WO2018221633A1 - 耐水性硫黄化合物吸着剤 - Google Patents

耐水性硫黄化合物吸着剤 Download PDF

Info

Publication number
WO2018221633A1
WO2018221633A1 PCT/JP2018/020895 JP2018020895W WO2018221633A1 WO 2018221633 A1 WO2018221633 A1 WO 2018221633A1 JP 2018020895 W JP2018020895 W JP 2018020895W WO 2018221633 A1 WO2018221633 A1 WO 2018221633A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
sulfur compound
water
raw material
present
Prior art date
Application number
PCT/JP2018/020895
Other languages
English (en)
French (fr)
Inventor
千尋 小島
崇博 八島
高橋 薫
充司 沖田
一規 本田
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to US16/616,129 priority Critical patent/US10625238B2/en
Priority to JP2018558444A priority patent/JP6517454B2/ja
Priority to CN201880030398.XA priority patent/CN110612156B/zh
Priority to KR1020197032783A priority patent/KR102284311B1/ko
Priority to EP18810836.9A priority patent/EP3632535A4/en
Publication of WO2018221633A1 publication Critical patent/WO2018221633A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3057Use of a templating or imprinting material ; filling pores of a substrate or matrix followed by the removal of the substrate or matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds

Definitions

  • the present invention relates to an adsorbent for adsorbing and removing sulfur compounds contained in various processes.
  • Sulfur compounds are regarded as a problem in petroleum refining processes and petrochemical processes because they cause problems such as deterioration of equipment and catalysts used in the process, and sulfur oxides generated when burned cause acid rain. ing.
  • sulfur compounds contained in the raw materials used in these processes are regarded as problems, and various methods are being studied to remove them.
  • Patent Document 2 the method using an adsorbent is generally widely used in petrochemical processes.
  • the present inventor has found that a trace amount of water contained in the raw materials used in various processes is the cause of the reduction in the crushing strength.
  • the present invention solves this new problem, and by adding a certain amount of cellulose derivative in the adsorbent to increase the cohesive strength between the particles constituting the adsorbent and to impart water resistance, Disclosed is a water-resistant sulfur compound adsorbent which can be used for a long period of time because the crushing strength is hardly lowered in a process including the above.
  • the water-resistant sulfur compound adsorbent of the present invention (hereinafter also referred to as the adsorbent of the present invention) is characterized by containing a cellulose derivative together with a copper component that adsorbs a sulfur compound.
  • the adsorbent of the present invention has excellent water resistance by containing a cellulose derivative together with a copper component, and has a property that the crushing strength is hardly lowered even when used in a process including moisture, and is difficult to be pulverized or disintegrated. .
  • the adsorbent of the present invention is a sulfur compound adsorbent characterized by containing a cellulose derivative together with a copper component that adsorbs a sulfur compound. Since the cellulose derivative fixes the copper components to each other, or the copper components and the carrier are fixed to each other to increase the strength of the entire adsorbent, the adsorbent of the present invention can be used as a process raw material containing moisture even if it is used as a crushing strength. Is hard to fall down and is difficult to pulverize or disintegrate.
  • the cellulose derivative not only increases the crushing strength of the adsorbent of the present invention, but also has an effect of blocking moisture from penetrating into the adsorbent of the present invention (the bonding surface of particles inside the molded body). It is thought that there is. Therefore, even if the adsorbent of the present invention is immersed in water for a certain time, the crushing strength is unlikely to decrease.
  • the maintenance ratio of the crushing strength after being immersed in water for a certain time is 86%
  • Comparative Example 1 which does not contain a cellulose derivative. Shows a crush strength maintenance rate of 20%, and the adsorbent of the present invention has a remarkably high crush strength maintenance rate, indicating excellent water resistance.
  • the cellulose derivative contained in the adsorbent of the present invention is methyl cellulose in which part of the hydrogen atoms of the cellulose hydroxyl group is substituted with a methyl group, hydroxypropyl cellulose substituted with a hydroxypropyl group, or hydroxyethyl cellulose substituted with a hydroxyethyl group. Is preferred, and hydroxypropylmethylcellulose is particularly preferred.
  • the content of methoxy groups contained in hydroxypropylmethylcellulose is preferably in the range of 1 to 2 as the average number of hydroxyl groups substituted with methoxy groups per glucose ring unit of cellulose.
  • the adsorbent of the present invention containing hydroxypropylmethylcellulose having a methoxy group content in this range has higher water resistance.
  • the content of hydroxypropoxy groups contained in hydroxypropylmethylcellulose is the average number of moles of hydroxypropoxy groups added per glucose ring unit of cellulose and is in the range of 0.15 or more and 0.25 or less. Is preferred.
  • the adsorbent contains a cellulose derivative can be confirmed using a general structure analysis method for organic compounds. For example, after eluting the organic substance contained in the adsorbent into a solvent, it is specified that the organic substance having the cellulose derivative structure is contained using a conventionally known structural analysis method such as H-NMR, IR, or mass spectrum. If possible, it can be determined that a cellulose derivative is contained.
  • the content of the cellulose derivative can be measured by a conventionally known method.
  • the carbon content can be measured by a high-frequency induction heating combustion-infrared absorption light analyzer and calculated from the carbon content.
  • the type and ratio of organic substances contained can be specified using the above-described organic compound structure analysis method, and the ratio and the above-described carbon content can be used for calculation. .
  • the content of the inorganic binder contained in the adsorbent of the present invention is preferably in the range of 1% by weight or more and 10% by weight or less in terms of oxide with respect to the total weight of the adsorbent, and 3% by weight or more, 7 More preferably, it is in the range of not more than% by weight. When the content of the inorganic binder is within this range, the above-described effects can be maximized.
  • the content of the inorganic binder can be quantified by general quantitative analysis such as ICP emission analysis, atomic absorption analysis, and fluorescent X-ray analysis.
  • the adsorbent of the present invention contains a copper component that adsorbs a sulfur compound.
  • the copper component may be any of a copper compound having a property of adsorbing metallic copper, copper oxide, or a sulfur compound, or a form in which these are mixed.
  • copper used for the adsorbent of the present invention is preferably copper oxide.
  • the content of the copper component contained in the adsorbent of the present invention is preferably in the range of 30 wt% or more and 70 wt% or less in terms of CuO, and in the range of 40 wt% or more and 60 wt% or less. More preferred. If the copper component content is too small, the sulfur compound adsorption amount decreases, which is not preferable. Even if the copper component content is too large, the sulfur compound adsorption amount does not increase so much and the price of the adsorbent is expensive. Therefore, the copper content is preferably in the above range.
  • the adsorbent of the present invention preferably contains a carrier.
  • the adsorbent of the present invention can obtain the effects of the present invention without necessarily including a support, but it is preferable to disperse and support the copper component on the support because the amount of adsorption and the adsorption rate of the sulfur compound increase.
  • the carrier contained in the adsorbent of the present invention is preferably an inorganic material, and for example, inorganic materials such as silica, alumina, titania, diatomaceous earth, and zinc oxide can be used.
  • the carrier used for the adsorbent of the present invention is particularly preferably boehmite alumina.
  • Boehmite alumina has a large number of OH groups on its surface and is more likely to be bonded to the OH groups of the cellulose derivative. Therefore, the adsorbent containing boehmite alumina and the cellulose derivative has high crushing strength and water resistance.
  • the specific surface area of the carrier is preferably at least 50 m 2 / g or more, particularly preferably 100 m 2 / g or more. If the specific surface area of the support is too low, the dispersibility of the supported copper component is deteriorated, and the amount of adsorption of the sulfur compound may be reduced, which is not preferable.
  • the specific surface area of the adsorbent of the present invention is preferably 30 m 2 / g or more, and more preferably in the range of 100 m 2 / g or more and 250 m 2 / g or less. If the specific surface area of the adsorbent of the present invention is too small, the amount of sulfur compound adsorbed may decrease, which is not preferable.
  • the specific surface area can be measured by a conventionally known measurement method such as a BET multipoint method or a one-point method.
