そのためp型の第3の窒化物半導体層5の総体積量が不十分であり、ゲート直下のp-n接合が十分に形成されず、チャネルを空乏化できないためにVthが低下し、ノーマリオフ動作が困難となる可能性がある。
 そこで、本発明に係る窒化物半導体装置は、基板と、前記基板の上に形成された第1の窒化物半導体層と、前記第1の窒化物半導体層の上に形成され、前記第1の窒化物半導体層と比べてバンドギャップが大きい第2の窒化物半導体層と、前記第2の窒化物半導体層の上に選択的に形成され、p型の第1の不純物を含む第3の窒化物半導体層と、前記第3の窒化物半導体層に形成され、第2の不純物を含み、前記第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域と、前記高抵抗領域の上に形成されたゲート電極と、を有し、前記高抵抗領域の端部が、前記第3の窒化物半導体層表面端の内側にあることを特徴とする。
 本発明に係る窒化物半導体装置では、容易にノーマリオフ動作を実現すると同時に、高抵抗領域の抵抗率が高いためVfが大幅に向上(≧7V)する。これにより従来のパワーMOSFET回路のMOSFETを、本発明に係る半導体装置に乗せ換えるだけで駆動でき、簡単に置き換えることが可能となる。また、オン抵抗・ゲート電流依存性(Ron-Ig)においてより低い順方向ゲート電流で、低いRonを得ることが可能となる。それにより低い消費電力でスイッチング動作が可能となり、回路上でのスイッチングロスを低減可能となる。また、高抵抗領域が半導体であるためにゲート信頼性が高い。また、高抵抗領域がp型の第3の窒化物半導体層の表面全面を覆わないため、p型領域を十分に確保でき、Vthの低下を抑制、ノーマリオフ動作が容易となる。また構造上、p型の第3の窒化物半導体層を選択エッチングした後に活性アニールすることが可能となり、p型の第3の窒化物半導体層の側面からの水素の脱離が可能となり、Mgの活性化率が向上し、Vthの低下を抑制、ノーマリオフ動作が容易となる。
図1は、実施の形態に係る窒化物半導体装置の断面構造を示す断面図である。 図2は、実施の形態に係る窒化物半導体装置のVfの、高抵抗領域中の第2の不純物ピーク濃度依存性を示すグラフである。 図3は、実施の形態に係る窒化物半導体装置のVfの、第3の窒化物半導体層中の第2の不純物平均濃度依存性を示すグラフである。 図4Aは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Bは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Cは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Dは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Eは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Fは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図5は、実施の形態の第1の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図6は、実施の形態の第2の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図7は、実施の形態の第3の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図8は、実施の形態の第4の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図9は、実施の形態の第5の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図10は、実施の形態および比較例に係る窒化物半導体装置のVf特性を示すグラフである。 図11Aは、比較例に係る窒化物半導体装置のIds-Vds特性を示すグラフである。 図11Bは、実施の形態に係る窒化物半導体装置のIds-Vds特性を示すグラフである。 図12は、実施の形態および比較例に係る窒化物半導体装置のRon-Igs特性を示すグラフである。 図13は、特許文献1の半導体装置の断面構造を示す断面図である。 図14は、特許文献2の半導体装置の断面構造を示す断面図である。 図15は、特許文献3の半導体装置の断面構造を示す断面図である。
 以下、実施の形態に係る窒化物半導体装置について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 図1に、実施の形態に係る、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にある窒化物半導体装置100の断面構造を示す。また、本実施形態ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。
 窒化物半導体装置100は、適宜なSi基板1(他にも例えばSapphire、SiC、GaN、AlN等の基板)の上に、適宜なバッファ層2(例えばIII族窒化物半導体であるGaN、AlGaN、AlN、InGaN、AlInGaN等の単層もしくは複数層)を有し、その上に、GaNからなる第1の窒化物半導体層3(他にも例えばIII族窒化物半導体であるInGaN、AlGaN、AlInGaN等)を有し、その上に、AlGaNからなる第2の窒化物半導体層4(他にも例えばIII族窒化物半導体であるGaN、InGaN、AlGaN、AlInGaN等)を有する。
 窒化物半導体装置100は、第2の窒化物半導体層4の上に選択的にp-GaNからなるp型の第1の不純物を含む第3の窒化物半導体層5(他にも例えばIII族窒化物半導体であるp-InGaN、p-AlGaN、p-AlInGaN等)を有する。第2の窒化物半導体層4は、第1の窒化物半導体層3よりもバンドギャップが大きい。また、第2の窒化物半導体層4がAlGaN、第1の窒化物半導体層3がGaNであるとした場合、AlGaNとGaNが格子定数差から発生するピエゾ電荷とバンドギャップの差によりAlGaN/GaN界面近傍のGaN層側に高濃度の二次元電子ガス層8が発生する。ただしp型の第1の不純物を含む第3の窒化物半導体層5直下は、p-n接合が形成され、ゲート電圧が加わっていない場合は二次元電子ガス層8が空乏化されてノーマリオフ状態となる。
 窒化物半導体装置100は、p型の第1の不純物を含む第3の窒化物半導体層5の一部に、第2の不純物を含み前記第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6を有し、高抵抗領域6の上にゲート電極7を有し、ゲート電極7の両側方にそれぞれゲート電極7と離間して形成され、二次元電子ガス層8と電気的に接続されたソース電極9及びドレイン電極10を有する。
