WO2023072134A1 - 催化剂及应用与脱除天然气中羰基硫的方法 - Google Patents

催化剂及应用与脱除天然气中羰基硫的方法 Download PDF

Info

Publication number
WO2023072134A1
WO2023072134A1 PCT/CN2022/127628 CN2022127628W WO2023072134A1 WO 2023072134 A1 WO2023072134 A1 WO 2023072134A1 CN 2022127628 W CN2022127628 W CN 2022127628W WO 2023072134 A1 WO2023072134 A1 WO 2023072134A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
content
carrier
natural gas
alkali metal
Prior art date
Application number
PCT/CN2022/127628
Other languages
English (en)
French (fr)
Inventor
刘剑利
刘增让
徐翠翠
刘爱华
袁辉志
陶卫东
宋宛霖
常文之
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司齐鲁分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司齐鲁分公司 filed Critical 中国石油化工股份有限公司
Priority to CA3236009A priority Critical patent/CA3236009A1/en
Publication of WO2023072134A1 publication Critical patent/WO2023072134A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • B01J35/51
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of desulfurization, in particular to a catalyst and its application and method for removing carbonyl sulfide in natural gas.
  • COS hydrolysis reaction unit Due to the high content of organic sulfur (mainly COS) in natural gas, a separate COS hydrolysis reaction unit is generally installed before the Claus unit.
  • Sinopec Puguang Natural Gas Purification Plant installs a COS hydrolysis unit in front of the sulfur recovery unit to reduce the content of organic sulfur in natural gas. Since natural gas contains a certain amount of carbon dioxide, the presence of carbon dioxide has a certain inhibitory effect on the hydrolysis reaction of COS, which requires the activity of the COS conversion catalyst in the natural gas sulfur recovery unit to be high, otherwise it cannot meet the desulfurization requirements.
  • CN1069673A discloses a catalyst for the hydrolysis of organic sulfur at room temperature, which is composed of a potassium-containing compound and a carrier, which contains 2%-25% of K 2 CO 3 by weight of the carrier, and the carrier is spherical ⁇ -Al 2 O 3 , and must meet the following requirements: Spherical diameter 2-8mm; water absorption 0.35-0.65mL/g; specific surface area 150-350m 2 /g; mechanical strength ⁇ 30N/grain.
  • the COS conversion rate of the catalyst is not high, and the COS content and space velocity of the treated raw gas are relatively low, which are 1-5mg/m 3 and 2000h -1 respectively.
  • USP4511668 discloses a COS hydrolysis catalyst that uses TiO2 as a carrier and contains at least one alkali metal, alkaline earth metal, IIB group and IVA group metal as an active component.
  • the catalyst also has a low conversion rate of COS and a high reaction temperature (200-400° C.), and titanium oxide is used as a carrier, the preparation cost is relatively high, and the catalyst wears large.
  • the purpose of the present invention is to provide a catalyst, a preparation method and an application for the problems of unsatisfactory catalytic activity and COS conversion rate, high reaction temperature and poor activity stability of the existing organic sulfur conversion catalyst.
  • the first aspect of the present invention provides a catalyst comprising: a carrier, an alkali metal oxide and nickel oxide loaded on the carrier; wherein, based on the total weight of the catalyst, the content of the carrier is 90-97wt%, the content of the alkali metal oxide is 2-6wt%, the content of nickel oxide is 1-4wt%; at least part of the carrier is AlO(OH), ⁇ -Al 2 O 3 and ⁇ -Al 2 O 3 phase.
  • the second aspect of the present invention provides the application of the catalyst described in the aforementioned first aspect in the removal of carbonyl sulfide.
  • the third aspect of the present invention provides a method for removing carbonyl sulfide in natural gas, comprising: contacting raw natural gas with a desulfurizer for reaction and separation to obtain product natural gas and H2S ; wherein,
  • the desulfurizing agent is the catalyst described in the aforementioned first aspect
  • the reaction conditions include: the volume space velocity of the raw natural gas is 1000-5000h -1 , and the reaction temperature is 100-140°C.
  • the present invention has the following beneficial effects:
  • the catalyst provided by the present invention has the advantages of high catalytic activity, good activity stability, long service life, and low reaction temperature. It can achieve a COS conversion rate of ⁇ 99%, an operating temperature of 100-140°C, and a service life of up to 8 years. Above, while the COS conversion rate of catalysts in the prior art is usually not higher than 99%, and the service life is not more than 6 years;
  • Figure 1 is the XRD pattern of the catalyst prepared in Example 1 of the present invention.
