WO2018225582A1 - ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体 - Google Patents

ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2018225582A1
WO2018225582A1 PCT/JP2018/020504 JP2018020504W WO2018225582A1 WO 2018225582 A1 WO2018225582 A1 WO 2018225582A1 JP 2018020504 W JP2018020504 W JP 2018020504W WO 2018225582 A1 WO2018225582 A1 WO 2018225582A1
Authority
WO
WIPO (PCT)
Prior art keywords
graft copolymer
polyorganosiloxane
mass
phase
thermoplastic resin
Prior art date
Application number
PCT/JP2018/020504
Other languages
English (en)
French (fr)
Inventor
賢太 竹増
綾花 脇田
新治 松岡
光史 野殿
直隆 末永
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP22198233.3A priority Critical patent/EP4163313A1/en
Priority to KR1020197038561A priority patent/KR102368241B1/ko
Priority to JP2019523472A priority patent/JP7028243B2/ja
Priority to CN201880037346.5A priority patent/CN110709437B/zh
Priority to EP21163190.8A priority patent/EP3901190B1/en
Priority to EP18813303.7A priority patent/EP3636683B1/en
Priority to KR1020217003804A priority patent/KR102360367B1/ko
Publication of WO2018225582A1 publication Critical patent/WO2018225582A1/ja
Priority to US16/704,588 priority patent/US11161974B2/en
Priority to US17/102,517 priority patent/US11773249B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a polyorganosiloxane-containing graft copolymer that can be added to a thermoplastic resin to improve the low-temperature impact resistance of the thermoplastic resin composition. Moreover, it is related with the thermoplastic resin composition containing this polyorganosiloxane containing graft copolymer. Furthermore, it is related with the molded object of this thermoplastic resin composition.
  • Thermoplastic resins such as aromatic polycarbonate resins are excellent in transparency, impact resistance, heat resistance, dimensional stability, etc. as general-purpose engineering plastics. Due to their excellent characteristics, automotive fields, OA equipment fields, electrical / electronic fields, etc. As a material, it is widely used industrially. In order to improve the impact resistance of the thermoplastic resin, a method of adding an impact strength modifier is used.
  • thermoplastic resins can be used without coating, mainly for applications such as electrical and electronic equipment casings and home appliances, to reduce product costs. It is required to color the resin itself to develop a desired color tone.
  • Patent Document 1 contains a polyorganosiloxane obtained by polymerizing a vinyl monomer (b) in the presence of a rubber (A) containing a polyorganosiloxane (A1) and a vinyl polymer (A2).
  • a graft copolymer wherein the rubber (A) has a refractive index in the range of 1.47 to 1.56, and the rubber (A) has a volume average particle diameter in the range of 300 to 2000 nm. It has been proposed to use an organosiloxane-containing graft copolymer as an impact strength modifier.
  • the polyorganosiloxane-containing graft copolymer described in Patent Document 1 can be blended with a thermoplastic resin to provide a thermoplastic resin composition having higher pigment colorability, low temperature impact resistance and flame retardancy It is.
  • the graft copolymer of Patent Document 1 may not have a sufficient balance between color developability and low-temperature impact resistance when added to a thermoplastic resin. Further, the color tone may change due to exposure to severe conditions such as exposure to sunlight, wind and rain outdoors, or heat generation of the apparatus, and further improvement is required.
  • An object of the present invention is to improve the impact strength that can provide a thermoplastic resin composition and a molded article that have little change in color tone when exposed to harsh conditions and that have an excellent balance between color development and low-temperature impact resistance. It is to provide a quality agent. Moreover, the objective of this invention is providing the thermoplastic resin composition and molded object which have such performance.
  • the blend (A2) contains 90 to 100% by mass of the monofunctional vinyl monomer (a1) and 10 to 0% by mass of the polyfunctional vinyl monomer (a2) with respect to 100% by mass of the vinyl polymer (A2). It is a vinyl polymer, and the glass transition temperature of the homopolymer of the monofunctional vinyl monomer (a1) is 0 ° C.
  • a polyorganosiloxane-containing graft copolymer which is at least one monofunctional vinyl monomer having a glass transition temperature of 0 ° C. or higher.
  • thermoplastic resin composition comprising the polyorganosiloxane-containing graft copolymer according to any one of [1] to [6] and a thermoplastic resin.
  • the content of the polyorganosiloxane-containing graft copolymer in a total of 100% by mass of the thermoplastic resin and the polyorganosiloxane-containing graft copolymer is 0.5 to 50% by mass.
  • the thermoplastic resin composition as described.
  • the elastic modulus in the A phase is 0.4 GPa or more, and in the B phase A graft copolymer having an elastic modulus of 0.2 GPa or less and an average diameter of the A phase measured by “Measurement Condition 4” of 50 nm or more.
  • “Measurement condition 3” Graft copolymer particles are encapsulated, poured into a room temperature curable epoxy resin, allowed to stand at 25 ° C.
  • a histogram of the elastic modulus is also acquired in a region having a size of 50 nm square or more included in the region having the elastic modulus, and the peak top of the Gaussian curve of the histogram is set as the elastic modulus of the A phase.
  • Measurement condition 4" The resin piece obtained under the measurement condition 3 was surfaced and trimmed at room temperature using a diamond knife with the ultramicrotome, and a slice was cut out under the condition of a thin piece thickness of 50 nm and collected on a grid with a support film. This is used as sample 2.
  • Sample 2 is placed in a transmission electron microscope (“trade name“ H-7600 ”, manufactured by Hitachi, Ltd.), and a particle image is obtained under the conditions of an acceleration voltage of 80 kV and a magnification of 200,000 times.
  • image analysis software trade name “Image-Pro (registered trademark) Plus”, manufactured by Nippon Roper Co., Ltd.
  • Phases that looked bright contrast in the acquired particle image are extracted by binarization, and 10 points are selected from the phases having a large diameter that can be visually recognized in one particle image, and the average diameter is obtained.
  • an average value is calculated
  • the B phase is a phase containing polyorganosiloxane.
  • thermoplastic resin composition comprising the graft copolymer according to any one of [11] to [16] and a thermoplastic resin.
  • thermoplastic resin composition according to [17] wherein the content of the graft copolymer in a total of 100% by mass of the thermoplastic resin and the graft copolymer is 0.5 to 50% by mass.
  • thermoplastic resin composition according to [17] or [18] wherein the thermoplastic resin is a polycarbonate resin.
  • thermoplastic resin composition and molded article excellent in balance between color development and low-temperature impact resistance there is little change in color tone when exposed to harsh conditions, and the impact strength modification capable of providing a thermoplastic resin composition and a molded article excellent in balance between color development and low-temperature impact resistance.
  • a graft copolymer serving as a texture agent can be provided.
  • thermoplastic resin composition and molded object which have such performance can be provided.
  • (meth) acrylate means at least one of “acrylate” and “methacrylate”.
  • the polyorganosiloxane-containing graft copolymer according to the first aspect of the present invention is a rubber containing a polyorganosiloxane (A1) and a vinyl polymer (A2) ( A polyorganosiloxane-containing graft copolymer obtained by grafting A) with a vinyl monomer (b), wherein the vinyl polymer (A2) is 90 to 100% by mass of the monofunctional vinyl monomer (a1).
  • the graft copolymer is a polyorganosiloxane-containing graft copolymer having a tan ⁇ peak in the temperature range of ⁇ 125 ° C. to ⁇ 90 ° C. as measured under “Measurement Condition 1” below.
  • the grafting of the rubber (A) with the vinyl monomer (b) means that the vinyl monomer (b) is graft-polymerized in the presence of the rubber (A), so that the vinyl monomer ( forming a graft part consisting of b).
  • Measurement condition 1 A polyorganosiloxane-containing graft copolymer is compression-molded at 160 ° C. and 5 MPa, and a test piece having a thickness of 1 mm is pulled with a dynamic viscoelastic device (DMS6100, manufactured by Seiko Instruments Inc.) in a tensile mode and a heating rate of 2 ° C./min. Measure at a frequency of 10 Hz in a temperature range of ⁇ 150 ° C. to 180 ° C.
  • DMS6100 dynamic viscoelastic device
  • the peak temperature of tan ⁇ of the polyorganosiloxane-containing graft copolymer of the present invention is low temperature impact strength and color developability when the graft copolymer is added to a thermoplastic resin (hereinafter sometimes simply referred to as “resin”). From the viewpoint of suppressing the change in color tone when exposed to harsh conditions, the tan ⁇ peak is also in the range of ⁇ 80 ° C. to 0 ° C. More preferably.
  • the peak of 0 ° C. or less of tan ⁇ of the polyorganosiloxane-containing graft copolymer is derived from the polyorganosiloxane (A1). Through various studies, it has been found that this greatly affects the low temperature impact strength when added to the resin and the change in color tone when exposed to harsh conditions.
  • the graft copolymer in the present invention has a tan ⁇ peak (first peak) in the range of ⁇ 125 ° C. to ⁇ 90 ° C., so that the low temperature impact strength and color developability when the graft copolymer is added to the resin. And the color balance when exposed to harsh conditions is suppressed.
  • the first peak of tan ⁇ is more preferably in the range of ⁇ 125 ° C. to ⁇ 100 ° C.
  • having a tan ⁇ peak (second peak) of the graft copolymer in the temperature range of ⁇ 80 ° C. to 0 ° C. the balance between the low temperature impact strength and the color developability and the change in color tone when added to the resin. This is preferable because the suppression of the above becomes better.
  • the tan ⁇ peak at 0 ° C. or lower is the particle size, composition, and content of the polyorganosiloxane (A1) used when polymerizing the graft copolymer, the type and content of the vinyl polymer (A2), and the rubber containing them.
  • the first peak of tan ⁇ can be set to a temperature range of ⁇ 125 ° C. to ⁇ 90 ° C.
  • the second peak of tan ⁇ can be further in the temperature range of ⁇ 80 ° C. to 0 ° C.
  • the graft copolymer of the present invention preferably has a refractive index measured under “Measurement Condition 2” in the range of 1.531 to 1.700, and in the range of 1.531 to 1.600. Is more preferable.
  • “Measurement condition 2” The polyorganosiloxane-containing graft copolymer that has been thinned by compression molding is measured at a temperature of 23 ° C. using an Abbe refractometer according to the JIS K 7142 A method. By setting the refractive index of the graft copolymer of the present invention to 1.531 or more, a thermoplastic resin composition having excellent color developability can be obtained.
  • the refractive index of the graft copolymer of the present invention is adjusted to the desired refractive index by adjusting the content of the polyorganosiloxane (A1), the type of vinyl polymer (A2), and the vinyl monomer (b) and the amount used. It can be.
  • the refractive index of the graft copolymer of the present invention can be predicted as a value calculated using the following formula (Formula 1) described in POLYMER HANDBOOK 4th Edition (Wiley Interscience).
  • n v1n1 + v2n2 + v3n3 + ...
  • n1, n2, n3,...” Represents the refractive index of each monomer homopolymer at 20 ° C., and values described in POLYMER HANDBOOK 4th Edition can be used.
  • v1, v2, v3,...” Represents the volume fraction of each monomer.
  • the polyorganosiloxane (A1) is a polymer containing an organosiloxane unit in which at least one organic group is bonded to a silicon atom as a constituent unit.
  • the polyorganosiloxane (A1) can be obtained by polymerizing an organosiloxane or an “organosiloxane mixture” containing at least one type of organosiloxane and components used as necessary. Examples of components used as necessary include a siloxane-based crosslinking agent, a siloxane-based graft crossing agent, and a siloxane oligomer having a terminal blocking group.
  • any of chain organosiloxane, alkoxysilane compound, and cyclic organosiloxane can be used.
  • an alkoxysilane compound and a cyclic organosiloxane are preferable, and a cyclic organosiloxane is more preferable because of high polymerization stability and a high polymerization rate.
  • the alkoxysilane compound is preferably a bifunctional alkoxysilane compound, such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, dimethyldipropoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, Examples thereof include methylphenyldiethoxysilane.
  • the cyclic organosiloxane is preferably a 3- to 7-membered ring.
  • hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, tetra Mention may be made of methyltetraphenylcyclotetrasiloxane and octaphenylcyclotetrasiloxane. These can be used individually by 1 type or in combination of 2 or more types.
  • the main component is preferably octamethylcyclotetrasiloxane because the particle size distribution can be easily controlled.
  • organosiloxane it is preferable to use an organosiloxane that is a cyclic dimethylsiloxane and / or a bifunctional dialkylsilane compound because a graft copolymer having higher low-temperature impact resistance can be obtained.
  • the cyclic dimethylsiloxane is a cyclic siloxane having two methyl groups on a silicon atom, and examples thereof include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
  • the bifunctional dialkylsilane compound is a compound having two alkyl groups among the above bifunctional alkoxysilane compounds, and dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, and dimethyldipropoxysilane are Can be mentioned. These can be used individually by 1 type or in combination of 2 or more types.
  • siloxane crosslinking agent those having a siloxy group are preferable.
  • siloxane-based crosslinking agent By using a siloxane-based crosslinking agent, a polyorganosiloxane having a crosslinked structure can be obtained.
  • the siloxane crosslinking agent include trifunctional or tetrafunctional silane crosslinking such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, and tetrabutoxysilane.
  • An agent can be mentioned. Among these, a tetrafunctional crosslinking agent is preferable, and tetraethoxysilane is more preferable.
  • the content of the siloxane-based crosslinking agent is preferably 0 to 30% by mass, more preferably 0 to 15% by mass, and more preferably 0 to 5% by mass in 100% by mass of the organosiloxane mixture. .
  • a graft copolymer having good low-temperature impact resistance can be obtained.
  • the siloxane-based graft crossing agent has a siloxy group and a functional group polymerizable with a vinyl monomer.
  • a siloxane-based graft crossing agent By using a siloxane-based graft crossing agent, a polyorganosiloxane having a functional group polymerizable with a vinyl monomer can be obtained. Since the polyorganosiloxane has a functional group polymerizable with the vinyl monomer, the polyorganosiloxane can be grafted with the vinyl monomer (A2) and the vinyl monomer (B) described later by radical polymerization. .
  • siloxane graft crossing agent examples include siloxanes represented by the formula (I).
  • R 1 represents a methyl group, an ethyl group, a propyl group, or a phenyl group.
  • R 2 represents an organic group in the alkoxy group, and examples thereof include a methyl group, an ethyl group, a propyl group, and a phenyl group.
  • n represents 0, 1 or 2.
  • R represents any group represented by formulas (I-1) to (I-4).
  • R 3 and R 4 each represent hydrogen or a methyl group, and p represents an integer of 1 to 6.
  • Examples of the functional group represented by the formula (I-1) include a methacryloyloxyalkyl group.
  • the siloxane having this group include ⁇ -methacryloyloxyethyldimethoxymethylsilane, ⁇ -methacryloyloxypropylmethoxydimethylsilane, ⁇ -methacryloyloxypropyldimethoxymethylsilane, ⁇ -methacryloyloxypropyltrimethoxysilane, and ⁇ -methacryloyloxy.
  • Examples thereof include propylethoxydiethylsilane, ⁇ -methacryloyloxypropyldiethoxymethylsilane, and ⁇ -methacryloyloxybutyldiethoxymethylsilane.
  • siloxane-based graft crossing agents can be used singly or in combination of two or more.
  • the content of the siloxane-based graft crossing agent is preferably 0 to 40% by mass, more preferably 0.05 to 40% by mass, and more preferably 0.05 to 20% with respect to 100% by mass of the organosiloxane mixture. More preferably, it is mass%.
  • siloxane oligomer having a terminal blocking group refers to a siloxane oligomer having an alkyl group or the like at the terminal of the organosiloxane oligomer and stopping the polymerization of the polyorganosiloxane.
  • siloxane oligomer having a terminal blocking group examples include hexamethyldisiloxane, 1,3-bis (3-glycidoxypropyl) tetramethyldisiloxane, and 1,3-bis (3-aminopropyl) tetramethyldisiloxane. And siloxane oligomers whose terminal blocking groups are trimethylsilyl groups.
  • the mixture is polymerized at a high temperature using an acid catalyst, and then the acid is neutralized with an alkaline substance to obtain a polyorganosiloxane latex.
  • an “organosiloxane mixture” is used as a raw material for polymerization will be described, but the same production process can be applied to the case where “organosiloxane” is used alone.
  • emulsion preparation methods include a method using a homomixer that makes fine particles by shearing force by high-speed rotation, a method that mixes by high-speed agitation using a homogenizer that makes fine particles by jet output from a high-pressure generator, etc. Is mentioned.
  • a method using a homogenizer is a preferable method because the particle size distribution of the polyorganosiloxane latex becomes narrow.
  • a method for mixing the acid catalyst during the polymerization (1) a method in which an acid catalyst is added together with an organosiloxane mixture, an emulsifier and water and mixed, and (2) an acid catalyst aqueous solution is added to an emulsion of the organosiloxane mixture.
  • examples thereof include a method of adding all at once, and (3) a method in which an emulsion of an organosiloxane mixture is dropped into a high-temperature acid catalyst aqueous solution at a constant rate and mixed. Since it is easy to control the particle diameter of the polyorganosiloxane, a method of maintaining an emulsion of the organosiloxane mixture at a high temperature and then adding the acid catalyst aqueous solution all at once is preferable.
  • the polymerization temperature is preferably 50 ° C. or higher, and more preferably 70 ° C. or higher.
  • the polymerization time is usually 2 hours or longer, preferably 5 hours or longer when the acid catalyst aqueous solution is added all at once to the emulsion of the organosiloxane mixture for polymerization.
  • the resulting latex is polymerized at a high temperature of 50 ° C. It can also be held at the following temperature for about 5 to 100 hours.
  • the polymerization reaction of the organosiloxane mixture can be terminated by neutralizing the reaction system containing the latex to pH 6 to 8 with an alkaline substance such as sodium hydroxide, potassium hydroxide or an aqueous ammonia solution.
  • an alkaline substance such as sodium hydroxide, potassium hydroxide or an aqueous ammonia solution.
  • the emulsifier used in the above production method is not particularly limited as long as the organosiloxane mixture can be emulsified, but an anionic emulsifier or a nonionic emulsifier is preferable.
  • the anionic emulsifier include sodium alkylbenzene sulfonate, sodium alkyldiphenyl ether disulfonate, sodium alkyl sulfate, sodium polyoxyethylene alkyl sulfate, and sodium polyoxyethylene nonyl phenyl ether sulfate.
  • nonionic emulsifiers include the following.
  • Polyoxyethylene alkyl ether Polyoxyethylene alkyl ether, polyoxyethylene alkylene alkyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene tribenzyl phenyl ether, polyoxyethylene polyoxypropylene glycol and the like. These emulsifiers can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the emulsifier used is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the organosiloxane mixture.
  • the particle diameter of the polyorganosiloxane latex can be adjusted to a desired value. If the usage-amount of an emulsifier is 0.05 mass part or more, the emulsification stability of the emulsion of an organosiloxane mixture will be enough.
  • the amount of the emulsifier is 10 parts by mass or less, the amount of the emulsifier remaining in the powder of the graft copolymer can be sufficiently reduced, so that the heat decomposability and surface of the resin composition containing the graft copolymer and the resin can be reduced. Deterioration of appearance can be suppressed.
  • Examples of the acid catalyst used for polymerization of the organosiloxane mixture include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, and aliphatic substituted naphthalenesulfonic acid, and mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid. These acid catalysts can be used alone or in combination of two or more.
  • the use of mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid can narrow the particle size distribution of the polyorganosiloxane latex, and further, the thermal decomposition of the molded product due to the emulsifier component in the polyorganosiloxane latex. It is possible to achieve a reduction in property and a reduction in appearance defects.
  • the amount of the acid catalyst used is preferably 0.005 to 5 parts by mass with respect to 100 parts by mass of the organosiloxane.
  • the amount of the acid catalyst used is 0.005 parts by mass or more, the polyorganosiloxane can be polymerized in a short time.
  • the usage-amount of an acid catalyst is 5 mass parts or less, a molded article with favorable thermal decomposition resistance and an external appearance can be obtained.
  • the amount of the acid catalyst used is a factor that determines the particle size of the polyorganosiloxane
  • the amount of the acid catalyst used is 0.005 to 1.5 mass to obtain a polyorganosiloxane having a particle size described later. More preferably, it is a part.
  • the mass average particle diameter of the polyorganosiloxane in the latex is not particularly limited, but is preferably in the range of 250 to 1000 nm. By setting the mass average particle size of the polyorganosiloxane within the range of 250 to 1000 nm, the mass average particle size of the rubber (A) can be adjusted within the range of 300 to 2000 nm.
  • the “mass average particle diameter / number average particle diameter (Dw / Dn)” of the polyorganosiloxane in the latex is preferably in the range of 1.0 to 1.7.
  • Dw / Dn the number average particle diameter of the polyorganosiloxane in the latex
  • Dw and Dn values measured by the following method can be adopted.
  • the particle size is measured using a CHDF2000 particle size distribution meter manufactured by MATEC, USA. The median diameter is used as the average particle diameter.
  • the measurement can be performed under the following standard conditions recommended by MATEC.
  • Cartridge dedicated capillary cartridge for particle separation (trade name; C-202), Carrier liquid: dedicated carrier liquid (trade name: 2XGR500), Carrier liquid: almost neutral, Carrier liquid flow rate: 1.4 ml / min, Carrier liquid pressure: about 4,000 psi (2,600 kPa), Measurement temperature: 35 ° C Sample usage: 0.1 ml.
  • the standard particle size substance 12 types of particles having a particle size of 40 to 800 nm, which are monodisperse polystyrene with a known particle size manufactured by DUKE, USA, are used.