 第2の窒化物半導体層4がAlGaNである場合、ノーマリオフ動作のためには、第2の窒化物半導体層4におけるAl組成比が20%の場合、設定するしきい値電圧(Vth)に応じて、AlGaN膜厚が10~20nmの範囲内、望ましくは15nmである必要がある。また、p型の第1の不純物を含む第3の窒化物半導体層5がp-GaNである場合、膜厚は50~300nmの範囲内、望ましくは100nmであれば良く、p型の第1の不純物がMgである場合、濃度は1×1019cm-3~10×1019cm-3の範囲内、望ましくは5×1019cm-3であれば良い。
 高抵抗領域6に含まれる第2の不純物はF、B、Ar、He、Fe、Cr、Zn、Ca、Tiの内少なくとも一つ、望ましくはFやFe等のn型もしくはp型の窒化物半導体を完全に不活性化し、高抵抗化する元素であればよい。
 図2は、窒化物半導体装置100のVfの、高抵抗領域6中の第2の不純物ピーク濃度依存性を示すグラフである。図2から、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るためには第2の不純物のピーク濃度は1×1018cm-3以上、望ましくは2×1018cm-3以上であればよい。
 図3は、窒化物半導体装置100のVfの、第3の窒化物半導体層5中の第2の不純物平均濃度依存性を示すグラフである。ここで、第3の窒化物半導体層5中の第2の不純物平均濃度とは、第3の窒化物半導体層5の総体積当たりに含まれる第2の不純物量を濃度に換算した値を言う。図3から、第3の窒化物半導体層5中の第2の不純物の平均濃度は1×1017cm-3以上であることが望ましい。
 高抵抗領域6は、ゲート電極7の下のp型の第1の不純物を含む第3の窒化物半導体層5の中にあればどこでも良く、例えば第3の窒化物半導体層5の最表面にあっても良く、中心部にあっても良く、第3の窒化物半導体層5の中にまだらに(分散して)存在していても良い。ただしVfを効率よく向上させるためには、高抵抗領域6は第3の窒化物半導体層5の最表面にあり、ゲート電極7と接していることが望ましい。
 また高抵抗領域6の横方向の端部は、第3の窒化物半導体層5の表面側の端部よりも内側にあることが望ましい。また、ゲート電極7の底面の端部は、高抵抗領域6の横方向の端部の内側にあっても、面一にあっても、外側にあっても良いが、Vfを効率よく向上させるためには、ゲート電極7の底面の端部は高抵抗領域6の横方向の端部の内側にあることが望ましい(図1)。言い換えれば、ゲート電極7の幅(横方向の寸法)は、高抵抗領域6の幅(横方向の寸法)よりも狭いことが望ましい。ここで、横方向とは、窒化物半導体装置100をソース電極9及びドレイン電極10を通って横断する方向である。
 また、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るためには第2の不純物が入っている高抵抗領域6の厚さが20nm以上、望ましくは70nm以上であるほうが良い。ただし、第2の不純物が1×1017cm-3以上含まれる膜厚を、高抵抗領域6の膜厚と定義する。また、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るためには、高抵抗領域6の厚さが20nm以上で、尚且つ、第2の不純物のピーク濃度が2×1018cm-3以上の両方を満たすことが望ましい。
 高抵抗領域6の一部に接触するゲート電極7は、Ti、Ni、Pd、Pt、Au、W、WSi、Ta、TiN、Al、Mo、Hf、Zr等の金属を1つもしくは2つ以上組み合わせた電極であれば良い。ただしゲート電極7に、p型の第1の不純物を含む第3の窒化物半導体層5にショットキ接触をする金属を用いる場合、ゲート電圧を6V以上加えた場合にはゲートが破壊する等、ゲート信頼性に問題が発生する可能性が高い。そのため、ゲートの信頼性を確保するためには、ゲート電極7に、p型の第1の不純物を含む第3の窒化物半導体層5にオーミック接触する、もしくはコンタクト抵抗が低い金属であるNi、Pt、Pd、Au、Ti、Cr、In、Sn等の金属を1つもしくは2つ以上組み合わせた電極を用いることが望ましい。ただし、上記p型の第1の不純物を含む第3の窒化物半導体層5にオーミック接触する電極が、高抵抗領域6に接触する際のコンタクト抵抗は、Vfを向上させるため、ある程度高いほうが良く、具体的には200Ωmm以上が望ましい。
 ソース電極9及びドレイン電極10は、二次元電子ガス層8、第2の窒化物半導体層4、第1の窒化物半導体層3のいずれかにオーミック接触するTi、Al、Mo、Hf等の金属を1つもしくは2つ以上組み合わせた電極からなり、二次元電子ガス層8に電気的に接続されていれば良い。例えば、第2の窒化物半導体層4の表面上に形成しても良く、また、既知のオーミックリセス技術(図示せず)を用いて、二次元電子ガス層8、第2の窒化物半導体層4、第1の窒化物半導体層3の一部に接していれば良い。
 次に、本構造の製造方法を示す断面図を図4A~図4Fに示す。尚、本製造方法は最小の構成を説明しており、これに限定を受けるものではない。また、本製造方法の順序はこれに限定されるものではない。
 まず、適宜な(111)面のSi基板1(他にも、例えばSapphire、SiC、GaN、AlN等の基板)上に、既知のMOCVD法等のエピタキシャル成長技術を用いて、適宜なバッファ層2(例えばIII族窒化物半導体であるGaN、AlGaN、AlN、InGaN、AlInGaN等の単層もしくは複数層)を形成し、その上にGaNからなる第1の窒化物半導体層3(他にも、例えばIII族窒化物半導体であるInGaN、AlGaN、AlInGaN等)を形成し、その上に第1の窒化物半導体層3よりもバンドギャップが大きいAlGaNからなる第2の窒化物半導体層4(他にも、例えばIII族窒化物半導体であるGaN、InGaN、AlInGaN等)を形成し、その上にp-GaNからなるp型の第1の不純物を含む第3の窒化物半導体層5(他にも、例えばIII族窒化物半導体であるp-InGaN、p-AlGaN、p-AlInGaN等)を連続的に形成する(図4A)。
 第2の窒化物半導体層4がAlGaNである場合、ノーマリオフ動作のためには、Al組成比が20%の場合、設定するしきい値電圧(Vth)に応じて、AlGaN膜厚が10~20nmの範囲内、望ましくは15nmである必要がある。また、p型の第1の不純物を含む第3の窒化物半導体層5がp-GaNである場合、膜厚は50~300nmの範囲内、望ましくは100nmであれば良く、p型の第1の不純物がMgである場合、濃度は1~10×1019cm-3の範囲内、望ましくは5×1019cm-3であれば良い。次に、既知のフォトリソグラフィ技術を用いてレジストパターン14を形成し、既知のドライエッチング技術を用いてp型の第1の不純物を含む第3の窒化物半導体層5を選択的に除去する(図4B)。