  • the crushing strength of the adsorbent of the present invention is preferably 20 N or more per pellet, and more preferably 30 N or more. If the crushing strength of the adsorbent of the present invention is too low, the adsorbent tends to be powdered or disintegrated, which is not preferable. The crushing strength can be measured, for example, by the method described later in the examples. By containing the cellulose derivative, the adsorbent of the present invention can easily achieve a crushing strength of 20 N or more per pellet.
  • the maintenance ratio (I / I 0 ) of the crushing strength (I 0 ) before being immersed in water with respect to the crushing strength (I) after being immersed in water for 900 hours is 50% or more and 100%. It is preferably in the following range, particularly preferably in the range of 75% or more and 100% or less.
  • this maintenance factor can be used as a scale for evaluating the water resistance described above. If this maintenance rate is too low, the crushing strength is remarkably lowered due to the influence of moisture when used in a process containing moisture, which is not preferable.
  • the shape of the adsorbent of the present invention can be a conventionally known shape such as a spherical shape, a cylindrical shape, a three-leaf shape, or a four-leaf shape, and the shape and size are adjusted so that the outer surface area becomes larger while maintaining the crushing strength. It is preferable to do.
  • the adsorbent of the present invention has a large outer surface area while maintaining the crushing strength as long as the shape is cylindrical, the diameter is in the range of 1 mm ⁇ to 3 mm ⁇ , and the height is in the range of 1 mmH to 7 mmH. This is preferable.
  • the adsorption rate constant of the sulfur compound of the adsorbent of the present invention is at least 0.001 sec ⁇ 1 or more, it is suitable as an adsorbent for the sulfur compound.
  • the adsorption rate of the sulfur compound is lower than 0.001 sec ⁇ 1 , the sulfur compound contained in the process raw material may not be sufficiently removed.
  • the adsorption rate of the sulfur compound can be calculated by the method described in the examples described later.
  • the adsorbent of the present invention is an adsorbent that removes sulfur compounds contained in various process raw materials, and exhibits a remarkable effect particularly on process raw materials containing a trace amount of moisture.
  • Conventional adsorbents when used in process raw materials containing such a small amount of moisture, are gradually reduced in crushing strength due to the influence of moisture and are liable to be pulverized or disintegrated. Derivatives are included, and the cellulose derivatives cause the particles constituting the adsorbent to solidify with each other, increasing the crushing strength and imparting water resistance. There is little decrease in strength.
  • the content of water contained in the process raw material using the adsorbent of the present invention varies depending on the type of raw material, but is generally in the range of 0.1 ppm to 1000 ppm.
  • the adsorbent of the present invention is an adsorbent that removes sulfur compounds contained in the above-described process raw materials, and can be adsorbed and removed by the adsorbent of the present invention if it is a general sulfur compound.
  • sulfur compounds such as hydrogen sulfide, alkylthiophenes, mercaptans, and carbonyl sulfide (COS) can be adsorbed.
  • the adsorbent of the present invention is particularly excellent in the ability to adsorb carbonyl sulfide.
  • the adsorbent of the present invention contains a cellulose derivative, it has a feature that the crushing strength is hardly lowered even when used as a process raw material containing a trace amount of moisture.
  • an adsorbent containing a copper compound as a component that adsorbs a sulfur compound is known, but the conventional adsorbent does not contain a cellulose derivative. This is because such a conventional sulfur compound adsorbent is generally manufactured by a method in which a support is impregnated with a copper compound and then fired, or a method in which a copper compound and a support are mixed and then fired and then fired.
  • the adsorbent of the present invention contains a certain amount of cellulose derivative because it is not baked after containing the cellulose derivative together with the copper component that adsorbs the sulfur compound. Therefore, unlike the conventional sulfur compound adsorbent, the adsorbent of the present invention is less likely to have a reduced crushing strength and has high water resistance even when used in a process containing a small amount of moisture. In addition, this water resistance is judged by the maintenance rate of the crushing strength after being immersed in water for a fixed time. Specific measurement methods are shown in the examples.
  • the production method of the adsorbent of the present invention (hereinafter, the production method of the present invention) will be described in detail.
  • the production method of the present invention includes a step of obtaining a raw material mixture by mixing a copper component such as copper oxide and a cellulose derivative, and a step of molding the raw material mixture.
  • the manufacturing method of this invention does not include the process of baking a raw material mixture.
  • copper oxide is used as the copper component will be shown.
  • the copper component is not limited to copper oxide.
  • the copper oxide used in the production method of the present invention may be obtained by baking a copper compound, or may be synthesized in an aqueous solution.
  • copper oxide can be obtained by baking copper compounds, such as copper chloride, copper carbonate, and a copper nitrate, in the temperature range of 300-500 degreeC.
  • synthesizing copper oxide in an aqueous solution it can be obtained by heating to 50 ° C. or higher with copper hydroxide dispersed in the aqueous solution.
  • the carrier may be mixed in the step of mixing the copper oxide and the cellulose derivative.
  • the effects of the present invention can be obtained without necessarily including a carrier, but it is preferable to disperse and carry a copper component on the carrier because the adsorption amount and adsorption rate of the sulfur compound increase.
  • the carrier used in the production method of the present invention is preferably an inorganic substance.
  • inorganic substances such as silica, alumina, silica-alumina, titania, diatomaceous earth, and zinc oxide can be used.
  • the carrier used for the adsorbent of the present invention is particularly preferably boehmite alumina.
  • the method of mixing copper oxide and a cellulose derivative, or the method of further mixing an inorganic binder or carrier may be any method that can uniformly mix these components.
  • they can be mixed using a kneader or a mixer.
  • the raw material mixture obtained after mixing may be in the form of a powder or a block, and may be made into a clay by adding water during mixing.
  • the powdery raw material mixture can be molded into a desired shape by compression molding such as tableting, and the clay-like raw material mixture can be molded into a desired shape by extrusion molding. In this molding process, if necessary, the moldability can be improved by using a lubricant.
  • graphite in the case of compression molding, graphite can be added so that a powdery raw material mixture can be easily supplied to the mold.
  • lubricating materials such as a cellulose and an oleic acid, can also be added.
  • the moisture when moisture remains in the molded body after molding, the moisture can be removed by drying at a temperature of 200 ° C. or lower. At this time, if the molded body after molding is heated to a temperature higher than 200 ° C., the cellulose derivative is burned or decomposed / denatured, and the effects of the present invention may not be obtained. In particular, when baked at a high temperature of 300 ° C. or higher, the cellulose derivative is completely burned or decomposed / denatured. Therefore, after the cellulose derivative is added, it is not baked at a temperature of 300 ° C. or higher.
  • Example 1 A mother liquor was prepared by dissolving 231 g of sodium hydroxide in 5.8 kg of ion exchange water. Next, 676 g of copper sulfate pentahydrate was dissolved in 2.6 kg of ion-exchanged water to prepare a pouring solution. The mother liquor and the pouring solution were mixed in a heated state to form a copper oxide precipitate. The slurry containing the copper oxide precipitate was filtered to separate the copper oxide precipitate, and then sufficiently washed to obtain a copper oxide precipitate cake. The precipitated cake was dispersed in 4.0 kg of ion exchange water to obtain a copper oxide slurry. The copper oxide slurry was dried to obtain powdered copper oxide.
  • This raw material mixture was put into an extrusion molding machine and extruded into a cylindrical shape having a diameter of 1.8 mm ⁇ and a height of 3 to 5 mm to obtain a molded body.
  • the molded body was dried with an electric dryer at a temperature of 120 ° C. for 16 hours to obtain a sulfur compound adsorbent.
  • the composition of this sulfur compound adsorbent was analyzed by the following measuring method. The results are shown in Table 1. ⁇ Method for measuring composition> After the sulfur compound adsorbent was pulverized into a powder, the sample was placed in a pressure molding ring and pressure molded at a molding pressure of 30 MPa for 3 minutes. The molded sample was set in a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, ZSX100e) and measured by order (semi-quantitative) analysis.
  • the organic binder content of the obtained sulfur compound adsorbent was a value calculated backward from the charged amount.
  • the results are shown in Table 1.
  • the amount of carbon in the sulfur compound adsorbent may be analyzed by the following method, and the content of the cellulose derivative may be calculated backward from the value.