  • an emulsifier may be added as necessary for the purpose of improving mechanical stability.
  • the emulsifier the same anionic emulsifier and nonionic emulsifier as those exemplified above are preferable.
  • the vinyl polymer (A2) of the present invention is obtained by polymerizing a monofunctional vinyl monomer (a1) having a glass transition temperature of 0 ° C. or higher and a polyfunctional vinyl monomer (a2). And polymers that can be used.
  • the monofunctional vinyl monomer (a1) of the present invention requires that the homopolymer has a glass transition temperature of 0 ° C. or higher.
  • the glass transition temperature of the homopolymer for example, the value described in POLYMER HANDBOOK 4th Edition can be referred to.
  • the monofunctional vinyl monomer (a1) of the present invention include the following monomers.
  • Aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, vinyltoluene; Alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate; Alkyl acrylates such as methyl acrylate, i-butyl acrylate, t-butyl acrylate, hexadecyl acrylate; An alicyclic (meth) acrylate in which the ester group such as cyclohexyl (meth) acrylate and cyclododecyl (meth) acrylate is an alicyclic group; Phenyl (meth) acrylate, 4-t-butylphenyl (meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) acrylate, 2,4,6-tribromophenyl (
  • the first peak of tan ⁇ of the graft copolymer in the range of ⁇ 125 ° C. to ⁇ 90 ° C. and the second peak in the temperature range of ⁇ 80 ° C. to 0 ° C., styrene or the like
  • the aromatic vinyl monomer is preferably used.
  • the monomer (a1) is an alicyclic group in which the aromatic vinyl monomer and / or ester group is an alicyclic group. It is preferable to use an aryl (meth) acrylate in which the formula (meth) acrylate and / or the ester group is a phenyl group or a substituted phenyl group.
  • Multifunctional vinyl monomer (a2) examples include the following polyfunctional monomers. Allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene, dimethacrylic acid ethylene glycol diester, dimethacrylic acid propylene glycol diester, dimethacrylic acid 1,3-butylene glycol diester, dimethacrylic acid 1,4-butylene glycol diester 1,6-hexanediol diacrylate, triallyl trimellate, and the like. These can be used alone or in combination of two or more.
  • the content of the monofunctional vinyl monomer (a1) and the polyfunctional vinyl monomer (a2) in the vinyl polymer (A2) is determined by the low temperature impact strength when the graft copolymer is added to the resin.
  • the monofunctional vinyl monomer (a1) is 90 to 100% by mass and the polyfunctional vinyl monomer (a2) is 10 to 0% by mass with respect to 100% by mass of the vinyl polymer (A2).
  • the monofunctional vinyl monomer (a1) is 90 to 99.9% by mass
  • the polyfunctional vinyl monomer (a2) is 10 to 0.1% by mass
  • the monomer (a1) is 97 to 99.9% by mass
  • the polyfunctional vinyl monomer (a2) is 3 to 0.1% by mass.
  • a manufacturing method of a vinyl polymer (A2) there is no restriction
  • a manufacturing method of a vinyl polymer (A2) for example, although it can manufacture by an emulsion polymerization method, a suspension polymerization method, and a fine suspension polymerization method, it is preferable to use an emulsion polymerization method.
  • radical polymerization initiator used for the polymerization of the vinyl monomer (a2) an azo initiator, a peroxide, and a redox initiator combining a peroxide and a reducing agent are used. These can be used alone or in combination of two or more. Of these, azo initiators and redox initiators are preferred.
  • azo initiator examples include the following. 2,2'-azobisisobutyronitrile, dimethyl 2,2'-azobis (2-methylpropionate), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis Oil-soluble azo initiators such as (2-butyronitrile), 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis [N- (2-carboxymethyl) -2-methylpropionamidine] hydrate, 2,2′-azobis- (N , N′-dimethyleneisobutylamidine) dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • peroxides include the following.
  • Inorganic peroxides such as hydrogen peroxide, potassium persulfate, ammonium persulfate, Diisopropylbenzene hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, succinic acid peroxide, t-butylperoxyneodecanoate, t-butylperoxyneoheptanoate
  • Organic peroxides such as t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • a peroxide When a peroxide is combined with a reducing agent to form a redox initiator, the above peroxide, a reducing agent such as sodium formaldehyde sulfoxylate, L-ascorbic acid, fructose, dextrose, sorbose, inositol, and sulfuric acid It is preferable to use a combination of monoiron and ethylenediaminetetraacetic acid disodium salt. These reducing agents can be used individually by 1 type or in combination of 2 or more types.
  • the radical polymerization initiator used for the polymerization of the vinyl monomer (a2) preferably has a solubility in water at 20 ° C. of 5% by mass or less, more preferably 2% by mass or less. By polymerizing using this radical polymerization initiator, a graft copolymer having excellent low-temperature impact resistance can be obtained.
  • the solubility of the radical polymerization initiator in water at 20 ° C. can be known from catalogs of various radical polymerization initiators.
  • the amount of radical polymerization initiator used is preferably 0.01 to 1 part by mass with respect to 100 parts by mass in total of the monomers when an azo initiator is used.
  • the amount of peroxide used is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of monomers.
  • the reducing agent is preferably used in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of monomers.
  • the rubber (A) contains a polyorganosiloxane (A1) and a vinyl polymer (A2).
  • Examples of the rubber (A) include rubbers having the following structures (1) to (5). (1) A rubber having a multilayer structure in which a core of polyorganosiloxane (A1) is covered with a shell of a vinyl polymer (A2), (2) A rubber having a multilayer structure in which the core of the vinyl polymer (A2) is covered with a shell of the polyorganosiloxane (A1), (3) A composite rubber having a structure in which a polyorganosiloxane (A1) and a vinyl polymer (A2) intervene with each other.
  • the rubber having the structure (5) has a first peak of tan ⁇ of the polyorganosiloxane-containing graft copolymer in a temperature range of ⁇ 125 ° C. to ⁇ 90 ° C., and a second peak of ⁇ 80 ° C.
  • the content of the polyorganosiloxane (A1) and the vinyl polymer (A2) is 0.1 to 40% by mass of the polyorganosiloxane (A1) with respect to 100% by mass of the polyorganosiloxane-containing graft copolymer.
  • the vinyl polymer (A2) is preferably 41 to 99.9% by mass.
  • more preferable range is that the content of polyorganosiloxane (A1) is 10 to 29% by mass and the vinyl polymer (A2) is 41 to 85% by mass with respect to 100% by mass of the polyorganosiloxane-containing graft copolymer. is there.
  • the second peak of tan ⁇ can be further in the temperature range of ⁇ 80 ° C. to 0 ° C., and the low temperature impact strength and color developability when the graft copolymer is added to the resin. Suppression of changes in balance and color tone is further improved. Moreover, it is excellent also in a flame retardance.
  • the method for producing the rubber (A) is not particularly limited, and for example, it can be produced by an emulsion polymerization method, a suspension polymerization method, or a fine suspension polymerization method, but an emulsion polymerization method is preferably used.
  • gum (A) is the structure of (5) mentioned above.
  • a method for obtaining a rubber having the structure (5) a monofunctional vinyl monomer (a1) having a glass transition temperature of 0 ° C. or higher and a polyfunctional vinyl monomer in the presence of a polyorganosiloxane rubber.
  • a method of polymerizing the monomer (a2) can be mentioned.
  • a monofunctional vinyl monomer (a1) and a polyfunctional vinyl monomer (a2) having a glass transition temperature of 0 ° C. or higher in a polyorganosiloxane rubber latex are added.
  • polymerization is performed using a known radical polymerization initiator.
  • the monofunctional vinyl monomer (a1) and the polyfunctional vinyl monomer (a2) can be added by adding the whole amount to the polyorganosiloxane latex at once or by dividing. And the method of dripping and adding at a fixed speed is mentioned.
  • an emulsifier can be added to stabilize the latex and control the particle diameter of rubber (A).
  • the emulsifier include the same emulsifiers as those used in the production of the polyorganosiloxane latex, and anionic emulsifiers and nonionic emulsifiers are preferable.
  • the mass average particle diameter (Dw) of the rubber (A) is not particularly limited, but the lower limit is preferably 50 nm or more, more preferably 100 nm or more, still more preferably 200 nm or more, and further preferably 300 nm or more. And particularly preferably 400 nm or more.
  • the upper limit of the mass average particle diameter (Dw) of the rubber (A) is preferably 2000 nm or less, and more preferably 1000 nm or less. If the mass average particle diameter of the rubber (A) is 50 nm or more, the domain size of the vinyl polymer (A2) becomes large in the structure of the polyorganosiloxane (A1) being the sea and the vinyl polymer (A2) being the island.
  • the tan ⁇ peak of the polyorganosiloxane-containing graft copolymer is set to a temperature range (first peak) of ⁇ 125 ° C. to ⁇ 90 ° C., and ⁇ This is preferable because it can be in a temperature range (second peak) of 80 ° C. to 0 ° C.
  • a mass average particle diameter of 2000 nm or less is preferable because the surface appearance and low-temperature impact resistance of the molded product are improved.
  • Vinyl monomer (b) It is possible to obtain a polyorganosiloxane-containing graft copolymer by polymerizing the vinyl monomer (b) in the presence of the rubber (A) and forming a graft portion made of a vinyl polymer on the rubber (A). it can.
  • Examples of the vinyl monomer (b) include the following. Aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, vinyltoluene; alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate; ethyl acrylate, n-butyl acrylate, methyl acrylate, etc.
  • Alkyl acrylates Alkyl acrylates; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; phenyl (meth) acrylate, 4-t-butylphenyl (meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) acrylate, 2, Estes such as 4,6-tribromophenyl (meth) acrylate, monochlorophenyl (meth) acrylate, dichlorophenyl (meth) acrylate, and trichlorophenyl (meth) acrylate
  • Aryl (meth) acrylate group is a phenyl group or substituted phenyl group.
  • aromatic vinyl monomers alkyl (meth) acrylates, vinyl cyanide monomers, and aryl (meth) acrylates whose ester groups are phenyl groups or substituted phenyl groups are compatible with resins and resin compositions. From the viewpoint of color development of the product.
  • vinyl monomers (b) can be used alone or in combination of two or more.
  • the vinyl monomer (b) may contain a crosslinkable monomer.
  • the amount of the crosslinkable monomer used in 100% by mass of the vinyl monomer (b) is 0.005 mass. % Or less is preferable.
  • the content of the rubber (A) in the graft copolymer is preferably 10.0 to 99.9% by mass with respect to 100% by mass of the graft copolymer. If the rubber (A) content is 10.0% by mass or more, the low-temperature impact strength of the resin composition will be sufficient, and if it is 99.9% by mass or less, the surface appearance of the molded product will be good. From the viewpoint of improving the low temperature impact strength of the resin composition, the content of the rubber (A) is more preferably 50.0 to 99.9% by mass with respect to 100% by mass of the graft copolymer. More preferably, it is 81.0 to 99.9% by mass.
  • Examples of the graft copolymerization method include a method in which the vinyl monomer (b) is added to the latex of the rubber (A) and polymerized in one or more stages. When polymerizing in multiple stages, it is preferable to divide the total amount of vinyl monomer (b) used in the presence of the latex of rubber (A) and add them sequentially or continuously for polymerization. Such a polymerization method has good polymerization stability and can stably obtain a latex having a desired particle size and particle size distribution.
  • an emulsifier can be added as necessary.
  • the emulsifier used for the polymerization of the graft portion include the same emulsifiers as those described above when the rubber (A) is produced, and anionic emulsifiers and nonionic emulsifiers are preferable.
  • a spray drying method or a coagulation method can be used.
  • the spray drying method is a method in which the latex of the graft copolymer is sprayed in the form of fine droplets in a dryer and dried by applying a heating gas for drying.
  • Examples of the method for generating fine droplets include a rotating disk type, a pressure nozzle type, a two-fluid nozzle type, and a pressurized two-fluid nozzle type.
  • the capacity of the dryer may be a small capacity as used in a laboratory or a large capacity as used industrially.
  • the temperature of the heating gas for drying is preferably 200 ° C. or less, and more preferably 120 to 180 ° C. Two or more types of graft copolymer latices produced separately may be spray dried together.
  • an optional component such as silica can be added to the latex of the graft copolymer and spray dried.
  • the coagulation method is a method of coagulating the latex of the graft copolymer, separating the graft copolymer, collecting it, and drying it.
  • a graft copolymer latex is introduced into hot water in which a coagulant is dissolved, salted out, and solidified to separate the graft copolymer.
  • the graft copolymer in which the moisture content is reduced by dehydration or the like is recovered from the separated wet graft copolymer.
  • the recovered graft copolymer is dried using a press dehydrator or a hot air dryer.
  • the coagulant examples include inorganic salts such as aluminum chloride, aluminum sulfate, sodium sulfate, magnesium sulfate, sodium nitrate, and calcium acetate, and acids such as sulfuric acid, and calcium acetate is particularly preferable.
  • inorganic salts such as aluminum chloride, aluminum sulfate, sodium sulfate, magnesium sulfate, sodium nitrate, and calcium acetate
  • acids such as sulfuric acid, and calcium acetate is particularly preferable.
  • These coagulants can be used singly or in combination of two or more, but when two or more are used, it is necessary to select a combination that does not form a water-insoluble salt.
  • the combined use of calcium acetate and sulfuric acid or a sodium salt thereof is not preferable because a calcium salt insoluble in water is formed.
  • the above-mentioned coagulant is usually used as an aqueous solution.
  • the concentration of the aqueous solution of the coagulant is preferably 0.1% by mass or more, particularly 1% by mass or more from the viewpoint of stably coagulating and recovering the graft copolymer. Further, from the viewpoint of reducing the amount of the coagulant remaining in the recovered graft copolymer and preventing the deterioration of the molding appearance of the molded product, the concentration of the coagulant aqueous solution is 20% by mass or less, particularly 15% by mass. The following is preferable.
  • the amount of the coagulant aqueous solution is not particularly limited, but is preferably 10 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the latex.
  • the method of bringing the latex into contact with the coagulant aqueous solution is not particularly limited, but the following methods are usually mentioned.
  • (1) A method in which a latex is continuously added to the coagulant aqueous solution while stirring the coagulant aqueous solution and maintained for a certain period of time.
  • the temperature at which the latex is brought into contact with the coagulant aqueous solution is not particularly limited, but is preferably 30 ° C. or higher and 100 ° C. or lower.
  • the contact time is not particularly limited.
  • the agglomerated graft copolymer is washed with about 1 to 100 times by weight of water, and the wet graft copolymer separated by filtration is dried using a fluidized dryer or a pressure dehydrator.
  • the drying temperature and drying time may be appropriately determined depending on the obtained graft copolymer.
  • the graft copolymer may be directly sent to an extruder or a molding machine for producing the resin composition, and mixed with a thermoplastic resin to obtain a molded body. Is possible.
  • the graft copolymer is preferably recovered using a coagulation method from the viewpoint of the thermal decomposition resistance of a resin composition obtained by mixing with a thermoplastic resin.
  • the second embodiment of the present invention has a dispersed phase (A phase) and a continuous phase (B phase).
  • the elastic modulus in the A phase is It is a graft copolymer having a modulus of 0.4 GPa or more, an elastic modulus in the B phase of 0.2 GPa or less, and a diameter of the A phase measured in “Measurement Condition 4” of 50 nm or more.
  • the graft copolymer of this form may be referred to as “graft copolymer (G1)”. It does not prevent the combination and the second form of the graft copolymer (G1) from being the same.
  • a histogram of the elastic modulus of a rectangular region inscribed in the particle is obtained, and the peak top of the Gaussian curve of the histogram is defined as the elastic modulus of the B phase, and the particle has an elastic modulus of 0.20 GPa or more.
  • a histogram of the elastic modulus is also acquired in a region having a size of 50 nm square or more included in the region having the elastic modulus, and the peak top of the Gaussian curve of the histogram is set as the elastic modulus of the A phase.
  • FIG. 1 is an example (A) of an elastic modulus image obtained by a scanning probe microscope obtained under measurement condition 3 and a schematic diagram (B) thereof.
  • a plurality of graft copolymer particles 1 can be confirmed within a scanning range of 1 ⁇ m square, and a dispersed phase 2 surrounded by a continuous phase 3 can be seen in the particles 1.
  • 4 is a cured layer of an epoxy resin when a sample is produced.
  • FIG. 2 shows an example of a histogram of the elastic modulus in a region having a size of 50 nm square or more, which is included in a region having an elastic modulus of 0.20 GPa or more in the particle.
  • the solid line indicates a Gaussian curve in the histogram, and the peak top is the elastic modulus of the dispersed phase (A phase).
  • Measurement condition 4" The resin piece obtained under the measurement condition 3 was surfaced and trimmed at room temperature using a diamond knife with the ultramicrotome, and a slice was cut out under the condition of a thin piece thickness of 50 nm and collected on a grid with a support film. This is used as sample 2.
  • Sample 2 is placed in a transmission electron microscope (“trade name“ H-7600 ”, manufactured by Hitachi, Ltd.), and a particle image is obtained under the conditions of an acceleration voltage of 80 kV and a magnification of 200,000 times.
  • the image analysis software (trade name “Image-Pro (registered trademark) Plus”, manufactured by Nippon Roper Co., Ltd.) for the acquired particle image, flattening the uneven brightness of the background, removing noise, enhancing the edge, Perform binarization. Phases that looked bright contrast in the acquired particle image are extracted by binarization, and 10 points are selected from the phases having a large diameter that can be visually recognized in one particle image, and the average diameter is obtained. Furthermore, an average value is calculated
  • the graft copolymer (G1) includes a phase (A phase) having an elastic modulus of 0.4 GPa or more and a phase (B phase) having an elastic modulus of 0.2 GPa or less.
  • the phase structure is a structure in which the A phase is a dispersed phase and the B phase is a continuous phase, and the size (average diameter) of the A phase of the graft copolymer (G1) is 50 nm or more, more preferably 60 nm. That's it. Since the elastic modulus of the graft copolymer (G1) can be lowered when the A phase is a dispersed phase and the B phase is a continuous phase, it has excellent resistance to resistance when used as an impact strength modifier. Shows impact properties.
  • the size of the A phase is 50 nm or more, preferably 60 nm or more. If the size of the A phase is 50 nm or more, cavitation is likely to occur, and if it is 60 nm or more, it is more likely to occur, so that excellent impact resistance characteristics are exhibited when used as an impact strength modifier.
  • ⁇ A phase> It is preferable that two or more A phases are contained in one particle of the graft copolymer (G1). When two or more are included, the size of the A phase does not become unnecessarily large, and the elastic modulus of the graft copolymer (G1) can be further reduced, so that it is more excellent when used as an impact strength modifier. Show impact resistance.
  • the A phase is preferably a phase containing an aromatic vinyl polymer.
  • a phase containing an aromatic vinyl polymer is preferable because it has a high modulus of elasticity, and when used as an impact strength modifier, it tends to be a starting point for cavitation and exhibits excellent impact resistance.
  • Aromatic vinyl polymers are preferred because of their high refractive index and excellent color development when used as impact strength modifiers.
  • Aromatic vinyl polymers include styrene and various substituted styrenes such as p-methyl styrene, m-methyl styrene, o-methyl styrene, ot-butyl styrene, mt-butyl styrene, pt-butyl. Examples thereof include homopolymers or copolymers of styrene, p-chlorostyrene, o-chlorostyrene, ⁇ -methylstyrene, vinyltoluene and the like.
  • the phase containing the aromatic vinyl polymer (A phase) includes alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate; ethyl acrylate, n-butyl acrylate Alkyl acrylates such as methyl acrylate; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; phenyl (meth) acrylate, 4-t-butylphenyl (meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) ), Acrylate, 2,4,6-tribromophenyl (meth) acrylate, monochlorophenyl (meth) acrylate, dichlorophenyl (meth) acrylate, trichlorophenyl (meth) acrylate, etc.
  • Group may include homopolyl methacrylates
  • the B phase is preferably a phase containing polyorganosiloxane.
  • the phase containing polyorganosiloxane has a low elastic modulus and a Poisson's ratio close to 0.5, so it is easily deformed when added to a thermoplastic resin, thereby exhibiting excellent impact resistance. Preferred as a strength modifier.
  • the phase containing polyorganosiloxane includes alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate and i-butyl methacrylate; alkyl acrylates such as ethyl acrylate, n-butyl acrylate and methyl acrylate; Vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; phenyl (meth) acrylate, 4-t-butylphenyl (meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) acrylate, 2,4,6 -Esthetics such as tribromophenyl (meth) acrylate, monochlorophenyl (meth) acrylate, dichlorophenyl (meth) acrylate, trichlorophenyl (meth) acrylate
  • the polyorganosiloxane in the phase containing polyorganosiloxane is a polymer containing, as a constituent unit, an organosiloxane unit in which at least one organic group is bonded to a silicon atom, as in (A1) described above.
  • the siloxane grafting agent and siloxane crosslinking agent described above can be used as necessary.
  • a manufacturing method of a graft copolymer (G1) For example, although it can manufacture by an emulsion polymerization method, suspension polymerization method, and a fine suspension polymerization method, it is preferable to use an emulsion polymerization method.