 続いて、p型の第1の不純物を含む第3の窒化物半導体層5のp型不純物であるMgを活性化させるため、窒素ガス中、800℃の温度において、30分程度の活性化アニールを実施する(図示せず)。p型の第1の不純物を含む第3の窒化物半導体層5を選択的に除去した後に活性化アニールを実施するのは、p型元素であるMgを不活性にしている水素の結合を切り、第3の窒化物半導体層5表面以外に、第3の窒化物半導体層5の側面からも効率的に水素を脱離させることができるためである。これによりMgの活性化率が向上し、Vthの低下を抑制、ノーマリオフ動作が容易となる。第3の窒化物半導体層5を選択的に除去する前に活性化アニールを実施する場合は、Mgの活性化率が下がり、Vthが低下、ノーマリオフ動作が難しくなる。
 続いて再度、既知のフォトリソグラフィ技術を用いて、p型の第1の不純物を含む第3の窒化物半導体層5の上面に開口部を有するレジストパターン15を設ける。このレジストパターン15の開口部を通して既知のイオン注入技術により、第2の不純物を第2の窒化物半導体層4に注入し、第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6を形成する(図4C)。
 高抵抗領域6に含まれる第2の不純物は、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るために、F、B、Ar、He、Fe、Cr、Zn、Ca、Tiの内少なくとも一つ、望ましくはFやFe等、n型もしくはp型の窒化物半導体を完全に不活性化し、高抵抗化する元素であればよい。また、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るためには第2の不純物のピーク濃度は1×1018cm-3以上、望ましくは2×1018cm-3以上であればよい(図2)。また上記第2の不純物量を、第3の窒化物半導体層5全体に含まれる第2の不純物の平均濃度(第3の窒化物半導体層5の総体積当たりに含まれる第2の不純物量を濃度に換算した値)に換算すると、1×1017cm-3以上であることが望ましい(図3)。
 第2の不純物としてFを用いる場合、イオン注入はFやBFガス等を選択し注入する。イオン注入の加速エネルギーは10~100keVの範囲内で、望ましくは40keV程度、ドーズ量は1×1013cm-2以上、望ましくは5×1013cm-2程度必要である。注入深さが第3の窒化物半導体層5を突き抜けて第2の窒化物半導体層4に達すると、オン動作時のゲート直下の二次元電子ガス層8が減少してしまい、Vthがずれてしまうため望ましくない。そのため、第2の不純物の注入深さは第3の窒化物半導体層5の底部を越えない、望ましくはプロセスのバラツキを考慮し、第3の窒化物半導体層5の底部よりも10nm程度上方で止まることが重要である。
 また、レジストパターン15の開口部は、イオン注入して高抵抗化させるため、選択的に形成した第3の窒化物半導体層5の上面端の内側である必要がある。レジストパターン15の開口部が第3の窒化物半導体層5の上面端の外側に落ちた場合、イオン注入により、第1の窒化物半導体層3や第2の窒化物半導体層4を高抵抗化させてしまい、デバイスのオン抵抗が大幅に悪化し、FET動作しなくなってしまう。
 続いて、既知の酸素アッシング技術や有機のレジスト除去技術等を用いてレジストパターン15を除去する(図4D)。
 続いて既知のフォトリソグラフィ技術や蒸着技術やリフトオフ技術、スパッタ技術、ドライエッチング技術等を用いて、ソース電極9及びドレイン電極10を形成する(図4E)。ソース電極9及びドレイン電極10は、二次元電子ガス層8、第2の窒化物半導体層4、第1の窒化物半導体層3のいずれかにオーミック接触するTi、Al、Mo、Hf等の金属を1つもしくは2つ以上組み合わせた電極からなり、二次元電子ガス層8に電気的に接続されていれば良い。例えば、第2の窒化物半導体層4の表面上に形成しても良く、また、既知のオーミックリセス技術(図示せず)を用いて、二次元電子ガス層8、第2の窒化物半導体層4、第1の窒化物半導体層3の一部に接していれば良い。ソース電極9及びドレイン電極10は、コンタクト抵抗の低減のためアニール処理を施しても良い。
 最後に、既知のフォトリソグラフィ技術や蒸着技術やリフトオフ技術、スパッタ技術、ドライエッチング技術等を用いて、ゲート電極7を形成する(図4F)。高抵抗領域6は、ゲート電極7の下のp型の第1の不純物を含む第3の窒化物半導体層5の中にあればどこでも良く、例えば第3の窒化物半導体層5の最表面にあっても良く、中心部にあっても良く、第3の窒化物半導体層5の中でまだらに(分散して)存在していても良いが、Vfを効率よく向上させるためには、高抵抗領域6は第3の窒化物半導体層5の最表面にあり、ゲート電極7と接していることが望ましい。また、ゲート電極7の底面の端部は、高抵抗領域6の横方向の端部の内側にあっても、面一にあっても、外側にあっても良いが、Vfを効率よく向上させるために内側にあることが望ましい。
 高抵抗領域6の一部に接触するゲート電極7は、Ti、Ni、Pd、Pt、Au、W、WSi、Ta、TiN、Al、Mo、Hf、Zr等の金属を1つもしくは2つ以上組み合わせた電極であれば良い。ただしゲート電極7に、p型の第1の不純物を含む第3の窒化物半導体層5にショットキ接触をする金属を用いる場合、ゲート電圧を6V以上加えた場合にはゲートが破壊する等、ゲート信頼性に問題が発生する可能性が高い。そのため、ゲートの信頼性を確保するためには、p型の第1の不純物を含む第3の窒化物半導体層5にオーミック接触する、もしくはコンタクト抵抗が低い金属であるNi、Pt、Pd、Au、Ti、Cr、In、Sn等の金属を1つもしくは2つ以上組み合わせた電極を用いることが望ましい。ただし、上記p型の第1の不純物を含む第3の窒化物半導体層5にオーミック接触する電極が、高抵抗領域6に接触する際のコンタクト抵抗は、Vfを向上させるため、ある程度高いほうが良く、具体的には200Ωmm以上が望ましい。
 窒化物半導体装置100の動作を説明する。ノーマリオフ動作の場合、ゲート電極7が0Vでは第3の窒化物半導体層5の直下にp-n接合による空乏層が広がっているため二次元電子ガス層8が存在せず、オフ状態である。ソース電極9を接地して、ドレイン電極10に負荷である正のドレイン電圧を印加した状態で、ゲート電極7に正のゲート電圧を印加していくと、空乏層が縮小して、ゲート電圧がVthを超えるとドレイン電流が流れ始めオン状態となる。
