JPWO2018230136A1 - 窒化物半導体装置及びその製造方法 - Google Patents

窒化物半導体装置及びその製造方法 Download PDF

Info

Publication number
JPWO2018230136A1
JPWO2018230136A1 JP2019525150A JP2019525150A JPWO2018230136A1 JP WO2018230136 A1 JPWO2018230136 A1 JP WO2018230136A1 JP 2019525150 A JP2019525150 A JP 2019525150A JP 2019525150 A JP2019525150 A JP 2019525150A JP WO2018230136 A1 JPWO2018230136 A1 JP WO2018230136A1
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
semiconductor device
resistance region
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019525150A
Other languages
English (en)
Other versions
JP7113233B2 (ja
Inventor
英之 大来
英之 大来
柳原 学
学 柳原
正洋 引田
正洋 引田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2018230136A1 publication Critical patent/JPWO2018230136A1/ja
Application granted granted Critical
Publication of JP7113233B2 publication Critical patent/JP7113233B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/26546Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

窒化物半導体装置(100)は、基板(1)と、基板(1)の上に形成された第1の窒化物半導体層(3)と、第1の窒化物半導体層(3)の上に形成され、第1の窒化物半導体層(3)と比べてバンドギャップが大きい第2の窒化物半導体層(4)と、第2の窒化物半導体層(4)の上に選択的に形成され、p型の第1の不純物を含む第3の窒化物半導体層(5)と、第3の窒化物半導体層(5)に形成され、第2の不純物を含み、第3の窒化物半導体層(5)の比抵抗よりも高い比抵抗を有す高抵抗領域(6)と、高抵抗領域(6)の上に形成されたゲート電極(7)と、を有し、高抵抗領域(6)の端部が、第3の窒化物半導体層(5)の表面端の内側にある。