  • Fig. 2 is a pore size distribution test diagram (mercury porosimetry) of the catalyst prepared in Example 1 of the present invention.
  • Fig. 3 is a pore size distribution test diagram (mercury porosimetry) of the catalyst prepared in Comparative Example 6 of the present invention.
  • Fig. 4 is a process flow diagram of the COS conversion test in the embodiment of the present invention.
  • the first aspect of the present invention provides a catalyst, which comprises: a carrier, an alkali metal oxide and nickel oxide supported on the carrier; wherein, based on the total weight of the catalyst, the content of the carrier is 90-97wt%, The content of the alkali metal oxide is 2-6wt%, and the content of nickel oxide is 1-4wt %; at least part of the support is AlO(OH), ⁇ - Al2O3 and ⁇ - Al2O3 phase .
  • each component of the catalyst satisfies the above quantitative relationship, in order to obtain better catalytic activity, activity stability and service life, preferably, based on the total weight of the catalyst, the amount of the carrier
  • the content can be 93-95wt%
  • the content of the alkali metal oxide can be 3-4wt%
  • the content of nickel oxide can be 2-3wt%.
  • an alkali metal oxide and nickel oxide are supported on the catalyst carrier at the same time, wherein the alkali metal oxide is preferably sodium oxide and/or potassium oxide.
  • the content of alkali metal oxide is preferably higher than that of nickel oxide, preferably, the content of alkali metal oxide is 0.5-3 wt% higher than that of nickel oxide.
  • the catalyst has a specific phase composition
  • the specific phase of the catalyst is derived from the carrier contained in the catalyst, at least part of the carrier is AlO(OH), ⁇ - Al2 O 3 and ⁇ -Al 2 O 3 phases
  • the characteristic diffraction peaks of AlO(OH) appear at 2 ⁇ at 14.44°, 28.24°, 38.24° and 48.80°, and at 2 ⁇ as
  • the characteristic diffraction peaks of ⁇ -Al 2 O 3 appear at 37.31°, 45.93° and 66.76°
  • the characteristic diffraction peaks of ⁇ -Al 2 O 3 appear at 2 ⁇ of 37.31°, 42.41°, 45.56° and 67.50°.
  • the catalyst contains AlO(OH), ⁇ -Al 2 O 3 and ⁇ -Al 2 O 3 phases, and basically Does not contain ⁇ -Al 2 O 3 .
  • the weight ratio of AlO(OH): ⁇ -Al 2 O 3 : ⁇ -Al 2 O 3 is 1:(2-5):(0.2-0.6), preferably 1:(3 -4): (0.4-0.5).
  • the content of ⁇ -Al 2 O 3 is not more than 0.5 wt%, AlO(OH), ⁇ -Al 2 O 3 and ⁇ -Al 2
  • the total content of O3 is not less than 90wt%.
  • the contents of AlO(OH), ⁇ -Al 2 O 3 , and ⁇ -Al 2 O 3 are calculated from the peak areas of the above-mentioned characteristic diffraction peaks.
  • the catalyst has the above-mentioned specific phase composition and phase content, which is beneficial to obtain better catalytic activity, activity stability and service life.
  • the catalyst has a high specific surface area and a large pore volume, preferably, the specific surface area of the catalyst is greater than 300m2 /g, and the pore volume is greater than 0.45mL/g, which can contribute to better catalytic activity and activity stability Good and service life.
  • the specific surface area is measured by nitrogen adsorption method, and the pore volume is measured by mercury porosimetry.
  • the catalyst has a higher content of weakly basic centers, preferably, the content of weakly basic centers of the catalyst is 2.15-2.3mmolCO 2 /g catalyst, which can bring better catalytic activity.
  • the content of weakly basic centers is determined by carbon dioxide temperature-programmed desorption (CO 2 -TPD) method to measure the amount of CO 2 whose desorption temperature is lower than 200°C in the CO 2 -TPD spectrum obtained by testing the catalyst.
  • CO 2 -TPD carbon dioxide temperature-programmed desorption
  • the pore diameter of the catalyst in the pore structure of the catalyst measured by mercury intrusion porosimetry, has a bimodal distribution, and the bimodal peak positions are respectively located at 1000-4000nm and 4-20nm. Further, the catalyst has a high content of macropores, and in the pore structure measured by mercury intrusion porosimetry, based on the total pore volume of the catalyst, the sum of pore volumes with a pore diameter greater than 75 nm accounts for 35% by volume The above can lead to better catalytic activity, good activity stability and service life.
  • the proportion of the sum of pore volumes with pore diameters greater than 75 nm is obtained by dividing the sum of pore volumes with pore diameters greater than 75 nm in the pore structure data obtained by mercury porosimetry by the total volume of all pores.