 窒化物半導体装置100の効果について説明する。窒化物半導体装置100を用いることにより、容易にノーマリオフ動作を実現できると同時に、高抵抗領域6の抵抗率が高いためVfを7V以上に向上することができる。これにより従来のパワーMOSFET回路のMOSFETを、窒化物半導体装置100に乗せ換えるだけで駆動でき、簡単に置き換えることが可能となる。また、オン抵抗・ゲート電流依存性(Ron-Ig)においてより低い順方向ゲート電流で低いRonを得ることが可能となる。それにより低い消費電力でスイッチング動作が可能となり、回路上でのスイッチングロスを低減可能となる。また、高抵抗領域6が半導体層であるために、プラズマCVD等で付着させたシリコン酸化膜等と比較して、ゲートの信頼性が高くなる。また、高抵抗領域がp型の第3の窒化物半導体層5の表面全面を覆わないため、p型領域を十分に確保でき、Vthの低下を抑制、ノーマリオフ動作が容易となる。また構造上、p型の第3の窒化物半導体層5を選択エッチングした後に活性化アニールすることが可能となり、p型の第3の窒化物半導体層5の横方向からの水素の脱離が可能となり、Mgの活性化率が向上し、Vthの低下を抑制、ノーマリオフ動作が容易となる。
 次に、実施の形態の第1の変形例に係る窒化物半導体装置について説明する。
 図5に、実施の形態の第1の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にあり、ゲート電極の幅は高抵抗領域の幅と同じである窒化物半導体装置101の断面構造を示す。また、本変形例ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
 窒化物半導体装置101は、図1にて示した窒化物半導体装置100の内、ゲート電極7の幅が、第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6の幅と同一である。つまりゲート電極7の底面端が、高抵抗領域6の横方向の端部と、横方向に同一(面一)である。言い換えれば、ゲート電極7の幅(横方向の寸法)は、高抵抗領域6の幅(横方向の寸法)と同じである。ここで、横方向とは、窒化物半導体装置101をソース電極9及びドレイン電極10を通って横断する方向である。
 窒化物半導体装置101を用いることにより、図1にて示した窒化物半導体装置100の効果に付加して、Vfを高く保ちつつ、p-GaN領域も大きいためVthの低下を抑制、ノーマリオフ動作がさらに容易となる。また、ゲート電極7端からp型の第1の不純物を含む第3の窒化物半導体層5へのアクセスが近いことにより微小にゲート電流を流すことができ、ゲート電圧を順方向に6V以上掛けても破壊せず、ゲート信頼性が高くなる。
 次に、実施の形態の第2の変形例に係る窒化物半導体装置について説明する。
 図6に、実施の形態の第2の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にあり、ゲート電極の幅は前記高抵抗領域の幅よりも外側である窒化物半導体装置102の断面構造を示す。また、本変形例ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
 窒化物半導体装置102は、図1にて示した窒化物半導体装置100の内、ゲート電極7の幅が、第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6の幅よりも広い。つまりゲート電極7の底面端が、高抵抗領域6の横方向の端部よりも外側である。つまりゲート電極7の外側は、p型の第1の不純物を含む第3の窒化物半導体層5に接触する。言い換えれば、ゲート電極7の幅(横方向の寸法)は、高抵抗領域6の幅(横方向の寸法)よりも広い。ここで、横方向とは、窒化物半導体装置102をソース電極9及びドレイン電極10を通って横断する方向である。
 窒化物半導体装置102を用いることにより、図1にて示した窒化物半導体装置100の効果に付加して、Vfを有る程度高く保ちつつ、p-GaN領域が更に広いためVthの低下を抑制、ノーマリオフ動作が容易となる。また、ゲート電極7端からp型の第1の不純物を含む第3の窒化物半導体層5へ直接アクセスできることにより、ある程度ゲート電流を流すことができ、ゲート電圧を順方向に6V以上掛けても破壊せず、ゲート信頼性がより高くなる。
 次に、実施の形態の第3の変形例に係る窒化物半導体装置について説明する。
 図7に、実施の形態の第3の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にあるリセスゲート型の窒化物半導体装置103の断面構造を示す。また、本変形例ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
 窒化物半導体装置103は、図1、5、6にて示した窒化物半導体装置100、101、102の内、p型の第1の不純物を含む第3の窒化物半導体層5の下の第2の窒化物半導体層4にリセス11構造がある。リセス11部直下の第2の窒化物半導体層4の残し厚は、第2の窒化物半導体層4がAlGaNである場合、ノーマリオフ動作のためには、Al組成20%の場合、設定するしきい値電圧(Vth)によって異なるが、AlGaN膜厚が10~20nmの範囲内、望ましくは15nmである必要がある。リセス部以外の第2の窒化物半導体層4は、上記リセス11部直下の第2の窒化物半導体層4の残し厚よりも厚いこと、望ましくは40nm以上であることが望ましい。
 窒化物半導体装置103の製造方法は、第2の窒化物半導体層4で一旦エピタキシャル成長を終了し、その後第2の窒化物半導体層4に、既知のフォトリソグラフィ技術とドライエッチング技術を用いてリセス11部を形成する。続いてp型の第1の不純物を含む第3の窒化物半導体層5をリセス11を埋めるようにエピタキシャル成長し、以降は図4B以降と同じ製造方法である。p型の第1の不純物を含む第3の窒化物半導体層5は、横方向成長によりリセス11部を完全に埋め込むように形成する必要があるため、ある程度の膜厚が必要であり、最大厚部で200nm以上あることが望ましい。
 窒化物半導体装置103を用いることにより、図1、5、6にて示した窒化物半導体装置100、101、102の効果に付加して、リセス部以外の第2の窒化物半導体層4表面から二次元電子ガス層8を物理的に離すことができ、第2の窒化物半導体層4表面の表面準位にトラップされる電子の影響を取り除くことができ、電流コラプスを大幅に低減できる。
 次に、実施の形態の第4の変形例に係る窒化物半導体装置について説明する。