  • the production method include a method of polymerizing a monomer mixture containing an aromatic vinyl monomer in the presence of a polyorganosiloxane rubber. Specifically, first, a monomer mixture containing an aromatic vinyl monomer is added to the latex of the polyorganosiloxane rubber, impregnated in the polyorganosiloxane, and then a known radical polymerization initiator is used. To polymerize. In this method, the monomer mixture containing the aromatic vinyl monomer can be added to the polyorganosiloxane latex all at once, or dividedly added dropwise at a constant rate. The method of doing is mentioned.
  • the mass average particle diameter (Dw) of the graft copolymer (G1) is not particularly limited, but is preferably 300 to 2000 nm, more preferably 300 to 1000 nm, still more preferably 350 to 1000 nm, Preferably, it is 400 to 800 nm. If the mass average particle diameter is 300 nm or more, the low-temperature impact strength and color developability are excellent, and if it is 2000 nm or less, the surface appearance and low-temperature impact resistance of the molded article are preferable.
  • the powder of the graft copolymer (G1) is recovered from the latex of the graft copolymer (G1), either the spray drying method or the coagulation method can be used as described above. From the viewpoint of the heat decomposability of the resin composition obtained by mixing with a thermoplastic resin, it is preferable to recover using a coagulation method.
  • the “graft copolymer” used in the thermoplastic resin composition of the present invention includes the polyorganosiloxane-containing graft copolymer described in the first embodiment and the graft copolymer (G1) described in the second embodiment. Any of these may be used, and it can be mixed with a thermoplastic resin and used as a thermoplastic resin composition.
  • the polyorganosiloxane-containing graft copolymer described in the first embodiment and the graft copolymer (G1) described in the second embodiment may be simply referred to as “graft copolymer”.
  • thermoplastic resin that can be used in the present invention is not particularly limited, and examples thereof include one or more resins selected from thermoplastic resins and thermoplastic elastomers.
  • thermoplastic resin examples include the following. Olefin resins such as polypropylene (PP) and polyethylene (PE); polystyrene (PS), high impact polystyrene (HIPS), (meth) acrylate / styrene copolymer (MS), styrene / acrylonitrile copolymer (SAN), Styrene / maleic anhydride copolymer (SMA), acrylonitrile / butadiene / styrene copolymer (ABS), acrylic ester / styrene / acrylonitrile copolymer (ASA), acrylonitrile / ethylene / propylene rubber / styrene copolymer (ASA) Styrene (St) resin such as AES); Acrylic (Ac) resin such as polymethyl methacrylate (PMMA); Polycarbonate (PC) resin; Polyamide (PA) resin; Polyethylene tertyrene (PS), polyethylene
  • thermoplastic elastomer examples include the following. Styrene elastomer, olefin elastomer, vinyl chloride elastomer, urethane elastomer, polyester elastomer, polyamide elastomer, fluorine elastomer, 1,2-polybutadiene, trans 1,4-polyisoprene, etc. Among these, urethane elastomers, polyester elastomers, and polyamide elastomers are preferable.
  • thermoplastic resins the following are preferable.
  • St resin PC resin, PA resin, PET resin, PBT resin, (m-) PPE resin, POM resin, PU resin, alloy of PC resin such as PC / ABS and St resin, PA such as PA / ABS Alloy of resin and St resin, alloy of PA resin and TPE, alloy of PA resin such as PA / PP and polyolefin resin, alloy of PC resin such as PC / PBT and PEs resin, PPE / PBT, Alloys of PPE resin such as PPE / PA and other resins.
  • polycarbonate resins are more preferable, and aromatic polycarbonate resins are particularly preferable from the viewpoint of maximizing the effect of improving pigment colorability.
  • the aromatic polycarbonate resin is an optionally branched thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic hydroxy compound or a small amount thereof with a diester of phosgene or carbonic acid.
  • the production method of the aromatic polycarbonate resin is not particularly limited, and a known method, that is, a phosgene method (interfacial polymerization method), a melting method (transesterification method) or the like is employed.
  • a phosgene method interfacial polymerization method
  • a melting method transesterification method
  • an aromatic polycarbonate resin produced by a melting method and having an adjusted terminal OH group amount can also be used.
  • aromatic polycarbonate resin examples include the following. Iupilon (registered trademark) S-1000, S-2000, S-3000, H-3000 or H-4000 (manufactured by Mitsubishi Engineering Plastics), or Panlite (registered trademark) L1250, L1225, or K1300 (Teijin Chemicals Ltd.) Etc.).
  • the content of the graft copolymer in the total 100% by mass of the thermoplastic resin and the graft copolymer is preferably 0.5 to 50% by mass, more preferably 1 to 20% by mass. If the content of the graft copolymer is 0.5% by mass or more, a resin composition excellent in impact resistance can be obtained, and if it is 50% by mass or less, a resin composition excellent in surface appearance is obtained. be able to.
  • thermoplastic resin composition can contain various additives as long as it does not depart from the object of the present invention.
  • Additives include, for example, stabilizers such as phenol-based stabilizers, phosphorus-based stabilizers, ultraviolet absorbers, and amine-based light stabilizers; flame-retardant agents such as phosphorus-based, bromine-based, silicone-based, and organometallic salt-based materials; Examples include modifiers for imparting various physical properties such as hydrolyzability; fillers such as titanium oxide and talc; dyes and pigments; and plasticizers.
  • thermoplastic resin is an aromatic polycarbonate resin
  • the following can be used as additives, for example.
  • Flameproofing agent for example, fluorinated polyolefin, silicone and aramid fiber
  • lubricant for example, fluorinated polyolefin, silicone and aramid fiber
  • mold release agent for example, pentaerythritol tetrastearate
  • nucleating agent for example, antistatic agent, stabilizer, filler
  • Reinforcing agents eg, glass fibers, carbon fibers, mica, kaolin, talc, CaCO 3 and glass flakes
  • dyes and pigments include inorganic oxides such as iron oxide, ultramarine blue, titanium oxide, and carbon black.
  • organic pigments examples include phthalocyanine and anthraquinone blue pigments, perylene and quinacridone red pigments, and isoindolinone yellow pigments.
  • special pigments include fluorescent pigments, metal powder pigments, and pearl pigments.
  • dyes include those of nigrosine, perinone, and anthraquinone, and various grades corresponding to the required color are commercially available, and these can be used. These can be used alone or in combination of two or more.
  • the method for preparing the thermoplastic resin composition of the present invention is not particularly limited, but the graft copolymer, the thermoplastic resin, and various additives used as necessary are mixed by a V-type blender or a Henschel mixer.
  • the mixture can be dispersed and melt-kneaded using an extruder or a Banbury mixer, a pressure kneader, a kneader such as a roll, or the like. These components can be mixed batchwise or continuously, and the mixing order of the components is not particularly limited.
  • the melt-kneaded product can be made into pellets and used for various moldings.
  • the molded body according to the present invention is formed by molding the above thermoplastic resin composition.
  • the molding method of the thermoplastic resin composition include a method of molding a thermoplastic resin composition or a mixture of the graft copolymer powder and the thermoplastic resin with an injection molding machine.
  • the use of the molded body is not particularly limited, and can be widely used industrially as a material in the automotive field, OA equipment field, electric / electronic field and the like.
  • Examples of resins that can be expected to have excellent effects when the polyorganosiloxane-containing graft copolymer of the present invention and the graft copolymer (G1) are added include crystalline resins such as PBT, PPS, and POM. Since these resins are crystalline, they are excellent in heat resistance and rigidity, but lack toughness.
  • the polyorganosiloxane-containing graft copolymer of the present invention and the graft copolymer (G1) are added in an amount of 5 to 40% by mass for the purpose of imparting toughness, the resin is excellent in color development, impact strength, and tensile elongation. A composition is obtained.
  • the above-described alloy resin with PC is also included.
  • the PC / AS alloy is used to improve the fluidity of the PC or when the alloy such as PC / PEs is used to improve the chemical resistance of the PC, the impact resistance is reduced.
  • the organosiloxane-containing graft copolymer and the graft copolymer (G1) are added in an amount of 3 to 20% by mass, a resin composition excellent in color developability and impact strength can be obtained.
  • the polyorganosiloxane-containing graft copolymer and graft copolymer (G1) of the present invention are excellent in heat aging resistance, moist heat resistance, and weather resistance, the resulting resin composition also has heat aging resistance, moist heat resistance, weather resistance. Excellent in properties.
  • Examples 1 to 3 of polyorganosiloxane latex Prior to the examples, various evaluation methods and production examples 1 to 3 of polyorganosiloxane latex will be described.
  • Examples 1 to 3, 13 and Comparative Examples 1, 2, and 10 are examples relating to the production and evaluation of graft copolymers.
  • Examples 4 to 12, 14 and Comparative Examples 3 to 9 and 11 are thermoplastic resins. It is an example regarding manufacture and evaluation of a composition.
  • “parts” and “%” mean “parts by mass” and “% by mass” unless otherwise specified.
  • Mass average particle diameter (Dw) Using the “rubber latex” or “graft copolymer latex” diluted with deionized water to a solid concentration of about 3% as a sample, using the above-mentioned CHDF2000 particle size distribution meter manufactured by MATEC, the above-mentioned conditions were satisfied. Using, the particle diameter is measured, and the mass average particle diameter Dw is measured.
  • the total light transmittance when measuring a test piece (length 100 mm, width 50 mm, thickness 2 mm) obtained by injection molding is 50% or more, and the color developability when a pigment or the like is added is very high. Since it becomes high, it is preferable.
  • a test piece (length 100 mm, width 50 mm, thickness 2 mm) is heat-treated in an oven at a temperature of 120 ° C. for 1000 hours. After taking out the test piece from the oven and leaving it in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% for 12 hours or more, the measurement is performed according to JIS Z 8729 (L * a * b * color display system for object color). In accordance with Z 8722, using Nippon Denshoku Industries Co., Ltd.
  • a test piece (length 100 mm, width 50 mm, thickness 2 mm) is subjected to wet heat treatment for 1000 hours in a constant temperature and humidity machine at 85 ° C. and 85% humidity. After removing the test piece from the thermo-hygrostat and leaving it in an atmosphere at a temperature of 23 ° C.
  • JIS Z 8729 display method of object color by L * a * b * color system
  • the measurement is based on JIS Z 8722, using SE-4000 manufactured by Nippon Denshoku Industries Co., Ltd., measuring the object color before and after the heat treatment according to the above-mentioned “Measurement Condition 5”, and changing the color tone ⁇ E : (( ⁇ L *) 2+ ( ⁇ a *) 2+ ( ⁇ b *) 2) 1/2> is obtained.
  • a test piece (length 100 mm, width 50 mm, thickness 2 mm) is subjected to a sunshine weather meter with a black panel temperature of 63 ° C. and rain (Suga Test Instruments, model: WEL-SUN-HCH-B type) For 500 hours. Take out the test piece from the sunshine weather meter, leave it for 12 hours or more in an atmosphere with a temperature of 23 ° C and a relative humidity of 50%, and then measure according to JIS Z 8729 (display method of object color by L * a * b * color system) In accordance with JIS Z 8722, using Nippon Denshoku Industries Co., Ltd.
  • Measurement condition 25 Apparatus: spectroscopic color difference meter SE-4000 (manufactured by Nippon Denshoku Industries Co., Ltd., 0-45 ° spectroscopic system), Measurement range: 380 to 780 nm, Measurement light source: C light (2 ° field of view)
  • the emulsion is then placed in a separable flask having a capacity of 5 liters equipped with a cooling condenser, the emulsion is heated to a temperature of 80 ° C., and then a mixture of 0.20 parts of sulfuric acid and 49.8 parts of distilled water. Was continuously charged over 3 minutes.
  • the polymerization reaction was carried out while maintaining the state heated to 80 ° C. for 7 hours, followed by cooling to 25 ° C., and the resulting reaction product was held at 25 ° C. for 6 hours. Thereafter, a 5% aqueous sodium hydroxide solution was added to neutralize the reaction solution to pH 7.0 to obtain a polyorganosiloxane latex (AS-1).
  • the solid content of the polyorganosiloxane latex (AS-1) was 29.8%.
  • the latex had a number average particle size (Dn) of 384 nm, a mass average particle size (Dw) of 403 nm, and Dw / Dn of 1.05 as measured by a capillary particle size distribution meter.
  • a polyorganosiloxane latex (AS-2) was obtained in the same manner as in Production Example 1, except that tetraethoxysilane (TEOS) was changed from 2 parts to 0.5 parts.
  • TEOS tetraethoxysilane
  • the solid content of the polyorganosiloxane latex (AS-2) was 29.2%.
  • the latex had a number average particle diameter (Dn) of 399 nm, a mass average particle diameter (Dw) of 407 nm, and Dw / Dn of 1.02.
  • the emulsion was then placed in a 5 liter separable flask equipped with a cooling condenser, and the emulsion was heated to a temperature of 80 ° C., then 0.67 parts of dodecylbenzenesulfonic acid and 20 parts of deionized water. The mixture was continuously charged over 2 hours. Then, after maintaining the state heated to 80 degreeC for 4 hours and making it superpose
  • AS-3 polyorganosiloxane latex
  • the latex had a solid content of 27.3%, a mass average particle diameter (Dw) of 214 nm, a number average particle diameter (Dn) of 142 nm, and a Dw / Dn of 1.51 as measured by a capillary particle size distribution meter.
  • Example 1 67.11 parts of polyorganosiloxane latex (AS-1) obtained in Production Example 1 (20.0 parts in terms of polymer) is collected in a separable flask having a volume of 5 liters, and 160 parts of deionized water is added and mixed. did. Next, in this separable flask, a mixture of 17.25 parts of styrene (St), 0.44 parts of allyl methacrylate (AMA) and 0.07 parts of cumene hydroperoxide (CHP) (1/4 of the mixture used for rubber polymerization). The mixture was stirred at 25 ° C. for 1 hour and impregnated with polyorganosiloxane.
  • St styrene
  • AMA allyl methacrylate
  • CHP cumene hydroperoxide
  • the nitrogen atmosphere in the flask was replaced by passing a nitrogen stream through the separable flask, and the liquid temperature was raised to 70 ° C.
  • the liquid temperature reached 70 ° C, 0.001 part of ferrous sulfate (Fe), 0.003 part of ethylenediaminetetraacetic acid disodium salt (EDTA) and 0.24 part of sodium formaldehyde sulfoxylate (SFS) were removed.
  • An aqueous solution dissolved in 10 parts of ionic water was added to initiate radical polymerization.
  • a liquid mixture of 9.5 parts of methyl methacrylate (MMA), 0.5 part of butyl acrylate (BA) and 0.05 part of t-butyl hydroperoxide (t-BH) at a liquid temperature of 70 ° C. was dropped into the latex over 1 hour to initiate and continue the graft polymerization reaction. After completion of the dropping, the temperature was maintained at 70 ° C. for 1 hour and then cooled to 25 ° C. to obtain a latex of the polyorganosiloxane-containing graft copolymer (G-1).
  • MMA methyl methacrylate
  • BA butyl acrylate
  • t-BH t-butyl hydroperoxide
  • Example 2 and 3 Comparative Examples 1 and 2
  • a polyorganosiloxane-containing graft copolymer (G-2, G-3, and G) was prepared in the same manner as in Example 1 except that the type and amount of each raw material used in Example 1 were changed to the conditions shown in Table 1. G′-1 to 2) were produced, and a graft copolymer powder was obtained.
  • Table 1 shows the polymerization rate and the mass average particle diameter of each of the obtained graft copolymers.
  • Table 1 also shows the tan ⁇ peak temperature measured under measurement condition 1.
  • the numerical value in the parenthesis of the column of the monofunctional vinyl monomer (a1) and the polyfunctional vinyl monomer (a2) in Table 1 is the composition ratio (mass to 100% by mass of the vinyl polymer (A2). %).
  • Table 1 also shows the refractive index calculated from the composition and the refractive index measured by an Abbe refractometer.
  • PC Mitsubishi Engineering Plastics Co., Ltd., trade name: Iupilon S-2000F, viscosity average molecular weight 24,000
  • the obtained pellets were dried at 70 ° C. for 12 hours and then supplied to a 100-ton injection molding machine (trade name: SE-100DU manufactured by Sumitomo Heavy Industries, Ltd.) for injection molding at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C.
  • a 100-ton injection molding machine (trade name: SE-100DU manufactured by Sumitomo Heavy Industries, Ltd.) for injection molding at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C.
  • Each “test piece 1” length 80 mm, width 10 mm, thickness 4 mm, with V notch
  • each “test piece 2” length 100 mm, width 50 mm, thickness 2 mm
  • Charpy impact strength, total light transmittance (color development), heat aging resistance, moist heat resistance, and weather resistance were measured using each test piece. The evaluation results are shown in Table 2.
  • Examples 4 to 6 including a polyorganosiloxane-containing copolymer having a tan ⁇ peak temperature in the range of ⁇ 125 ° C. to ⁇ 90 ° C. were excellent in the balance between low-temperature impact strength and total light transmittance.
  • the heat aging resistance, moist heat resistance, and weather resistance were excellent in a balanced manner as compared with Comparative Examples 3 and 4.
  • the obtained pellets were dried at 70 ° C. for 12 hours and then supplied to a 100-ton injection molding machine (trade name: SE-100DU manufactured by Sumitomo Heavy Industries, Ltd.) for injection molding at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C.
  • a 100-ton injection molding machine (trade name: SE-100DU manufactured by Sumitomo Heavy Industries, Ltd.) for injection molding at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C.
  • To obtain “Test piece 2” length 100 mm, width 50 mm, thickness 2 mm).
  • jetness was evaluated. The evaluation results are shown in Table 3. Examples 7 to 8 were superior in jetness compared to Comparative Example 6.
  • test piece 1 length 80 mm, width 10 mm, thickness 4 mm, with V notch
  • test piece 2 length 100 mm, width 50 mm, thickness 2 mm
  • test piece 3 length 127 mm, width 12.7 mm, thickness 1.6 mm.
  • Examples 10 to 12 were superior to Comparative Examples 7 to 9 in the balance of Charpy impact strength at low temperatures, total light transmittance, and flame retardancy.
  • Example 13 67.11 parts of polyorganosiloxane latex (AS-1) obtained in Production Example 1 (20.0 parts in terms of polymer) is collected in a separable flask having a volume of 5 liters, and 160 parts of deionized water is added and mixed. did. Next, in this separable flask, 12.25 parts of styrene (St), 5.00 parts of n-butyl acrylate (BA), 0.44 parts of allyl methacrylate (AMA), 0.07 parts of cumene hydroperoxide (CHP) (1/4 amount of the mixture used for rubber polymerization) was added, and stirring was continued at 25 ° C. for 1 hour to impregnate the polyorganosiloxane.
  • St styrene
  • BA n-butyl acrylate
  • AMA allyl methacrylate
  • CHP cumene hydroperoxide
  • the nitrogen atmosphere in the flask was replaced by passing a nitrogen stream through the separable flask, and the liquid temperature was raised to 70 ° C.
  • the liquid temperature reached 70 ° C, 0.001 part of ferrous sulfate (Fe), 0.003 part of ethylenediaminetetraacetic acid disodium salt (EDTA) and 0.24 part of sodium formaldehyde sulfoxylate (SFS) were removed.
  • An aqueous solution dissolved in 10 parts of ionic water was added to initiate radical polymerization.
  • the state at 70 ° C. was maintained for 1 hour after the completion of the dropping, and a rubber latex containing polyorganosiloxane and styrene was obtained.
  • a liquid mixture of 9.5 parts of methyl methacrylate (MMA), 0.5 part of butyl acrylate (BA) and 0.05 part of t-butyl hydroperoxide (t-BH) at a liquid temperature of 70 ° C. was dropped into the latex over 1 hour to initiate and continue the graft polymerization reaction. After completion of the dropping, the temperature was maintained at 70 ° C. for 1 hour and then cooled to 25 ° C. to obtain a latex of the polyorganosiloxane-containing graft copolymer (G-4).
  • the liquid temperature of the latex is lowered to 25 ° C., a mixture of 41 parts of n-butyl acrylate (BA) and 2 parts of triallyl cyanurate (TAC) is added, and stirring is continued at 25 ° C. for 1 hour.
  • the monomer mixture was impregnated with polyorganosiloxane.
  • the liquid temperature of this latex was raised to 75 ° C., and when the liquid temperature reached 75 ° C., an aqueous solution in which 0.09 part of KPS was dissolved in 5 parts of deionized water was added to initiate radical polymerization. In order to complete the polymerization of the monomer components, the temperature was maintained at 75 ° C. for 2 hours from the time when KPS was added to obtain a rubber latex containing polyorganosiloxane and styrene.
  • a histogram of the elastic modulus of a rectangular region inscribed in the particle is obtained, and the peak top of the Gaussian curve of the histogram is defined as the elastic modulus of the B phase, and the particle has an elastic modulus of 0.20 GPa or more.
  • a histogram of the elastic modulus is also acquired in a region having a size of 50 nm square or more included in the region having the elastic modulus, and the peak top of the Gaussian curve of the histogram is set as the elastic modulus of the A phase.
  • Example 14 comparative example 11
  • Powder of each graft copolymer (G-4), (G′-3), and polycarbonate resin (Mitsubishi Engineering Plastics Co., Ltd., trade name: Iupilon S-2000F, viscosity average molecular weight 24,000) Were blended at the ratios shown in Table 7 and mixed.
  • the obtained pellets were dried at 70 ° C. for 12 hours and then supplied to a 100-ton injection molding machine (trade name: SE-100DU manufactured by Sumitomo Heavy Industries, Ltd.) for injection molding at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C.
  • a 100-ton injection molding machine (trade name: SE-100DU manufactured by Sumitomo Heavy Industries, Ltd.) for injection molding at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C.
  • Each “test piece 1” length 80 mm, width 10 mm, thickness 4 mm, with V notch
  • each “test piece 2” length 100 mm, width 50 mm, thickness 2 mm
  • Charpy impact strength and total light transmittance were measured using each test piece.
  • Table 7 shows the evaluation results.
  • Example 6 using the graft copolymer G-3 included in the first aspect of the invention Comparative Example 3 using the graft copolymer G′-1, and
  • the resin composition containing the graft copolymer having a thickness of 50 nm or more was excellent in the balance between the Charpy impact strength at low temperature and the total light transmittance (coloring property).
  • the polyorganosiloxane-containing graft copolymer and graft copolymer (G1) of the present invention can be added to a thermoplastic resin as an impact strength modifier to provide a heat excellent in balance between color development and low temperature impact resistance.
  • a plastic resin composition and a molded body can be provided.
  • the obtained molded body can be widely used industrially as a material in the automotive field, OA equipment field, electric / electronic field and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)