  • the sum of pore volumes with a pore diameter greater than 75 nm accounts for 35-60% by volume.
  • the catalyst provided by the present invention when the catalyst provided by the present invention contains the above-mentioned specific content of alkali metal oxide and nickel oxide and the support of specific phase composition, it can produce synergistic effect, so that the catalyst can obtain significant performance improvement, with With the characteristics of high catalytic activity, good activity stability, long service life and low reaction temperature, it can achieve a COS conversion rate of ⁇ 99%, which in turn can significantly reduce the total sulfur content in natural gas.
  • the catalyst obtained cannot have the comprehensive performance of the catalyst provided by the present invention in aspects such as catalytic activity, activity stability and service life.
  • the carrier of the catalyst is prepared by fast de-powdering of aluminum hydroxide, then loaded with alkali metal salt and nickel salt, and finally roasted to obtain the catalyst.
  • the catalyst provided by the invention can be prepared by the following method, the method comprising:
  • the specific surface area of the aluminum hydroxide quick-release powder is greater than 250m 2 /g, and the pore volume is greater than 0.25mL/g; more preferably, the specific surface area is greater than 300m 2 /g , with a larger pore volume of 0.35mL/g, which is beneficial to obtain better carrier performance and catalyst activity.
  • the pore-enlarging agent in the step (1), can be selected from the group consisting of turnip powder, methyl cellulose or starch, preferably turnip powder.
  • the pore-enlarging agent will be completely decomposed, and it can be considered that the final catalyst does not contain the pore-enlarging agent.
  • the amount of the aluminum hydroxide fast detaching powder is such that based on the total weight of the catalyst, the content of the carrier is 90-97wt%, preferably 93-95wt%. Based on the total weight of the catalyst, the pore-enlarging agent is used in an amount of 1-5 wt%, preferably 2-4 wt%.
  • the present invention has no special limitation on the mixing, as long as the aluminum hydroxide quick-release powder and the pore-enlarging agent can be uniformly mixed to obtain a uniform solid material that meets the requirements of the molding process That's it.
  • the binder-containing solution only needs to be able to effectively bond the particles of the solid material and be able to shape, preferably an aqueous binder solution.
  • the present invention has no special limitation on the concentration of the binder in the solution, which can be adjusted and selected according to the requirements of the molding process.
  • the binder may be selected from acetic acid, nitric acid or citric acid, preferably acetic acid.
  • the binder will be completely decomposed, and it can be considered that the final catalyst does not contain the binder component.
  • the binder is used in an amount of 1-3 wt%, preferably 1.5-2.5 wt%.
  • the forming in step (2), can adopt the rolling forming method, and can adopt the conventional process and equipment, and the forming process includes feeding the solid material into the ball rolling machine, and feeding the solid material into the rolling ball machine at the same time.
  • the material is sprayed with the binder-containing solution, mixed and rolled continuously to obtain a spherical shaped product.
  • the slaking is preferably carried out under a steam atmosphere, and the slaking conditions include: the temperature is 60-100°C, preferably 80-90°C; the time is 10-30h, preferably 16 h -24h.
  • the drying conditions include: a temperature of 100-150° C., preferably 120-130° C.; a time of 4-10 hours, preferably 5-8 hours.
  • the roasting conditions include: the temperature is 380-550°C, preferably 400-450°C; the time is 3-10h, preferably 4-6h.
  • the calcination is carried out under an inert protective gas atmosphere.
  • the inert protective gas may be an inert gas such as nitrogen, helium, argon, etc., preferably nitrogen.
  • the calcined product mainly contains AlO(OH), ⁇ -Al 2 O 3 and ⁇ -Al 2 by using aluminum hydroxide powder with specific pore structure and roasting at a relatively low temperature.
  • the weight ratio of AlO(OH): ⁇ -Al 2 O 3 : ⁇ -Al 2 O 3 is 1:(2-5):(0.2-0.6), preferably 1:(3-4 ): (0.4-0.5), but basically does not contain ⁇ -Al 2 O 3 , and has a high content of macropores.
  • the pores with a diameter greater than 75nm are measured by mercury porosimetry The sum of the volumes accounts for not less than 35% by volume, so that it has high activity and stability for decarbonyl sulfide removal, and the service life of the catalyst is greatly improved.
  • step (3) the loading of alkali metal salts and nickel salts can be achieved by immersing the support in an impregnation solution containing the above salts.
  • the present invention has no particular limitation on the impregnation process, and conventional impregnation methods in the art may be used, either in one step or in multiple steps.