 図8に、実施の形態の第4の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にある貫通リセスゲート型の窒化物半導体装置104の断面構造を示す。また、本実施形態ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
 窒化物半導体装置104は、図1、5~7にて示した窒化物半導体装置100、101~103の内、p型の第1の不純物を含む第3の窒化物半導体層5の下の第2の窒化物半導体層4に、第2の窒化物半導体層4を貫通して底面が第1の窒化物半導体層3に達するリセス11構造がある。
 窒化物半導体装置104の製造方法は、図4Aに示す製造工程の途中で、第2の窒化物半導体層4で一旦エピタキシャル成長を終了し、その後第2の窒化物半導体層4を貫通して底面が第1の窒化物半導体層3に達するリセス11部を既知のフォトリソグラフィ技術とドライエッチング技術を用いて形成する。その後分断された二次元電子ガス層8は、再エピタキシャル成長によりAlGaN等の第4の窒化物半導体層12を成長し、分断された第2の窒化物半導体層4を再接続し、二次元電子ガス層8を再接続する。続いてp型の第1の不純物を含む第3の窒化物半導体層5をリセス11を埋めるようにエピタキシャル成長し、以降は図4B以降と同じ製造方法である。
 再成長する第4の窒化物半導体層12は、ノーマリオフ動作のためには、Al組成比が20%の場合、設定するしきい値電圧(Vth)によって異なるが、AlGaN膜厚が10~20nmの範囲内、望ましくは15nmである必要がある。リセス部以外の第2の窒化物半導体層4と第4の窒化物半導体層12の膜厚の和は、上記リセス11部直下の第2の窒化物半導体層4の残し厚よりも厚いこと、望ましくは40nm以上であればよい。また、p型の第1の不純物を含む第3の窒化物半導体層5は、横方向成長により、リセス11部を埋め込むように形成する必要がある。そのため、ある程度の膜厚が必要であり、最大厚部で200nm以上あることが望ましい。
 窒化物半導体装置104を用いることにより、図1、5、6にて示した窒化物半導体装置100、101、102の効果に付加して、第2の窒化物半導体層4表面から二次元電子ガス層8を物理的に離すことができ、第4の窒化物半導体層12表面の表面準位にトラップされる電子の影響を取り除くことができ、電流コラプスを大幅に低減できる。また、図7で示した窒化物半導体装置103の効果に付加して、ウェハ面内のVthが再成長した第4の窒化物半導体層12のみで制御できるため、ウェハ面内のVthのバラツキが小さい。
 次に、実施の形態の第5の変形例に係る窒化物半導体装置について説明する。
 図9に、実施の形態の第5の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にある縦型の窒化物半導体装置105の断面構造を示す。また、本実施形態ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
 本構造は、図1、5~8にて示した窒化物半導体装置100、101~104の内、基板1がn型のGaNからなり、基板1の裏面にドレイン電極10があり、表面側のゲート電極7の側方にゲート電極7と離間して形成され、二次元電子ガス層8と電気的に接続されたソース電極9がある。第1の窒化物半導体層3の内部にウェル層13があっても良い。ウェル層13は、ソース・ドレイン間の貫通電流を抑止する目的に挿入するため、n型の基板1やn-GaNからなる第1の窒化物半導体層3とp-n接合を形成することによる空乏層を設ける目的で、p型であることが望ましい。図7、8と同じように、リセス構造を用いても良い(図示せず)。
 窒化物半導体装置105を用いることにより、図1、5~8にて示した窒化物半導体装置100、101~104の効果に付加して、縦型FETであるために、耐圧を大きくとることが可能となる。また、チップ面積あたりの電流密度も向上することが可能となる。
 図10~12に、図8にて説明した貫通リセスゲート型の窒化物半導体装置104における高抵抗領域6がない比較例の電気特性と、高抵抗領域6がある実施例の電気特性を示す。ここで示す貫通リセスゲート型の窒化物半導体装置104の第3の窒化物半導体層5はp-GaNであり、その最大膜厚は比較例および実施例のいずれも、およそ250nmである。
 高抵抗領域6がある実施例では、高抵抗領域6にBとF両方を含み、Bのピーク濃度は1.3×1019cm-3、Fのピーク濃度は2.6×1019cm-3である。また、p-GaN全体に含まれるBの平均濃度は1.2×1018cm-3、Fの平均濃度は2.3×1018cm-3である。第2の不純物が1×1017cm-3以上含まれる膜厚を、高抵抗領域6の膜厚と定義した場合、その膜厚はおよそ70nmであり、高抵抗領域6の表面と第3の窒化物半導体層5の表面は同一面にある。第3の窒化物半導体層5の上面の幅はおよそ1.4μmに対して、高抵抗領域6の上面の幅はおよそ0.9μm、ゲート電極7の底面の幅はおよそ0.8μmである。ゲート電極7の底面端は、高抵抗領域6の上面端の内側であり、ゲート電極7の底面端は全て高抵抗領域6の上面に接している。
 図10に窒化物半導体装置104において第3の窒化物半導体層5に高抵抗領域6がない比較例と、高抵抗領域6がある実施例のVgs-Igs(Vf)特性を示す。実施例によれば、高抵抗領域6があることにより、Vfが比較例の3.3Vから11.2Vに大幅に向上する。これにより、Vf≧7Vの要件を満たし、パワー用途のシリコン系MOSFET回路上でシリコン系MOSFET用のドライバでGaN-FETを駆動させることが可能となる。
 また、図11A、図11Bに窒化物半導体装置104において第3の窒化物半導体層5に高抵抗領域6がない比較例と、高抵抗領域6がある実施例のIds-Vds特性をそれぞれ示す。比較例および実施例のいずれにおいても最大ドレイン電流(Imax)は0.3A/mm程度確保できており、FETとして正常に動作している。また、高抵抗領域6がある実施例では、Vfを11V以上に確保できているため、Vgsを+14V印加しても、Idsがリークしておらず、FETとして正常に動作可能である。
 また、図12に窒化物半導体装置104において第3の窒化物半導体層5に高抵抗領域6がない比較例と、高抵抗領域6がある実施例のRon-Igs特性を示す。高抵抗領域6がある実施例では、高抵抗領域6がない比較例より低いIgsにおいて低いRonを得ることができる。つまり、より低い消費電力でスイッチング動作が可能となり、回路上でのスイッチングロスを低減可能となる。
 以上、本発明の一つまたは複数の態様に係る窒化物半導体装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つまたは複数の態様の範囲内に含まれてもよい。