Abstract

発色性と低温耐衝撃性のバランスに優れた熱可塑性樹脂組成物及び成形体を提供するため、ポリオルガノシロキサン(A1)とビニル重合体(A2)を含有するゴム(A)に、ビニル単量体(b)をグラフトさせたポリオルガノシロキサン含有グラフト共重合体であって、ビニル重合体(A2)が、単官能性ビニル単量体(a1)90~100質量%と、多官能性ビニル単量体(a2)10~0質量%を含むビニル重合体であり、単官能性ビニル単量体(a1)の単独重合体のガラス転移温度が0℃以上で、さらに該グラフト共重合体の測定条件1で測定されるtanδのピークが、-125℃~-90℃の温度範囲にあるポリオルガノシロキサン含有グラフト共重合体を用いる。 「測定条件1」 ポリオルガノシロキサン含有グラフト共重合体を160℃、5MPaで圧縮成型し、1mm厚とした試験片を動的粘弾性装置で引張りモード、昇温速度2℃/分、10Hzの周波数で-150℃~180℃の温度範囲で測定する。

Description

ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体
 本発明は、熱可塑性樹脂に添加することで、熱可塑性樹脂組成物の低温耐衝撃性を向上できるポリオルガノシロキサン含有グラフト共重合体に関する。また、このポリオルガノシロキサン含有グラフト共重合体を含む熱可塑性樹脂組成物に関する。さらに、この熱可塑性樹脂組成物の成形体に関する。
 芳香族ポリカーボネート樹脂などの熱可塑性樹脂は、汎用エンジニアリングプラスチックとして透明性、耐衝撃性、耐熱性、寸法安定性などに優れ、その優れた特性から、自動車分野、OA機器分野、電気・電子分野等の材料として、工業的に広く利用されている。熱可塑性樹脂の耐衝撃性を向上させるため、衝撃強度改質剤を添加する方法が用いられている。
 また熱可塑性樹脂から得られる成形品は、近年、電気・電子機器筐体、家電製品等の用途を中心に、製品の低コスト化を目的として、塗装を施さずに使用される場合もあり、樹脂自体を着色して所望の色調に発色させることが求められている。
 しかしながら、衝撃強度改質剤を添加すると十分な発色性を有する熱可塑性樹脂組成物が得られない場合がある。そこで、特許文献1には、ポリオルガノシロキサン(A1)及びビニル重合体(A2)を含有するゴム(A)の存在下で、ビニル単量体(b)を重合して得られるポリオルガノシロキサン含有グラフト共重合体であって、該ゴム(A)の屈折率が1.47~1.56の範囲内であり、該ゴム(A)の体積平均粒子径が300~2000nmの範囲内であるポリオルガノシロキサン含有グラフト共重合体を衝撃強度改質剤として使用することが提案されている。特許文献1に記載のポリオルガノシロキサン含有グラフト共重合体は、熱可塑性樹脂に配合して、より高い顔料着色性、低温耐衝撃性と難燃性を兼ね備えた熱可塑性樹脂組成物を提供できるものである。
国際公開2014/208716号パンフレット
 しかしながら、特許文献1のグラフト共重合体であっても、熱可塑性樹脂に添加した際の発色性と低温耐衝撃性とのバランスが十分でない場合があった。また、屋外で日光や風雨などに曝されたり、装置の発熱に曝されたりするなど、過酷な条件に曝されることで色調が変化することがあり、さらなる改善が求められている。
 本発明の目的は、過酷な条件下に曝された際の色調の変化が少なく、発色性と低温耐衝撃性とのバランスに優れた熱可塑性樹脂組成物及び成形体を提供可能な衝撃強度改質剤を提供することにある。また本発明の目的は、このような性能を有する熱可塑性樹脂組成物及び成形体を提供することにある。
 本発明は下記の態様を有する。
[1] ポリオルガノシロキサン(A1)とビニル重合体(A2)を含有するゴム(A)を、ビニル単量体(b)でグラフト化したポリオルガノシロキサン含有グラフト共重合体であって、ビニル重合体(A2)がビニル重合体(A2)100質量%に対して単官能性ビニル単量体(a1)90~100質量%と多官能性ビニル単量体(a2)10~0質量%を含むビニル重合体であって、前記単官能性ビニル単量体(a1)の単独重合体のガラス転移温度が0℃以上であり、さらに下記の「測定条件1」で測定した際のポリオルガノシロキサン含有グラフト共重合体のtanδのピークが-125℃~-90℃の温度範囲にあるポリオルガノシロキサン含有グラフト共重合体。
「測定条件1」
 ポリオルガノシロキサン含有グラフト共重合体を160℃、5MPaで圧縮成型し、1mm厚とした試験片を動的粘弾性装置で引張りモード、昇温速度2℃/分、10Hzの周波数で-150℃~180℃の温度範囲で測定する。
[2] 「測定条件2」で測定した屈折率が1.531~1.700の範囲にある[1]に記載のポリオルガノシロキサン含有グラフト共重合体。
 「測定条件2」
 圧縮成型によって、薄膜化したポリオルガノシロキサン含有グラフト共重合体を、JIS K 7142 A法に準じ、アッベ屈折計を用いて、温度23℃で測定する。
[3] tanδのピークをさらに-80℃~0℃の温度範囲に有する[1]又は[2]に記載のポリオルガノシロキサン含有グラフト共重合体。
[4] ポリオルガノシロキサン含有グラフト共重合体100質量%に対するポリオルガノシロキサン含有量が0.1~40質量%である[1]~[3]のいずれか1項に記載のポリオルガノシロキサン含有グラフト共重合体。
[5] ポリオルガノシロキサン含有グラフト共重合体100質量%に対して、ポリオルガノシロキサン(A1)を0.1~40質量%、ビニル重合体(A2)を41~99.8質量%を含むゴム(A)を、ビニル単量体(b)0.1~19質量%でグラフト化したポリオルガノシロキサン含有グラフト共重合体であって、ビニル重合体(A2)が単官能性ビニル単量体(a1)90~100質量%と、多官能性ビニル単量体(a2)10~0質量%とのビニル重合体であって、前記単官能性ビニル単量体(a1)はその単独重合体のガラス転移温度が0℃以上である単官能性ビニル単量体の1種以上である、ポリオルガノシロキサン含有グラフト共重合体。
[6] 「測定条件2」で測定した屈折率が1.531~1.700の範囲である[5]に記載のポリオルガノシロキサン含有グラフト共重合体。
[7] [1]~[6]のいずれか1項に記載のポリオルガノシロキサン含有グラフト共重合体と熱可塑性樹脂とを含む熱可塑性樹脂組成物。
[8] 前記熱可塑性樹脂と前記ポリオルガノシロキサン含有グラフト共重合体の合計100質量%中の前記ポリオルガノシロキサン含有グラフト共重合体の含有量が0.5~50質量%である[7]に記載の熱可塑性樹脂組成物。
[9] 熱可塑性樹脂がポリカーボネート樹脂である[7]または[8]に記載の熱可塑性樹脂組成物。
[10] [7]~[9]のいずれか1項に記載の熱可塑性樹脂組成物を成形してなる成形体。
[11]
 分散相(A相)と連続相(B相)とを有し、「測定条件3」で測定される弾性率像において、前記A相における弾性率が0.4GPa以上であり、前記B相における弾性率が0.2GPa以下であり、「測定条件4」で測定される前記A相の平均直径が50nm以上であるグラフト共重合体。
 「測定条件3」
 グラフト共重合体の粒子をカプセルに取り、常温硬化型エポキシ樹脂を注ぎ、25℃で12時間放置し、硬化させ、得られる樹脂片を、ウルトラミクロトーム(商品名「Leica EM UC7」、ライカ マイクロシステムズ(株)製)により、ガラスナイフを用いて、常温で面出したものをサンプル1として用いる。サンプル1を走査型プローブ顕微鏡(Veeco Instruments,Inc製)により、スキャン範囲1μm角の条件で、粒子の弾性率像を取得する。
 該粒子の弾性率像において、該粒子に内接する矩形領域の弾性率のヒストグラムを取得し、該ヒストグラムのガウス曲線のピークトップを前記B相の弾性率とし、該粒子中において0.20GPa以上の弾性率を有する領域に内包される50nm角以上の大きさの領域においても弾性率のヒストグラムを取得し、該ヒストグラムのガウス曲線のピークトップを前記A相の弾性率とする。
 「測定条件4」
 測定条件3で得られた樹脂片を前記ウルトラミクロトームにより、ダイヤモンドナイフを用いて、常温で面出し及びトリミングし、さらに薄片厚さ50nmの条件で切片を切り出し、支持膜付きグリッドの上に回収したものをサンプル2として用いる。サンプル2を透過型電子顕微鏡(「商品名「H-7600」、日立(株)製)に設置し、加速電圧80kV、倍率20万倍の条件で、粒子像を取得する。取得した粒子像について、画像解析ソフト(商品名「Image-Pro(登録商標) Plus」、(株)日本ローパー製)を用いて、背景の輝度むらの平坦化、ノイズの除去、エッジの強調、2値化を行う。取得した粒子像で明コントラストに見えていた相を2値化により抽出し、一粒子像内に視認できる直径の大きい相から10点まで選択し、その平均直径を求める。さらに、粒子10点の平均直径について平均値を求め、その平均値をA相の平均直径とする。
[12]前記A相が、グラフト共重合体の一粒子中に2つ以上含まれる[11]に記載のグラフト共重合体。
[13]前記A相の平均直径が60nm以上である[11]または[12]に記載のグラフト共重合体。
[14]前記A相が芳香族ビニル重合体を含む相である[11]~[13]のいずれか1項に記載のグラフト共重合体。
[15]前記B相がポリオルガノシロキサンを含む相である[11]~[14]のいずれか1項に記載のグラフト共重合体。
[16]前記グラフト共重合体の質量平均粒子径が300~2000nmである[11]~[15]のいずれか1項に記載のグラフト共重合体。
[17][11]~[16]のいずれか1項に記載のグラフト共重合体と熱可塑性樹脂とを含む熱可塑性樹脂組成物。
[18]前記熱可塑性樹脂とグラフト共重合体の合計100質量%中の前記グラフト共重合体の含有量が0.5~50質量%である[17]に記載の熱可塑性樹脂組成物。
[19]前記熱可塑性樹脂がポリカーボネート樹脂である[17]または[18]に記載の熱可塑性樹脂組成物。
[20][17]~[19]のいずれか1項に記載の熱可塑性樹脂組成物を成形してなる成形体。
 本発明によれば、過酷な条件下に曝された際の色調の変化が少なく、発色性と低温耐衝撃性とのバランスに優れた熱可塑性樹脂組成物及び成形体を提供可能な衝撃強度改質剤となるグラフト共重合体を提供することができる。また本発明によれば、このような性能を有する熱可塑性樹脂組成物及び成形体を提供することができる。
測定条件3で得られた走査型プローブ顕微鏡による弾性率像の一例(A)とその模式図(B)である。 A相の弾性率を求める際のヒストグラムの一例である。
 以下、本発明を詳細に説明する。本発明において、「(メタ)アクリレート」は「アクリレート」及び「メタクリレート」の少なくとも一方を意味する。
 <ポリオルガノシロキサン含有グラフト共重合体>
 本発明の第1の形態に係るポリオルガノシロキサン含有グラフト共重合体(単に「グラフト共重合体」ということがある)は、ポリオルガノシロキサン(A1)とビニル重合体(A2)を含有するゴム(A)を、ビニル単量体(b)でグラフト化したポリオルガノシロキサン含有グラフト共重合体であって、ビニル重合体(A2)が、単官能性ビニル単量体(a1)90~100質量%と多官能性ビニル単量体(a2)10~0質量%とのビニル重合体であって、前記単官能性ビニル単量体(a1)からなる単独重合体のガラス転移温度が0℃以上であり、下記の「測定条件1」で測定した際のグラフト共重合体のtanδのピークが-125℃~-90℃の温度範囲にあるポリオルガノシロキサン含有グラフト共重合体である。ゴム(A)をビニル単量体(b)でグラフト化するとは、ゴム(A)の存在下にビニル単量体(b)をグラフト重合することで、ゴム(A)にビニル単量体(b)からなるグラフト部を形成することである。
 「測定条件1」
 ポリオルガノシロキサン含有グラフト共重合体を160℃、5MPaで圧縮成型し、1mm厚とした試験片を動的粘弾性装置(DMS6100、セイコーインスツル社製)で引張りモード、昇温速度2℃/分、10Hzの周波数で-150℃~180℃の温度範囲で測定する。
 本発明のポリオルガノシロキサン含有グラフト共重合体のtanδのピーク温度は、該グラフト共重合体を熱可塑性樹脂(以下、単に「樹脂」ということがある)に添加した際の低温衝撃強度と発色性を両立させ、過酷な条件に曝された際の色調の変化を抑えるという観点から、-125℃~-90℃の範囲にあり、またtanδのピークをさらに-80℃~0℃の範囲にも有することがより好ましい。
 ポリオルガノシロキサン含有グラフト共重合体のtanδの0℃以下のピークはポリオルガノシロキサン(A1)に由来するものである。種々検討することで、これが樹脂に添加した際の低温衝撃強度、過酷な条件に曝された際の色調の変化に大きく影響することを見出した。本発明におけるグラフト共重合体は、tanδのピーク(第1のピーク)を-125℃~-90℃の範囲に有することで、グラフト共重合体を樹脂に添加した際の低温衝撃強度と発色性とのバランスが良好となり、過酷な条件に曝された際の色調の変化を抑制する。また、tanδの第1のピークは、-125℃~-100℃の範囲に有することがより好ましい。また、グラフト共重合体のtanδのピーク(第2のピーク)をさらに-80℃~0℃の温度範囲に有することが樹脂に添加した際の低温衝撃強度と発色性とのバランス、色調の変化の抑制がより良好となるため好ましい。
 0℃以下のtanδのピークはグラフト共重合体を重合する際に用いるポリオルガノシロキサン(A1)の粒子径、組成、含有量やビニル重合体(A2)の種類や含有量、これらを含有するゴム(A)の重合方法やビニル単量体(b)の種類や含有量を適切に制御することで、tanδの第1のピークを-125℃~-90℃の温度範囲とすることができ、より適切に制御することでtanδの第2のピークをさらに-80℃~0℃の温度範囲に有することができる。
 本発明のグラフト共重合体は、「測定条件2」で測定した屈折率が、1.531~1.700の範囲内であることが好ましく、1.531~1.600の範囲内であることがより好ましい。
 「測定条件2」
 圧縮成型によって、薄膜化したポリオルガノシロキサン含有グラフト共重合体を、JIS K 7142 A法に準じ、アッベ屈折計を用いて、温度23℃で測定する。
 本発明のグラフト共重合体の屈折率を1.531以上とすることで発色性に優れた熱可塑性樹脂組成物が得られ、1.700以下とすることで、低温耐衝撃強度に優れた樹脂組成物を得ることができるため好ましい。本発明のグラフト共重合体の屈折率は、ポリオルガノシロキサン(A1)の含有量、ビニル重合体(A2)、ビニル単量体(b)の種類及び使用量を調整することにより所望の屈折率とすることができる。
 これは、本発明のグラフト共重合体の屈折率を、POLYMER HANDBOOK 4th Edition (Wiley Interscience)に記載の以下の式(数式1)を用いて算出される値として予測できるためである。
 <数式1>
 n=v1n1+v2n2+v3n3+・・・
 なお、式中の「n1、n2、n3、・・・」は各単量体の単独重合体の20℃における屈折率を表し、POLYMER HANDBOOK 4th Editionに記載の値が使用できる。式中、「v1、v2、v3、・・・」は各単量体の体積分率を表す。
 〔ポリオルガノシロキサン(A1)〕
 ポリオルガノシロキサン(A1)は、ケイ素原子に少なくとも1つの有機基が結合したオルガノシロキサン単位を構成単位として含有する重合体である。ポリオルガノシロキサン(A1)は、オルガノシロキサンまたは、オルガノシロキサンと必要に応じて使用される成分を1種以上含む「オルガノシロキサン混合物」を重合することにより得ることができる。必要に応じて使用される成分としては、シロキサン系架橋剤、シロキサン系グラフト交叉剤、及び末端封鎖基を有するシロキサンオリゴマー等が挙げられる。
 オルガノシロキサンとしては、鎖状オルガノシロキサン、アルコキシシラン化合物、環状オルガノシロキサンのいずれも用いることができる。その中でも、アルコキシシラン化合物、環状オルガノシロキサンが好ましく、環状オルガノシロキサンが、重合安定性が高く、重合速度が大きいのでより好ましい。
 アルコキシシラン化合物としては、2官能性アルコキシシラン化合物が好ましく、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジメチルジプロポキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン等を挙げることができる。
 環状オルガノシロキサンとしては、3~7員環のものが好ましく、例えば、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサンを挙げることができる。これらは1種を単独で又は二種以上を組み合わせて用いることができる。これらの中でも、粒子径分布を制御しやすいことから、主成分がオクタメチルシクロテトラシロキサンであることが好ましい。
 オルガノシロキサンとしては、低温耐衝撃性のより高いグラフト共重合体を得ることができることから、環状ジメチルシロキサン及び/又は2官能性ジアルキルシラン化合物であるオルガノシロキサンを用いることが好ましい。
 環状ジメチルシロキサンとは、ケイ素原子にメチル基を2つ有する環状シロキサンであり、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサンを挙げることができる。
 また、2官能性ジアルキルシラン化合物とは、上記2官能性アルコキシシラン化合物のうち、アルキル基を2つ有する化合物であり、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジメチルジプロポキシシランが挙げられる。
 これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 シロキサン系架橋剤としては、シロキシ基を有するものが好ましい。シロキサン系架橋剤を用いることによって、架橋構造を有するポリオルガノシロキサンを得ることができる。シロキサン系架橋剤としては、例えば、トリメトキシメチルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラブトキシシラン等の3官能性又は4官能性のシラン系架橋剤を挙げることができる。中でも、4官能性の架橋剤が好ましく、テトラエトキシシランがより好ましい。シロキサン系架橋剤の含有率は、オルガノシロキサン混合物100質量%中、0~30質量%であることが好ましく、0~15質量%であることがより好ましく、より好ましくは0~5質量%である。シロキサン系架橋剤の含有率を0~30質量%とすることによって、低温耐衝撃性が良好なグラフト共重合体を得ることができる。
 シロキサン系グラフト交叉剤は、シロキシ基を有すると共にビニル単量体と重合可能な官能基を有するものである。シロキサン系グラフト交叉剤を用いることによって、ビニル単量体と重合可能な官能基を有するポリオルガノシロキサンを得ることができる。ポリオルガノシロキサンがビニル単量体と重合可能な官能基を有することにより、ポリオルガノシロキサンと、後述するビニル単量体(A2)及びビニル単量体(B)をラジカル重合によってグラフトさせることができる。
 シロキサン系グラフト交叉剤としては、式(I)で表されるシロキサンを挙げることができる。
  RSiR (OR(3-n)  (I)
 式(I)中、Rは、メチル基、エチル基、プロピル基、又はフェニル基を示す。Rは、アルコキシ基における有機基を示し、例えば、メチル基、エチル基、プロピル基、又はフェニル基を挙げることができる。nは、0、1又は2を示す。Rは、式(I-1)~(I-4)で表されるいずれかの基を示す。
 CH=C(R)-COO-(CH- (I-1)
 CH=C(R)-C-       (I-2)
 CH=CH-              (I-3)
 HS-(CH-           (I-4)
 これらの式中、R及びRは、それぞれ、水素又はメチル基を示し、pは1~6の整数を示す。
 式(I-1)で表される官能基としては、メタクリロイルオキシアルキル基を挙げることができる。この基を有するシロキサンとしては、例えば、β-メタクリロイルオキシエチルジメトキシメチルシラン、γ-メタクリロイルオキシプロピルメトキシジメチルシラン、γ-メタクリロイルオキシプロピルジメトキシメチルシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルエトキシジエチルシラン、γ-メタクリロイルオキシプロピルジエトキシメチルシラン、δ-メタクリロイルオキシブチルジエトキシメチルシランなどを挙げることができる。
 これらシロキサン系グラフト交叉剤は、1種を単独で又は2種以上を組み合わせて用いることができる。シロキサン系グラフト交叉剤の含有率は、オルガノシロキサン混合物100質量%に対して、0~40質量%であることが好ましく、0.05~40質量%であることがより好ましく、0.05~20質量%であることがさらに好ましい。シロキサン系グラフト交叉剤の含有率を0~40質量%とすることによって、低温耐衝撃性と発色性とのバランスが良好な樹脂組成物を提供できるグラフト共重合体を得ることができる。
 また、末端封鎖基を有するシロキサンオリゴマーとは、オルガノシロキサンオリゴマーの末端にアルキル基等を有し、ポリオルガノシロキサンの重合を停止させたシロキサンオリゴマーをいう。
 末端封鎖基を有するシロキサンオリゴマーとしては、例えば、ヘキサメチルジシロキサン、1,3-ビス(3-グリシドキシプロピル)テトラメチルジシロキサン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、末端封鎖基がトリメチルシリル基であるシロキサンオリゴマーなどを挙げることができる。
 [ポリオルガノシロキサン(A1)の製造方法]
 ポリオルガノシロキサン(A1)の製造方法としては特に制限はなく、例えば、以下の製造方法を採用できる。まず、オルガノシロキサン、必要に応じてシロキサン系架橋剤、必要に応じてシロキサン系グラフト交叉剤、及び必要に応じて末端封鎖基を有するシロキサンオリゴマーを含むオルガノシロキサン混合物を、乳化剤と水によって乳化させてエマルションを調製する。その後、該混合物を、酸触媒を用いて高温下で重合させ、次いでアルカリ性物質により酸を中和してポリオルガノシロキサンのラテックスを得る。尚、以下の製造方法の説明においては、重合用の原料として「オルガノシロキサン混合物」を用いた場合について説明するが、「オルガノシロキサン」を単独で用いた場合についても同様の製造プロセスを適用できる。
 この製造方法において、エマルションの調製方法としては、高速回転による剪断力で微粒子化するホモミキサーを用いる方法、高圧発生機による噴出力で微粒子化するホモジナイザー等を使用して高速攪拌により混合する方法などが挙げられる。これらの中でも、ホモジナイザーを使用する方法は、ポリオルガノシロキサンのラテックスの粒子径の分布が狭くなるので好ましい方法である。
 重合の際の酸触媒の混合方法としては、(1)オルガノシロキサン混合物、乳化剤及び水とともに酸触媒を一括して添加し、混合する方法、(2)オルガノシロキサン混合物のエマルション中に酸触媒水溶液を一括して添加する方法、(3)オルガノシロキサン混合物のエマルションを高温の酸触媒水溶液中に一定速度で滴下して混合する方法等が挙げられる。ポリオルガノシロキサンの粒子径を制御しやすいことから、オルガノシロキサン混合物のエマルションを高温で保持し、次いでその中に酸触媒水溶液を一括して添加する方法が好ましい。