  • Method for measuring organic binder content After the sulfur compound adsorbent is pulverized into powder, the amount of carbon is measured using a high-frequency induction heating combustion-infrared absorption light analyzer (manufactured by LECO, CS230). A calibration curve is prepared using a standard steel sample, and the average value of three measurements is taken as the carbon content of the sample.
  • the adsorption rate constant of the sulfur compound (carbonyl sulfide) of the produced sulfur compound adsorbent was analyzed by the following measuring method. The results are shown in Table 1.
  • ⁇ Evaluation method of adsorption rate constant of carbonyl sulfide (COS)> First, a simulated solution (COS concentration 10 ppm / 1-hexene) was prepared. Next, the sulfur compound adsorbent was set in a reaction tube so that the layer height was 8 cm, and the reaction tube was attached to a COS adsorption test apparatus. Next, after pretreatment at 170 ° C. for 1 hour under a nitrogen flow, the mixture was cooled to room temperature.
  • the prepared simulation liquid was circulated through the reaction tube at a supply rate of 5 g / min.
  • the liquid at the inlet and outlet of the reaction tube was sampled every predetermined time, and the COS concentration was analyzed using a gas chromatograph (manufactured by Agilent Technologies, Model 7890B) equipped with an SCD detector.
  • the COS adsorption rate constant was calculated from the difference between the inlet COS concentration and the outlet COS concentration after 2 hours of circulation.
  • the water resistance of the produced sulfur compound adsorbent was evaluated by the following measurement method. The results are shown in Table 1.
  • Table 1 ⁇ Water resistance test> A glass bottle filled with pure water was filled with several tens of grams of a sulfur compound adsorbent and immersed at room temperature for 900 hours. Thereafter, the sulfur compound adsorbent was taken out and dried with an electric dryer at a temperature of 120 ° C. for 16 hours to remove water contained in the sulfur compound adsorbent. Next, the crushing strength (I 0 ) of the sulfur compound adsorbent before being immersed in pure water and the crushing strength (I) of the sulfur compound adsorbent after being immersed in pure water were measured, and the maintenance ratio (I / I 0 ) to evaluate water resistance.
  • the crushing strength of the sulfur compound adsorbent was measured using a crushing strength meter (Instron, model 3365), and the average value of the crushing strength of 10 pellets. Moreover, about the columnar sulfur compound adsorbent, the crushing strength in the lateral direction (side surface of the column) was measured.
  • Example 2 Powdered copper oxide was obtained in the same manner as in Example 1. 200 g of this copper oxide, 200 g of commercially available boehmite alumina (specific surface area: 280 m 2 / g) as a carrier, hydroxypropyl methylcellulose (manufactured by Shin-Etsu Chemical Co., Ltd., product name) as a cellulose derivative; Metrolose 90SH, methoxy group content 1.4, 2 g of hydroxypropoxy group content 0.2), 4 g of cellulose (manufactured by Yuken Kogyo Co., Ltd .: YB-154) as a lubricant, 100 g of silica sol as an inorganic binder (manufactured by JGC Catalysts & Chemicals, product name; S-20L, Si concentration: 20 wt% (in terms of SiO 2 )) and 125 g of ion exchange water were charged into a mixer and mixed uniformly to obtain a raw material mixture
  • Example 4 Powdered copper oxide was obtained in the same manner as in Example 1. 200 g of this copper oxide, 200 g of commercially available boehmite alumina (specific surface area: 280 m 2 / g) as a carrier, hydroxypropyl methylcellulose (manufactured by Shin-Etsu Chemical Co., Ltd., product name) as a cellulose derivative; Metrolose 90SH, methoxy group content 1.4, 4 g of hydroxypropoxy group content 0.2), 100 g of silica sol as inorganic binder (manufactured by JGC Catalysts & Chemicals, product name: S-20L, Si concentration: 20% by weight (converted to SiO 2 )), and 125 g of ion-exchanged water And mixed uniformly to obtain a raw material mixture. Using this raw material mixture, a sulfur compound adsorbent was obtained in the same manner as in Example 1. Various analyzes were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 Powdered copper oxide was obtained in the same manner as in Example 1. 120 g of this copper oxide, 280 g of commercially available boehmite alumina (specific surface area: 280 m 2 / g) as a carrier, hydroxypropylmethylcellulose (manufactured by Shin-Etsu Chemical Co., Ltd., product name; Metrolose 90SH, methoxy group content 1.4, 4 g of hydroxypropoxy group content 0.2), 4 g of cellulose (manufactured by Yuken Kogyo Co., Ltd .: YB-154) as a lubricant, 100 g of silica sol as an inorganic binder (manufactured by JGC Catalysts & Chemicals, product name; S-20L, Si concentration: 20 wt% (in terms of SiO 2 )) and 175 g of ion-exchanged water were charged into a mixer and mixed uniformly to obtain a raw material mixture. Using this raw material mixture
  • Example 7 A mother liquid was prepared by dissolving 1090 g of a 48% by mass aqueous sodium hydroxide solution in 7.1 kg of ion-exchanged water and further adding 460 g of zinc oxide. Next, 1092 g of copper sulfate pentahydrate and 453 g of copper nitrate trihydrate were dissolved in 5.8 kg of ion exchange water to prepare a pouring solution. The mother liquor and the pouring liquid were mixed in a heated state to produce a copper oxide precipitate containing zinc oxide. 44 g of graphite was added to the precipitate slurry, followed by filtration to separate the precipitate containing graphite, followed by thorough washing to obtain a precipitate cake.
  • the precipitated cake was dispersed in 12 kg of ion exchange water to make a slurry.
  • the slurry was dried to obtain a powder containing copper oxide, zinc oxide, and graphite.
  • 400 g of the above powder product, 4 g of hydroxypropyl methylcellulose (manufactured by Shin-Etsu Chemical Co., Ltd., product name; Metrolose 90SH, methoxy group content 1.4, hydroxypropoxy group content 0.2) as the cellulose derivative, and inorganic binder 20 g of bentonite and 152 g of ion-exchanged water were charged into a mixer and mixed uniformly to obtain a raw material mixture. Using this raw material mixture, a sulfur compound adsorbent was obtained in the same manner as in Example 1. Various analyzes were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 Powdered copper oxide was obtained in the same manner as in Example 1. 200 g of this copper oxide, 200 g of commercially available boehmite alumina (specific surface area: 280 m 2 / g) as a carrier, 100 g of silica sol as an inorganic binder (manufactured by JGC Catalysts & Chemicals, product name; S-20L, Si concentration: 20% by weight (SiO 2 2 )), and 125 g of ion-exchanged water were charged into a mixer and mixed uniformly to obtain a raw material mixture. Using this raw material mixture, a sulfur compound adsorbent was obtained in the same manner as in Example 1. Various analyzes were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 Powdered copper oxide was obtained in the same manner as in Example 1. 200 g of this copper oxide, 200 g of commercially available boehmite alumina (specific surface area: 280 m 2 / g) as a carrier, 4 g of polyvinyl alcohol (molecular weight 1500), 100 g of silica sol as an inorganic binder (manufactured by JGC Catalysts & Chemicals, product name: S-20L) , Si concentration: 20 wt% (in terms of SiO 2 )) and 125 g of ion-exchanged water were charged into a mixer and mixed uniformly to obtain a raw material mixture. Using this raw material mixture, a sulfur compound adsorbent was obtained in the same manner as in Example 1. Various analyzes were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A powder containing copper oxide, zinc oxide, and graphite was obtained in the same manner as in Example 7. Next, 400 g of the powdered material, 20 g of bentonite as an inorganic binder, and 152 g of ion-exchanged water were charged into a mixer and uniformly mixed to obtain a raw material mixture. Using this raw material mixture, a sulfur compound adsorbent was obtained in the same manner as in Example 1. Various analyzes were performed in the same manner as in Example 1. The results are shown in Table 1.
  • each of the adsorbents of Examples 1 to 7 had a crushing strength maintenance ratio (I / Io) of 55 to 90% after being immersed in water for a certain period of time.
  • the retention rates (I / Io) of the crushing strengths of the adsorbents 1 and 2 are 20% and 37%, respectively, and the adsorbent of Comparative Example 3 disintegrates during the immersion.
  • the adsorbents of the present invention are remarkably superior in water resistance.
  • the crushing strength of the adsorbents of Examples 1 to 6 is 42.0N to 47.8N, while the crushing strength of the adsorbents of Comparative Examples 1 and 2 having the same shape is 30.2N, 40.8 N.
  • the adsorbents of Examples 1 to 6 have significantly improved crushing strength.
  • Example 7 using bentonite as an inorganic binder together with a cellulose derivative and Comparative Example 3 using bentonite as an inorganic binder without using a cellulose derivative the crushing strength of the adsorbent of Example 7 is 35.5 N.
  • the crushing strength of the adsorbent of Comparative Example 3 is 13.8 N, and the crushing strength of the adsorbent of Example 7 is much higher than that of the adsorbent of Comparative Example 3.
  • the adsorbents of Examples 1 to 6 have sulfur compound adsorption rate constants of 0.013 sec ⁇ 1 to 0.021 sec ⁇ 1
  • the adsorbents of Comparative Examples 1 and 2 have the above adsorption rate constants. Is 0.018 sec ⁇ 1 to 0.020 sec ⁇ 1
  • the adsorption rate constants of the adsorbents of Example 7 and Comparative Example 3 each having a slightly larger cylinder diameter are 0.009 sec ⁇ 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