Description

本発明は、半導体装置の構造及びその製造方法、特にパワートランジスタ等として用いることができる半導体、特にIII族窒化物半導体を用いた装置、及びその製造方法に関する。
III族窒化物半導体、特にGaNやAlGaNは、そのバンドギャップの広さから高い絶縁破壊電圧を有する。またAlGaN/GaN等のヘテロ構造を容易に形成することが可能であり、AlGaNとGaNの格子定数差から発生するピエゾ電荷とバンドギャップの差によりAlGaN/GaN界面のGaN層側に高移動度、かつ高濃度な電子のチャネル(二次元電子ガス、2DEG)を発生させることができる。この二次元電子ガスチャネルを制御することにより高電子移動度トランジスタ(HEMT、High Electron Mobility Transistor)を形成することが可能となる。これらの高耐圧、高速、大電流の特徴により、III族窒化物半導体はパワー用途の電界効果トランジスタ(FET)やダイオード等の電子デバイスへの応用がなされている。
III族窒化物半導体をパワー用途のFET(例えば、GaN−FET)に用いる場合、安全性の観点から、ゲート電圧が0Vの時にソース・ドレイン間に電流が流れないというノーマリオフ動作が求められる。GaN−FETをノーマリオフ動作させるためには、p型のIII族窒化物半導体をゲート電極とAlGaNの間に設けることにより、p−n接合をゲート直下に形成し、2DEGチャネルをゲート直下のみ空乏化させることにより実現できる。この構造のゲート順方向電圧(Vf、ゲート・ソース間にある一定の順方向の電流が流れる順方向電圧)は、ゲート電極がp型のIII族窒化物半導体にオーミック接続している際は3V程度(ゲート・ソース間にゲート幅1mm当たり100μA流れる順方向電圧)である。
パワー用途のシリコン系MOS(金属酸化物半導体)FETでは、ゲート電極とチャネルの間に熱酸化膜(SiO)を挟むために、一般的にVfは数十Vである。そのためシリコン系MOSFETでは順方向電圧のゲート信頼性が高く、ゲートドライバでゲート駆動させるためのドライブ電圧も10V程度と高い。そのためパワー用途のシリコン系MOSFET回路に、GaN−FETを載せ換えただけでは、GaN−FETのVfが低いために順方向電流が大量に流れ、駆動できなかった。上記の理由により従来GaN−FET駆動にはGaN専用のゲートドライバが必要であり、パワー用途のシリコン系MOSFET回路上でシリコン系MOSFET用のドライバでGaN−FETを駆動させるためには、少なくともGaN−FETのVfが7V以上必要である。
特許文献1に記載されている半導体装置901の断面構造例を図13に示す。適宜な基板1(Si等)上に、適宜なバッファ層2を形成し、さらにその上方にチャネル層となる第1の窒化物半導体層3(GaN等)を形成し、さらにその上方に第1の窒化物半導体層3よりもバンドギャップの大きいバリア層となる第2の窒化物半導体層4(AlGaN等)を形成する。これにより、第2の窒化物半導体層4と第1の窒化物半導体層3のバンドギャップ差と第2の窒化物半導体層4中のピエゾ電荷により二次元電子ガス層8が発生する。
次に、第2の窒化物半導体層4の上に選択的にp型の第3の窒化物半導体層5(p−GaN等)を形成する。p型の第3の窒化物半導体層5の上方にp型の第3の窒化物半導体層5にショットキ接触するゲート電極7を形成し、その両側方に離間して第2の窒化物半導体層4にオーミック性接触するソース電極9とドレイン電極10を形成する。
特許文献1によれば、p型の第3の窒化物半導体層5を設けることにより、ゲート電極7と二次元電子ガス層8の間にp−n接合による空乏層を形成することができ、容易にノーマリオフ動作を実現すると同時に、ゲート電極7がショットキ接触することによりゲートリーク電流を低減できる半導体装置を作成できるとされる。
特許文献2に記載されている半導体装置902の断面構造例を図14に示す。半導体装置902では、特許文献1に記載されている半導体装置901のp型の第3の窒化物半導体層5と、上方のゲート電極7の間に、SiO等のゲート絶縁膜16を形成する。特許文献2によれば、ゲート絶縁膜16を形成することにより、ゲート電流をほぼゼロにすることが可能であるとされる。
特許文献3に記載されている半導体装置903の断面構造例を図15に示す。半導体装置903では、特許文献1に記載されている半導体装置901のp型の第3の窒化物半導体層5の上面全面にプラズマ照射により厚さ10〜20nm程度のp型の高抵抗領域17を形成する。特許文献3によれば、p型の高抵抗領域17を形成することにより、ゲート電極に正電圧が印加されたときに、ゲート電流が流れることを抑制することができるとされる。
特開2011−29247号公報 特許第4041075号公報 特許第5707463号公報
しかしながら、背景技術で記載した半導体装置901〜903をパワー分野で用いる場合はいくつか問題がある。
特許文献1に記されている半導体装置901では、p型の第3の窒化物半導体層5にショットキ接触するゲート電極7を形成するため、オーミック接触するゲート電極7を形成するよりも、Vfを高くできる。しかしながら、オーミック接触するゲート電極でのVfは3V程度なので、それにショットキ障壁分を付加しても4〜6V程度のVfしか得られない。またショットキ接触では、順方向電圧を6V以上にした場合はゲート破壊を起こすため、ゲート信頼性に問題がある。
特許文献2に記されている半導体装置902では、p型の第3の窒化物半導体層5と、上方のゲート電極7の間に、SiO等のゲート絶縁膜16を形成するため、MOS構造となり、Vfは10V以上を容易に得られる。しかしながら、III族窒化物半導体のゲート絶縁膜においては、熱酸化膜を形成できないため、後付けのプラズマCVDによる酸化膜や熱CVDによる酸化膜を形成する。プラズマCVDによる酸化膜は欠陥準位が多数あり、また熱CVDによる酸化膜もin−situで形成しないために酸化膜と窒化物半導体界面に界面準位が多数ある。パワー半導体装置は高電圧で駆動するため、これらの準位に電子がトラップされて、電流コラプス(スランプ)が発生し、信頼性に問題がある。
特許文献3に記されている半導体装置903では、p型の第3の窒化物半導体層5の上面全面をプラズマ照射により厚さ10〜20nm程度のp型の高抵抗領域17を形成する。p型の高抵抗領域17を、ゲート電極7とp型の第3の窒化物半導体層5の間に挟むため、Vfを高くすることが可能である。しかしながら高抵抗領域17がp型であるため、高抵抗領域17というには抵抗率が高くないこと、また厚さが10〜20nm程度と極めて薄いためVfを向上させる効果としては限定的であり、4〜6V程度のVfしか得られない。
また、半導体装置903ではp型の第3の窒化物半導体層5のp型のドーパントとしてMgを用いているが、エピ成長後にMg−H結合の水素を脱離してMgを活性化させる活性化アニールプロセス(800℃〜)が必須となる。半導体装置903では、活性化アニールをp型の第3の窒化物半導体層5を選択ドライエッチングする前に実施する必要があり(高抵抗領域形成後の熱処理は、高抵抗領域が低抵抗に戻ってしまうために不可である)、p型の第3の窒化物半導体層5の側面からの水素の脱離が限定され、Mgの活性化率を低減させる。つまり不活性なp型の第3の窒化物半導体層5を用いているため、ゲート直下のp−n接合が十分に形成されず、チャネルを空乏化できないためにVthが低下し、ノーマリオフ動作が困難となる。
また、プラズマ処理されたp型の高抵抗領域17は、p型の第3の窒化物半導体層5の表面全面を覆っているために、ゲート電極7脇の表面がp型の第3の窒化物半導体層5ではない。そのためp型の第3の窒化物半導体層5の総体積量が不十分であり、ゲート直下のp−n接合が十分に形成されず、チャネルを空乏化できないためにVthが低下し、ノーマリオフ動作が困難となる可能性がある。
そこで、本発明に係る窒化物半導体装置は、基板と、前記基板の上に形成された第1の窒化物半導体層と、前記第1の窒化物半導体層の上に形成され、前記第1の窒化物半導体層と比べてバンドギャップが大きい第2の窒化物半導体層と、前記第2の窒化物半導体層の上に選択的に形成され、p型の第1の不純物を含む第3の窒化物半導体層と、前記第3の窒化物半導体層に形成され、第2の不純物を含み、前記第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域と、前記高抵抗領域の上に形成されたゲート電極と、を有し、前記高抵抗領域の端部が、前記第3の窒化物半導体層表面端の内側にあることを特徴とする。