 重合温度は、50℃以上が好ましく、70℃以上であることがさらに好ましい。また、重合時間は、オルガノシロキサン混合物のエマルション中に酸触媒水溶液を一括して添加して重合する場合には、通常2時間以上、好ましくは5時間以上である。
 更に、30℃以下の温度においては、シラノール間の架橋反応が進行することから、ポリオルガノシロキサンの架橋密度を上げるために、50℃以上の高温で重合させた後に、生成したラテックスを、30℃以下の温度で5時間から100時間程度保持することもできる。
 オルガノシロキサン混合物の重合反応は、ラテックスを含む反応系を水酸化ナトリウム、水酸化カリウム、アンモニア水溶液等のアルカリ性物質でpH6~8に中和して、終了させることができる。
 上記製造方法で使用される乳化剤としては、オルガノシロキサン混合物を乳化できれば特に制限されないが、アニオン系乳化剤またはノニオン系乳化剤が好ましい。
 アニオン系乳化剤としては、例えば、アルキルベンゼンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、アルキル硫酸ナトリウム、ポリオキシエチレンアルキル硫酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムを挙げることができる。
 ノニオン系乳化剤としては、例えば以下のものが挙げられる。ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等。
 これらの乳化剤は、1種を単独で又は二種以上を組み合わせて用いることができる。
 乳化剤の使用量は、オルガノシロキサン混合物100質量部に対して、0.05~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。乳化剤の使用量によって、ポリオルガノシロキサンのラテックスの粒子径を所望の値に調整することが可能である。乳化剤の使用量が0.05質量部以上であれば、オルガノシロキサン混合物のエマルションの乳化安定性が十分である。乳化剤量が10質量部以下であれば、グラフト共重合体の粉体中に残存する乳化剤の量を十分に低減できるので、該グラフト共重合体と樹脂を含む樹脂組成物の耐熱分解性及び表面外観の低下を抑制できる。
 オルガノシロキサン混合物の重合に用いられる酸触媒としては、脂肪族スルホン酸、脂肪族置換ベンゼンスルホン酸、脂肪族置換ナフタレンスルホン酸などのスルホン酸類及び硫酸、塩酸、硝酸などの鉱酸類が挙げられる。これらの酸触媒は、1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、硫酸、塩酸、硝酸などの鉱酸を使用すると、ポリオルガノシロキサンラテックスの粒子径分布を狭くすることができ、さらに、ポリオルガノシロキサンラテックス中の乳化剤成分に起因する成形品の耐熱分解性の低下ならびに外観不良の低減を達成することができる。
 酸触媒の使用量は、オルガノシロキサン100質量部に対して0.005~5質量部であることが好ましい。酸触媒の使用量が0.005質量部以上であれば、ポリオルガノシロキサンを短時間で重合することができる。また酸触媒の使用量が5質量部以下であれば、耐熱分解性ならびに外観が良好な成形品を得ることができる。
 また、酸触媒の使用量がポリオルガノシロキサンの粒子径を決定する因子となるため、後述する粒子径のポリオルガノシロキサンを得るためには、酸触媒の使用量を0.005~1.5質量部とすることがより好ましい。
 ラテックス中のポリオルガノシロキサンの質量平均粒子径は、特に制限はないが、250~1000nmの範囲内であることが好ましい。ポリオルガノシロキサンの質量平均粒子径を250~1000nmの範囲内とすることによって、ゴム(A)の質量平均粒子径を300~2000nmの範囲内に調整することが可能である。
 ラテックス中のポリオルガノシロキサンの「質量平均粒子径/数平均粒子径(Dw/Dn)」は、1.0~1.7の範囲内であることが好ましい。Dw/Dnを1.0~1.7の範囲内とすることによって、樹脂に添加した際に透明性の高いグラフト共重合体を得ることができる。
 これらのDw及びDnの値としては、以下の方法で測定される値を採用することができる。ポリオルガノシロキサンのラテックスを脱イオン水で濃度約3%に希釈したものを試料として、米国MATEC社製CHDF2000型粒度分布計を用いて粒子径を測定する。粒子径はメジアン径を平均粒子径として用いる。
 測定はMATEC社が推奨する下記の標準条件で行うことができる。
カートリッジ:専用の粒子分離用キャピラリー式カートリッジ(商品名;C-202)、
キャリア液:専用キャリア液(商品名;2XGR500)、
キャリア液の液性:ほぼ中性、
キャリア液の流速:1.4ml/分、
キャリア液の圧力:約4,000psi(2,600kPa)、
測定温度:35℃、
試料使用量:0.1ml。
 また、標準粒子径物質としては、米国DUKE社製の粒子径既知の単分散ポリスチレンで、40~800nmの粒子径の範囲内の12種類の粒子が用いられる。
 上記方法により得られるポリオルガノシロキサンのラテックスには、機械的安定性を向上させる目的で、必要に応じて、乳化剤を添加してもよい。乳化剤としては、上記例示したものと同様のアニオン系乳化剤、ノニオン系乳化剤が好ましい。
 〔ビニル重合体(A2)〕
 本発明のビニル重合体(A2)としては、単独重合体のガラス転移温度が0℃以上の単官能性ビニル単量体(a1)と多官能性ビニル単量体(a2)を重合して得られる重合体が挙げられる。
 [単官能性ビニル単量体(a1)]
 本発明の単官能性ビニル単量体(a1)は、その単独重合体のガラス転移温度が0℃以上であることが必要である。単独重合体のガラス転移温度は例えば、POLYMER HANDBOOK 4th Editionに記載の値を参照することができる。
 本発明の単官能性ビニル単量体(a1)としては、例えば以下の単量体が挙げられる。
スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル単量体;
メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート等のアルキルメタクリレート;
メチルアクリレート、i-ブチルアクリレート、t-ブチルアクリレート、ヘキサデシルアクリレート等のアルキルアクリレート;
シクロへキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート等のエステル基が脂環式基である脂環式(メタ)アクリレート;
フェニル(メタ)アクリレート、4-t-ブチルフェニル(メタ)アクリレート、ブロモフェニル(メタ)アクリレート、ジブロモフェニル(メタ)アクリレート、2,4,6-トリブロモフェニル(メタ)アクリレート、モノクロルフェニル(メタ)アクリレート、ジクロルフェニル(メタ)アクリレート、トリクロルフェニル(メタ)アクリレート等のエステル基がフェニル基または置換フェニル基であるアリール(メタ)アクリレート;
アクリロニトリル、メタクリロニトリル等のシアン化ビニル単量体等。
これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 これらの中でも、グラフト共重合体のtanδの第1のピークを-125℃~-90℃の範囲とし、さらに第2のピークを-80℃~0℃の温度範囲に有するためには、スチレン等の芳香族ビニル単量体を用いることが好ましい。
 また屈折率を1.531~1.700の範囲内に調整するという観点からは、単量体(a1)は、芳香族ビニル単量体及び/又はエステル基が脂環式基である脂環式(メタ)アクリレート及び/又はエステル基がフェニル基若しくは置換フェニル基であるアリール(メタ)アクリレートを用いることが好ましい。
 [多官能性ビニル単量体(a2)]
 多官能性ビニル単量体としては、例えば以下の多官能性単量体が挙げられる。
メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル、ジビニルベンゼン、ジメタクリル酸エチレングリコールジエステル、ジメタクリル酸プロピレングリコールジエステル、ジメタクリル酸1,3-ブチレングリコールジエステル、ジメタクリル酸1,4-ブチレングリコールジエステル、1,6-ヘキサンジオールジアクリル酸エステル、トリメリト酸トリアリル等。
これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
 ビニル重合体(A2)中における、単官能性ビニル単量体(a1)と多官能性ビニル単量体(a2)の含有量は、グラフト共重合体を樹脂に添加した際の低温衝撃強度と発色性の観点から、ビニル重合体(A2)100質量%に対して、単官能性ビニル単量体(a1)90~100質量%、多官能性ビニル単量体(a2)10~0質量%であり、好ましくは単官能性ビニル単量体(a1)90~99.9質量%、多官能性ビニル単量体(a2)10~0.1質量%であり、より好ましくは単官能性ビニル単量体(a1)97~99.9質量%、多官能性ビニル単量体(a2)3~0.1質量%である。
 ビニル重合体(A2)の製造方法としては、特に制限はなく、例えば、乳化重合法、懸濁重合法、微細懸濁重合法により製造することができるが、乳化重合法を用いることが好ましい。
 ビニル単量体(a2)の重合に用いるラジカル重合開始剤としては、アゾ系開始剤、過酸化物、及び過酸化物と還元剤を組み合わせたレドックス系開始剤が用いられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中では、アゾ系開始剤、レドックス系開始剤が好ましい。
 アゾ系開始剤としては、例えば以下のものが挙げられる。
2,2’-アゾビスイソブチロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-ブチロニトリル)等の油溶性アゾ系開始剤、
4,4’-アゾビス(4-シアノバレリックアシッド)、2,2’-アゾビス[N-(2-カルボキシメチル)-2-メチルプロピオナミジン]ハイドレート、2,2’-アゾビス-(N,N’-ジメチレンイソブチルアミジン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩等の水溶性アゾ系開始剤等。
これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 過酸化物としては、例えば以下のものが挙げられる。
過酸化水素、過硫酸カリウム、過硫酸アンモニウム等の無機過酸化物、
ジイソプロピルベンゼンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、サクシニックアシッドパーオキサイド、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート等の有機過酸化物等。
これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 過酸化物を還元剤と組み合わせてレドックス系開始剤とする場合、上記の過酸化物と、ナトリウムホルムアルデヒドスルホキシレート、L-アスコルビン酸、フルクトース、デキストロース、ソルボース、イノシトール等の還元剤と、硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩を組み合わせて用いることが好ましい。これらの還元剤は1種を単独で又は2種以上を組み合わせて用いることができる。
 ビニル単量体(a2)の重合に用いるラジカル重合開始剤は、20℃における水への溶解度が5質量%以下のものであることが好ましく、2質量%以下のものであることがより好ましい。このラジカル重合開始剤を用いて重合することで、低温耐衝撃性に優れたグラフト共重合体を得ることができる。
 20℃における水への溶解度が5質量%以下のラジカル重合開始剤としては、例えば以下のものが挙げられる。
クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、2,2’-アゾビスイソブチロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-ブチロニトリル)等。
これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 ラジカル重合開始剤の20℃における水への溶解度は、各種ラジカル重合開始剤のカタログ等から知ることができる。
 ラジカル重合開始剤の使用量は、アゾ系開始剤を用いる場合は単量体の合計100質量部に対して0.01~1質量部であることが好ましい。また、レドックス系開始剤の場合、過酸化物の使用量は、単量体の合計100質量部に対して0.01~1質量部であることが好ましい。耐アウトガス性の観点から、還元剤の使用量は、単量体の合計100質量部に対して0.01~1質量部であることが好ましい。
 〔ゴム(A)〕
 ゴム(A)は、ポリオルガノシロキサン(A1)及びビニル重合体(A2)を含有する。ゴム(A)としては、以下の(1)~(5)の構造を有するゴムを例示することができる。
 (1)多層構造を有し、ポリオルガノシロキサン(A1)のコアがビニル重合体(A2)のシェルで被覆された構造を有するゴム、
 (2)多層構造を有し、ビニル重合体(A2)のコアがポリオルガノシロキサン(A1)のシェルで被覆された構造を有するゴム、
 (3)ポリオルガノシロキサン(A1)とビニル重合体(A2)が相互に介入した構造を有する複合ゴム。
 (4)ポリオルガノシロキサン(A1)が島、ビニル重合体(A2)が海となった海島構造を有する複合ゴム。
 (5)ポリオルガノシロキサン(A1)が海、ビニル重合体(A2)が島となった海島構造を有する複合ゴム。
 この中でも(5)の構造を有するゴムが、ポリオルガノシロキサン含有グラフト共重合体のtanδの第1のピークを-125℃~-90℃の温度範囲とし、さらに第2のピークを-80℃~0℃の温度範囲に有するように制御できるため好ましく、グラフト共重合体を樹脂に添加した際の低温衝撃強度と発色性とのバランス、過酷な条件下での色調の変化の抑制が良好になる。
 ポリオルガノシロキサン(A1)とビニル重合体(A2)の含有量は、ポリオルガノシロキサン含有グラフト共重合体100質量%に対して、ポリオルガノシロキサン(A1)の含有量が0.1~40質量%、ビニル重合体(A2)が41~99.9質量%であることが好ましい。これらの範囲とすることで、ポリオルガノシロキサン(A1)に対するビニル重合体(A2)の量が適切な範囲となるため、tanδの第1のピークが-125℃~-90℃の範囲となり、グラフト共重合体を樹脂に添加した際の低温衝撃強度と発色性とのバランス、色調の変化の抑制が良好となる。またさらに好ましい範囲は、ポリオルガノシロキサン含有グラフト共重合体100質量%に対して、ポリオルガノシロキサン(A1)の含有量が10~29質量%、ビニル重合体(A2)が41~85質量%である。これらの範囲とすることで、tanδの第2のピークをさらに-80℃~0℃の温度範囲に有することができ、グラフト共重合体を樹脂に添加した際の低温衝撃強度と発色性とのバランス、色調の変化の抑制がさらに良好となる。また、難燃性にも優れる。
 したがって、本発明の別の実施形態では、ポリオルガノシロキサン含有グラフト共重合体100質量%に対して、ポリオルガノシロキサン(A1)を0.1~40質量%、ビニル重合体(A2)を41~99.8質量%を含むゴム(A)に、ビニル単量体(b)0.1~19質量%をグラフト化したポリオルガノシロキサン含有グラフト共重合体であって、ビニル重合体(A2)が、単官能性ビニル単量体(a1)90~100質量%と、多官能性ビニル単量体(a2)10~0質量%とのビニル重合体を含み、前記単官能性ビニル単量体(a1)はその単独重合体のガラス転移温度が0℃以上である単官能性ビニル単量体の1種以上である、ポリオルガノシロキサン含有グラフト共重合体が提供される。
 ゴム(A)の製造方法としては、特に制限はなく、例えば、乳化重合法、懸濁重合法、微細懸濁重合法により製造することができるが、乳化重合法を用いることが好ましい。中でも、ゴム(A)は前述した(5)の構造であることが好ましい。(5)の構造を有するゴムを得る方法としては、ポリオルガノシロキサンゴムの存在下に単独重合体のガラス転移温度が0℃以上の単官能性ビニル単量体(a1)及び多官能性ビニル単量体(a2)を重合する方法が挙げられる。具体的には、まず、ポリオルガノシロキサンゴムのラテックス中に、単独重合体のガラス転移温度が0℃以上の単官能性ビニル単量体(a1)及び多官能性ビニル単量体(a2)を添加し、ポリオルガノシロキサン中に含浸させた後、公知のラジカル重合開始剤を用いて重合する。この方法において、単官能性ビニル単量体(a1)及び多官能性ビニル単量体(a2)の添加方法としては、ポリオルガノシロキサンラテックス中にその全量を一括して添加する方法、あるいは、分割して一定速度で滴下して添加する方法が挙げられる。
 ゴム(A)のラテックスを製造する際には、ラテックスを安定化させ、ゴム(A)の粒子径を制御するために、乳化剤を添加することができる。乳化剤は、ポリオルガノシロキサンのラテックスを製造する際に用いた前述の乳化剤と同様のものが挙げられ、アニオン系乳化剤及びノニオン系乳化剤が好ましい。
 ゴム(A)の質量平均粒子径(Dw)は特に限定はされないが、下限は50nm以上であることが好ましく、より好ましくは100nm以上であり、さらに好ましくは200nm以上であり、さらに好ましくは300nm以上であり、特に好ましくは400nm以上である。ゴム(A)の質量平均粒子径(Dw)の上限は2000nm以下が好ましく、1000nm以下がより好ましい。ゴム(A)の質量平均粒子径が50nm以上であれば、ポリオルガノシロキサン(A1)が海、ビニル重合体(A2)が島の構造において、ビニル重合体(A2)のドメインサイズが大きくなることで、ポリオルガノシロキサン(A1)との相互作用が強くなるため、ポリオルガノシロキサン含有グラフト共重合体のtanδのピークを-125℃~-90℃の温度範囲(第1のピーク)とし、さらに-80℃~0℃の温度範囲(第2のピーク)に有することができるため好ましい。また、質量平均粒子径が2000nm以下であれば、成形品の表面外観及び低温耐衝撃性が良好となるため好ましい。
  [ビニル単量体(b)]
 上記ゴム(A)の存在下でビニル単量体(b)を重合し、ゴム(A)にビニル重合体からなるグラフト部を形成することで、ポリオルガノシロキサン含有グラフト共重合体を得ることができる。
 ビニル単量体(b)としては、例えば以下のものが挙げられる。スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル単量体;メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート等のアルキルメタクリレート;エチルアクリレート、n-ブチルアクリレート、メチルアクリレート等のアルキルアクリレート;アクリロニトリル、メタクリロニトリル等のシアン化ビニル単量体;フェニル(メタ)アクリレート、4-t-ブチルフェニル(メタ)アクリレート、ブロモフェニル(メタ)アクリレート、ジブロモフェニル(メタ)アクリレート、2,4,6-トリブロモフェニル(メタ)アクリレート、モノクロルフェニル(メタ)アクリレート、ジクロルフェニル(メタ)アクリレート、トリクロルフェニル(メタ)アクリレート等のエステル基がフェニル基または置換フェニル基であるアリール(メタ)アクリレート等。これらは1種を単独で又は2種以上を組み合わせて用いることができる。この中でも、芳香族ビニル単量体、アルキル(メタ)アクリレート、シアン化ビニル単量体、エステル基がフェニル基若しくは置換フェニル基であるアリール(メタ)アクリレートが、樹脂との相容性と樹脂組成物の発色性の観点から好ましい。これらビニル単量体(b)は1種を単独で又は2種以上を組み合わせて用いることができる。
 ビニル単量体(b)には架橋性単量体を含んでも良いが、その場合は、ビニル単量体(b)100質量%中における架橋性単量体の使用量は、0.005質量%以下であることが好ましい。
 グラフト共重合体中のゴム(A)の含有量は、グラフト共重合体100質量%に対して10.0~99.9質量%であることが好ましい。ゴム(A)の含有量が10.0質量%以上であれば樹脂組成物の低温衝撃強度が十分となり、また99.9質量%以下であれば成形品の表面外観が良好となるため好ましい。樹脂組成物の低温衝撃強度をより良好とする観点から、ゴム(A)の含有量は、グラフト共重合体100質量%に対して50.0~99.9質量%であることがより好ましく、81.0~99.9質量%であることがさらに好ましい。
 グラフト共重合の方法としては、例えば、ゴム(A)のラテックス中にビニル単量体(b)を添加し、1段又は多段で重合する方法が挙げられる。多段で重合する場合は、ゴム(A)のラテックスの存在下で、ビニル単量体(b)の全使用量を分割して、逐次添加し又は連続添加して、重合することが好ましい。このような重合方法は重合安定性が良好であり、且つ所望の粒子径及び粒子径分布を有するラテックスを安定に得ることができる。
 グラフト部の重合の際には、必要に応じて乳化剤を追加することができる。グラフト部の重合に用いられる乳化剤は、ゴム(A)を製造する際に用いた前述の乳化剤と同様のものが挙げられ、アニオン系乳化剤及びノニオン系乳化剤が好ましい。
 グラフト共重合体のラテックスから、グラフト共重合体の粉体を回収する場合には、噴霧乾燥法、凝固法のいずれかの方法を用いることができる。
 噴霧乾燥法は、グラフト共重合体のラテックスを乾燥機中に微小液滴状に噴霧し、これに乾燥用の加熱ガスを当てて乾燥する方法である。微小液滴を発生する方法としては、例えば、回転円盤型式、圧力ノズル式、二流体ノズル式、加圧二流体ノズル式が挙げられる。乾燥機の容量は、実験室で使用するような小規模な容量から、工業的に使用するような大規模な容量のいずれであってもよい。乾燥用の加熱ガスの温度は200℃以下が好ましく、120~180℃がより好ましい。別々に製造された2種以上のグラフト共重合体のラテックスを、一緒に噴霧乾燥することもできる。更には、噴霧乾燥時のブロッキング、嵩比重等の粉末特性を向上させるために、グラフト共重合体のラテックスに、シリカ等の任意成分を添加して噴霧乾燥することもできる。
 凝固法は、グラフト共重合体のラテックスを凝析して、グラフト共重合体を分離し、回収し、乾燥する方法である。先ず、凝固剤を溶解した熱水中にグラフト共重合体のラテックスを投入し、塩析し、凝固することによりグラフト共重合体を分離する。次いで、分離した湿潤状のグラフト共重合体を脱水等によって水分量が低下したグラフト共重合体を回収する。回収されたグラフト共重合体は圧搾脱水機や熱風乾燥機を用いて乾燥される。
 凝固剤としては、塩化アルミニウム、硫酸アルミニウム、硫酸ナトリウム、硫酸マグネシウム、硝酸ナトリウム、酢酸カルシウムなどの無機塩や、硫酸等の酸などが挙げられ、酢酸カルシウムが特に好ましい。これらの凝固剤は1種を単独で又は2種以上を組み合わせて用いることができるが、2種以上を用いる場合は水に不溶性の塩を形成しない組み合わせを選択することが必要である。例えば、酢酸カルシウムと、硫酸、若しくはそのナトリウム塩とを併用すると、水に不溶性のカルシウム塩を形成するので好ましくない。