  • the impregnating solution is a solution containing alkali metal salt and nickel salt; when adopting multi-step impregnation, the impregnating solution can be respectively a solution containing alkali metal salt and a solution containing nickel salt, and the carrier can be Immersed in a solution containing an alkali metal salt and a solution containing a nickel salt, the present invention has no special limitation on the impregnation sequence of the carrier in different immersion solutions.
  • the immersion solution can be obtained by dissolving the alkali metal salt and/or nickel salt in a solvent.
  • the alkali metal salt can preferably be alkali metal carbonate and/or nitrate
  • the nickel salt can preferably be at least one of nickel nitrate, nickel carbonate and nickel acetate
  • the alkali metal can preferably be sodium and/or potassium
  • the solvent may preferably be water.
  • the amount of the alkali metal salt is such that the content of the alkali metal oxide loaded on the carrier is 2-6 wt%, preferably 3-4 wt%, based on the total weight of the catalyst
  • the amount of the nickel salt is such that based on the total weight of the catalyst, the content of the nickel oxide loaded on the carrier is 1-4wt%, preferably 2-3wt%; the amount of the alkali metal salt and the nickel salt is such that in In the catalyst, the content of alkali metal oxide is higher than that of nickel oxide, preferably, the content of alkali metal oxide is 0.5-3wt% higher than that of nickel oxide.
  • the impregnation in step (3), can be performed at normal temperature, and the impregnation time is preferably 1-4 hours, more preferably 2-3 hours.
  • step (3) the impregnated carrier is dried under the following conditions: the temperature is 100-160°C, preferably 120-140°C; the time is 2-8h, preferably 4-6h.
  • the dried carrier is calcined to obtain the COS conversion catalyst.
  • the calcination conditions include: a temperature of 360-600° C., preferably 400-500° C.; a time of 3-8 hours, preferably 3-5 hours.
  • the catalyst prepared by the above method wherein at least part of the carrier is AlO(OH), ⁇ -Al 2 O 3 and ⁇ -Al 2 O 3 phases, based on the total weight of the catalyst, ⁇ -Al 2 O
  • the content of 3 is not more than 0.5wt%, and the total content of AlO(OH), ⁇ - Al2O3 and ⁇ - Al2O3 is not less than 90wt%, wherein, AlO( OH ): ⁇ - Al2O3 :
  • the weight ratio of ⁇ -Al 2 O 3 is 1:(2-5):(0.2-0.6);
  • the carrier is loaded with alkali metal oxide, and nickel oxide; based on the total weight of the catalyst, the carrier Content is 90-97wt%, the content of alkali metal oxide is 2-6wt%, the content of nickel oxide is 1-4wt%;
  • the content of alkali metal oxide is higher than the content of nickel oxide;
  • the specific surface area of the catalyst is greater than 300m 2 /
  • the second aspect of the present invention provides the application of the catalyst described in the aforementioned first aspect in the removal of carbonyl sulfide.
  • the catalyst has a specific content of alkali metal oxide and nickel oxide and a carrier with a specific phase composition, has a high specific surface area and a large pore volume, can efficiently convert carbonyl sulfide, and has high catalytic activity. It has good activity stability, low service temperature, long service life and wide application fields, and can be used for efficient removal of carbonyl sulfide in industries including but not limited to natural gas chemical industry and coal chemical industry.
  • the third aspect of the present invention provides a method for removing carbonyl sulfide in natural gas, comprising: contacting raw natural gas with a desulfurizer for reaction and separation to obtain product natural gas and H2S ; wherein,
  • the desulfurizing agent is the catalyst described in the aforementioned first aspect
  • the reaction conditions include: the volume space velocity of the raw natural gas is 1000-5000h -1 , and the reaction temperature is 100-140°C.
  • the raw natural gas refers to the natural gas that needs to be desulfurized
  • the product natural gas refers to the natural gas whose sulfur content meets the use requirements after desulfurization.
  • the raw natural gas mainly contains methane and a small amount of alkanes such as ethane and carbon dioxide, carbon monoxide, nitrogen, hydrogen, hydrogen sulfide, water vapor, organic sulfur, etc., wherein the organic sulfur mainly includes carbonyl sulfide (COS in the raw natural gas)
  • the content is 20-600mg/m 3 ).
  • the method of the present invention can effectively convert carbonyl sulfide, the stability of the conversion reaction is good, the service life of the catalyst is long, the reaction temperature is low, and the conversion rate of carbonyl sulfide can reach more than 99%, thereby significantly reducing the total sulfur content.
  • the total sulfur content in the product natural gas after desulfurization is ⁇ 20 mg/m 3 .