水分を含むプロセスで使用しても圧壊強度が低下し難い耐水性硫黄化合物吸着剤を提供する。 硫黄化合物を吸着する銅成分を含む硫黄化合物吸着剤中にセルロース誘導体を一定量含ませることによって、吸着剤に耐水性を付与し、水分を含むプロセスで用いても圧壊強度が低下し難い耐水性硫黄化合物吸着剤にする。

Description

耐水性硫黄化合物吸着剤
 本発明は、様々なプロセス中に含まれる硫黄化合物を吸着除去するための吸着剤に関する。
 硫黄化合物は、石油精製プロセスや石油化学プロセス等において、プロセス中で使用する設備や触媒を劣化させ、あるいは燃焼した際に発生する硫黄酸化物が酸性雨を引き起こすなどの不都合を生じるので問題視されている。特に、これらのプロセスにおいて使用される原料に含まれる硫黄化合物が問題視されており、これを除去するために種々の方法が検討されている。
 石油精製プロセスや石油化学プロセス等において使用される原料に含まれる硫黄化合物を除去する方法は、主に、触媒を用いて硫黄化合物を分解し硫黄として回収する方法、吸着剤に硫黄化合物を吸着させて除去する方法等がある。
 触媒を用いて硫黄化合物を分解する方法として、例えば、水素化脱硫法がある。水素化脱硫法は、高温および触媒の存在下で、水素によって硫黄化合物を分解する方法であり、高濃度の硫黄化合物を含む原料を処理する方法として有用である。しかし、この方法は、水素を供給する設備を使用すること、300~400℃の高温度を必要とすること、接触反応に伴う触媒の取り扱いが煩雑になることなどの問題が指摘されている(特許文献1)。また、原料と水素が反応して別の化合物(副生成物)が生成する可能性もあり、このような反応を嫌うプロセスでは使用できないという問題もある。このような理由から、水素化脱硫法は、一般的に石油精製プロセスで広く使用されている。
 一方、吸着剤に硫黄化合物を吸着させて除去する方法は、吸着剤が充填された塔内に室温~400℃の条件下で硫黄化合物を含む原料を流通させると云うシンプルな方法であり、水素供給設備が不要、ppm以下のオーダーまで除去が可能な特徴を有している。硫黄化合物の吸着剤としては、硫黄化合物を物理的に吸着するものと、化学的に吸着するものが知られており、物理的吸着剤としてはアルミナが知られており、化学的吸着剤としては、高温で使用するものは酸化亜鉛を含む吸着剤、常温でも使用可能なものは酸化銅を含む吸着剤が知られている。
 しかし、高濃度の硫黄化合物を含む原料を処理する場合には、吸着剤の交換頻度が多くなることや、硫黄化合物の種類によって吸着力が異なる等の問題もある。このような理由から、吸着剤を用いる方法は、一般的には石油化学プロセスで広く使用されている(特許文献2)。
 硫黄化合物の吸着剤は、一般的に、硫黄化合物の吸着速度が大きいこと、硫黄化合物の吸着量が多いことが求められる。更に、工業用として用いられる硫黄化合物の吸着剤には、上記の化学特性に加え、例えば、機械的強度といった物理特性も求められる。機械的強度が低い硫黄化合物吸着剤は、一般的に粉化や崩壊が起きやすいことが知られている。例えば、特許文献3には、液相で用いられる硫黄化合物の吸着剤は、吸着剤が崩壊しやすいため、4kg以上の高い圧壊強度が必要とされることが開示されている。
特開平7-118668号公報 特開平3-213115号公報 特開平5-293366号公報
 しかし、従来の硫黄化合物吸着剤は、このように圧壊強度が高くても、例えば1年から2年の長い期間使用していると、徐々に圧壊強度が低下して粉化や崩壊を招く問題があった。
 本発明者は硫黄吸着剤の圧壊強度の低下原因について検討した結果、種々のプロセスにおいて使用される原料に含まれる微量の水分が圧壊強度を低下させる原因であることを突き止めた。本発明はこの新たな課題を解決したものであり、吸着剤中にセルロース誘導体を一定量含ませて吸着剤を構成する粒子相互の固結強度を高めると共に耐水性を付与することによって、水分を含むプロセスにおいて圧壊強度が低下し難く、長期使用を可能にした耐水性硫黄化合物吸着剤を提供する。
 本発明の耐水性硫黄化合物吸着剤(以下、本発明の吸着剤とも云う。)は、硫黄化合物を吸着する銅成分と共にセルロース誘導体を含有することを特徴とする。
 本発明の吸着剤は、銅成分と共にセルロース誘導体を含むことによって、優れた耐水性を有し、水分を含むプロセスで使用しても圧壊強度が低下し難く、粉化ないし崩壊し難い性質を有する。
 本発明の吸着剤は、従来の工業ガス、天然ガス、石油留分等の各種ガス類及び油類等(以下、プロセス原料とも云う。)に含まれる硫黄化合物を除去するプロセスの中で、特に微量の水分を含むプロセス原料に対して顕著な効果を発揮する。本発明の吸着剤は、水分を含むプロセスで使用しても吸着剤の圧壊強度が低下し難いので、粉化や崩壊が抑制され、差圧の上昇や偏流等が起き難くなる。したがって、本発明の吸着剤は、水分を含むプロセスで使用しても、長期間使用することができる。
 以下、本発明を実施形態に基づいて具体的に説明する。
〔本発明の吸着剤〕
 本発明の吸着剤は、硫黄化合物を吸着する銅成分と共にセルロース誘導体を含有することを特徴とする硫黄化合物吸着剤である。セルロース誘導体は銅成分を互いに固着し、あるいは銅成分と担体を相互に固着して吸着剤全体の強度を高めるので、本発明の吸着剤は、水分を含むプロセス原料に使用しても、圧壊強度が低下し難く、粉化ないし崩壊し難い。また、セルロース誘導体は、単に本発明の吸着剤の圧壊強度を高めるだけでなく、本発明の吸着剤の内部(成型体の内部の粒子の接合面)に水分が浸透するのをブロックする効果があるものと考えられる。従って、本発明の吸着剤は一定時間水に浸漬しても圧壊強度が低下し難い。具体的には、例えば、後述の実施例において、本発明の実施例1では一定時間水に浸漬した後の圧壊強度の維持率が86%であるのに対し、セルロース誘導体を含まない比較例1では圧壊強度の維持率が20%であり、本発明の吸着剤は圧壊強度の維持率が格段に高く、優れた耐水性を有することが示されている。
 本発明の吸着剤に含まれるセルロース誘導体は、セルロースの水酸基の水素原子の一部をメチル基で置換したメチルセルロース、ヒドロキシプロピル基で置換したヒドロキシプロピルセルロースあるいはヒドロキシエチル基で置換したヒドロキシエチルセルロースであることが好ましく、特にヒドロキシプロピルメチルセルロースであることが好ましい。
 ヒドロキシプロピルメチルセルロースに含まれるメトキシ基の含有量は、セルロースのグルコース環単位当たりのメトキシ基で置換された水酸基の平均個数として、1~2の範囲にあることが好ましい。メトキシ基の含有量がこの範囲にあるヒドロキシプロピルメチルセルロースを含む本発明の吸着剤は、その耐水性がより高くなる。また、ヒドロキシプロピルメチルセルロース中に含まれるヒドロキシプロポキシ基の含有量は、セルロースのグルコース環単位当たりに付加されたヒドロキシプロポキシ基の平均モル数で、0.15以上、0.25以下の範囲にあることが好ましい。
 吸着剤にセルロース誘導体が含まれているかどうかは、一般的な有機化合物の構造解析方法を用いて確認できる。例えば、吸着剤に含まれる有機物を溶媒に溶出した上で、H-NMR、IR、マススペクトルといった従来公知の構造解析方法を用いて、セルロース誘導体の構造を有する有機物が含まれていることが特定できれば、セルロース誘導体が含まれていると判断することができる。
 本発明の吸着剤に含まれるセルロース誘導体の含有量は、吸着剤の全重量に対し0.5重量%以上、5重量%以下の範囲にあることが好ましく、1重量%以上、3重量%以下の範囲にあることが特に好ましい。本発明の吸着剤に含まれるセルロース誘導体の含有量が少なすぎると、耐水性が低くなるので好ましくなく、逆に多すぎても、本発明の吸着剤に含まれる銅成分が過度に被覆されてしまい、硫黄化合物の吸着を妨げることがあるので好ましくない。
 セルロース誘導体の含有量は、従来公知の方法で測定することができる。例えば、高周波誘導加熱燃焼-赤外吸収光分析装置で炭素含有量を測定し、炭素の含有量から算出することができる。また、セルロース誘導体以外の有機物を含む場合は、前述の有機化合物の構造解析方法を用いて含まれる有機物の種類と比率を特定し、この比率と前述の炭素含有量を用いて算出することができる。更に、原料として用いた有機物の仕込量から逆算してもよい。
 本発明の吸着剤は、セルロース誘導体と共に無機バインダーを含むことが好ましい。本発明の吸着剤に含まれる無機バインダーは、例えば、ベントナイト、アルミナ、シリカ等の表面にOH基を多数有する無機化合物であることが好ましい。特に、シリカゾル由来のシリカを含むことが好ましい。シリカゾル由来のシリカは、その表面に多数のシラノール基を有しており、これらのシラノール基がセルロース誘導体に含まれるOH基との相互作用により結びつきやすくなるので、本発明の吸着剤の圧壊強度が高くなると共にセルロース誘導体がプロセス原料や水に溶出しにくくなる。このように、本発明の吸着剤に含まれるセルロース誘導体が無機バインダーと相互作用により結びついた状態にあると、圧壊強度及び耐水性が高くなる。
 本発明の吸着剤に含まれる無機バインダーの含有量は、吸着剤の全重量に対して酸化物換算で1重量%以上、10重量%以下の範囲にあることが好ましく、3重量%以上、7重量%以下の範囲にあることがより好ましい。無機バインダーの含有量がこの範囲にあることで、前述の作用効果が最大限発揮される。なお、無機バインダーの含有量は、例えば、ICP発光分析、原子吸光分析、蛍光X線分析などの一般的な定量分析によって定量することができる。
 本発明の吸着剤は硫黄化合物を吸着する銅成分を含む。銅成分は金属銅や酸化銅または硫黄化合物を吸着する性質を有する銅化合物、あるいはこれらが混在した形態の何れでも良い。なお、金属銅は空気中で取り扱う際に発火の危険があるので、本発明の吸着剤に用いる銅は酸化銅が好ましい。
 本発明の吸着剤に含まれる銅成分の含有量は、CuO換算で30重量%以上、70重量%以下の範囲にあることが好ましく、40重量%以上、60重量%以下の範囲にあることがより好ましい。銅成分の含有量が少なすぎると、硫黄化合物の吸着量が少なくなるので好ましくなく、銅成分の含有量が多すぎても、硫黄化合物の吸着量はそれほど増加せず吸着剤の価格が高価になるので、銅の含有量は前述の範囲にあることが好ましい。