本発明に係る窒化物半導体装置では、容易にノーマリオフ動作を実現すると同時に、高抵抗領域の抵抗率が高いためVfが大幅に向上(≧7V)する。これにより従来のパワーMOSFET回路のMOSFETを、本発明に係る半導体装置に乗せ換えるだけで駆動でき、簡単に置き換えることが可能となる。また、オン抵抗・ゲート電流依存性(Ron−Ig)においてより低い順方向ゲート電流で、低いRonを得ることが可能となる。それにより低い消費電力でスイッチング動作が可能となり、回路上でのスイッチングロスを低減可能となる。また、高抵抗領域が半導体であるためにゲート信頼性が高い。また、高抵抗領域がp型の第3の窒化物半導体層の表面全面を覆わないため、p型領域を十分に確保でき、Vthの低下を抑制、ノーマリオフ動作が容易となる。また構造上、p型の第3の窒化物半導体層を選択エッチングした後に活性アニールすることが可能となり、p型の第3の窒化物半導体層の側面からの水素の脱離が可能となり、Mgの活性化率が向上し、Vthの低下を抑制、ノーマリオフ動作が容易となる。
図1は、実施の形態に係る窒化物半導体装置の断面構造を示す断面図である。 図2は、実施の形態に係る窒化物半導体装置のVfの、高抵抗領域中の第2の不純物ピーク濃度依存性を示すグラフである。 図3は、実施の形態に係る窒化物半導体装置のVfの、第3の窒化物半導体層中の第2の不純物平均濃度依存性を示すグラフである。 図4Aは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Bは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Cは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Dは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Eは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図4Fは、実施の形態に係る窒化物半導体装置の製造方法を示す断面図である。 図5は、実施の形態の第1の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図6は、実施の形態の第2の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図7は、実施の形態の第3の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図8は、実施の形態の第4の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図9は、実施の形態の第5の変形例に係る窒化物半導体装置の断面構造を示す断面図である。 図10は、実施の形態および比較例に係る窒化物半導体装置のVf特性を示すグラフである。 図11Aは、比較例に係る窒化物半導体装置のIds−Vds特性を示すグラフである。 図11Bは、実施の形態に係る窒化物半導体装置のIds−Vds特性を示すグラフである。 図12は、実施の形態および比較例に係る窒化物半導体装置のRon−Igs特性を示すグラフである。 図13は、特許文献1の半導体装置の断面構造を示す断面図である。 図14は、特許文献2の半導体装置の断面構造を示す断面図である。 図15は、特許文献3の半導体装置の断面構造を示す断面図である。
以下、実施の形態に係る窒化物半導体装置について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
図1に、実施の形態に係る、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にある窒化物半導体装置100の断面構造を示す。また、本実施形態ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。
窒化物半導体装置100は、適宜なSi基板1(他にも例えばSapphire、SiC、GaN、AlN等の基板)の上に、適宜なバッファ層2(例えばIII族窒化物半導体であるGaN、AlGaN、AlN、InGaN、AlInGaN等の単層もしくは複数層)を有し、その上に、GaNからなる第1の窒化物半導体層3(他にも例えばIII族窒化物半導体であるInGaN、AlGaN、AlInGaN等)を有し、その上に、AlGaNからなる第2の窒化物半導体層4(他にも例えばIII族窒化物半導体であるGaN、InGaN、AlGaN、AlInGaN等)を有する。
窒化物半導体装置100は、第2の窒化物半導体層4の上に選択的にp−GaNからなるp型の第1の不純物を含む第3の窒化物半導体層5(他にも例えばIII族窒化物半導体であるp−InGaN、p−AlGaN、p−AlInGaN等)を有する。第2の窒化物半導体層4は、第1の窒化物半導体層3よりもバンドギャップが大きい。また、第2の窒化物半導体層4がAlGaN、第1の窒化物半導体層3がGaNであるとした場合、AlGaNとGaNが格子定数差から発生するピエゾ電荷とバンドギャップの差によりAlGaN/GaN界面近傍のGaN層側に高濃度の二次元電子ガス層8が発生する。ただしp型の第1の不純物を含む第3の窒化物半導体層5直下は、p−n接合が形成され、ゲート電圧が加わっていない場合は二次元電子ガス層8が空乏化されてノーマリオフ状態となる。
窒化物半導体装置100は、p型の第1の不純物を含む第3の窒化物半導体層5の一部に、第2の不純物を含み前記第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6を有し、高抵抗領域6の上にゲート電極7を有し、ゲート電極7の両側方にそれぞれゲート電極7と離間して形成され、二次元電子ガス層8と電気的に接続されたソース電極9及びドレイン電極10を有する。
第2の窒化物半導体層4がAlGaNである場合、ノーマリオフ動作のためには、第2の窒化物半導体層4におけるAl組成比が20%の場合、設定するしきい値電圧(Vth)に応じて、AlGaN膜厚が10〜20nmの範囲内、望ましくは15nmである必要がある。また、p型の第1の不純物を含む第3の窒化物半導体層5がp−GaNである場合、膜厚は50〜300nmの範囲内、望ましくは100nmであれば良く、p型の第1の不純物がMgである場合、濃度は1×1019cm−3〜10×1019cm−3の範囲内、望ましくは5×1019cm−3であれば良い。
高抵抗領域6に含まれる第2の不純物はF、B、Ar、He、Fe、Cr、Zn、Ca、Tiの内少なくとも一つ、望ましくはFやFe等のn型もしくはp型の窒化物半導体を完全に不活性化し、高抵抗化する元素であればよい。
図2は、窒化物半導体装置100のVfの、高抵抗領域6中の第2の不純物ピーク濃度依存性を示すグラフである。図2から、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るためには第2の不純物のピーク濃度は1×1018cm−3以上、望ましくは2×1018cm−3以上であればよい。
図3は、窒化物半導体装置100のVfの、第3の窒化物半導体層5中の第2の不純物平均濃度依存性を示すグラフである。ここで、第3の窒化物半導体層5中の第2の不純物平均濃度とは、第3の窒化物半導体層5の総体積当たりに含まれる第2の不純物量を濃度に換算した値を言う。図3から、第3の窒化物半導体層5中の第2の不純物の平均濃度は1×1017cm−3以上であることが望ましい。
高抵抗領域6は、ゲート電極7の下のp型の第1の不純物を含む第3の窒化物半導体層5の中にあればどこでも良く、例えば第3の窒化物半導体層5の最表面にあっても良く、中心部にあっても良く、第3の窒化物半導体層5の中にまだらに(分散して)存在していても良い。ただしVfを効率よく向上させるためには、高抵抗領域6は第3の窒化物半導体層5の最表面にあり、ゲート電極7と接していることが望ましい。
また高抵抗領域6の横方向の端部は、第3の窒化物半導体層5の表面側の端部よりも内側にあることが望ましい。また、ゲート電極7の底面の端部は、高抵抗領域6の横方向の端部の内側にあっても、面一にあっても、外側にあっても良いが、Vfを効率よく向上させるためには、ゲート電極7の底面の端部は高抵抗領域6の横方向の端部の内側にあることが望ましい(図1)。言い換えれば、ゲート電極7の幅(横方向の寸法)は、高抵抗領域6の幅(横方向の寸法)よりも狭いことが望ましい。ここで、横方向とは、窒化物半導体装置100をソース電極9及びドレイン電極10を通って横断する方向である。