  • Aluminum hydroxide fast de-powder was purchased from Shandong Zibo Kaiou New Material Co., Ltd.
  • step (3) 58.7g of potassium carbonate and 49.0g of nickel nitrate were loaded onto the carrier prepared in step (2) by an equal volume impregnation method, and the impregnation time was 2.5h; the impregnated carrier was dried at 130°C for 4h, and then Calcined at 400°C for 5h to obtain the catalyst (referred to as S1).
  • the specific surface area of S1 was measured by nitrogen adsorption method to be 314m 2 ⁇ g -1 , and the pore volume of S1 was measured by mercury porosimetry to be 0.53mL ⁇ g -1 .
  • the carbon dioxide temperature-programmed desorption method was used to determine the weakly basic center content of the catalyst.
  • step (3) Load 51.3g of sodium carbonate and 31.9g of nickel carbonate on the carrier prepared in step (2) by equal volume impregnation method, the impregnation time is 3h; dry the impregnated carrier at 120°C for 5h, Calcined for 3 hours to obtain the catalyst (referred to as S2).
  • step (2) 25g acetic acid is added in 90g water and stirred evenly and is made into acetic acid solution;
  • the solid material obtained in the step (1) is placed in the rolling ball machine, and the above-mentioned nitric acid solution is sprayed to the material in the rolling ball machine simultaneously, mixed and rotated Rolling balls are formed to obtain small balls with a diameter of ⁇ 3-4mm; after that, the small balls are aged at 80°C for 24 hours in a steam atmosphere, dried at 120°C for 6 hours, and roasted at 450°C for 4 hours in a nitrogen atmosphere to obtain a carrier;
  • step (3) Load 86.0g potassium nitrate and 100g nickel acetate tetrahydrate on the carrier prepared in step (2) by equal volume impregnation method, and the impregnation time is 2h; dry the impregnated carrier at 140°C for 6h, and then Calcined at 450°C for 4 hours to obtain a catalyst (referred to as S3).
  • step (2) 30g citric acid is added in 80g water and stirred evenly to make citric acid solution;
  • the solid material obtained in step (1) is placed in the rolling ball machine, and the above-mentioned citric acid solution is sprayed to the material in the rolling ball machine simultaneously, mixed And formed by rotating rolling balls to obtain small balls with a diameter of ⁇ 3-4mm; after that, the small balls were aged in a water vapor atmosphere at 70°C for 12 hours, dried at 115°C for 4 hours, and roasted at 380°C for 3 hours in a nitrogen atmosphere to obtain a carrier;
  • step (3) Load 73.4g of potassium carbonate and 63.7g of nickel carbonate on the carrier prepared in step (2) by equal volume impregnation method, and the impregnation time is 4h; dry the impregnated carrier at 100°C for 2h, Calcined at °C for 6h to obtain the catalyst (denoted as S4).
  • step (3) Load 54.8g of sodium carbonate and 15.9g of nickel carbonate on the carrier prepared in step (2) by equal volume impregnation method, and the impregnation time is 1h; dry the impregnated carrier at 150°C for 5h, The catalyst was calcined at °C for 8 hours to obtain the catalyst (referred to as S5).
  • the difference is that the calcination temperature of the carrier prepared in step (2) is 600°C, and the calcination temperature of the impregnated carrier in step (3) is 580°C.
  • Other conditions are identical with embodiment 1.
  • a catalyst (referred to as S6) was obtained.
  • the consumption of salt of wormwood is 29.4g
  • the consumption of nickel nitrate is 98g in the step (3).
  • Other conditions are identical with embodiment 1.
  • a catalyst (denoted as S7) was obtained.
  • step (3) nickel nitrate is not added.
  • Other conditions are identical with embodiment 1.
  • a catalyst (denoted as D1) was obtained.
  • step (3) do not add sodium carbonate.
  • Other conditions are identical with embodiment 2.
  • a catalyst (denoted as D2) was obtained.
  • step (1) metatitanic acid is used to replace aluminum hydroxide quick-release powder.
  • Other conditions are identical with embodiment 1.
  • a catalyst (denoted as D3) was obtained.
  • step (1) is not carried out, and 1200g of ⁇ - Al2O3 powder is used instead of the solid material obtained in step (1), and step (2) and step (3) are carried out successively ).
  • Other conditions are identical with embodiment 1.
  • a catalyst (denoted as D4) was obtained.
  • step (1) the consumption of aluminum oxide quick-release powder is adjusted to 1143g by 1343g; Replace with "278.9g potassium carbonate, 24.5g nickel nitrate".