 本発明の吸着剤は、担体を含むことが好ましい。本発明の吸着剤は、必ずしも担体を含まなくとも本発明の作用効果を得ることができるが、担体に銅成分を分散担持させれば硫黄化合物の吸着量や吸着速度が増加するので好ましい。本発明の吸着剤に含まれる担体は、無機物であることが好ましく、例えば、シリカ、アルミナ、チタニア、珪藻土、酸化亜鉛等の無機物を使用することができる。なお、本発明の吸着剤に用いる担体は、ベーマイトアルミナが特に好ましい。ベーマイトアルミナはその表面に多数のOH基を有しており、セルロース誘導体のOH基とより結びつきやすいので、ベーマイトアルミナとセルロース誘導体を含む吸着剤は、圧壊強度及び耐水性が高くなる。担体の比表面積は、少なくとも50m/g以上であることが好ましく、100m/g以上であることが特に好ましい。担体の比表面積が低すぎると、担持した銅成分の分散性が悪くなり、硫黄化合物の吸着量が低下することがあるので好ましくない。
 本発明の吸着剤の比表面積は、30m/g以上であることが好ましく、100m/g以上、250m/g以下の範囲にあることがより好ましい。本発明の吸着剤の比表面積が小さすぎると、硫黄化合物の吸着量が低下することがあるので、好ましくない。なお、比表面積は、例えば、BET多点法や1点法などの従来公知の測定方法で測定することができる。
 本発明の吸着剤の圧壊強度は、1ペレット当たり20N以上であることが好ましく、30N以上であることがより好ましい。本発明の吸着剤の圧壊強度が低すぎると、吸着剤の粉化や崩壊が起こりやすくなるので、好ましくない。なお、圧壊強度は、例えば、実施例に後述する方法で測定することができる。本発明の吸着剤はセルロース誘導体を含むことによって、1ペレット当たり20N以上の圧壊強度を容易に達成することができる。
 本発明の吸着剤は、900時間水に浸漬した後の圧壊強度(I)に対する水に浸漬する前の圧壊強度(I)の維持率(I/I)が、50%以上、100%以下の範囲にあることが好ましく、75%以上、100%以下の範囲にあることが特に好ましい。本発明において、この維持率は、前述の耐水性を評価する尺度として用いることができる。この維持率が低すぎると、水分を含むプロセス中で使用した際に、水分の影響で圧壊強度が著しく低下し、粉化や崩壊を招くので好ましくない。
 本発明の吸着剤の形状は、球状、円柱状、三つ葉状、四葉状などの従来公知の形状を有することができ、圧壊強度を保ちつつ外表面積がより大きくなるように、形状やサイズを調整することが好ましい。例えば、本発明の吸着剤は、その形状が円柱状であって、かつ直径が1mmφ以上、3mmφ以下、高さが1mmH以上、7mmH以下の範囲にあれば、圧壊強度を保ちつつ外表面積が大きくなるので好ましい。
 本発明の吸着剤の硫黄化合物の吸着速度定数は、少なくとも0.001sec-1以上であれば、硫黄化合物の吸着剤として好適である。硫黄化合物の吸着速度が0.001sec-1より低い場合は、プロセス原料中に含まれる硫黄化合物を充分に除去することができないことがある。なお、硫黄化合物の吸着速度は後述する実施例に記載の方法で算出することができる。
 本発明の吸着剤は種々のプロセス原料に含まれる硫黄化合物を除去する吸着剤であり、特に微量の水分を含むプロセス原料に対して顕著な効果を発揮する。従来の吸着剤は、このような微量の水分を含むプロセス原料に用いると、水分の影響で徐々に圧壊強度が低下し、粉化や崩壊が起こりやすくなるが、本発明の吸着剤は、セルロース誘導体を含んでおり、このセルロース誘導体によって吸着剤を構成する粒子が相互に固結されて圧壊強度が大きくなり、また耐水性が付与されるので、微量の水分を含むプロセス原料に用いても圧壊強度の低下が少ない。なお、本発明の吸着剤を用いるプロセス原料に含まれる水の含有量は、原料の種類によって様々であるが、概ね0.1ppm以上、1000ppm以下の範囲にある。
 本発明の吸着剤は、前述のプロセス原料の中でも、特に液体のプロセス原料について好適に用いることができる。液体のプロセス原料は、吸着剤と接触した際の抵抗が大きく、ガス状のプロセス原料に吸着剤を接触させたときよりも吸着剤の粉化や崩壊が起きやすい。しかし、本発明の吸着剤は吸着剤を構成する粒子が相互に固結して圧壊強度が大きく、耐水性を有するので、液体のプロセス原料に使用しても吸着剤の粉化や崩壊が生じ難い。本発明の吸着剤は、前述のプロセス原料の中でも、特にプロピレンを含むプロセス原料に用いると特に好適である。
 本発明の吸着剤は、前述のプロセス原料に含まれる硫黄化合物を除去する吸着剤であり、一般的な硫黄化合物であれば本発明の吸着剤によって吸着除去することができる。例えば、硫化水素、アルキルチオフェン類、メルカプタン類及び硫化カルボニル(COS)等の硫黄化合物を吸着することができる。本発明の吸着剤は、これらの一般的な硫黄化合物の中でも、特に硫化カルボニルの吸着能力に優れる。
 本発明の吸着剤は、セルロース誘導体を含むので、微量の水分を含むプロセス原料に用いても圧壊強度が低下し難い特徴を有する。従来、硫黄化合物を吸着する成分として銅化合物を含む吸着剤が知られているが、従来の吸着剤は、セルロース誘導体を含んでいない。なぜなら、このような従来の硫黄化合物吸着剤は、一般的に、担体に銅化合物を含浸担持した後に焼成する方法、または銅化合物と担体を混合して成型した後に焼成する方法によって製造されており、仮に、銅化合物と共に有機バインダーや滑材としてセルロース誘導体が含まれていても、焼成工程でこれらは燃焼し、または分解・変質するので、最終的に得られる吸着剤はセルロース誘導体を含まないものになるためである。
 一方、本発明の吸着剤は、硫黄化合物を吸着する銅成分と共にセルロース誘導体を含有させた後は焼成しないので、一定量のセルロース誘導体を含む。従って、本発明の吸着剤は、従来の硫黄化合物吸着剤とは異なり、微量の水分を含むプロセスに用いても圧壊強度が低下し難く、耐水性が高い。なお、この耐水性は、水に一定時間浸漬した後の圧壊強度の維持率で判断される。具体的な測定方法は実施例に示されている。
〔製造方法〕
 本発明の吸着剤の製造方法(以下、本発明の製造方法)について詳述する。
本発明の製造方法は、酸化銅等の銅成分とセルロース誘導体を混合して原料混合物を得る工程と、原料混合物を成型する工程を含む。なお、本発明の製造方法は原料混合物を焼成する工程を含まない。以下、銅成分として酸化銅を用いる例を示す。なお銅成分は酸化銅に限らない。
 本発明の製造方法で使用する酸化銅は、銅化合物を焼成して得られたものであってもよく、水溶液中で合成されたものであってもよい。銅化合物を焼成する場合は、塩化銅、炭酸銅、硝酸銅等の銅化合物を300以上、500℃以下の温度範囲で焼成することで、酸化銅を得ることができる。また、水溶液中で酸化銅を合成する場合は、水溶液中に水酸化銅が分散した状態で50℃以上に加熱することで得ることができる。
 本発明の製造方法では、酸化銅とセルロース誘導体を混合する工程において、担体を混合してもよい。本発明の製造方法では、必ずしも担体を含まなくとも本発明の作用効果を得ることができるが、担体に銅成分を分散担持すると、硫黄化合物の吸着量や吸着速度が増加するので好ましい。本発明の製造方法で用いる担体は、無機物であることが好ましく、例えば、シリカ、アルミナ、シリカ-アルミナ、チタニア、珪藻土、酸化亜鉛等の無機物を使用することができる。なお、本発明の吸着剤に用いる担体は、ベーマイトアルミナが特に好ましい。ベーマイトアルミナはその表面に多数のOH基を有しており、セルロース誘導体のOH基とより結びつきやすいので、ベーマイトアルミナとセルロース誘導体を含む吸着剤は、圧壊強度及び耐水性が高くなる。担体の比表面積は、少なくとも50m/g以上であることが好ましく、100m/g以上であることが特に好ましい。担体の比表面積が小さすぎると、担持した銅成分の分散性が悪くなり、硫黄化合物の吸着量が低下することがあるので好ましくない。
 本発明の製造方法では、セルロース誘導体と共に無機バインダーを使用することによって、耐水性がさらに向上する。本発明の製造方法で使用する無機バインダーは、例えば、ベントナイト、アルミナ、シリカ等の表面にOH基を多数有する無機化合物であることが好ましい。特にシリカゾル由来のシリカを含むことが好ましい。
 本発明の製造方法において、酸化銅とセルロース誘導体を混合する方法、あるいは、これらにさらに無機バインダーや担体を混合する方法は、これらの成分が均一に混合できる方法であれば良く、従来公知の方法を使用することができる。例えば、ニーダーやミキサー等を用いて混合することができる。混合後に得られた原料混合物は、粉末状であってもよく、ブロック状であってもよく、また混合時に水を加えて粘土状にしてもよい。粉末状の原料混合物は、打錠成型等の圧縮成型により所望の形状に成型することができ、粘土状の原料混合物は、押出成型により所望の形状に成型することができる。また、この成型工程では、必要によって滑材を使用して成型性を改善することができる。例えば、圧縮成形する場合は、鋳型に粉末状の原料混合物を供給しやすいようにグラファイトを加えることができる。そして、粘土状の原料混合物を押出成形する場合は、押出の抵抗を少なくするためにセルロースやオレイン酸等の滑材を加えることもできる。このように滑材を用いることで、成型工程の生産性を改善することができる。
 なお、成型後の成型体に水分が残留している場合は、200℃以下の温度で乾燥して、水分を除去することもできる。この時、成型後の成型体を200℃より高い温度に加熱すると、セルロース誘導体が燃焼し、または分解・変質してしまい、本発明の作用効果が得られないことがある。特に、300℃以上の高温で焼成すると、セルロース誘導体が完全に燃焼し、または分解・変質するので、セルロース誘導体を添加した後は300℃以上の温度で焼成しない。
 本発明の実施例を比較例と共に以下に示す。なお、本発明はこれらの実施例に限定されない。
〔実施例1〕
 イオン交換水5.8kgに水酸化ナトリウム231gを溶解させて、母液を調製した。次に、イオン交換水2.6kgに硫酸銅5水和物676gを溶解させて注加液を調製した。母液および注加液をそれぞれ加温した状態で混合して、酸化銅の沈殿物を生成させた。その酸化銅の沈殿物を含むスラリーを濾過して、酸化銅の沈殿物を分離した後、十分に洗浄して酸化銅の沈殿ケーキを得た。その沈殿ケーキをイオン交換水4.0kgに分散させて酸化銅スラリーを得た。その酸化銅スラリーを乾燥し、粉末状の酸化銅を得た。
 次に、その酸化銅を200g、担体として市販のベーマイトアルミナ(比表面積:280m/g)を200g、セルロース誘導体としてヒドロキシプロピルメチルセルロース(信越化学工業社製、品名;メトローズ90SH、メトキシ基含有量1.4、ヒドロキシプロポキシ基含有量0.2)を4g、滑材としてセルロース(ユケン工業社製:YB-154)を4g、無機バインダーとしてシリカゾルを100g(日揮触媒化成製、品名;S-20L、Si濃度;20重量%(SiO換算))、およびイオン交換水125gをミキサーに仕込み、均一に混合して原料混合物を得た。