 本発明は、ノーマリオフ動作と同時に、Vfを大幅に向上できる半導体層地を提供でき、もってパワーデバイスの性能を向上させることができる。
 1 基板
 2 バッファ層
 3 第1の窒化物半導体層
 4 第2の窒化物半導体層
 5 p型の第3の窒化物半導体層
 6 高抵抗領域
 7 ゲート電極
 8 2次元電子ガス層
 9 ソース電極
 10 ドレイン電極
 11 リセス
 12 第4の窒化物半導体層
 13 ウェル層
 14、15 レジストパターン
 16 ゲート絶縁膜
 17 p型の高抵抗領域
 100~105、901~903 窒化物半導体装置

Claims (17)

  1.  基板と、
     前記基板の上に形成された第1の窒化物半導体層と、
     前記第1の窒化物半導体層の上に形成され、前記第1の窒化物半導体層と比べてバンドギャップが大きい第2の窒化物半導体層と、
     前記第2の窒化物半導体層の上に選択的に形成され、p型の第1の不純物を含む第3の窒化物半導体層と、
     前記第3の窒化物半導体層に形成され、第2の不純物を含み、前記第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域と、
     前記高抵抗領域の上に形成されたゲート電極と、を有し、
     前記高抵抗領域の端部が、前記第3の窒化物半導体層表面端の内側にある
     窒化物半導体装置。
  2.  前記ゲート電極と前記高抵抗領域とは接している、
     請求項1に記載の窒化物半導体装置。
  3.  前記ゲート電極の幅は前記高抵抗領域の幅よりも狭い、
     請求項2に記載の窒化物半導体装置。
  4.  前記ゲート電極の幅は前記高抵抗領域の幅と同じである、
     請求項2に記載の窒化物半導体装置。
  5.  前記ゲート電極の幅は前記高抵抗領域の幅よりも広い、
     請求項2に記載の窒化物半導体装置。
  6.  前記窒化物半導体装置のゲート幅あたりのゲート・ソース間の順方向電流が100μA/mmとなるゲート・ソース間電圧が7V以上である、
     請求項1から5のいずれか1項に記載の窒化物半導体装置。
  7.  前記高抵抗領域と前記ゲート電極の接触抵抗は200Ωmm以上である、
     請求項1から6のいずれか1項に記載の窒化物半導体装置。
  8.  前記高抵抗領域中の前記第2の不純物のピーク濃度は2×1018cm-3以上である、
     請求項1から7のいずれか1項に記載の窒化物半導体装置。
  9.  前記p型の第3の窒化物半導体層中の前記第2の不純物の平均濃度が1×1017cm-3以上である、
     請求項1から8のいずれか1項に記載の窒化物半導体装置。
  10.  前記高抵抗領域の厚さは20nm以上である、
     請求項1から9のいずれか1項に記載の窒化物半導体装置。
  11.  前記高抵抗領域の厚さは20nm以上であり、前記高抵抗領域中の前記第2の不純物のピーク濃度は2×1018cm-3以上である、
     請求項1から10のいずれか1項に記載の窒化物半導体装置。
  12.  前記高抵抗領域の厚さは、前記第3の窒化物半導体層の最大厚よりも薄い、
     請求項1から11のいずれか1項に記載の窒化物半導体装置。
  13.  前記高抵抗領域の下端は、前記第3の窒化物半導体層の下端よりも10nm以上上方である、
     請求項1から12のいずれか1項に記載の窒化物半導体装置。
  14.  前記第2の不純物は、F、B、Ar、He、Fe、Cr、Zn、Ca、Tiの少なくとも一つである
     請求項1から13のいずれか1項に記載の窒化物半導体装置。
  15.  前記ゲート電極は、p型の第3の窒化物半導体に対してオーミック接触する材料を用いる、
     請求項1から14のいずれか1項に記載の窒化物半導体装置。
  16.  前記ゲート電極は、Ni、Pt、Pd、Au、Ti、Cr、In、Snの内少なくとも一つの元素を含む、
     請求項15に記載の窒化物半導体装置。
  17.  基板を用意し、
     前記基板の上に第1の窒化物半導体層を形成する工程と、
     前記第1の窒化物半導体層の上に、前記第1の窒化物半導体層と比べてバンドギャップが大きい第2の窒化物半導体層を形成する工程と、
     前記第2の窒化物半導体層の上に、p型の第1の不純物を含む第3の窒化物半導体層を選択的に形成する工程と、
     前記第3の窒化物半導体層の一部に第2の不純物をイオン注入し、前記第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域を形成する工程と、
     前記高抵抗領域の上にゲート電極を形成する工程と、
     を含む窒化物半導体装置の製造方法。
PCT/JP2018/015785 2017-06-13 2018-04-17 窒化物半導体装置及びその製造方法 WO2018230136A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019525150A JP7113233B2 (ja) 2017-06-13 2018-04-17 窒化物半導体装置
US16/708,051 US11171228B2 (en) 2017-06-13 2019-12-09 Nitride semiconductor device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-116040 2017-06-13
JP2017116040 2017-06-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/708,051 Continuation US11171228B2 (en) 2017-06-13 2019-12-09 Nitride semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018230136A1 true WO2018230136A1 (ja) 2018-12-20

Family

ID=64658691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015785 WO2018230136A1 (ja) 2017-06-13 2018-04-17 窒化物半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US11171228B2 (ja)
JP (1) JP7113233B2 (ja)