  • step (2) the consumption of aluminum oxide quick-release powder is adjusted to 1143g by 1343g; Replace with "278.9g potassium carbonate, 24.5g nickel nitrate".
  • Other conditions are identical with embodiment 1.
  • a catalyst (denoted as D5) was obtained.
  • Example 1 According to the method of Example 1, the difference is that the calcination temperature in step (2) is changed to 800°C, and the calcination temperature of the impregnated carrier in step (3) is 800°C. Other conditions are identical with embodiment 1. A catalyst (denoted as D6) was obtained.
  • the results of the pore size distribution test (mercury porosimetry) of the catalyst D6 are shown in FIG. 3 .
  • the content of each component, the phase composition and the physical and chemical indicators in the catalyst D6 are shown in Table 1.
  • the macropore ratio is the percentage of the sum of the pore volumes with a pore diameter greater than 75nm in the total pore volume of the catalyst; the weight percentage of each phase is based on the total weight of the catalyst
  • Catalysts S1-S7 and D1-D6 prepared in Examples 1-7 and Comparative Examples 1-6 were respectively subjected to a COS conversion test on a 10mL micro-reaction activity evaluation device to evaluate catalyst performance.
  • the method is as follows:
  • Aging treatment Severe aging of catalysts S1-S7 and D1-D6 respectively (roasting at 550°C for 2h, and then using water vapor to age the catalyst at a volumetric space velocity of 1000h -1 ) to simulate the catalyst in a short time The state after a long period of use.
  • the catalyst was subjected to aging treatment with water vapor for 8h, 12h and 16h respectively, and the obtained harshly aged catalyst can simulate the performance of the catalyst when used for 4 years, 6 years and 8 years respectively.
  • the reactor of the micro-reactor activity evaluation device is made of a stainless steel tube with an inner diameter of 20 mm, and the reactor is placed in a constant temperature box.
  • the specific process flow is shown in Figure 4.
  • the loading amount of the catalyst after severe aging is 10mL/(20-40 mesh), and the upper part is filled with quartz sand of the same particle size for mixing and preheating.
  • the Japan Shimadzu GC-2014 gas chromatograph was used to analyze the contents of H 2 S and COS in the inlet and outlet gases of the reactor online, and the TCD detector was used to analyze the constant sulfide.
  • the post-column flow rate is 25mL/min; FPD detector is used to analyze trace sulfides, GDX-301 is used as the support, the column temperature is 80°C, nitrogen is used as the carrier gas, and the post-column flow rate is 30mL/min.
  • composition of raw natural gas at the reactor inlet CH 4 content 91.49v%, ethane content 0.5v%, H 2 content 0.01v%, CO 2 content 3v%, water vapor content 5v%, H 2 S content 50mg/ m3 , Methylmercaptan content 11mg/m 3 , COS content 500mg/m 3 ;
  • the volume space velocity of the raw natural gas is 5000h -1
  • the reaction temperature is 130°C
  • the reaction time is 24h.
  • the product at the outlet of the reactor is separated to obtain the product natural gas and H2S . From the beginning of the reaction, the COS conversion rate and the total sulfur content in the product natural gas were tested every 1 h until the end of the test. The average value of each test result was taken as the final result.
  • the results are shown in Table 2. Calculate COS conversion rate according to formula (1),
  • M 0 and M 1 represent the volume concentrations of COS at the inlet and outlet, respectively.
  • the catalysts S1-S7 provided by the present invention can all achieve a conversion rate of COS of more than 99% in the 4th year of use, and can still reach more than 98.5% in the 8th year of use, showing excellent carbonyl sulfide conversion Activity, activity stability is good, after long-term use, the activity decay is small, the service life can reach more than 8 years, and it is suitable for lower reaction temperature (such as the reaction temperature of 130°C in the above test), which can well meet the requirements of industrial equipment for desorption.
  • the requirements for removing carbonyl sulfide make the total sulfur content in the product natural gas after desulfurization less than 20mg/m 3 , meeting the requirements for Class I gas specified in GB17820-2018.
  • D1-D6 had significantly lower carbonyl sulfide conversion activity and significantly shorter catalyst life.
  • the present invention utilizes a specific content of alkali metal oxide, nickel oxide, and a carrier with a specific phase composition to act together to achieve synergistic effect, endowing the catalyst with high catalytic activity and stable activity in the COS conversion reaction Good, long service life, low reaction temperature, COS conversion rate ⁇ 99%, and service life of more than 8 years.