 この原料混合物を押出成型機に投入し、直径1.8mmφの高さ3~5mmの円柱状に押出成型して成型体を得た。その成型体を電気乾燥機で120℃の温度で16時間乾燥し、硫黄化合物吸着剤を得た。この硫黄化合物吸着剤の組成を下記測定方法で分析した。結果を表1に示す。
<組成の測定方法>
 硫黄化合物吸着剤を粉末状に粉砕したのち、加圧成型用リングに試料を入れ、成型圧力30MPaで3min加圧成型した。成型試料を蛍光X線分析装置(株式会社リガク社製、ZSX100e)にセットし、オーダー(半定量)分析にて測定した。
 得られた硫黄化合物吸着剤の有機バインダー含有量は仕込量から逆算した値を用いた。結果を表1に示す。なお、例えば、下記の方法で硫黄化合物吸着剤中のカーボン量を分析し、その値からセルロース誘導体の含有量を逆算してもよい。
<有機バインダー含有量測定方法>
 硫黄化合物吸着剤を粉末状に粉砕したのち、高周波誘導加熱燃焼-赤外吸収光分析装置(LECO社製、CS230)を用いて、炭素量を測定する。検量線は、標準鉄鋼試料を用いて作成し、測定3回の平均値を試料の炭素量とする。
 製造した硫黄化合物吸着剤の硫黄化合物(硫化カルボニル)の吸着速度定数を下記測定方法で分析した。結果を表1に示す。
<硫化カルボニル(COS)の吸着速度定数の評価方法>
 初めに、模擬液(COS濃度10ppm/1-ヘキセン)を準備した。次に硫黄化合物吸着剤を層高が8cmになるように反応管にセットし、該反応管をCOS吸着試験装置に取り付けた。次に、窒素流通下にて170℃1時間前処理を行ったのち、室温まで冷却した。その後、あらかじめ準備しておいた模擬液を反応管へ5g/minの供給速度で流通させた。所定時間ごとに反応管の入口と出口の液をサンプリングし、SCD検出器を備えたガスクロマトグラフ(アジレント・テクノロジー社製、型式7890B)を用いてCOS濃度を分析した。流通2時間後の入口COS濃度と出口COS濃度の差分からCOSの吸着速度定数を算出した。
 製造した硫黄化合物吸着剤の耐水性を下記測定法で評価した。結果を表1に示す。
<耐水性試験>
 純水で満たしたガラス製の瓶に硫黄化合物吸着剤を数十g充填し、常温で900時間浸漬させた。その後、硫黄化合物吸着剤を取り出し、電気乾燥機で120℃の温度で16時間乾燥させ、硫黄化合物吸着剤に含まれる水分を除去した。
 次に、純水に浸漬前の硫黄化合物吸着剤の圧壊強度(I)と純水に浸漬した後の硫黄化合物吸着剤の圧壊強度(I)を測定し、その圧壊強度の維持率(I/I)で耐水性を評価した。なお、硫黄化合物吸着剤の圧壊強度は、圧壊強度計(インストロン社製、型式3365)を用いて測定し、10個のペレットの圧壊強度の平均値とした。また、円柱状の硫黄化合物吸着剤については横方向(円柱の側面)の圧壊強度を測定した。
〔実施例2〕
 実施例1と同様の方法で粉末状の酸化銅を得た。この酸化銅を200g、担体として市販のベーマイトアルミナ(比表面積:280m/g)を200g、セルロース誘導体としてヒドロキシプロピルメチルセルロース(信越化学工業社製、品名;メトローズ90SH、メトキシ基含有量1.4、ヒドロキシプロポキシ基含有量0.2)を2g、滑材としてセルロース(ユケン工業社製:YB-154)を4g、無機バインダーとしてシリカゾルを100g(日揮触媒化成製、品名;S-20L、Si濃度:20重量%(SiO換算))、およびイオン交換水125gをミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
〔実施例3〕
 実施例1と同様の方法で粉末状の酸化銅を得た。この酸化銅を200g、担体として市販のベーマイトアルミナ(比表面積:280m/g)を200g、セルロース誘導体としてヒドロキシプロピルメチルセルロース(信越化学工業社製、品名;メトローズ90SH、メトキシ基含有量1.4、ヒドロキシプロポキシ基含有量0.2)を17g、滑材としてセルロース(ユケン工業社製:YB-154)を4g、無機バインダーとしてシリカゾルを100g(日揮触媒化成製、品名;S-20L、Si濃度:20重量%(SiO換算))、およびイオン交換水125gをミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
〔実施例4〕
 実施例1と同様の方法で粉末状の酸化銅を得た。この酸化銅を200g、担体として市販のベーマイトアルミナ(比表面積:280m/g)を200g、セルロース誘導体としてヒドロキシプロピルメチルセルロース(信越化学工業社製、品名;メトローズ90SH、メトキシ基含有量1.4、ヒドロキシプロポキシ基含有量0.2)を4g、無機バインダーとしてシリカゾルを100g(日揮触媒化成製、品名;S-20L、Si濃度:20重量%(SiO換算))、およびイオン交換水125gをミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
〔実施例5〕
 実施例1と同様の方法で粉末状の酸化銅を得た。この酸化銅を160g、担体として市販のベーマイトアルミナ(比表面積:280m/g)を240g、セルロース誘導体としてヒドロキシプロピルメチルセルロース(信越化学工業社製、品名;メトローズ90SH、メトキシ基含有量1.4、ヒドロキシプロポキシ基含有量0.2)を4g、滑材としてセルロース(ユケン工業社製:YB-154)を4g、無機バインダーとしてシリカゾルを100g(日揮触媒化成製、品名;S-20L、Si濃度:20重量%(SiO換算))、およびイオン交換水150gをミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
〔実施例6〕
 実施例1と同様の方法で粉末状の酸化銅を得た。この酸化銅を120g、担体として市販のベーマイトアルミナ(比表面積:280m/g)を280g、セルロース誘導体としてヒドロキシプロピルメチルセルロース(信越化学工業社製、品名;メトローズ90SH、メトキシ基含有量1.4、ヒドロキシプロポキシ基含有量0.2)を4g、滑材としてセルロース(ユケン工業社製:YB-154)を4g、無機バインダーとしてシリカゾルを100g(日揮触媒化成製、品名;S-20L、Si濃度:20重量%(SiO換算))、およびイオン交換水175gをミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
〔実施例7〕
 イオン交換水7.1kgに48質量%水酸化ナトリウム水溶液1090gを溶解させて、更に酸化亜鉛460gを加えて母液を調製した。次に、イオン交換水5.8kgに硫酸銅5水和物1092g、硝酸銅3水和物453gを溶解させて注加液を調製した。母液および注加液をそれぞれ加温した状態で混合して、酸化亜鉛を含む酸化銅の沈殿物を生成させた。その沈殿物スラリーにグラファイト44gを加えて濾過し、グラファイトを含む沈殿物を分離した後、十分に洗浄して沈殿ケーキを得た。その沈殿ケーキをイオン交換水12kgに分散させてスラリー化した。そのスラリーを乾燥し、酸化銅、酸化亜鉛、およびグラファイトを含む粉末物を得た。
 次に、上記粉末物を400g、セルロース誘導体としてヒドロキシプロピルメチルセルロース(信越化学工業社製、品名;メトローズ90SH、メトキシ基含有量1.4、ヒドロキシプロポキシ基含有量0.2)を4g、無機バインダーとしてベントナイトを20g、およびイオン交換水152gをミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
〔比較例1〕
 実施例1と同様の方法で粉末状の酸化銅を得た。この酸化銅を200g、担体として市販のベーマイトアルミナ(比表面積:280m/g)を200g、無機バインダーとしてシリカゾルを100g(日揮触媒化成製、品名;S-20L、Si濃度:20重量%(SiO換算))、およびイオン交換水125gをミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
〔比較例2〕
 実施例1と同様の方法で粉末状の酸化銅を得た。この酸化銅を200g、担体として市販のベーマイトアルミナ(比表面積:280m/g)を200g、ポリビニルアルコール(分子量1500)を4g、無機バインダーとしてシリカゾルを100g(日揮触媒化成製、品名;S-20L、Si濃度:20重量%(SiO換算))、およびイオン交換水125gをミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
〔比較例3〕
 実施例7と同様の方法で酸化銅、酸化亜鉛、およびグラファイトを含む粉末物を得た。次に、上記粉末物を400g、無機バインダーとしてベントナイトを20g、およびイオン交換水を152gミキサーに仕込み、均一に混合して原料混合物を得た。この原料混合物を用い、実施例1と同様の方法で硫黄化合物吸着剤を得た。また、実施例1と同様の方法で各種分析を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~7の吸着剤は何れも一定時間水に浸漬した後の圧壊強度の維持率(I/Io)が55~90%であるのに対して、比較例1~2の吸着剤の圧壊強度の維持率(I/Io)はそれぞれ20%、37%であり、しかも、比較例3の吸着剤は浸漬中に崩壊する。このように、比較例1~3の吸着剤に比べて本発明の吸着剤は耐水性が格段に優れている。
 また、実施例1~6の吸着剤の圧壊強度は42.0N~47.8Nであるのに対して、形状が同じである比較例1、2の吸着剤の圧壊強度はそれぞれ30.2N、40.8Nであり、比較例1~2の吸着剤に比べて実施例1~6の吸着剤は圧壊強度が大幅に向上している。
 さらに、セルロース誘導体と共に無機バインダーとしてベントナイトを用いた実施例7と、セルロース誘導体を用いずに無機バインダーとしてベントナイトを用いた比較例3についてみると、実施例7の吸着剤の圧壊強度は35.5Nであるのに対して、比較例3の吸着剤の圧壊強度は13.8Nであり、実施例7の吸着剤の圧壊強度は比較例3の吸着剤に比べて格段に大きい。
 また、実施例1~6の吸着剤は、硫黄化合物の吸着速度定数が0.013sec-1~0.021sec-1であるのに対して、比較例1、2の吸着剤の上記吸着速度定数は0.018sec-1~0.020sec-1であり、円柱の径がやや太い実施例7と比較例3の吸着剤についても、上記吸着速度定数は何れも0.009sec-1であって、硫黄化合物の吸着速度定数はほぼ同水準である。このように、本発明の吸着剤はセルロース誘導体を含有しても硫黄化合物の吸着速度定数はあまり低下せず、一方、耐水性および圧壊強度は格段に向上している。