WO (1) WO2018230136A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299407A (zh) * 2019-06-29 2019-10-01 厦门市三安集成电路有限公司 功率器件及其制备方法
CN112786699A (zh) * 2019-11-08 2021-05-11 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
WO2022033360A1 (zh) * 2020-08-10 2022-02-17 华为技术有限公司 一种混合栅场效应管及制备方法、开关电路
WO2022181100A1 (ja) * 2021-02-24 2022-09-01 パナソニックホールディングス株式会社 窒化物半導体装置
WO2023189039A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 窒化物半導体装置
JP7571935B2 (ja) 2020-08-10 2024-10-23 華為技術有限公司 ハイブリッドゲート電界効果トランジスタ、ハイブリッドゲート電界効果トランジスタを製造する方法、及びスイッチ回路

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081613B1 (fr) * 2018-05-22 2022-12-09 Exagan Transistor a haute mobilite electronique en mode enrichissement
CN109817710A (zh) * 2018-12-29 2019-05-28 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
CN111863952A (zh) * 2020-07-28 2020-10-30 西安电子科技大学 常关型氮化镓基器件及其制作方法
CN112331720B (zh) * 2020-11-07 2022-12-09 东南大学 一种具有高阈值稳定性型氮化镓功率半导体器件
TWI755277B (zh) * 2021-02-09 2022-02-11 世界先進積體電路股份有限公司 高電子遷移率電晶體及其製作方法
WO2023035104A1 (en) * 2021-09-07 2023-03-16 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and method for manufacturing the same
US20230078017A1 (en) * 2021-09-16 2023-03-16 Wolfspeed, Inc. Semiconductor device incorporating a substrate recess
WO2023082202A1 (en) * 2021-11-12 2023-05-19 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and method for manufacturing thereof
TWI832676B (zh) * 2022-06-09 2024-02-11 超赫科技股份有限公司 高電子遷移率電晶體之製造方法
CN114883396B (zh) * 2022-07-11 2022-09-23 成都功成半导体有限公司 一种凹陷式Fin-JFET栅结构HEMT及制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246527A (ja) * 1996-03-08 1997-09-19 Toshiba Corp 半導体装置
JP2000208753A (ja) * 1999-01-19 2000-07-28 Sony Corp 半導体装置とその製造方法
US20130168687A1 (en) * 2011-06-29 2013-07-04 Industrial Technology Research Institute Enhancement mode gallium nitride based transistor device
JP2013211481A (ja) * 2012-03-30 2013-10-10 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2016131207A (ja) * 2015-01-14 2016-07-21 株式会社豊田中央研究所 集積した半導体装置
JP2016213388A (ja) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 窒化物半導体装置及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933544B2 (en) * 2003-01-29 2005-08-23 Kabushiki Kaisha Toshiba Power semiconductor device
JP4041075B2 (ja) 2004-02-27 2008-01-30 株式会社東芝 半導体装置
TWI512831B (zh) * 2007-06-01 2015-12-11 Univ California 氮化鎵p型/氮化鋁鎵/氮化鋁/氮化鎵增強型場效電晶體
JP2010206125A (ja) * 2009-03-06 2010-09-16 Oki Electric Ind Co Ltd 窒化ガリウム系高電子移動度トランジスタ
JP2011029247A (ja) 2009-07-22 2011-02-10 Panasonic Corp 窒化物半導体装置及びその製造方法
CN103620751B (zh) 2011-07-12 2017-08-01 松下知识产权经营株式会社 氮化物半导体装置及其制造方法
KR101882997B1 (ko) 2011-09-30 2018-07-30 삼성전기주식회사 질화물 반도체 소자 및 그 제조방법
KR101922121B1 (ko) 2012-10-09 2018-11-26 삼성전자주식회사 고전자 이동도 트랜지스터 및 그 제조방법
JP6119215B2 (ja) 2012-12-03 2017-04-26 日亜化学工業株式会社 電界効果トランジスタ
JP6167889B2 (ja) 2012-12-21 2017-07-26 日亜化学工業株式会社 電界効果トランジスタとその製造方法
KR102080745B1 (ko) 2013-04-16 2020-04-14 엘지전자 주식회사 질화물 반도체 소자 및 그 제조 방법