Abstract

本发明属于脱硫技术领域,具体涉及催化剂及应用与脱除天然气中羰基硫的方法。该催化剂包括:载体,负载在载体上的碱金属氧化物和氧化镍;其中,基于所述催化剂的总重量,所述载体的含量为90-97wt%,所述碱金属氧化物的含量为2-6wt%,氧化镍的含量为1-4wt%;至少部分所述载体为AlO(OH)、χ-Al 2O 3和η-Al 2O 3物相。该催化剂具有催化活性高、活性稳定性好、使用寿命长的优点,可实现COS转化率≥99%,使用寿命达到8年以上,有效降低天然气中的羰基硫含量。

Description

催化剂及应用与脱除天然气中羰基硫的方法
相关申请的交叉引用
本申请要求2021年10月26日提交的发明名称为“COS转化催化剂及制备方法与回收天然气中硫的方法”的中国专利申请202111250608.6的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明属于脱硫技术领域,具体涉及一种催化剂及应用与脱除天然气中羰基硫的方法。
背景技术
天然气作为一种优质、高效、清洁的化石能源,在世界一次能源消费结构中的占比已达到25%左右,成为一种重要的能源来源。近年来,我国的一些新的高硫大型气田陆续被开发,这就对天然气净化工艺提出了新的要求。新实施的国家标准GB17820-2018《天然气》中规定:一类气总硫(以硫计)含量≤20mg/m 3,硫化氢含量≤6mg/m 3,这对天然气脱硫技术提出更高的要求。
由于天然气中有机硫(主要为COS)含量较高,一般在克劳斯单元前单独设置COS水解反应单元。中石化普光天然气净化厂在硫回收装置的前部设置COS水解单元,以便降低天然气中有机硫的含量。由于天然气中含有一定量的二氧化碳,二氧化碳的存在对COS的水解反应有一定抑制作用,这就要求在天然气硫回收装置中COS转化催化剂的活性要高,否则无法满足脱硫要求。
CN1069673A公开了一种常温有机硫水解催化剂,由含钾化合物和载体组成,其中含有载体重量2%-25%的K 2CO 3,载体选用球形γ-Al 2O 3,且需满足下列要求:球形直径2-8mm;吸水率0.35-0.65mL/g;比表面积150-350m 2/g;机械强度≥30N/颗。该催化剂的COS转化率不高,且所处理的原料气COS含量和空速都比较低, 分别为1-5mg/m 3和2000h -1
USP4511668公开了一种以TiO 2为载体,至少含有一种碱金属、碱土金属、IIB族和IVA族金属作为活性组分的COS水解催化剂,该催化剂同样COS转化率不高,且反应温度较高(200-400℃),并且以氧化钛作为载体,制备成本较高,催化剂磨耗大。
可见,现有技术的催化剂的COS转化率不够理想,脱硫效果一般,亟需开发一种新的有机硫转化催化剂来解决上述问题。
发明内容
本发明的目的是针对现有的有机硫转化催化剂存在催化活性和COS转化率不理想、反应温度高、活性稳定性较差的问题,提供了一种催化剂及制备方法与应用。
为了实现上述目的,本发明第一方面提供一种催化剂,该催化剂包括:载体,负载在载体上的碱金属氧化物和氧化镍;其中,基于所述催化剂的总重量,所述载体的含量为90-97wt%,所述碱金属氧化物的含量为2-6wt%,氧化镍的含量为1-4wt%;至少部分所述载体为AlO(OH)、χ-Al 2O 3和η-Al 2O 3物相。
本发明第二方面提供前述第一方面所述的催化剂在脱除羰基硫中的应用。
本发明第三方面提供一种脱除天然气中羰基硫的方法,包括:将原料天然气与脱硫剂接触进行反应并分离,得到产品天然气和H 2S;其中,
所述脱硫剂为前述第一方面所述的催化剂;
所述反应的条件包括:原料天然气的体积空速为1000-5000h -1,反应温度为100-140℃。
通过上述技术方案,本发明具有如下有益效果:
(1)本发明提供的催化剂具有催化活性高、活性稳定性好、使用寿命长、反应温度低的优点,可实现COS转化率≥99%,使用温度100-140℃,使用寿命可达到8年以上,而现有技术的催化剂COS转化率通常不高于99%,使用寿命 不超过6年;
(2)可用于天然气净化厂有机硫转化装置,可以显著提高装置的有机硫转化率,有效降低产品天然气中总硫含量;
(3)制备工艺简单,制备过程无二次污染。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明实施例1制备的催化剂的XRD图。
图2是本发明实施例1制备的催化剂的孔径分布测试图(压汞法)。
图3是本发明对比例6制备的催化剂的孔径分布测试图(压汞法)。
图4是本发明实施例中COS转化试验的工艺流程图。
附图标记说明