 上記の凝固剤は、通常、水溶液として用いられる。凝固剤水溶液の濃度は、グラフト共重合体を安定的に凝固し、回収する観点から、0.1質量%以上、特に1質量%以上であることが好ましい。また、回収されたグラフト共重合体中に残存する凝固剤の量を少なくして成形品の成形外観の低下を防止する観点から、凝固剤水溶液の濃度は、20質量%以下、特に15質量%以下であることが好ましい。凝固剤水溶液の量は特に限定されないが、ラテックス100質量部に対して10質量部以上、500質量部以下であることが好ましい。
 ラテックスを凝固剤水溶液に接触させる方法は特に限定されないが、通常、下記の方法が挙げられる。(1)凝固剤水溶液を攪拌しながら、その中にラテックスを連続的に添加して一定時間保持する方法、(2)凝固剤水溶液とラテックスとを、一定の比率で攪拌機付きの容器内に連続的に注入しながら接触させ、凝析された重合体と水とを含む混合物を容器から連続的に抜き出す方法。ラテックスを凝固剤水溶液に接触させるときの温度は特に限定されないが、30℃以上、100℃以下であることが好ましい。接触時間は特に限定されない。
 凝析したグラフト共重合体は、1~100質量倍程度の水で洗浄され、ろ別した湿潤状のグラフト共重合体は流動乾燥機や圧搾脱水機等を用いて乾燥される。乾燥温度、乾燥時間は得られるグラフト共重合体によって適宜決めればよい。なお、圧搾脱水機や押出機から排出されたグラフト共重合体を回収せず、直接、樹脂組成物を製造する押出機や成形機に送り、熱可塑性樹脂と混合して成形体を得ることも可能である。
 本発明において、グラフト共重合体は、熱可塑性樹脂と混合して得られる樹脂組成物の耐熱分解性の観点から、凝固法を用いて回収することが好ましい。
 また、本発明の第2の形態は、分散相(A相)と連続相(B相)とを有し、「測定条件3」で測定される弾性率像において、前記A相における弾性率が0.4GPa以上であり、前記B相における弾性率が0.2GPa以下であり、「測定条件4」で測定される前記A相の直径が50nm以上であるグラフト共重合体である。第1の形態のポリオルガノシロキサン含有グラフト共重合体と区別するために、本形態のグラフト共重合体を「グラフト共重合体(G1)」ということがあるが、第1の形態のグラフト共重合体と第2の形態のグラフト共重合体(G1)が同一であることを妨げるものではない。
 「測定条件3」
 グラフト共重合体の粒子をカプセルに取り、常温硬化型エポキシ樹脂を注ぎ、25℃で12時間放置し、硬化させ、得られる樹脂片を、ウルトラミクロトーム(商品名「Leica EM UC7」、ライカ マイクロシステムズ(株)製)により、ガラスナイフを用いて、常温で面出したものをサンプル1として用いる。サンプル1を走査型プローブ顕微鏡(Veeco Instruments,Inc製)により、スキャン範囲1μm角の条件で、粒子の弾性率像を取得する。
 該粒子の弾性率像において、該粒子に内接する矩形領域の弾性率のヒストグラムを取得し、該ヒストグラムのガウス曲線のピークトップを前記B相の弾性率とし、該粒子中において0.20GPa以上の弾性率を有する領域に内包される50nm角以上の大きさの領域においても弾性率のヒストグラムを取得し、該ヒストグラムのガウス曲線のピークトップを前記A相の弾性率とする。
 図1は、測定条件3で得られた走査型プローブ顕微鏡による弾性率像の一例(A)とその模式図(B)である。模式図(B)に示すように、スキャン範囲1μm角内に複数のグラフト共重合体の粒子1が確認でき、粒子1中には、連続相3で囲まれた分散相2が見られる。4は、サンプルを作製する際のエポキシ樹脂の硬化層である。
 また、図2は、該粒子中において0.20GPa以上の弾性率を有する領域に内包される50nm角以上の大きさの領域における弾性率のヒストグラムの一例を示す。図2中、実線は該ヒストグラムにおけるガウス曲線を示し、そのピークトップが分散相(A相)の弾性率となる。
 「測定条件4」
 測定条件3で得られた樹脂片を前記ウルトラミクロトームにより、ダイヤモンドナイフを用いて、常温で面出し及びトリミングし、さらに薄片厚さ50nmの条件で切片を切り出し、支持膜付きグリッドの上に回収したものをサンプル2として用いる。サンプル2を透過型電子顕微鏡(「商品名「H-7600」、日立(株)製)に設置し、加速電圧80kV、倍率20万倍の条件で、粒子像を取得する。取得した粒子像について、画像解析ソフト(商品名「Image-Pro(登録商標) Plus」、(株)日本ローパー製)を用いて、背景の輝度むらの平坦化、ノイズの除去、エッジの強調、2値化を行う。取得した粒子像で明コントラストに見えていた相を2値化により抽出し、一粒子像内に視認できる直径の大きい相から10点まで選択し、その平均直径を求める。さらに、粒子10点の平均直径について平均値を求め、その平均値をA相の平均直径とする。
 なお、「特定条件4」において、1つのグラフト共重合体粒子に視認できる相が10点未満の場合は、すべての相を選択し、その平均直径を求めるものとする。また、測定される直径は、対象となる相の外周の2点を結び、且つ、重心を通る径を2度刻みに測定した平均値である。
 <相>
 グラフト共重合体(G1)に弾性率が0.4GPa以上の相(A相)と弾性率が0.2GPa以下の相(B相)が含まれる。相の構造としては、A相が分散相、B相が連続相となった構造であり、グラフト共重合体(G1)のA相のサイズ(平均直径)は50nm以上であり、より好ましくは60nm以上である。A相が分散相、B相が連続相となった構造であると、グラフト共重合体(G1)の弾性率を低くすることができるので、衝撃強度改質剤として用いた際に優れた耐衝撃特性を示す。
 また、A相のサイズは50nm以上であり、好ましくは60nm以上である。A相のサイズが50nm以上であると、キャビテーションを起こしやすくなり、60nm以上となるとさらに起こしやすくなるので、衝撃強度改質剤として用いた際に優れた耐衝撃特性を示す。
 <A相>
 A相はグラフト共重合体(G1)の一粒子中に2つ以上含まれることが好ましい。2つ以上含まれると、A相のサイズが必要以上に大きくならず、グラフト共重合体(G1)の弾性率をさらに低くすることができるので、衝撃強度改質剤として用いた際にさらに優れた耐衝撃特性を示す。
 A相は芳香族ビニル重合体を含む相であることが好ましい。芳香族ビニル重合体を含む相であると、弾性率が高いため、衝撃強度改質剤として用いた際にキャビテーションの発生起点となりやすく優れた耐衝撃特性を示すため好ましい。また芳香族ビニル重合体は、屈折率が高く、衝撃強度改質剤として用いた際に発色性に優れるため好ましい。
 芳香族ビニル重合体としては、スチレン及び各種の置換スチレン、例えばp-メチルスチレン、m-メチルスチレン、o-メチルスチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、p-クロロスチレン、o-クロロスチレンやα-メチルスチレン、ビニルトルエン等の単独又は共重合体が挙げられる。
 芳香族ビニル重合体を含む相(A相)には芳香族ビニル重合体以外にも、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート等のアルキルメタクリレート;エチルアクリレート、n-ブチルアクリレート、メチルアクリレート等のアルキルアクリレート;アクリロニトリル、メタクリロニトリル等のシアン化ビニル単量体;フェニル(メタ)アクリレート、4-t-ブチルフェニル(メタ)アクリレート、ブロモフェニル(メタ)アクリレート、ジブロモフェニル(メタ)アクリレート、2,4,6-トリブロモフェニル(メタ)アクリレート、モノクロルフェニル(メタ)アクリレート、ジクロルフェニル(メタ)アクリレート、トリクロルフェニル(メタ)アクリレート等のエステル基がフェニル基または置換フェニル基であるアリール(メタ)アクリレート等の単独または共重合体を含むことができる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 <B相>
 B相はポリオルガノシロキサンを含む相であることが好ましい。ポリオルガノシロキサンを含む相であると、弾性率が低く、ポアソン比が0.5に近いため、熱可塑性樹脂中に添加した際に変形しやすく、それによって優れた耐衝撃特性を示すため、衝撃強度改質剤として好ましい。
 ポリオルガノシロキサンを含む相にはポリオルガノシロキサン以外にも、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート等のアルキルメタクリレート;エチルアクリレート、n-ブチルアクリレート、メチルアクリレート等のアルキルアクリレート;アクリロニトリル、メタクリロニトリル等のシアン化ビニル単量体;フェニル(メタ)アクリレート、4-t-ブチルフェニル(メタ)アクリレート、ブロモフェニル(メタ)アクリレート、ジブロモフェニル(メタ)アクリレート、2,4,6-トリブロモフェニル(メタ)アクリレート、モノクロルフェニル(メタ)アクリレート、ジクロルフェニル(メタ)アクリレート、トリクロルフェニル(メタ)アクリレート等のエステル基がフェニル基または置換フェニル基であるアリール(メタ)アクリレート等の単独重合体または共重合体を含むことができる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 ポリオルガノシロキサンを含む相のポリオルガノシロキサンは、前述した(A1)と同様に、ケイ素原子に少なくとも1つの有機基が結合したオルガノシロキサン単位を構成単位として含有する重合体である。また、必要に応じて前述したシロキサン系グラフト交叉剤、シロキサン系架橋剤を用いることができる。
 グラフト共重合体(G1)の製造方法としては、特に制限はなく、例えば、乳化重合法、懸濁重合法、微細懸濁重合法により製造することができるが、乳化重合法を用いることが好ましい。製造方法としては例えば、ポリオルガノシロキサンゴムの存在下で芳香族ビニル単量体を含む単量体混合物を重合する方法が挙げられる。具体的には、まず、ポリオルガノシロキサンゴムのラテックス中に、芳香族ビニル単量体を含む単量体混合物を添加し、ポリオルガノシロキサン中に含浸させた後、公知のラジカル重合開始剤を用いて重合する。この方法において、芳香族ビニル単量体を含む単量体混合物の添加方法としては、ポリオルガノシロキサンラテックス中にその全量を一括して添加する方法、あるいは、分割して一定速度で滴下して添加する方法が挙げられる。
 グラフト共重合体(G1)の質量平均粒子径(Dw)は特に限定はされないが、300~2000nmであることが好ましく、より好ましくは300~1000nmであり、さらに好ましくは350~1000nmであり、さらに好ましくは400~800nmである。質量平均粒子径が300nm以上であれば低温衝撃強度と発色性に優れ、2000nm以下であれば、成形品の表面外観及び低温耐衝撃性が良好となるため好ましい。
 グラフト共重合体(G1)のラテックスから、グラフト共重合体(G1)の粉体を回収する場合には、前述したように噴霧乾燥法、凝固法のいずれかの方法を用いることができるが、熱可塑性樹脂と混合して得られる樹脂組成物の耐熱分解性の観点から、凝固法を用いて回収することが好ましい。
<熱可塑性樹脂組成物>
 本発明の熱可塑性樹脂組成物に使用される「グラフト共重合体」は、第1の形態で説明したポリオルガノシロキサン含有グラフト共重合体、第2の形態で説明したグラフト共重合体(G1)のいずれでもよく、熱可塑性樹脂と混合して熱可塑性樹脂組成物として使用することができる。以下の説明では、第1の形態で説明したポリオルガノシロキサン含有グラフト共重合体、第2の形態で説明したグラフト共重合体(G1)を合わせて単に「グラフト共重合体」ということがある。
 本発明で使用できる熱可塑性樹脂としては、特に制限はないが、例えば熱可塑性樹脂及び熱可塑性エラストマーから選ばれる1種以上の樹脂が挙げられる。
 〔熱可塑性樹脂〕
 熱可塑性樹脂としては、例えば以下のものが挙げられる。ポリプロピレン(PP)、ポリエチレン(PE)等のオレフィン系樹脂;ポリスチレン(PS)、ハイインパクトポリスチレン(HIPS)、(メタ)アクリレート・スチレン共重合体(MS)、スチレン・アクリロニトリル共重合体(SAN)、スチレン・無水マレイン酸共重合体(SMA)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、アクリル酸エステル・スチレン・アクリロニトリル共重合体(ASA)、アクリロニトリル・エチレン・プロピレンゴム・スチレン共重合体(AES)等のスチレン(St)系樹脂;ポリメチルメタクリレート(PMMA)等のアクリル(Ac)系樹脂;ポリカーボネート(PC)樹脂;ポリアミド(PA)樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル(PEs)樹脂;(変性)ポリフェニレンエーテル((m-)PPE)樹脂、ポリオキシメチレン(POM)樹脂、ポリスルフォン(PSO)樹脂、ポリアリレート(PAr)樹脂、ポリフェニレン(PPS)樹脂等のエンジニアリングプラスチックス;熱可塑性ポリウレタン(PU)樹脂;硬質塩化ビニル樹脂、半硬質塩化ビニル樹脂、軟質塩化ビニル樹脂等の塩化ビニル(PVC)系樹脂;PC/ABS等のPC樹脂とSt系樹脂とのアロイ;PVC/ABS等のPVC系樹脂とSt系樹脂とのアロイ;PA/ABS等のPA樹脂とSt系樹脂とのアロイ;PA樹脂と熱可塑性エラストマー(TPE)とのアロイ;PA/PP等のPA樹脂とポリオレフィン系樹脂とのアロイ;PC/PBT等のPC樹脂とPEs樹脂とのアロイ;PP/TPE、PP/PE等のオレフィン系樹脂同士のアロイ;PPE/HIPS、PPE/PBT、PPE/PA等のPPE系樹脂とその他の樹脂のアロイ;PVC/PMMA等のPVC系樹脂とアクリル系樹脂とのアロイ等。
 熱可塑性エラストマーとしては、例えば以下のものが挙げられる。スチレン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、フッ素系エラストマー、1,2-ポリブタジエン、トランス1,4-ポリイソプレン等。これらの中でも、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマーが好ましい。
 前記の熱可塑性樹脂の中でも、以下のものが好ましい。St系樹脂、PC樹脂、PA樹脂、PET樹脂、PBT樹脂、(m-)PPE樹脂、POM樹脂、PU樹脂、PC/ABS等のPC樹脂とSt系樹脂とのアロイ、PA/ABS等のPA樹脂とSt系樹脂とのアロイ、PA樹脂とTPEとのアロイ、PA/PP等のPA樹脂とポリオレフィン系樹脂とのアロイ、PC/PBT等のPC樹脂とPEs樹脂とのアロイ、PPE/PBT、PPE/PA等のPPE系樹脂とその他の樹脂のアロイ等。
 更に、上述の樹脂の中では、顔料着色性の向上効果を最大限に発揮できる観点から、ポリカーボネート樹脂がより好ましく、芳香族ポリカーボネート樹脂が特に好ましい。
 芳香族ポリカーボネート樹脂は、芳香族ヒドロキシ化合物またはこれと少量のポリヒドロキシ化合物をホスゲンまたは炭酸のジエステルと反応させることによって得られる分岐していてもよい熱可塑性芳香族ポリカーボネート重合体または共重合体である。芳香族ポリカーボネート樹脂の製造方法は、特に限定されず、公知の方法、すなわち、ホスゲン法(界面重合法)、溶融法(エステル交換法)等が採用される。本発明では、溶融法で製造され、かつ、末端のOH基量が調整された芳香族ポリカーボネート樹脂を使用することもできる。
 芳香族ポリカーボネート樹脂としては、例えば以下のものが挙げられる。ユーピロン(登録商標)S-1000、S-2000、S-3000、H-3000若しくはH-4000(三菱エンジニアリングプラスチック(株)製)、またはパンライト(登録商標)L1250、L1225若しくはK1300(帝人化成(株)製)等。
 熱可塑性樹脂とグラフト共重合体の合計100質量%中におけるグラフト共重合体の含有量は、0.5~50質量%が好ましく、さらに好ましくは1~20質量%である。グラフト共重合体の含有量が0.5質量%以上であれば耐衝撃性に優れた樹脂組成物を得ることができ、また50質量%以下であれば表面外観に優れた樹脂組成物を得ることができる。
 [添加剤]
 熱可塑性樹脂組成物は、本発明の目的を逸脱しない範囲であれば、各種添加剤を含有することができる。添加剤としては、例えば、フェノール系安定剤、燐系安定剤、紫外線吸収剤、アミン系光安定剤等の安定剤;燐系、ブロム系、シリコーン系、有機金属塩系等の難燃剤;耐加水分解性等の各種物性を付与するための改質剤;酸化チタン、タルク等の充填剤;染顔料;可塑剤が挙げられる。
 熱可塑性樹脂が芳香族ポリカーボネート樹脂である場合、添加剤としては例えば以下のものを使用できる。防炎加工剤、ドリップ防止剤(例えば、フッ素化ポリオレフィン、シリコーン及びアラミド繊維)、滑剤、離型剤(例えば、ペンタエリスリトールテトラステアレート)、成核剤、帯電防止剤、安定剤、充填材、強化剤(例えば、ガラス繊維、炭素繊維、マイカ、カオリン、タルク、CaCO及びガラスフレーク)、色素及び顔料。色素及び顔料としては、無機系顔料であれば、例えば酸化鉄、群青、酸化チタン、カーボンブラック等が挙げられる。有機系顔料であれば、例えばフタロシアニン系やアンスラキノン系の青色顔料、ペリレン系やキナクリドン系の赤色顔料、イソインドリノン系の黄色顔料等が挙げられる。また、特殊顔料として蛍光顔料、金属粉顔料、パール顔料等が挙げられる。染料であればニグロシン系、ペリノン系、アンスラキノン系のものが挙げられ、要求される色に応じた様々なグレードが市販されており、それらを使用することができる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
〔樹脂組成物の調製方法〕
 本発明の熱可塑性樹脂組成物の調製方法は特に限定されないが、グラフト共重合体と、熱可塑性樹脂と、必要に応じて使用される各種添加剤とを、V型ブレンダーやヘンシェルミキサー等により混合分散させ、この混合物を押出機またはバンバリーミキサー、加圧ニーダー、ロール等の混練機等を用いて溶融混練することにより調製できる。これらの各成分の混合はバッチ的又は連続的に実施することができ、各成分の混合順序は特に限定されない。溶融混練物はペレットにして、各種の成形に用いることができる。
 [成形体]
 本発明に係る成形体は、上記の熱可塑性樹脂組成物を成形してなるものである。熱可塑性樹脂組成物の成形方法としては、例えば、熱可塑性樹脂組成物、又はグラフト共重合体粉体と熱可塑性樹脂の混合物を、射出成形機で成形する方法が挙げられる。
 成形体の用途としては特に制限はなく、自動車分野、OA機器分野、電気・電子分野等の材料として、工業的に広く利用することができる。
 本発明のポリオルガノシロキサン含有グラフト共重合体、及びグラフト共重合体(G1)を添加すると優れた効果が期待できる樹脂としては例えば、PBTやPPSやPOM等の結晶性樹脂が挙げられる。これらの樹脂は結晶性であるため、耐熱性や剛性に優れるが、靱性が不足している。靱性付与を目的として本発明のポリオルガノシロキサン含有グラフト共重合体、及びグラフト共重合体(G1)を5~40質量%の量で添加すると、発色性と衝撃強度、引張伸び性に優れた樹脂組成物が得られる。
 また、その他にもPCとの前記したようなアロイ系樹脂が挙げられる。PCの流動性を向上させるためにPC/ASアロイとする場合や、PCの耐薬品性を向上させるためにPC/PEs等のアロイとする場合、耐衝撃性が低下するが、本発明のポリオルガノシロキサン含有グラフト共重合体、及びグラフト共重合体(G1)を3~20質量%の量で添加すると、発色性と衝撃強度に優れた樹脂組成物が得られる。また、本発明のポリオルガノシロキサン含有グラフト共重合体、及びグラフト共重合体(G1)は耐熱老化性、耐湿熱性、耐候性に優れるので、得られる樹脂組成物も耐熱老化性、耐湿熱性、耐候性に優れる。
 また、剛性を向上させる目的でPCにガラスフィラーなどの強化剤を加える場合は耐衝撃性や靱性が低下するが、本発明のポリオルガノシロキサン含有グラフト共重合体、及びグラフト共重合体(G1)を1~10質量%の量で添加すると、発色性と衝撃強度とともに靱性にも優れた樹脂組成物が得られる。
 以下、実施例及び比較例により本発明を具体的に説明する。実施例に先立って、各種評価方法、並びに、ポリオルガノシロキサンのラテックスの製造例1~3を説明する。実施例1~3、13及び比較例1、2、10は、グラフト共重合体の製造及び評価に関する例であり、実施例4~12、14及び比較例3~9、11は、熱可塑性樹脂組成物の製造及び評価に関する例である。製造例および実施例等において「部」及び「%」は、特に断らない限り「質量部」及び「質量%」を意味する。
<評価方法>
 (1)固形分
 質量w1のポリオルガノシロキサンのラテックスを180℃の熱風乾燥機で30分間乾燥し、乾燥後の残渣の質量w2を測定し、下記式により固形分[%]を算出する。
    固形分[%]=w2/w1×100
 (2)質量平均粒子径(Dw)
 「ゴムラテックス」又は「グラフト共重合体ラテックス」を脱イオン水で固形分濃度約3%に希釈したものを試料として、前述した米国MATEC社製CHDF2000型粒度分布計を用いて、前述の条件を用いて、粒子径を測定し、質量平均粒子径Dwを測定する。
 (3)シャルピー衝撃強度
 JIS K 7111に準じて、温度23℃及び-30℃にて、試験片(長さ80.0mm×幅10.0mm×厚み4mm、Vノッチ付き)のシャルピー衝撃強度を測定する。
 (4)全光線透過率(発色性)
 JIS K 7375に準拠して、日本電色工業(株)製HAZE Meter NDH4000(商品名)を用いて、試験片(長さ100mm、幅50mm、厚み2mm)について、D65光源における全光線透過率を測定する。全光線透過率が高いほど、顔料等を添加した際の発色性が高くなるため、良好と判断した。ポリカーボネート樹脂(三菱エンジニアリングプラスチックス(株)製、商品名;ユーピロンS-2000F、粘度平均分子量24,000)97質量%に対して、グラフト共重合体の粉体3質量%を加え、溶融混練し、射出成型によって得られた試験片(長さ100mm、幅50mm、厚み2mm)を測定した際の全光線透過率が50%以上であることが、顔料等を添加した際の発色性が非常に高くなるため好ましい。
 (5)耐熱老化性
 試験片(長さ100mm、幅50mm、厚み2mm)を温度120℃のオーブン中にて1000時間、熱処理する。オーブンから試験片を取り出し、温度23℃、相対湿度50%の雰囲気で12時間以上放置した後、JIS Z 8729(L*a*b* 表色系による物体色の表示方法)により、測定はJIS Z 8722に準拠して、日本電色工業(株)製SE-4000(商品名)を用いて、下記の「測定条件5」によって熱処理前と熱処理後の物体色を測定し、色調の変化<ΔE:((ΔL*)2+(Δa*)2+(Δb*)2)1/2>を求める。
「測定条件5」
装置:分光式色差計SE-4000(日本電色工業株式会社製、0-45°後分光方式)、
測定範囲:380~780nm、
測定光源:C光(2°視野)
 (6)耐湿熱性
 試験片(長さ100mm、幅50mm、厚み2mm)を温度85℃、湿度85%の恒温恒湿機中にて1000時間、湿熱処理する。恒温恒湿機から試験片を取り出し、温度23℃、相対湿度50%の雰囲気で12時間以上放置した後、JIS Z 8729(L*a*b* 表色系による物体色の表示方法)により、測定はJIS Z 8722に準拠して、日本電色工業(株)製SE-4000を用いて、前述した「測定条件5」によって熱処理前と熱処理後の物体色を測定し、色調の変化<ΔE:((ΔL*)2+(Δa*)2+(Δb*)2)1/2>を求める。