US9076854B2 (en) 2013-08-26 2015-07-07 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device
JP5707463B2 (ja) 2013-09-30 2015-04-30 株式会社豊田中央研究所 半導体装置とその製造方法
US9385001B1 (en) 2015-03-17 2016-07-05 Toshiba Corporation Self-aligned ITO gate electrode for GaN HEMT device
JP6614116B2 (ja) * 2016-05-24 2019-12-04 株式会社デンソー 半導体装置
US10014402B1 (en) * 2016-12-14 2018-07-03 Taiwan Semiconductor Manufacturing Co., Ltd. High electron mobility transistor (HEMT) device structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246527A (ja) * 1996-03-08 1997-09-19 Toshiba Corp 半導体装置
JP2000208753A (ja) * 1999-01-19 2000-07-28 Sony Corp 半導体装置とその製造方法
US20130168687A1 (en) * 2011-06-29 2013-07-04 Industrial Technology Research Institute Enhancement mode gallium nitride based transistor device
JP2013211481A (ja) * 2012-03-30 2013-10-10 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2016131207A (ja) * 2015-01-14 2016-07-21 株式会社豊田中央研究所 集積した半導体装置
JP2016213388A (ja) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 窒化物半導体装置及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299407A (zh) * 2019-06-29 2019-10-01 厦门市三安集成电路有限公司 功率器件及其制备方法
CN112786699A (zh) * 2019-11-08 2021-05-11 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
CN112786699B (zh) * 2019-11-08 2023-11-21 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
WO2022033360A1 (zh) * 2020-08-10 2022-02-17 华为技术有限公司 一种混合栅场效应管及制备方法、开关电路
JP7571935B2 (ja) 2020-08-10 2024-10-23 華為技術有限公司 ハイブリッドゲート電界効果トランジスタ、ハイブリッドゲート電界効果トランジスタを製造する方法、及びスイッチ回路
WO2022181100A1 (ja) * 2021-02-24 2022-09-01 パナソニックホールディングス株式会社 窒化物半導体装置
WO2023189039A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 窒化物半導体装置

Also Published As

Publication number Publication date
US11171228B2 (en) 2021-11-09
US20200119178A1 (en) 2020-04-16
JPWO2018230136A1 (ja) 2020-04-23
JP7113233B2 (ja) 2022-08-05

Similar Documents

Publication Publication Date Title
US11171228B2 (en) Nitride semiconductor device and method for manufacturing the same
JP7065329B2 (ja) 窒化物半導体装置及びその製造方法
US9941399B2 (en) Enhancement mode III-N HEMTs
US9190506B2 (en) Field-effect transistor
JP5186096B2 (ja) 窒化物半導体トランジスタ及びその製造方法
US7816707B2 (en) Field-effect transistor with nitride semiconductor and method for fabricating the same
JP4755961B2 (ja) 窒化物半導体装置及びその製造方法
CN109037324B (zh) 在断态期间具有高应力顺应性的hemt晶体管及其制造方法
JP2023537713A (ja) 空乏層を有するiii族窒化物デバイス
WO2010084727A1 (ja) 電界効果トランジスタ及びその製造方法
CN102648527A (zh) 半导体器件及其制造方法
JP2011029506A (ja) 半導体装置
US9680001B2 (en) Nitride semiconductor device
JP7369725B2 (ja) 窒化物半導体装置
WO2014050740A1 (ja) スイッチング素子
JP2015177063A (ja) 半導体装置
CN111527610A (zh) 半导体装置及其制造方法
JP2011142358A (ja) 窒化物半導体装置
JP6639260B2 (ja) 半導体装置
JP2010165896A (ja) 半導体装置及びその製造方法
US20220254902A1 (en) Nitride semiconductor device and method of fabricating the same
JP2010171287A (ja) 窒化物半導体装置
CN118712213A (zh) 具有改进的栅极结构的hemt器件及其制造过程
CN118235253A (zh) 氮化物基半导体器件及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18816493

Country of ref document: EP

Kind code of ref document: A1