 

Claims (8)

  1. 硫黄化合物を吸着する銅成分を含み、
    セルロース誘導体を含む、
    ことを特徴とする耐水性硫黄化合物吸着剤。
  2. 前記セルロース誘導体がヒドロキシプロピルメチルセルロースである、請求項1に記載の耐水性硫黄化合物吸着剤。
  3. 前記ヒドロキシプロピルメチルセルロースに含まれるヒドロキシプロポキシ基の置換モル数が、0.15以上、0.25未満の範囲にある、請求項2に記載の耐水性硫黄化合物吸着剤。
  4. 前記セルロース誘導体の含有量が、吸着剤の全重量に対して、0.5重量%以上、5重量%以下の範囲にある、請求項1~3の何れか1項に記載の耐水性硫黄化合物吸着剤。
  5. 900時間水に浸漬した後の圧壊強度(I)に対する水に浸漬する前の圧壊強度(I)の維持率(I/I)が、50%以上、100%以下の範囲にある、請求項4に記載の耐水性硫黄化合物吸着剤。
  6. 硫黄化合物と水分を含むプロセス原料に用いられる請求項1~5の何れか1項に記載の耐水性硫黄化合物吸着剤。
  7. 耐水性硫黄化合物吸着剤の製造方法であって、
    硫黄化合物を吸着する銅成分とセルロース誘導体とを混合して原料混合物を得る工程と、
    上記原料混合物を成型して乾燥する工程を含み、
    上記原料混合物を焼成する工程を含まずに、
    耐水性硫黄化合物吸着剤を製造することを特徴とする製造方法。
  8. 原料混合物の乾燥温度が200℃以下であり、原料混合物を乾燥後に焼成しないことを特徴とする請求項7に記載の耐水性硫黄化合物吸着剤の製造方法。