また、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るためには第2の不純物が入っている高抵抗領域6の厚さが20nm以上、望ましくは70nm以上であるほうが良い。ただし、第2の不純物が1×1017cm−3以上含まれる膜厚を、高抵抗領域6の膜厚と定義する。また、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るためには、高抵抗領域6の厚さが20nm以上で、尚且つ、第2の不純物のピーク濃度が2×1018cm−3以上の両方を満たすことが望ましい。
高抵抗領域6の一部に接触するゲート電極7は、Ti、Ni、Pd、Pt、Au、W、WSi、Ta、TiN、Al、Mo、Hf、Zr等の金属を1つもしくは2つ以上組み合わせた電極であれば良い。ただしゲート電極7に、p型の第1の不純物を含む第3の窒化物半導体層5にショットキ接触をする金属を用いる場合、ゲート電圧を6V以上加えた場合にはゲートが破壊する等、ゲート信頼性に問題が発生する可能性が高い。そのため、ゲートの信頼性を確保するためには、ゲート電極7に、p型の第1の不純物を含む第3の窒化物半導体層5にオーミック接触する、もしくはコンタクト抵抗が低い金属であるNi、Pt、Pd、Au、Ti、Cr、In、Sn等の金属を1つもしくは2つ以上組み合わせた電極を用いることが望ましい。ただし、上記p型の第1の不純物を含む第3の窒化物半導体層5にオーミック接触する電極が、高抵抗領域6に接触する際のコンタクト抵抗は、Vfを向上させるため、ある程度高いほうが良く、具体的には200Ωmm以上が望ましい。
ソース電極9及びドレイン電極10は、二次元電子ガス層8、第2の窒化物半導体層4、第1の窒化物半導体層3のいずれかにオーミック接触するTi、Al、Mo、Hf等の金属を1つもしくは2つ以上組み合わせた電極からなり、二次元電子ガス層8に電気的に接続されていれば良い。例えば、第2の窒化物半導体層4の表面上に形成しても良く、また、既知のオーミックリセス技術(図示せず)を用いて、二次元電子ガス層8、第2の窒化物半導体層4、第1の窒化物半導体層3の一部に接していれば良い。
次に、本構造の製造方法を示す断面図を図4A〜図4Fに示す。尚、本製造方法は最小の構成を説明しており、これに限定を受けるものではない。また、本製造方法の順序はこれに限定されるものではない。
まず、適宜な(111)面のSi基板1(他にも、例えばSapphire、SiC、GaN、AlN等の基板)上に、既知のMOCVD法等のエピタキシャル成長技術を用いて、適宜なバッファ層2(例えばIII族窒化物半導体であるGaN、AlGaN、AlN、InGaN、AlInGaN等の単層もしくは複数層)を形成し、その上にGaNからなる第1の窒化物半導体層3(他にも、例えばIII族窒化物半導体であるInGaN、AlGaN、AlInGaN等)を形成し、その上に第1の窒化物半導体層3よりもバンドギャップが大きいAlGaNからなる第2の窒化物半導体層4(他にも、例えばIII族窒化物半導体であるGaN、InGaN、AlInGaN等)を形成し、その上にp−GaNからなるp型の第1の不純物を含む第3の窒化物半導体層5(他にも、例えばIII族窒化物半導体であるp−InGaN、p−AlGaN、p−AlInGaN等)を連続的に形成する(図4A)。
第2の窒化物半導体層4がAlGaNである場合、ノーマリオフ動作のためには、Al組成比が20%の場合、設定するしきい値電圧(Vth)に応じて、AlGaN膜厚が10〜20nmの範囲内、望ましくは15nmである必要がある。また、p型の第1の不純物を含む第3の窒化物半導体層5がp−GaNである場合、膜厚は50〜300nmの範囲内、望ましくは100nmであれば良く、p型の第1の不純物がMgである場合、濃度は1〜10×1019cm−3の範囲内、望ましくは5×1019cm−3であれば良い。次に、既知のフォトリソグラフィ技術を用いてレジストパターン14を形成し、既知のドライエッチング技術を用いてp型の第1の不純物を含む第3の窒化物半導体層5を選択的に除去する(図4B)。
続いて、p型の第1の不純物を含む第3の窒化物半導体層5のp型不純物であるMgを活性化させるため、窒素ガス中、800℃の温度において、30分程度の活性化アニールを実施する(図示せず)。p型の第1の不純物を含む第3の窒化物半導体層5を選択的に除去した後に活性化アニールを実施するのは、p型元素であるMgを不活性にしている水素の結合を切り、第3の窒化物半導体層5表面以外に、第3の窒化物半導体層5の側面からも効率的に水素を脱離させることができるためである。これによりMgの活性化率が向上し、Vthの低下を抑制、ノーマリオフ動作が容易となる。第3の窒化物半導体層5を選択的に除去する前に活性化アニールを実施する場合は、Mgの活性化率が下がり、Vthが低下、ノーマリオフ動作が難しくなる。
続いて再度、既知のフォトリソグラフィ技術を用いて、p型の第1の不純物を含む第3の窒化物半導体層5の上面に開口部を有するレジストパターン15を設ける。このレジストパターン15の開口部を通して既知のイオン注入技術により、第2の不純物を第2の窒化物半導体層4に注入し、第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6を形成する(図4C)。
高抵抗領域6に含まれる第2の不純物は、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るために、F、B、Ar、He、Fe、Cr、Zn、Ca、Tiの内少なくとも一つ、望ましくはFやFe等、n型もしくはp型の窒化物半導体を完全に不活性化し、高抵抗化する元素であればよい。また、高抵抗領域6を不活性化し、高抵抗化して、7V以上の十分に高いVfを得るためには第2の不純物のピーク濃度は1×1018cm−3以上、望ましくは2×1018cm−3以上であればよい(図2)。また上記第2の不純物量を、第3の窒化物半導体層5全体に含まれる第2の不純物の平均濃度(第3の窒化物半導体層5の総体積当たりに含まれる第2の不純物量を濃度に換算した値)に換算すると、1×1017cm−3以上であることが望ましい(図3)。
第2の不純物としてFを用いる場合、イオン注入はFやBFガス等を選択し注入する。イオン注入の加速エネルギーは10〜100keVの範囲内で、望ましくは40keV程度、ドーズ量は1×1013cm−2以上、望ましくは5×1013cm−2程度必要である。注入深さが第3の窒化物半導体層5を突き抜けて第2の窒化物半導体層4に達すると、オン動作時のゲート直下の二次元電子ガス層8が減少してしまい、Vthがずれてしまうため望ましくない。そのため、第2の不純物の注入深さは第3の窒化物半導体層5の底部を越えない、望ましくはプロセスのバラツキを考慮し、第3の窒化物半導体層5の底部よりも10nm程度上方で止まることが重要である。
また、レジストパターン15の開口部は、イオン注入して高抵抗化させるため、選択的に形成した第3の窒化物半導体層5の上面端の内側である必要がある。レジストパターン15の開口部が第3の窒化物半導体層5の上面端の外側に落ちた場合、イオン注入により、第1の窒化物半導体層3や第2の窒化物半導体層4を高抵抗化させてしまい、デバイスのオン抵抗が大幅に悪化し、FET動作しなくなってしまう。
続いて、既知の酸素アッシング技術や有機のレジスト除去技術等を用いてレジストパターン15を除去する(図4D)。
続いて既知のフォトリソグラフィ技術や蒸着技術やリフトオフ技術、スパッタ技術、ドライエッチング技術等を用いて、ソース電極9及びドレイン電極10を形成する(図4E)。ソース電極9及びドレイン電極10は、二次元電子ガス層8、第2の窒化物半導体層4、第1の窒化物半導体層3のいずれかにオーミック接触するTi、Al、Mo、Hf等の金属を1つもしくは2つ以上組み合わせた電極からなり、二次元電子ガス層8に電気的に接続されていれば良い。例えば、第2の窒化物半導体層4の表面上に形成しても良く、また、既知のオーミックリセス技術(図示せず)を用いて、二次元電子ガス層8、第2の窒化物半導体層4、第1の窒化物半導体層3の一部に接していれば良い。ソース電極9及びドレイン電極10は、コンタクト抵抗の低減のためアニール処理を施しても良い。