 (7)耐候性
 試験片(長さ100mm、幅50mm、厚み2mm)をブラックパネル温度:63℃、雨有りの条件のサンシャインウェザーメーター(スガ試験機製、型式:WEL-SUN-HCH-B型)にて500時間、暴露する。サンシャインウェザーメーターから試験片を取り出し、温度23℃、相対湿度50%の雰囲気で12時間以上放置した後、JIS Z 8729(L*a*b* 表色系による物体色の表示方法)により、測定はJIS Z 8722に準拠して、日本電色工業(株)製SE-4000を用いて、前述した「測定条件5」によって熱処理前と熱処理後の物体色を測定し、色調の変化<ΔE:((ΔL*)2+(Δa*)2+(Δb*)2)1/2>を求める。
 (8)ポリオルガノシロキサン含有グラフト共重合体の屈折率
 圧縮成型によって、薄膜化したポリオルガノシロキサン含有グラフト共重合体を、JIS K 7142 A法に準じ、アッベ屈折計を用いて、温度23℃で測定する。
 (9)漆黒性(顔料着色性)
 カーボンブラックで着色した厚さ2mmの試験片2をJIS Z 8729(L*a*b* 表色系による物体色の表示方法)により、測定はJIS Z 8722に準拠して、日本電色工業(株)製SE-4000(商品名)を用いて、下記の「測定条件25」によって物体色を測定し、L*を漆黒性の指標とする。L*は低いほど漆黒性に優れ、顔料を添加した際の発色性が優れることを表す。
「測定条件25」
装置:分光式色差計SE-4000(日本電色工業株式会社製、0-45°後分光方式)、
測定範囲:380~780nm、
測定光源:C光(2°視野)
 (10)難燃性
 1/16インチの試験片(長さ127mm、幅12.7mm、厚さ1.6mm)について、UL-94V試験(垂直試験法)を行った。
 [製造例1]
 テトラエトキシシラン(TEOS)2部、γ-メタクリロイロキシプロピルジメトキシメチルシラン(DSMA)2部及び、オクタメチルシクロテトラシロキサン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(株)製、製品名:TSF404)96部を混合してオルガノシロキサン混合物100部を得た。脱イオン水150部中にドデシルベンゼンスルホン酸ナトリウム(DBSNa)1部を溶解した水溶液を、前記混合物中に添加し、ホモミキサーにて10,000rpmで5分間攪拌した後、ホモジナイザーに20MPaの圧力で2回通し、安定な予備混合エマルションを得た。
 次いで、冷却コンデンサーを備えた容量5リットルのセパラブルフラスコ内に、上記エマルションを入れた後、該エマルションを温度80℃に加熱し、次いで硫酸0.20部と蒸留水49.8部との混合物を3分間にわたり連続的に投入した。80℃に加熱した状態を7時間維持して重合反応させた後、25℃に冷却し、得られた反応物を25℃で6時間保持した。その後、5%水酸化ナトリウム水溶液を添加して反応液をpH7.0に中和して、ポリオルガノシロキサンラテックス(AS-1)を得た。
 ポリオルガノシロキサンラテックス(AS-1)の固形分は29.8%であった。また、このラテックスのキャピラリー粒度分布計による数平均粒子径(Dn)は384nm、質量平均粒子径(Dw)は403nmであり、Dw/Dnは1.05であった。
[製造例2]
 テトラエトキシシラン(TEOS)を2部から0.5部に変更したこと以外は、製造例1と同様の操作を行い、ポリオルガノシロキサンラテックス(AS-2)を得た。
 ポリオルガノシロキサンラテックス(AS-2)の固形分は29.2%であった。また、このラテックスのキャピラリー粒度分布計による数平均粒子径(Dn)は399nm、質量平均粒子径(Dw)は407nmであり、Dw/Dnは1.02であった。
 [製造例3]ポリオルガノシロキサンラテックスの製造(AS-3)
 テトラエトキシシラン(TEOS)1.5部、γ-メタクリロイロキシプロピルジメトキシメチルシラン(DSMA)1部及び、環状ジメチルシロキサン混合物(信越シリコーン(株)製、製品名:DMC)87.5部、ジフェニルジメトキシシラン(信越シリコーン(株)製、製品名:KBM-202SS)10部を混合してオルガノシロキサン混合物100部を得た。脱イオン水200部中にドデシルベンゼンスルホン酸ナトリウム(DBSNa)0.67部を溶解した水溶液を、前記混合物中に添加し、ホモミキサーにて10,000rpmで5分間攪拌した後、ホモジナイザーに20MPaの圧力で2回通し、安定な予備混合エマルションを得た。
 次いで、冷却コンデンサーを備えた容量5リットルのセパラブルフラスコ内に、上記エマルションを入れた後、該エマルションを温度80℃に加熱し、次いでドデシルベンゼンスルホン酸0.67部と脱イオン20部との混合物を2時間にわたり連続的に投入した。その後、80℃に加熱した状態を4時間維持して重合反応させた後、25℃に冷却し、得られた反応物を25℃で6時間保持した。その後、5%水酸化ナトリウム水溶液を添加して反応液をpH7.0に中和して、ポリオルガノシロキサンラテックス(AS-3)を得た。このラテックスの固形分は27.3%、キャピラリー粒度分布計による質量平均粒子径(Dw)は214nm、数平均粒子径(Dn)は142nm、Dw/Dnは1.51であった。
 [実施例1]
 製造例1において得たポリオルガノシロキサンラテックス(AS-1)67.11部(ポリマー換算で20.0部)を容量5リットルのセパラブルフラスコ内に採取し、脱イオン水160部を添加し混合した。次いでこのセパラブルフラスコ内に、スチレン(St)17.25部、アリルメタクリレート(AMA)0.44部、クメンハイドロパーオキサイド(CHP)0.07部の混合物(ゴム重合に用いる混合物の1/4量)を添加し、25℃で1時間撹拌を続けポリオルガノシロキサンに含浸させた。
 このセパラブルフラスコ内に窒素気流を通じることによりフラスコ内雰囲気の窒素置換を行い、液温を70℃まで昇温した。液温が70℃となった時点で硫酸第一鉄(Fe)0.001部、エチレンジアミン四酢酸二ナトリウム塩(EDTA)0.003部、ナトリウムホルムアルデヒドスルホキシレート(SFS)0.24部を脱イオン水10部に溶解させた水溶液を添加し、ラジカル重合を開始した。ラジカル重合開始から30分保持した後、スチレン(St)51.75部、アリルメタクリレート(AMA)1.33部、クメンハイドロパーオキサイド(CHP)0.21部とドデシルベンゼンスルホン酸ナトリウム(商品名:ネオペレックスG-15、固形分15%)2.53部(固形分換算で0.38部)を脱イオン水26.74部に溶解させた水溶液を混合し、ULTRA-TURRAX(登録商標) T25(IKA社製)を用いて、10000rpmの回転数で2分間分散させた混合エマルションを、330分にわたって滴下した。
 ビニル単量体成分の重合を完結させるため、滴下終了後から1時間70℃の状態を維持し、ポリオルガノシロキサンとスチレンを含むゴム(A-1)のラテックスを得た。
 このラテックスの液温が70℃の状態で、メチルメタクリレート(MMA)9.5部、ブチルアクリレート(BA)0.5部、t-ブチルハイドロパーオキサイド(t-BH)0.05部の混合液を1時間にわたって、このラテックス中に滴下し、グラフト重合反応を開始させ、継続させた。滴下終了後、温度70℃の状態を1時間保ったのち25℃に冷却し、ポリオルガノシロキサン含有グラフト共重合体(G-1)のラテックスを得た。
 次いで、酢酸カルシウムの濃度が1質量%の水溶液500部を85℃に加熱して、攪拌しながら、この水溶液中にグラフト共重合体(G-1)のラテックス340部を徐々に滴下し凝固させた。得られたグラフト共重合体(G-1)をろ過、洗浄、脱水した後、乾燥させてグラフト共重合体(G-1)の粉体を得た。グラフト共重合体(G-1)の重合率、質量平均粒子径を表1に示す。また、前記測定条件1で測定したtanδについても表1に示す。尚、この重合率は、複合ゴムの製造からグラフト重合までの全工程において使用された単量体成分の重合率である。
 [実施例2、3、比較例1、2]
 実施例1において用いた各原料の種類及び量を表1に示す条件に変更したこと以外は実施例1と同様にして、ポリオルガノシロキサン含有グラフト共重合体(G-2、G-3、及びG’-1~2)を製造し、さらにグラフト共重合体の粉体を得た。得られた各グラフト共重合体の重合率、質量平均粒子径を表1に示す。また、前記測定条件1で測定したtanδのピーク温度についても表1に示す。なお、表1中の単官能性ビニル単量体(a1)と多官能性ビニル単量体(a2)の欄の括弧内の数値はビニル重合体(A2)100質量%に占める組成比(質量%)を示す。また、組成から計算される屈折率、及びアッベ屈折率計によって測定した屈折率も表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1中の略号は以下のとおりである。
St:スチレン
BA:n-ブチルアクリレート
AMA:アリルメタクリレート
MMA:メチルメタクリレート
PhMA:フェニルメタクリレート
MA:メチルアクリレート
 また、グラフト共重合体の屈折率の計算値は実測値に近似しており、所望の屈折率を有するグラフト共重合体が組成を調整することで容易に得られることが分かる。
[実施例4~6、比較例3~5]
 各ポリオルガノシロキサン含有グラフト共重合体(G-1)~(G-3)、(G’-1)、(G’-2)の粉体、及び、ポリカーボネート樹脂(略称「PC」、三菱エンジニアリングプラスチックス(株)製、商品名;ユーピロンS-2000F、粘度平均分子量24,000)を、表2に記載の比率で配合し、混合した。該配合物を、30mmΦ二軸押出機(L/D=30)に供給してシリンダー温度280℃及びスクリュー回転数150rpmで溶融混合して押出して、熱可塑性樹脂組成物(H-1)~(H-6)のペレットを得た。
 得られたペレットを70℃で12時間乾燥した後、100t射出成形機(住友重機(株)製、商品名;SE-100DU)に供給し、シリンダー温度280℃及び金型温度80℃で射出成形を行い、各「試験片1」(長さ80mm、幅10mm、厚み4mm、Vノッチ付き)及び各「試験片2」(長さ100mm、幅50mm、厚み2mm)を得た。次いで、各試験片を用いてシャルピー衝撃強度、全光線透過率(発色性)、耐熱老化性、耐湿熱性、耐候性の測定を行った。評価結果を表2に示す。
[樹脂組成物の性能比較]
 tanδのピーク温度が-125℃~-90℃の範囲にあるポリオルガノシロキサン含有共重合体を含む実施例4~6は低温衝撃強度と全光線透過率のバランスに優れていた。耐熱老化性、耐湿熱性、耐候性が比較例3,4と比べてバランスよく優れていた。
 比較例3~4はポリオルガノシロキサン含有共重合体のtanδのピーク温度が-125℃~-90℃の範囲にないため、低温衝撃強度と全光線透過率のバランスが低位であった。また、特に耐候性に劣っていた。
Figure JPOXMLDOC01-appb-T000002
 [実施例7~9、比較例6]
 各ポリオルガノシロキサン含有グラフト共重合体(G-1)~(G-3)、(G’-1)の粉体、ポリカーボネート樹脂(略称「PC」、三菱エンジニアリングプラスチックス(株)製、商品名;ユーピロンS-2000F、粘度平均分子量24,000)、及び着色剤としてカーボンブラック♯960(略称「CB」、三菱ケミカル(株)製)を表3に記載の比率で配合し、混合した。該配合物を、30mmΦ二軸押出機(L/D=30)に供給してシリンダー温度280℃及びスクリュー回転数150rpmで溶融混合して押出して、熱可塑性樹脂組成物(H-7)~(H-10)のペレットを得た。
 得られたペレットを70℃で12時間乾燥した後、100t射出成形機(住友重機(株)製、商品名;SE-100DU)に供給し、シリンダー温度280℃及び金型温度80℃で射出成形を行い、「試験片2」(長さ100mm、幅50mm、厚み2mm)を得た。次いで、漆黒性を評価した。評価結果を表3に示す。
 実施例7~8は比較例6と比較して、漆黒性に優れていた。
Figure JPOXMLDOC01-appb-T000003
 [実施例10~12、比較例7~9]
 各ポリオルガノシロキサン含有グラフト共重合体(G-1)~(G-3)、(G’-1)、(G’-2)の粉体、ポリカーボネート樹脂(略称「PC」、三菱エンジニアリングプラスチックス(株)製、商品名;ユーピロンS-2000F、粘度平均分子量24,000)、芳香族リン酸エステル系難燃剤(大八化学工業(株)製、商品名;PX-200)、ポリテトラフルオロエチレン含有粉体(略称「PTFE」、三菱ケミカル(株)製、商品名;メタブレンA-3800)を表4に記載の比率で配合し、混合した。該配合物を、30mmΦ二軸押出機(L/D=30)に供給してシリンダー温度280℃及びスクリュー回転数150rpmで溶融混合して押出して、熱可塑性樹脂組成物(H-11)~(H-16)のペレットを得た。
 得られたペレットを70℃で12時間乾燥した後、100t射出成形機(住友重機(株)製、商品名;SE-100DU)に供給し、シリンダー温度280℃及び金型温度80℃で射出成形を行い、各「試験片1」(長さ80mm、幅10mm、厚み4mm、Vノッチ付き)、「試験片2」(長さ100mm、幅50mm、厚み2mm)及び「試験片3」(長さ127mm、幅12.7mm、厚み1.6mm)を得た。次いで、各試験片を用いて、シャルピー衝撃強度、全光線透過率、及び難燃性試験を行った。評価結果を表4に示す。
 実施例10~12は比較例7~9と比較して、低温でのシャルピー衝撃強度、全光線透過率、難燃性のバランスに優れていた。
Figure JPOXMLDOC01-appb-T000004
 以下は、第2の発明形態の実施例である。
 [実施例13]
 製造例1において得たポリオルガノシロキサンラテックス(AS-1)67.11部(ポリマー換算で20.0部)を容量5リットルのセパラブルフラスコ内に採取し、脱イオン水160部を添加し混合した。次いでこのセパラブルフラスコ内に、スチレン(St)12.25部、n-ブチルアクリレート(BA)5.00部、アリルメタクリレート(AMA)0.44部、クメンハイドロパーオキサイド(CHP)0.07部の混合物(ゴム重合に用いる混合物の1/4量)を添加し、25℃で1時間撹拌を続けポリオルガノシロキサンに含浸させた。
 このセパラブルフラスコ内に窒素気流を通じることによりフラスコ内雰囲気の窒素置換を行い、液温を70℃まで昇温した。液温が70℃となった時点で硫酸第一鉄(Fe)0.001部、エチレンジアミン四酢酸二ナトリウム塩(EDTA)0.003部、ナトリウムホルムアルデヒドスルホキシレート(SFS)0.24部を脱イオン水10部に溶解させた水溶液を添加し、ラジカル重合を開始した。ラジカル重合開始から30分保持した後、スチレン(St)36.75部、n-ブチルアクリレート(BA)15.00部、アリルメタクリレート(AMA)1.33部、クメンハイドロパーオキサイド(CHP)0.21部とドデシルベンゼンスルホン酸ナトリウム(商品名:ネオペレックスG-15、固形分15%)2.53部(固形分換算で0.38部)を脱イオン水26.74部に溶解させた水溶液を混合し、ULTRA-TURRAX(登録商標) T25(IKA社製)を用いて、10000rpmの回転数で2分間分散させた混合エマルションを、330分にわたって滴下した。
 ビニル単量体成分の重合を完結させるため、滴下終了後から1時間70℃の状態を維持し、ポリオルガノシロキサンとスチレンを含むゴムのラテックスを得た。
 このラテックスの液温が70℃の状態で、メチルメタクリレート(MMA)9.5部、ブチルアクリレート(BA)0.5部、t-ブチルハイドロパーオキサイド(t-BH)0.05部の混合液を1時間にわたって、このラテックス中に滴下し、グラフト重合反応を開始させ、継続させた。滴下終了後、温度70℃の状態を1時間保ったのち25℃に冷却し、ポリオルガノシロキサン含有グラフト共重合体(G-4)のラテックスを得た。
 次いで、酢酸カルシウムの濃度が1質量%の水溶液500部を85℃に加熱して、攪拌しながら、この水溶液中にグラフト共重合体(G-4)のラテックス340部を徐々に滴下し凝固させた。得られたグラフト共重合体(G-4)をろ過、洗浄、脱水した後、乾燥させてグラフト共重合体(G-4)の粉体を得た。グラフト共重合体(G-4)の重合率、質量平均粒子径を表5に示す。尚、この重合率は、複合ゴムの製造からグラフト重合までの全工程において使用された単量体成分の重合率である。
 [比較例10]
 製造例3において得たポリオルガノシロキサンラテックス(AS-3)73.3部(ポリマー換算で20部)を容量5リットルのセパラブルフラスコ内に採取し、脱イオン水160部、DBSNa0.7部を添加し混合した。次いでこのセパラブルフラスコ内に、スチレン(St)8部を添加し、25℃で1時間撹拌を続けポリオルガノシロキサンに含浸させた。
 このセパラブルフラスコ内に窒素気流を通じることによりフラスコ内雰囲気の窒素置換を行い、液温を75℃まで昇温した。液温が75℃となった時点で過硫酸カリウム(KPS)0.09部を脱イオン水5部に溶解させた水溶液を添加し、ラジカル重合を開始した。スチレンの重合を完結させるため、KPSを添加した時点から2時間、75℃の状態を維持した。
 次に、このラテックスの液温を25℃に低下させ、n-ブチルアクリレート(BA)41部とトリアリルシアヌレート(TAC)2部の混合物を添加し、25℃で1時間撹拌を続け、単量体混合物をポリオルガノシロキサンに含浸させた。
 次いで、このラテックスの液温を75℃まで昇温し、液温が75℃となった時点でKPS0.09部を脱イオン水5部に溶解させた水溶液を添加し、ラジカル重合を開始した。単量体成分の重合を完結させるため、KPSを添加した時点から2時間、75℃の状態を維持し、ポリオルガノシロキサンとスチレンを含むゴムのラテックスを得た。
 このラテックスの液温が75℃の状態で、KPS0.15部を脱イオン水5部に溶解させた水溶液を添加し、次いで、St29部を15分間にわたって、このラテックス中に滴下し、グラフト重合反応を開始させ、継続させた。滴下終了後、温度75℃以上の状態を4時間保ったのち25℃に冷却し、ポリオルガノシロキサン含有グラフト共重合体(G’-3)のラテックスを得た。
 次いで、酢酸カルシウムの濃度が1質量%の水溶液500部を60℃に加熱して、攪拌しながら、この水溶液中にグラフト共重合体(G’-3)のラテックス328.3部を徐々に滴下し凝固させた。得られたグラフト共重合体(G’-3)をろ過、洗浄、脱水した後、乾燥させてグラフト共重合体(G’-3)の粉体を得た。グラフト共重合体(G’-3)の重合率、質量平均粒子径を表5に示す。尚、この重合率は、複合ゴムの製造からグラフト重合までの全工程において使用された単量体成分の重合率である。
表5中の略号は以下のとおりである。
St:スチレン
BA:n-ブチルアクリレート
AMA:アリルメタクリレート
TAC:トリアリルシアヌレート
MMA:メチルメタクリレート
Figure JPOXMLDOC01-appb-T000005
 上記グラフト共重合体G-4及びG’-3並びに、実施例3及び比較例1で製造したグラフト共重合体G-3及びG’-1について、下記測定を実施し、グラフト共重合体中の分散相及び連続相を評価した。結果を表6に示す。
 (11)グラフト共重合体の弾性率
 「測定条件3」
 グラフト共重合体の粒子をカプセルに取り、常温硬化型エポキシ樹脂を注ぎ、25℃で12時間放置し、硬化させ、得られる樹脂片を、ウルトラミクロトーム(商品名「Leica EM UC7」、ライカ マイクロシステムズ(株)製)により、ガラスナイフを用いて、常温で面出したものをサンプル1として用いる。サンプル1を走査型プローブ顕微鏡(Veeco Instruments,Inc製)により、スキャン範囲1μm角の条件で、粒子の弾性率像を取得する。
 該粒子の弾性率像において、該粒子に内接する矩形領域の弾性率のヒストグラムを取得し、該ヒストグラムのガウス曲線のピークトップを前記B相の弾性率とし、該粒子中において0.20GPa以上の弾性率を有する領域に内包される50nm角以上の大きさの領域においても弾性率のヒストグラムを取得し、該ヒストグラムのガウス曲線のピークトップを前記A相の弾性率とする。
 (12)グラフト共重合体中の高弾性率相の直径
 「測定条件4」
 測定条件3で得られた樹脂片を前記ウルトラミクロトームにより、ダイヤモンドナイフを用いて、常温で面出し及びトリミングし、さらに薄片厚さ50nmの条件で切片を切り出し、支持膜付きグリッドの上に回収したものをサンプル2として用いる。サンプル2を透過型電子顕微鏡(「商品名「H-7600」、日立(株)製)に設置し、加速電圧80kV、倍率20万倍の条件で、粒子像を取得する。取得した粒子像について、画像解析ソフト(商品名「Image-Pro(登録商標) Plus」、(株)日本ローパー製)を用いて、背景の輝度むらの平坦化、ノイズの除去、エッジの強調、2値化を行う。取得した粒子像で明コントラストに見えていた相を2値化により抽出し、一粒子像内に視認できる直径の大きい相から10点まで選択し、その平均直径を求める。さらに、粒子10点の平均直径について平均値を求め、その平均値をA相の平均直径とする。
Figure JPOXMLDOC01-appb-T000006
 [実施例14、比較例11]
 各グラフト共重合体(G-4)、(G’-3)の粉体、及び、ポリカーボネート樹脂(三菱エンジニアリングプラスチックス(株)製、商品名;ユーピロンS-2000F、粘度平均分子量24,000)を、表7に記載の比率で配合し、混合した。該配合物を、30mmφ二軸押出機(L/D=30)に供給してシリンダー温度280℃及びスクリュー回転数150rpmで溶融混合して押出して、熱可塑性樹脂組成物(H-17)、(H-18)のペレットを得た。
 得られたペレットを70℃で12時間乾燥した後、100t射出成形機(住友重機(株)製、商品名;SE-100DU)に供給し、シリンダー温度280℃及び金型温度80℃で射出成形を行い、各「試験片1」(長さ80mm、幅10mm、厚み4mm、Vノッチ付き)及び各「試験片2」(長さ100mm、幅50mm、厚み2mm)を得た。次いで、各試験片を用いてシャルピー衝撃強度、全光線透過率(発色性)の測定を行った。評価結果を表7に示す。なお、表7には第1の発明形態に含まれるグラフト共重合体G-3を使用する実施例6とグラフト共重合体G’-1を使用する比較例3、グラフト共重合体を使用しない比較例5も記載している。
Figure JPOXMLDOC01-appb-T000007
 弾性率が0.4GPa以上の相(A相)と弾性率が0.2GPa以下の相(B相)を含み、A相が分散相、B相が連続相であって、A相のサイズが50nm以上であるグラフト共重合体を含む樹脂組成物は低温でのシャルピー衝撃強度、全光線透過率(発色性)のバランスに優れていた。
 本発明のポリオルガノシロキサン含有グラフト共重合体及びグラフト共重合体(G1)は、衝撃強度改質剤として熱可塑性樹脂に添加することで、発色性と低温耐衝撃性とのバランスに優れた熱可塑性樹脂組成物及び成形体を提供することができる。得られた成形体は、自動車分野、OA機器分野、電気・電子分野等の材料として、工業的に広く利用することができる。
 この出願は、2017年6月6日に出願された日本出願特願2017-111777を基礎とする優先件を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1 グラフト共重合体粒子
2 分散相(A相)
3 連続相(B相)
4 エポキシ樹脂の硬化層