     
PCT/JP2018/020895 2017-05-31 2018-05-31 耐水性硫黄化合物吸着剤 WO2018221633A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/616,129 US10625238B2 (en) 2017-05-31 2018-05-31 Water-resistant sulfur compound adsorbent
JP2018558444A JP6517454B2 (ja) 2017-05-31 2018-05-31 耐水性硫黄化合物吸着剤
CN201880030398.XA CN110612156B (zh) 2017-05-31 2018-05-31 耐水性硫化合物吸附剂
KR1020197032783A KR102284311B1 (ko) 2017-05-31 2018-05-31 내수성 황 화합물 흡착제
EP18810836.9A EP3632535A4 (en) 2017-05-31 2018-05-31 WATER RESISTANT SULFUR COMPOUND ADHESOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-107680 2017-05-31
JP2017107680 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221633A1 true WO2018221633A1 (ja) 2018-12-06

Family

ID=64454852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020895 WO2018221633A1 (ja) 2017-05-31 2018-05-31 耐水性硫黄化合物吸着剤

Country Status (6)

Country Link
US (1) US10625238B2 (ja)
EP (1) EP3632535A4 (ja)
JP (1) JP6517454B2 (ja)
KR (1) KR102284311B1 (ja)
CN (1) CN110612156B (ja)
WO (1) WO2018221633A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210138430A1 (en) * 2018-03-29 2021-05-13 Jgc Catalysts And Chemicals Ltd. Adsorbent

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213115A (ja) 1990-01-17 1991-09-18 Tonen Chem Corp 流体中の硫化カルボニル除去方法
JPH0584283A (ja) * 1991-03-08 1993-04-06 Takeda Chem Ind Ltd 消臭剤
JPH05293366A (ja) 1992-04-21 1993-11-09 Showa Denko Kk 液相炭化水素中の溶存ガス吸着剤
JPH07118668A (ja) 1993-10-20 1995-05-09 Tokyo Gas Co Ltd 硫黄含有ガス中の硫黄化合物の除去方法
JPH07313867A (ja) * 1994-05-26 1995-12-05 Matsushita Electric Works Ltd 脱臭剤組成物
JPH10249144A (ja) * 1997-03-10 1998-09-22 Japan Pionics Co Ltd 有害ガスの浄化方法
JP2001190965A (ja) * 1999-10-29 2001-07-17 Japan Pionics Co Ltd 有害ガスの浄化剤及び浄化方法
JP2006271966A (ja) * 2005-03-29 2006-10-12 Kocat Inc 金属化合物を用いたケミカルフィルター及びその製造方法
JP2013536071A (ja) * 2010-08-27 2013-09-19 クラリアント・ソシエダデ・アノニマ 液体流及びガス流中に含まれる汚染物質、主に硫黄化合物を除去する用に設計された吸着剤組成物、設計された吸着剤組成物を得るための方法、液体流またはガス流中に含まれる不純物、主に硫化水素を初めとした硫黄化合物を除去する方法、及び吸着剤組成物の使用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447576B1 (en) * 1999-10-29 2002-09-10 Japan Pionics Co., Ltd. Cleaning agent and cleaning process of harmful gas
JP3903846B2 (ja) * 2002-05-21 2007-04-11 松下電工株式会社 液化石油ガスの脱硫装置
US8323603B2 (en) 2004-09-01 2012-12-04 Sud-Chemie Inc. Desulfurization system and method for desulfurizing a fuel stream
CN101054538B (zh) * 2007-02-02 2010-04-07 华东理工大学 中低温下催化转化吸收羰基硫的铁基脱硫剂及其制备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213115A (ja) 1990-01-17 1991-09-18 Tonen Chem Corp 流体中の硫化カルボニル除去方法
JPH0584283A (ja) * 1991-03-08 1993-04-06 Takeda Chem Ind Ltd 消臭剤
JPH05293366A (ja) 1992-04-21 1993-11-09 Showa Denko Kk 液相炭化水素中の溶存ガス吸着剤
JPH07118668A (ja) 1993-10-20 1995-05-09 Tokyo Gas Co Ltd 硫黄含有ガス中の硫黄化合物の除去方法
JPH07313867A (ja) * 1994-05-26 1995-12-05 Matsushita Electric Works Ltd 脱臭剤組成物
JPH10249144A (ja) * 1997-03-10 1998-09-22 Japan Pionics Co Ltd 有害ガスの浄化方法
JP2001190965A (ja) * 1999-10-29 2001-07-17 Japan Pionics Co Ltd 有害ガスの浄化剤及び浄化方法
JP2006271966A (ja) * 2005-03-29 2006-10-12 Kocat Inc 金属化合物を用いたケミカルフィルター及びその製造方法
JP2013536071A (ja) * 2010-08-27 2013-09-19 クラリアント・ソシエダデ・アノニマ 液体流及びガス流中に含まれる汚染物質、主に硫黄化合物を除去する用に設計された吸着剤組成物、設計された吸着剤組成物を得るための方法、液体流またはガス流中に含まれる不純物、主に硫化水素を初めとした硫黄化合物を除去する方法、及び吸着剤組成物の使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3632535A4 *

Also Published As

Publication number Publication date
CN110612156B (zh) 2021-03-09
US10625238B2 (en) 2020-04-21
JP6517454B2 (ja) 2019-05-22
JPWO2018221633A1 (ja) 2019-06-27
KR20190132505A (ko) 2019-11-27
CN110612156A (zh) 2019-12-24
US20200078763A1 (en) 2020-03-12
EP3632535A1 (en) 2020-04-08
EP3632535A4 (en) 2020-05-27
KR102284311B1 (ko) 2021-08-03

Similar Documents

Publication Publication Date Title
EP2790809B1 (en) Composition and process for mercury removal
CN105344323B (zh) 一种深度脱除有机硫化物的吸附剂及其制备方法与应用
JP4818163B2 (ja) アルミナ担体及びそれを用いた水素化脱金属触媒並びにそれらの製造方法
CN102271786A (zh) 可用于纯化气体或液体中的基于氧化锌的固体的制备
JP6517454B2 (ja) 耐水性硫黄化合物吸着剤
KR20140110145A (ko) 복합흡착제 및 복합흡착제 제조방법
CN105749855A (zh) 液相脱氯剂及其制备方法和应用
WO2023072134A1 (zh) 催化剂及应用与脱除天然气中羰基硫的方法
JP2017051928A (ja) 燃料ガス用脱硫剤
CN111068642B (zh) 一种脱除天然气中硫醇催化剂及其制备方法
US10744489B2 (en) Method for preparing solids from a mixture of at least two malachite powders
EP3331632B1 (en) Filter media for respiratory protection comprising iron-doped manganese oxide
CN103769041B (zh) 一种气体脱硫吸附剂、其制备方法及应用
WO2010064325A1 (ja) 酸化亜鉛組成物及びその製造方法
CN106311133B (zh) 固体净化剂及其制备方法
JPH08333110A (ja) 粒状活性炭及びその製造方法
WO2019189550A1 (ja) 吸着剤
JP7185993B2 (ja) 硫黄化合物吸着剤およびその製造方法
JP7464463B2 (ja) 塩素化合物吸着剤
US11241667B2 (en) Method for preparing solids from a mixture of at least one malachite powder and an oxide powder and the use of said solids
CN113522233B (zh) 净化剂及其制备方法与应用和净化方法
KR100564359B1 (ko) 산성기체 제거용 흡착제의 제조방법 및 산성기체의 제거방법
JP4287295B2 (ja) 微小球状ゼオライト燃料処理剤
JP2006187676A (ja) 光触媒体とその製造方法
CN117861714A (zh) 一种改性吸附剂和贵金属负载的改性吸附剂及其制备方法与应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558444

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197032783

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018810836

Country of ref document: EP

Effective date: 20200102