最後に、既知のフォトリソグラフィ技術や蒸着技術やリフトオフ技術、スパッタ技術、ドライエッチング技術等を用いて、ゲート電極7を形成する(図4F)。高抵抗領域6は、ゲート電極7の下のp型の第1の不純物を含む第3の窒化物半導体層5の中にあればどこでも良く、例えば第3の窒化物半導体層5の最表面にあっても良く、中心部にあっても良く、第3の窒化物半導体層5の中でまだらに(分散して)存在していても良いが、Vfを効率よく向上させるためには、高抵抗領域6は第3の窒化物半導体層5の最表面にあり、ゲート電極7と接していることが望ましい。また、ゲート電極7の底面の端部は、高抵抗領域6の横方向の端部の内側にあっても、面一にあっても、外側にあっても良いが、Vfを効率よく向上させるために内側にあることが望ましい。
高抵抗領域6の一部に接触するゲート電極7は、Ti、Ni、Pd、Pt、Au、W、WSi、Ta、TiN、Al、Mo、Hf、Zr等の金属を1つもしくは2つ以上組み合わせた電極であれば良い。ただしゲート電極7に、p型の第1の不純物を含む第3の窒化物半導体層5にショットキ接触をする金属を用いる場合、ゲート電圧を6V以上加えた場合にはゲートが破壊する等、ゲート信頼性に問題が発生する可能性が高い。そのため、ゲートの信頼性を確保するためには、p型の第1の不純物を含む第3の窒化物半導体層5にオーミック接触する、もしくはコンタクト抵抗が低い金属であるNi、Pt、Pd、Au、Ti、Cr、In、Sn等の金属を1つもしくは2つ以上組み合わせた電極を用いることが望ましい。ただし、上記p型の第1の不純物を含む第3の窒化物半導体層5にオーミック接触する電極が、高抵抗領域6に接触する際のコンタクト抵抗は、Vfを向上させるため、ある程度高いほうが良く、具体的には200Ωmm以上が望ましい。
窒化物半導体装置100の動作を説明する。ノーマリオフ動作の場合、ゲート電極7が0Vでは第3の窒化物半導体層5の直下にp−n接合による空乏層が広がっているため二次元電子ガス層8が存在せず、オフ状態である。ソース電極9を接地して、ドレイン電極10に負荷である正のドレイン電圧を印加した状態で、ゲート電極7に正のゲート電圧を印加していくと、空乏層が縮小して、ゲート電圧がVthを超えるとドレイン電流が流れ始めオン状態となる。
窒化物半導体装置100の効果について説明する。窒化物半導体装置100を用いることにより、容易にノーマリオフ動作を実現できると同時に、高抵抗領域6の抵抗率が高いためVfを7V以上に向上することができる。これにより従来のパワーMOSFET回路のMOSFETを、窒化物半導体装置100に乗せ換えるだけで駆動でき、簡単に置き換えることが可能となる。また、オン抵抗・ゲート電流依存性(Ron−Ig)においてより低い順方向ゲート電流で低いRonを得ることが可能となる。それにより低い消費電力でスイッチング動作が可能となり、回路上でのスイッチングロスを低減可能となる。また、高抵抗領域6が半導体層であるために、プラズマCVD等で付着させたシリコン酸化膜等と比較して、ゲートの信頼性が高くなる。また、高抵抗領域がp型の第3の窒化物半導体層5の表面全面を覆わないため、p型領域を十分に確保でき、Vthの低下を抑制、ノーマリオフ動作が容易となる。また構造上、p型の第3の窒化物半導体層5を選択エッチングした後に活性化アニールすることが可能となり、p型の第3の窒化物半導体層5の横方向からの水素の脱離が可能となり、Mgの活性化率が向上し、Vthの低下を抑制、ノーマリオフ動作が容易となる。
次に、実施の形態の第1の変形例に係る窒化物半導体装置について説明する。
図5に、実施の形態の第1の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にあり、ゲート電極の幅は高抵抗領域の幅と同じである窒化物半導体装置101の断面構造を示す。また、本変形例ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
窒化物半導体装置101は、図1にて示した窒化物半導体装置100の内、ゲート電極7の幅が、第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6の幅と同一である。つまりゲート電極7の底面端が、高抵抗領域6の横方向の端部と、横方向に同一(面一)である。言い換えれば、ゲート電極7の幅(横方向の寸法)は、高抵抗領域6の幅(横方向の寸法)と同じである。ここで、横方向とは、窒化物半導体装置101をソース電極9及びドレイン電極10を通って横断する方向である。
窒化物半導体装置101を用いることにより、図1にて示した窒化物半導体装置100の効果に付加して、Vfを高く保ちつつ、p−GaN領域も大きいためVthの低下を抑制、ノーマリオフ動作がさらに容易となる。また、ゲート電極7端からp型の第1の不純物を含む第3の窒化物半導体層5へのアクセスが近いことにより微小にゲート電流を流すことができ、ゲート電圧を順方向に6V以上掛けても破壊せず、ゲート信頼性が高くなる。
次に、実施の形態の第2の変形例に係る窒化物半導体装置について説明する。
図6に、実施の形態の第2の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にあり、ゲート電極の幅は前記高抵抗領域の幅よりも外側である窒化物半導体装置102の断面構造を示す。また、本変形例ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
窒化物半導体装置102は、図1にて示した窒化物半導体装置100の内、ゲート電極7の幅が、第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6の幅よりも広い。つまりゲート電極7の底面端が、高抵抗領域6の横方向の端部よりも外側である。つまりゲート電極7の外側は、p型の第1の不純物を含む第3の窒化物半導体層5に接触する。言い換えれば、ゲート電極7の幅(横方向の寸法)は、高抵抗領域6の幅(横方向の寸法)よりも広い。ここで、横方向とは、窒化物半導体装置102をソース電極9及びドレイン電極10を通って横断する方向である。
窒化物半導体装置102を用いることにより、図1にて示した窒化物半導体装置100の効果に付加して、Vfを有る程度高く保ちつつ、p−GaN領域が更に広いためVthの低下を抑制、ノーマリオフ動作が容易となる。また、ゲート電極7端からp型の第1の不純物を含む第3の窒化物半導体層5へ直接アクセスできることにより、ある程度ゲート電流を流すことができ、ゲート電圧を順方向に6V以上掛けても破壊せず、ゲート信頼性がより高くなる。
次に、実施の形態の第3の変形例に係る窒化物半導体装置について説明する。
図7に、実施の形態の第3の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にあるリセスゲート型の窒化物半導体装置103の断面構造を示す。また、本変形例ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
窒化物半導体装置103は、図1、5、6にて示した窒化物半導体装置100、101、102の内、p型の第1の不純物を含む第3の窒化物半導体層5の下の第2の窒化物半導体層4にリセス11構造がある。リセス11部直下の第2の窒化物半導体層4の残し厚は、第2の窒化物半導体層4がAlGaNである場合、ノーマリオフ動作のためには、Al組成20%の場合、設定するしきい値電圧(Vth)によって異なるが、AlGaN膜厚が10〜20nmの範囲内、望ましくは15nmである必要がある。リセス部以外の第2の窒化物半導体層4は、上記リセス11部直下の第2の窒化物半導体層4の残し厚よりも厚いこと、望ましくは40nm以上であることが望ましい。
窒化物半導体装置103の製造方法は、第2の窒化物半導体層4で一旦エピタキシャル成長を終了し、その後第2の窒化物半導体層4に、既知のフォトリソグラフィ技術とドライエッチング技術を用いてリセス11部を形成する。続いてp型の第1の不純物を含む第3の窒化物半導体層5をリセス11を埋めるようにエピタキシャル成長し、以降は図4B以降と同じ製造方法である。p型の第1の不純物を含む第3の窒化物半導体層5は、横方向成長によりリセス11部を完全に埋め込むように形成する必要があるため、ある程度の膜厚が必要であり、最大厚部で200nm以上あることが望ましい。