Claims (20)

  1.  ポリオルガノシロキサン(A1)とビニル重合体(A2)を含有するゴム(A)を、ビニル単量体(b)でグラフト化したポリオルガノシロキサン含有グラフト共重合体であって、
     前記ビニル重合体(A2)が、単官能性ビニル単量体(a1)90~100質量%と、多官能性ビニル単量体(a2)10~0質量%とのビニル重合体であって、
     前記単官能性ビニル単量体(a1)の単独重合体のガラス転移温度が0℃以上であり、
     さらに以下の測定条件1で測定した際のポリオルガノシロキサン含有グラフト共重合体のtanδのピークが、-125℃~-90℃の温度範囲にあるポリオルガノシロキサン含有グラフト共重合体。
    「測定条件1」
     ポリオルガノシロキサン含有グラフト共重合体を160℃、5MPaで圧縮成型し、1mm厚とした試験片を動的粘弾性装置で引張りモード、昇温速度2℃/分、10Hzの周波数で-150℃~180℃の温度範囲で測定する。
  2.  「測定条件2」で測定した屈折率が1.531~1.700の範囲にある請求項1に記載のポリオルガノシロキサン含有グラフト共重合体。
     「測定条件2」 圧縮成型によって、薄膜化したポリオルガノシロキサン含有グラフト共重合体を、JIS K 7142 A法に準じ、アッベ屈折計を用いて、温度23℃で測定する。
  3.  tanδのピークをさらに-80℃~0℃の温度範囲に有する請求項1又は2に記載のポリオルガノシロキサン含有グラフト共重合体。
  4.  ポリオルガノシロキサン含有グラフト共重合体100質量%に対するポリオルガノシロキサン含有量が0.1~40質量%である請求項1~3のいずれか一項に記載のポリオルガノシロキサン含有グラフト共重合体。
  5.  ポリオルガノシロキサン含有グラフト共重合体100質量%に対して、ポリオルガノシロキサン(A1)を0.1~40質量%、ビニル重合体(A2)を41~99.8質量%を含むゴム(A)を、ビニル単量体(b)0.1~19質量%でグラフト化したポリオルガノシロキサン含有グラフト共重合体であって、
     ビニル重合体(A2)が、単官能性ビニル単量体(a1)90~100質量%と、多官能性ビニル単量体(a2)10~0質量%とのビニル重合体であって、前記単官能性ビニル単量体(a1)はその単独重合体のガラス転移温度が0℃以上である単官能性ビニル単量体の1種以上である、ポリオルガノシロキサン含有グラフト共重合体。
  6.  「測定条件2」で測定した屈折率が1.531~1.700の範囲である請求項5に記載のポリオルガノシロキサン含有グラフト共重合体。
     「測定条件2」 圧縮成型によって、薄膜化したポリオルガノシロキサン含有グラフト共重合体を、JIS K 7142 A法に準じ、アッベ屈折計を用いて、温度23℃で測定する。
  7.  請求項1~6のいずれか1項に記載のポリオルガノシロキサン含有グラフト共重合体と熱可塑性樹脂とを含む熱可塑性樹脂組成物。
  8.  前記熱可塑性樹脂と前記ポリオルガノシロキサン含有グラフト共重合体の合計100質量%中の前記ポリオルガノシロキサン含有グラフト共重合体の含有量が0.5~50質量%である請求項7に記載の熱可塑性樹脂組成物。
  9.  前記熱可塑性樹脂がポリカーボネート樹脂である請求項7または8に記載の熱可塑性樹脂組成物。
  10.  請求項7~9のいずれか一項に記載の熱可塑性樹脂組成物を成形してなる成形体。
  11.  分散相(A相)と連続相(B相)とを有し、「測定条件3」で測定される弾性率像において、前記A相における弾性率が0.4GPa以上であり、前記B相における弾性率が0.2GPa以下であり、「測定条件4」で測定される前記A相の平均直径が50nm以上であるグラフト共重合体。
     「測定条件3」
     グラフト共重合体の粒子をカプセルに取り、常温硬化型エポキシ樹脂を注ぎ、25℃で12時間放置し、硬化させ、得られる樹脂片を、ウルトラミクロトーム(商品名「Leica EM UC7」、ライカ マイクロシステムズ(株)製)により、ガラスナイフを用いて、常温で面出したものをサンプル1として用いる。サンプル1を走査型プローブ顕微鏡(Veeco Instruments,Inc製)により、スキャン範囲1μm角の条件で、粒子の弾性率像を取得する。
     該粒子の弾性率像において、該粒子に内接する矩形領域の弾性率のヒストグラムを取得し、該ヒストグラムのガウス曲線のピークトップを前記B相の弾性率とし、該粒子中において0.20GPa以上の弾性率を有する領域に内包される50nm角以上の大きさの領域においても弾性率のヒストグラムを取得し、該ヒストグラムのガウス曲線のピークトップを前記A相の弾性率とする。
     「測定条件4」
     測定条件3で得られた樹脂片を前記ウルトラミクロトームにより、ダイヤモンドナイフを用いて、常温で面出し及びトリミングし、さらに薄片厚さ50nmの条件で切片を切り出し、支持膜付きグリッドの上に回収したものをサンプル2として用いる。サンプル2を透過型電子顕微鏡(「商品名「H-7600」、日立(株)製)に設置し、加速電圧80kV、倍率20万倍の条件で、粒子像を取得する。取得した粒子像について、画像解析ソフト(商品名「Image-Pro(登録商標) Plus」、(株)日本ローパー製)を用いて、背景の輝度むらの平坦化、ノイズの除去、エッジの強調、2値化を行う。取得した粒子像で明コントラストに見えていた相を2値化により抽出し、一粒子像内に視認できる直径の大きい相から10点まで選択し、その平均直径を求める。さらに、粒子10点の平均直径について平均値を求め、その平均値をA相の平均直径とする。
  12.  前記A相が、グラフト共重合体の一粒子中に2つ以上含まれる請求項11に記載のグラフト共重合体。
  13.  前記A相の平均直径が60nm以上である請求項11または12に記載のグラフト共重合体。
  14.  前記A相が芳香族ビニル重合体を含む相である請求項11~13のいずれか1項に記載のグラフト共重合体。
  15.  前記B相がポリオルガノシロキサンを含む相である請求項11~14のいずれか1項に記載のグラフト共重合体。
  16.  前記グラフト共重合体の質量平均粒子径が300~2000nmである請求項11~15のいずれか1項に記載のグラフト共重合体。
  17.  請求項11~16のいずれか1項に記載のグラフト共重合体と熱可塑性樹脂とを含む熱可塑性樹脂組成物。
  18.  前記熱可塑性樹脂とグラフト共重合体の合計100質量%中の前記グラフト共重合体の含有量が0.5~50質量%である請求項17に記載の熱可塑性樹脂組成物。
  19.  前記熱可塑性樹脂がポリカーボネート樹脂である請求項17または18に記載の熱可塑性樹脂組成物。
  20.  請求項17~19のいずれか1項に記載の熱可塑性樹脂組成物を成形してなる成形体。
PCT/JP2018/020504 2017-06-06 2018-05-29 ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体 WO2018225582A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP22198233.3A EP4163313A1 (en) 2017-06-06 2018-05-29 Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded article
KR1020197038561A KR102368241B1 (ko) 2017-06-06 2018-05-29 폴리오르가노실록산 함유 그래프트 공중합체, 열가소성 수지 조성물 및 성형체
JP2019523472A JP7028243B2 (ja) 2017-06-06 2018-05-29 ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体
CN201880037346.5A CN110709437B (zh) 2017-06-06 2018-05-29 含聚有机硅氧烷的接枝共聚物、热塑性树脂组合物及成形体
EP21163190.8A EP3901190B1 (en) 2017-06-06 2018-05-29 Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded article
EP18813303.7A EP3636683B1 (en) 2017-06-06 2018-05-29 Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded article
KR1020217003804A KR102360367B1 (ko) 2017-06-06 2018-05-29 폴리오르가노실록산 함유 그래프트 공중합체, 열가소성 수지 조성물 및 성형체
US16/704,588 US11161974B2 (en) 2017-06-06 2019-12-05 Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded article
US17/102,517 US11773249B2 (en) 2017-06-06 2020-11-24 Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017111777 2017-06-06
JP2017-111777 2017-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/704,588 Continuation US11161974B2 (en) 2017-06-06 2019-12-05 Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded article

Publications (1)

Publication Number Publication Date
WO2018225582A1 true WO2018225582A1 (ja) 2018-12-13

Family

ID=64565858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020504 WO2018225582A1 (ja) 2017-06-06 2018-05-29 ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体

Country Status (7)

Country Link
US (2) US11161974B2 (ja)
EP (3) EP4163313A1 (ja)
JP (3) JP7028243B2 (ja)
KR (2) KR102368241B1 (ja)
CN (1) CN110709437B (ja)
TW (2) TWI789396B (ja)
WO (1) WO2018225582A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153492A1 (ja) * 2020-01-27 2021-08-05 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物及び成形体
WO2022210483A1 (ja) 2021-03-30 2022-10-06 三菱ケミカル株式会社 樹脂組成物、及び成形体
WO2022210492A1 (ja) 2021-03-30 2022-10-06 三菱ケミカル株式会社 ポリオルガノシロキサン含有重合体、組成物、及び成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4166584A4 (en) * 2020-06-12 2023-11-29 Mitsubishi Chemical Corporation POLYORGANOSILOXANE CONTAINING POLYMER PARTICLE GROUP, COMPOSITION, RESIN COMPOSITION AND MOLDED BODY
JPWO2022114157A1 (ja) * 2020-11-30 2022-06-02

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176017A (ja) * 1996-12-17 1998-06-30 Techno Polymer Kk 塩化ビニル系樹脂用改質剤およびそれを用いた塩化ビニル系樹脂組成物
JP2002020443A (ja) * 2000-07-06 2002-01-23 Mitsubishi Rayon Co Ltd グラフト共重合体およびこれを含む熱可塑性樹脂組成物ならびにその成形品
JP2012057177A (ja) * 2011-12-20 2012-03-22 Nippon Shokubai Co Ltd 光拡散媒体用有機粒子
WO2014208716A1 (ja) 2013-06-28 2014-12-31 三菱レイヨン株式会社 ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体
JP2017111777A (ja) 2015-12-18 2017-06-22 丘 森田 旅行支援システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218710A (ja) * 1989-02-20 1990-08-31 Asahi Chem Ind Co Ltd 熱可塑性樹脂粒子を含むシリコーンゴム粒子
US5840802A (en) * 1991-10-11 1998-11-24 General Electric Company Dual graft stage and thermally stabilized polyorganosiloxane/polyvinyl-based graft copolymers and thermoplastic compositions containing the same
JPH05339461A (ja) * 1992-06-11 1993-12-21 Mitsubishi Rayon Co Ltd 耐衝撃性樹脂組成物
PE20011061A1 (es) 2000-02-01 2001-11-20 Procter & Gamble Cristalizacion selectiva del acido 3-piridil-1-hidroxi-etiliden-1,1-bisfosfonico sodio como el hemipentahidrato o el monohidrato
CN1733964B (zh) * 2001-08-10 2011-06-15 三菱丽阳株式会社 直接蒸镀用树脂组合物、使用该组合物的模塑制品以及表面金属化处理的灯罩
EP2399950B1 (en) 2004-12-31 2013-04-17 Cheil Industries Inc. Silicone impact modifier with high refractive index and method for preparing the same
WO2007069493A1 (ja) * 2005-12-12 2007-06-21 Kaneka Corporation 重合体粒子、及びその製造方法、並びに、その重合体粒子を含む樹脂組成物、及び成形体
CN101790550B (zh) * 2007-07-13 2012-07-11 三菱丽阳株式会社 接枝共聚物、热塑性树脂组合物以及成型物
DE102008028571A1 (de) * 2008-06-16 2009-12-17 Bayer Materialscience Ag Schlagzähmodifizierte Polycarbonat-Zusammensetzungen
KR101065337B1 (ko) * 2008-12-19 2011-09-16 제일모직주식회사 내광성 및 난연성이 우수한 폴리카보네이트 수지 조성물
DE102009005762A1 (de) * 2008-12-23 2010-06-24 Bayer Materialscience Ag Schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102008062945A1 (de) * 2008-12-23 2010-06-24 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
WO2011037172A1 (ja) * 2009-09-24 2011-03-31 ユーエムジー・エービーエス株式会社 強化熱可塑性樹脂組成物及び成形品
DE102010041387A1 (de) * 2010-09-24 2012-03-29 Bayer Materialscience Aktiengesellschaft Flammgeschützte schlagzähmodifizierte Batteriegehäuse auf Polycarbonatbasis I
CN107286300B (zh) * 2012-10-31 2021-09-28 三菱化学株式会社 含聚有机硅氧烷的接枝共聚物、树脂组合物以及成形体
CN108641042B (zh) * 2013-08-13 2020-09-11 三菱化学株式会社 含聚有机硅氧烷的接枝共聚物、树脂组合物、成形体、滑动性改良剂和滑动部件
EP3082715B1 (en) 2013-12-16 2018-02-14 Colgate-Palmolive Company Oral care compositions comprising calcium carbonate and talc
US9896579B2 (en) * 2014-07-08 2018-02-20 Umg Abs, Ltd. Thermoplastic resin composition and molded article thereof
JP6467909B2 (ja) 2014-12-24 2019-02-13 三菱ケミカル株式会社 ポリカーボネート樹脂組成物及び成形体
JP2016117867A (ja) 2014-12-24 2016-06-30 三菱レイヨン株式会社 ポリブチレンテレフタレート樹脂組成物及び成形体
EP3353242B1 (en) * 2015-09-21 2019-11-13 SABIC Global Technologies B.V. Flame retardant polycarbonate composition, a method of making and of using the same
US20180312693A1 (en) * 2015-10-28 2018-11-01 Umg Abs, Ltd. Graft copolymer, crosslinked particles, graft crosslinked particles, rubbery polymer, and thermoplastic resin composition using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176017A (ja) * 1996-12-17 1998-06-30 Techno Polymer Kk 塩化ビニル系樹脂用改質剤およびそれを用いた塩化ビニル系樹脂組成物
JP2002020443A (ja) * 2000-07-06 2002-01-23 Mitsubishi Rayon Co Ltd グラフト共重合体およびこれを含む熱可塑性樹脂組成物ならびにその成形品
JP2012057177A (ja) * 2011-12-20 2012-03-22 Nippon Shokubai Co Ltd 光拡散媒体用有機粒子
WO2014208716A1 (ja) 2013-06-28 2014-12-31 三菱レイヨン株式会社 ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体
JP2017111777A (ja) 2015-12-18 2017-06-22 丘 森田 旅行支援システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"POLYMER HANDBOOK", WILEY INTERSCIENCE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153492A1 (ja) * 2020-01-27 2021-08-05 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物及び成形体
JPWO2021153492A1 (ja) * 2020-01-27 2021-08-05
JP7133731B2 (ja) 2020-01-27 2022-09-08 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物及び成形体
WO2022210483A1 (ja) 2021-03-30 2022-10-06 三菱ケミカル株式会社 樹脂組成物、及び成形体
WO2022210492A1 (ja) 2021-03-30 2022-10-06 三菱ケミカル株式会社 ポリオルガノシロキサン含有重合体、組成物、及び成形体
KR20230122135A (ko) 2021-03-30 2023-08-22 미쯔비시 케미컬 주식회사 폴리오르가노실록산 함유 중합체, 조성물 및 성형체
KR20230122134A (ko) 2021-03-30 2023-08-22 미쯔비시 케미컬 주식회사 수지 조성물 및 성형체

Also Published As

Publication number Publication date
JP2021073359A (ja) 2021-05-13
US20200109277A1 (en) 2020-04-09
EP3901190B1 (en) 2023-08-30
CN110709437B (zh) 2022-07-05
KR20200014356A (ko) 2020-02-10
EP3901190A3 (en) 2021-11-10
EP3636683A4 (en) 2020-09-09
EP4163313A1 (en) 2023-04-12
US20210102060A1 (en) 2021-04-08
EP3636683B1 (en) 2023-09-06
KR20210019114A (ko) 2021-02-19
TWI789396B (zh) 2023-01-11
KR102368241B1 (ko) 2022-02-28
JP7318759B2 (ja) 2023-08-01
JP7028243B2 (ja) 2022-03-02
EP3901190A2 (en) 2021-10-27
TW201902961A (zh) 2019-01-16
JPWO2018225582A1 (ja) 2020-04-16
JP2022079654A (ja) 2022-05-26
TW202313741A (zh) 2023-04-01
US11161974B2 (en) 2021-11-02
US11773249B2 (en) 2023-10-03
KR102360367B1 (ko) 2022-02-14
JP7120349B2 (ja) 2022-08-17
EP3636683A1 (en) 2020-04-15
CN110709437A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
JP7318759B2 (ja) ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体
US10246585B2 (en) Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded product
US11548968B2 (en) Polyorganosiloxane-containing graft copolymer powder, and resin composition using the same, and molded article formed of the same
JP7155777B2 (ja) ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体
JP2019218419A (ja) ポリオルガノシロキサン含有グラフト共重合体、およびそれを用いた樹脂組成物ならびにそれからなる成形体
JP2023085185A (ja) 樹脂組成物及び成形体
JP2023143674A (ja) 樹脂組成物及び成形体
KR20230122135A (ko) 폴리오르가노실록산 함유 중합체, 조성물 및 성형체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038561

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018813303

Country of ref document: EP

Effective date: 20200107