窒化物半導体装置103を用いることにより、図1、5、6にて示した窒化物半導体装置100、101、102の効果に付加して、リセス部以外の第2の窒化物半導体層4表面から二次元電子ガス層8を物理的に離すことができ、第2の窒化物半導体層4表面の表面準位にトラップされる電子の影響を取り除くことができ、電流コラプスを大幅に低減できる。
次に、実施の形態の第4の変形例に係る窒化物半導体装置について説明する。
図8に、実施の形態の第4の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にある貫通リセスゲート型の窒化物半導体装置104の断面構造を示す。また、本実施形態ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
窒化物半導体装置104は、図1、5〜7にて示した窒化物半導体装置100、101〜103の内、p型の第1の不純物を含む第3の窒化物半導体層5の下の第2の窒化物半導体層4に、第2の窒化物半導体層4を貫通して底面が第1の窒化物半導体層3に達するリセス11構造がある。
窒化物半導体装置104の製造方法は、図4Aに示す製造工程の途中で、第2の窒化物半導体層4で一旦エピタキシャル成長を終了し、その後第2の窒化物半導体層4を貫通して底面が第1の窒化物半導体層3に達するリセス11部を既知のフォトリソグラフィ技術とドライエッチング技術を用いて形成する。その後分断された二次元電子ガス層8は、再エピタキシャル成長によりAlGaN等の第4の窒化物半導体層12を成長し、分断された第2の窒化物半導体層4を再接続し、二次元電子ガス層8を再接続する。続いてp型の第1の不純物を含む第3の窒化物半導体層5をリセス11を埋めるようにエピタキシャル成長し、以降は図4B以降と同じ製造方法である。
再成長する第4の窒化物半導体層12は、ノーマリオフ動作のためには、Al組成比が20%の場合、設定するしきい値電圧(Vth)によって異なるが、AlGaN膜厚が10〜20nmの範囲内、望ましくは15nmである必要がある。リセス部以外の第2の窒化物半導体層4と第4の窒化物半導体層12の膜厚の和は、上記リセス11部直下の第2の窒化物半導体層4の残し厚よりも厚いこと、望ましくは40nm以上であればよい。また、p型の第1の不純物を含む第3の窒化物半導体層5は、横方向成長により、リセス11部を埋め込むように形成する必要がある。そのため、ある程度の膜厚が必要であり、最大厚部で200nm以上あることが望ましい。
窒化物半導体装置104を用いることにより、図1、5、6にて示した窒化物半導体装置100、101、102の効果に付加して、第2の窒化物半導体層4表面から二次元電子ガス層8を物理的に離すことができ、第4の窒化物半導体層12表面の表面準位にトラップされる電子の影響を取り除くことができ、電流コラプスを大幅に低減できる。また、図7で示した窒化物半導体装置103の効果に付加して、ウェハ面内のVthが再成長した第4の窒化物半導体層12のみで制御できるため、ウェハ面内のVthのバラツキが小さい。
次に、実施の形態の第5の変形例に係る窒化物半導体装置について説明する。
図9に、実施の形態の第5の変形例である、高抵抗領域の端部が、第3の窒化物半導体層表面端の内側にある縦型の窒化物半導体装置105の断面構造を示す。また、本実施形態ではIII族窒化物半導体を用いて記述しているが、本発明は、それに限定を受けるものではない。また本構造は、最小の構成を示しており、これに限定を受けるものではない。
本構造は、図1、5〜8にて示した窒化物半導体装置100、101〜104の内、基板1がn型のGaNからなり、基板1の裏面にドレイン電極10があり、表面側のゲート電極7の側方にゲート電極7と離間して形成され、二次元電子ガス層8と電気的に接続されたソース電極9がある。第1の窒化物半導体層3の内部にウェル層13があっても良い。ウェル層13は、ソース・ドレイン間の貫通電流を抑止する目的に挿入するため、n型の基板1やn−GaNからなる第1の窒化物半導体層3とp−n接合を形成することによる空乏層を設ける目的で、p型であることが望ましい。図7、8と同じように、リセス構造を用いても良い(図示せず)。
窒化物半導体装置105を用いることにより、図1、5〜8にて示した窒化物半導体装置100、101〜104の効果に付加して、縦型FETであるために、耐圧を大きくとることが可能となる。また、チップ面積あたりの電流密度も向上することが可能となる。
図10〜12に、図8にて説明した貫通リセスゲート型の窒化物半導体装置104における高抵抗領域6がない比較例の電気特性と、高抵抗領域6がある実施例の電気特性を示す。ここで示す貫通リセスゲート型の窒化物半導体装置104の第3の窒化物半導体層5はp−GaNであり、その最大膜厚は比較例および実施例のいずれも、およそ250nmである。
高抵抗領域6がある実施例では、高抵抗領域6にBとF両方を含み、Bのピーク濃度は1.3×1019cm−3、Fのピーク濃度は2.6×1019cm−3である。また、p−GaN全体に含まれるBの平均濃度は1.2×1018cm−3、Fの平均濃度は2.3×1018cm−3である。第2の不純物が1×1017cm−3以上含まれる膜厚を、高抵抗領域6の膜厚と定義した場合、その膜厚はおよそ70nmであり、高抵抗領域6の表面と第3の窒化物半導体層5の表面は同一面にある。第3の窒化物半導体層5の上面の幅はおよそ1.4μmに対して、高抵抗領域6の上面の幅はおよそ0.9μm、ゲート電極7の底面の幅はおよそ0.8μmである。ゲート電極7の底面端は、高抵抗領域6の上面端の内側であり、ゲート電極7の底面端は全て高抵抗領域6の上面に接している。
図10に窒化物半導体装置104において第3の窒化物半導体層5に高抵抗領域6がない比較例と、高抵抗領域6がある実施例のVgs−Igs(Vf)特性を示す。実施例によれば、高抵抗領域6があることにより、Vfが比較例の3.3Vから11.2Vに大幅に向上する。これにより、Vf≧7Vの要件を満たし、パワー用途のシリコン系MOSFET回路上でシリコン系MOSFET用のドライバでGaN−FETを駆動させることが可能となる。
また、図11A、図11Bに窒化物半導体装置104において第3の窒化物半導体層5に高抵抗領域6がない比較例と、高抵抗領域6がある実施例のIds−Vds特性をそれぞれ示す。比較例および実施例のいずれにおいても最大ドレイン電流(Imax)は0.3A/mm程度確保できており、FETとして正常に動作している。また、高抵抗領域6がある実施例では、Vfを11V以上に確保できているため、Vgsを+14V印加しても、Idsがリークしておらず、FETとして正常に動作可能である。
また、図12に窒化物半導体装置104において第3の窒化物半導体層5に高抵抗領域6がない比較例と、高抵抗領域6がある実施例のRon−Igs特性を示す。高抵抗領域6がある実施例では、高抵抗領域6がない比較例より低いIgsにおいて低いRonを得ることができる。つまり、より低い消費電力でスイッチング動作が可能となり、回路上でのスイッチングロスを低減可能となる。
以上、本発明の一つまたは複数の態様に係る窒化物半導体装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つまたは複数の態様の範囲内に含まれてもよい。
本発明は、ノーマリオフ動作と同時に、Vfを大幅に向上できる半導体層地を提供でき、もってパワーデバイスの性能を向上させることができる。
1 基板
2 バッファ層
3 第1の窒化物半導体層
4 第2の窒化物半導体層
5 p型の第3の窒化物半導体層
6 高抵抗領域
7 ゲート電極
8 2次元電子ガス層
9 ソース電極
10 ドレイン電極
11 リセス
12 第4の窒化物半導体層
13 ウェル層
14、15 レジストパターン
16 ゲート絶縁膜
17 p型の高抵抗領域
100〜105、901〜903 窒化物半導体装置
続いて再度、既知のフォトリソグラフィ技術を用いて、p型の第1の不純物を含む第3の窒化物半導体層5の上面に開口部を有するレジストパターン15を設ける。このレジストパターン15の開口部を通して既知のイオン注入技術により、第2の不純物を第の窒化物半導体層に注入し、第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域6を形成する(図4C)。

Claims (17)

  1. 基板と、
    前記基板の上に形成された第1の窒化物半導体層と、
    前記第1の窒化物半導体層の上に形成され、前記第1の窒化物半導体層と比べてバンドギャップが大きい第2の窒化物半導体層と、
    前記第2の窒化物半導体層の上に選択的に形成され、p型の第1の不純物を含む第3の窒化物半導体層と、
    前記第3の窒化物半導体層に形成され、第2の不純物を含み、前記第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域と、
    前記高抵抗領域の上に形成されたゲート電極と、を有し、
    前記高抵抗領域の端部が、前記第3の窒化物半導体層表面端の内側にある
    窒化物半導体装置。
  2. 前記ゲート電極と前記高抵抗領域とは接している、
    請求項1に記載の窒化物半導体装置。
  3. 前記ゲート電極の幅は前記高抵抗領域の幅よりも狭い、
    請求項2に記載の窒化物半導体装置。
  4. 前記ゲート電極の幅は前記高抵抗領域の幅と同じである、
    請求項2に記載の窒化物半導体装置。
  5. 前記ゲート電極の幅は前記高抵抗領域の幅よりも広い、
    請求項2に記載の窒化物半導体装置。
  6. 前記窒化物半導体装置のゲート幅あたりのゲート・ソース間の順方向電流が100μA/mmとなるゲート・ソース間電圧が7V以上である、
    請求項1から5のいずれか1項に記載の窒化物半導体装置。
  7. 前記高抵抗領域と前記ゲート電極の接触抵抗は200Ωmm以上である、
    請求項1から6のいずれか1項に記載の窒化物半導体装置。
  8. 前記高抵抗領域中の前記第2の不純物のピーク濃度は2×1018cm−3以上である、
    請求項1から7のいずれか1項に記載の窒化物半導体装置。
  9. 前記p型の第3の窒化物半導体層中の前記第2の不純物の平均濃度が1×1017cm−3以上である、
    請求項1から8のいずれか1項に記載の窒化物半導体装置。
  10. 前記高抵抗領域の厚さは20nm以上である、
    請求項1から9のいずれか1項に記載の窒化物半導体装置。
  11. 前記高抵抗領域の厚さは20nm以上であり、前記高抵抗領域中の前記第2の不純物のピーク濃度は2×1018cm−3以上である、
    請求項1から10のいずれか1項に記載の窒化物半導体装置。
  12. 前記高抵抗領域の厚さは、前記第3の窒化物半導体層の最大厚よりも薄い、
    請求項1から11のいずれか1項に記載の窒化物半導体装置。
  13. 前記高抵抗領域の下端は、前記第3の窒化物半導体層の下端よりも10nm以上上方である、
    請求項1から12のいずれか1項に記載の窒化物半導体装置。
  14. 前記第2の不純物は、F、B、Ar、He、Fe、Cr、Zn、Ca、Tiの少なくとも一つである
    請求項1から13のいずれか1項に記載の窒化物半導体装置。
  15. 前記ゲート電極は、p型の第3の窒化物半導体に対してオーミック接触する材料を用いる、
    請求項1から14のいずれか1項に記載の窒化物半導体装置。
  16. 前記ゲート電極は、Ni、Pt、Pd、Au、Ti、Cr、In、Snの内少なくとも一つの元素を含む、
    請求項15に記載の窒化物半導体装置。
  17. 基板を用意し、
    前記基板の上に第1の窒化物半導体層を形成する工程と、
    前記第1の窒化物半導体層の上に、前記第1の窒化物半導体層と比べてバンドギャップが大きい第2の窒化物半導体層を形成する工程と、
    前記第2の窒化物半導体層の上に、p型の第1の不純物を含む第3の窒化物半導体層を選択的に形成する工程と、
    前記第3の窒化物半導体層の一部に第2の不純物をイオン注入し、前記第3の窒化物半導体層の比抵抗よりも高い比抵抗を有す高抵抗領域を形成する工程と、
    前記高抵抗領域の上にゲート電極を形成する工程と、
    を含む窒化物半導体装置の製造方法。
JP2019525150A 2017-06-13 2018-04-17 窒化物半導体装置 Active JP7113233B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017116040 2017-06-13
JP2017116040 2017-06-13
PCT/JP2018/015785 WO2018230136A1 (ja) 2017-06-13 2018-04-17 窒化物半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2018230136A1 true JPWO2018230136A1 (ja) 2020-04-23
JP7113233B2 JP7113233B2 (ja) 2022-08-05

Family

ID=64658691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019525150A Active JP7113233B2 (ja) 2017-06-13 2018-04-17 窒化物半導体装置

Country Status (3)

Country Link
US (1) US11171228B2 (ja)
JP (1) JP7113233B2 (ja)
WO (1) WO2018230136A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081613B1 (fr) * 2018-05-22 2022-12-09 Exagan Transistor a haute mobilite electronique en mode enrichissement
CN109817710A (zh) * 2018-12-29 2019-05-28 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
CN110299407A (zh) * 2019-06-29 2019-10-01 厦门市三安集成电路有限公司 功率器件及其制备方法
CN117457733A (zh) 2019-11-08 2024-01-26 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
CN111863952A (zh) * 2020-07-28 2020-10-30 西安电子科技大学 常关型氮化镓基器件及其制作方法
CN114078957A (zh) * 2020-08-10 2022-02-22 华为技术有限公司 一种混合栅场效应管及制备方法、开关电路
CN112331720B (zh) * 2020-11-07 2022-12-09 东南大学 一种具有高阈值稳定性型氮化镓功率半导体器件
TWI755277B (zh) * 2021-02-09 2022-02-11 世界先進積體電路股份有限公司 高電子遷移率電晶體及其製作方法
WO2022181100A1 (ja) * 2021-02-24 2022-09-01 パナソニックホールディングス株式会社 窒化物半導体装置
WO2023035104A1 (en) * 2021-09-07 2023-03-16 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and method for manufacturing the same
US20230078017A1 (en) * 2021-09-16 2023-03-16 Wolfspeed, Inc. Semiconductor device incorporating a substrate recess
WO2023189039A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 窒化物半導体装置
TWI832676B (zh) * 2022-06-09 2024-02-11 超赫科技股份有限公司 高電子遷移率電晶體之製造方法
CN114883396B (zh) * 2022-07-11 2022-09-23 成都功成半导体有限公司 一种凹陷式Fin-JFET栅结构HEMT及制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246527A (ja) * 1996-03-08 1997-09-19 Toshiba Corp 半導体装置
JP2000208753A (ja) * 1999-01-19 2000-07-28 Sony Corp 半導体装置とその製造方法
US20130168687A1 (en) * 2011-06-29 2013-07-04 Industrial Technology Research Institute Enhancement mode gallium nitride based transistor device
JP2013211481A (ja) * 2012-03-30 2013-10-10 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2016131207A (ja) * 2015-01-14 2016-07-21 株式会社豊田中央研究所 集積した半導体装置
JP2016213388A (ja) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 窒化物半導体装置及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933544B2 (en) * 2003-01-29 2005-08-23 Kabushiki Kaisha Toshiba Power semiconductor device
JP4041075B2 (ja) 2004-02-27 2008-01-30 株式会社東芝 半導体装置
US7728356B2 (en) * 2007-06-01 2010-06-01 The Regents Of The University Of California P-GaN/AlGaN/AlN/GaN enhancement-mode field effect transistor
JP2010206125A (ja) * 2009-03-06 2010-09-16 Oki Electric Ind Co Ltd 窒化ガリウム系高電子移動度トランジスタ
JP2011029247A (ja) 2009-07-22 2011-02-10 Panasonic Corp 窒化物半導体装置及びその製造方法
WO2013008422A1 (ja) 2011-07-12 2013-01-17 パナソニック株式会社 窒化物半導体装置およびその製造方法
KR101882997B1 (ko) 2011-09-30 2018-07-30 삼성전기주식회사 질화물 반도체 소자 및 그 제조방법
KR101922121B1 (ko) 2012-10-09 2018-11-26 삼성전자주식회사 고전자 이동도 트랜지스터 및 그 제조방법
JP6119215B2 (ja) 2012-12-03 2017-04-26 日亜化学工業株式会社 電界効果トランジスタ
JP6167889B2 (ja) 2012-12-21 2017-07-26 日亜化学工業株式会社 電界効果トランジスタとその製造方法
KR102080745B1 (ko) 2013-04-16 2020-04-14 엘지전자 주식회사 질화물 반도체 소자 및 그 제조 방법
US9076854B2 (en) 2013-08-26 2015-07-07 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device
JP5707463B2 (ja) 2013-09-30 2015-04-30 株式会社豊田中央研究所 半導体装置とその製造方法
US9385001B1 (en) 2015-03-17 2016-07-05 Toshiba Corporation Self-aligned ITO gate electrode for GaN HEMT device
JP6614116B2 (ja) * 2016-05-24 2019-12-04 株式会社デンソー 半導体装置
US10014402B1 (en) * 2016-12-14 2018-07-03 Taiwan Semiconductor Manufacturing Co., Ltd. High electron mobility transistor (HEMT) device structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246527A (ja) * 1996-03-08 1997-09-19 Toshiba Corp 半導体装置
JP2000208753A (ja) * 1999-01-19 2000-07-28 Sony Corp 半導体装置とその製造方法
US20130168687A1 (en) * 2011-06-29 2013-07-04 Industrial Technology Research Institute Enhancement mode gallium nitride based transistor device
JP2013211481A (ja) * 2012-03-30 2013-10-10 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2016131207A (ja) * 2015-01-14 2016-07-21 株式会社豊田中央研究所 集積した半導体装置
JP2016213388A (ja) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 窒化物半導体装置及びその製造方法

Also Published As

Publication number Publication date
US11171228B2 (en) 2021-11-09
JP7113233B2 (ja) 2022-08-05
WO2018230136A1 (ja) 2018-12-20
US20200119178A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP7113233B2 (ja) 窒化物半導体装置
JP7065329B2 (ja) 窒化物半導体装置及びその製造方法
JP4755961B2 (ja) 窒化物半導体装置及びその製造方法
JP4705412B2 (ja) 電界効果トランジスタ及びその製造方法
US9190506B2 (en) Field-effect transistor
JP5595685B2 (ja) 半導体装置
JP2023537713A (ja) 空乏層を有するiii族窒化物デバイス
JP4955292B2 (ja) 半導体装置
CN102648527A (zh) 半导体器件及其制造方法
JP5779284B2 (ja) スイッチング素子
US9680001B2 (en) Nitride semiconductor device
WO2013073127A1 (ja) 半導体装置及びその製造方法
US9391142B2 (en) Semiconductor device
US20150263155A1 (en) Semiconductor device
JP2008016588A (ja) GaN系半導体素子
WO2014078238A1 (en) Lateral gan jfet with vertical drift region
US8587027B2 (en) Field effect transistor, method of manufacturing the same, and semiconductor device
JP2011142358A (ja) 窒化物半導体装置
JP2011066464A (ja) 電界効果トランジスタ
JP5757746B2 (ja) 窒化物半導体装置
JP5545653B2 (ja) 窒化物系半導体装置
JP2013239735A (ja) 電界効果トランジスタ
US20220254902A1 (en) Nitride semiconductor device and method of fabricating the same
JP2014078555A (ja) 電界効果トランジスタ
JP2010171287A (ja) 窒化物半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R151 Written notification of patent or utility model registration

Ref document number: 7113233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151