1、CH 4、C 2H 6气瓶                  2、H 2气瓶
3、H 2S气瓶                       4、甲硫醇气瓶
5、COS气瓶                       6、CO 2气瓶
7、水瓶                          8、质量流量计
9、泵                            10、缓冲罐
11、反应器                       12、积硫器
13、冷阱                         14、碱洗罐
15、色谱                         16、尾气
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范 围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明第一方面提供一种催化剂,该催化剂包括:载体,负载在载体上的碱金属氧化物和氧化镍;其中,基于所述催化剂的总重量,所述载体的含量为90-97wt%,所述碱金属氧化物的含量为2-6wt%,氧化镍的含量为1-4wt%;至少部分所述载体为AlO(OH)、χ-Al 2O 3和η-Al 2O 3物相。
根据本发明,所述催化剂的各组分在满足上述数量关系的基础上,为获得更好的催化活性、活性稳定性以及使用寿命,优选地,基于所述催化剂的总重量,所述载体的含量可以为93-95wt%,所述碱金属氧化物的含量可以为3-4wt%,氧化镍的含量可以为2-3wt%。
根据本发明,在所述催化剂的载体上同时负载有碱金属氧化物和氧化镍,其中,所述碱金属氧化物优选为钠的氧化物和/或钾的氧化物。
根据本发明,在所述催化剂中,碱金属氧化物的含量优选高于氧化镍的含量,优选地,碱金属氧化物的含量比氧化镍的含量高0.5-3wt%。
根据本发明,所述催化剂具有特定的物相组成,具体地,所述催化剂具有的特定物相来源于所述催化剂所含有的载体,至少部分所述载体为AlO(OH)、χ-Al 2O 3和η-Al 2O 3物相,在所述催化剂的XRD测试图谱中,在2θ为14.44°、28.24°、38.24°和48.80°处出现AlO(OH)的特征衍射峰,在2θ为37.31°、45.93°和66.76°处出现η-Al 2O 3的特征衍射峰,在2θ为37.31°、42.41°、45.56°和67.50°处出现χ-Al 2O 3的特征衍射峰,在2θ为37.80°、45.90°和67.00°处未见γ-Al 2O 3的特征衍射峰,表明催化剂中含有AlO(OH)、χ-Al 2O 3和η-Al 2O 3物相,而基本上不含γ-Al 2O 3。 在所述催化剂的载体中,AlO(OH):χ-Al 2O 3:η-Al 2O 3的重量比为1:(2-5):(0.2-0.6),优选为1:(3-4):(0.4-0.5)。
根据本发明,在所述催化剂中,以所述催化剂的总重量为基准,γ-Al 2O 3的含量不超过0.5wt%,AlO(OH)、χ-Al 2O 3和η-Al 2O 3的总含量不少于90wt%。
在本发明中,AlO(OH)、χ-Al 2O 3、η-Al 2O 3的含量通过上述特征衍射峰的峰面积计算得到。
根据本发明,所述催化剂具有上述特定的物相组成及物相含量,利于获得更好的催化活性、活性稳定性以及使用寿命。
根据本发明,所述催化剂具有高比表面积和大孔容,优选地,所述催化剂的比表面积大于300m 2/g,孔容大于0.45mL/g,能够促成更好的催化活性、活性稳定性好以及使用寿命。
在本发明中,比表面积采用氮气吸附法测定,孔容采用压汞法测定。
根据本发明,所述催化剂具有较高的弱碱性中心含量,优选地,所述催化剂的弱碱性中心含量为2.15-2.3mmolCO 2/g催化剂,能够带来更好的催化活性。
在本发明中,弱碱性中心含量利用二氧化碳程序升温脱附法(CO 2-TPD)对催化剂进行测试得到的CO 2-TPD图谱中脱附温度低于200℃的CO 2量进行测定。
根据本发明,所述催化剂在通过压汞法测得的孔结构中,所述催化剂的孔径呈双峰分布,双峰峰位分别位于1000-4000nm和4-20nm。进一步地,所述催化剂中大孔含量高,在通过压汞法测得的孔结构中,以所述催化剂的孔体积总量为基准,孔径大于75nm的孔体积之和占比为35体积%以上,能够促成更好的催化活性、活性稳定性好以及使用寿命。
在本发明中,孔径大于75nm的孔体积之和占比通过将压汞法所得孔结构数据中孔径大于75nm的孔体积加和除以所有孔的总体积得到。
根据本发明,优选地,所述催化剂通过压汞法测得的孔结构中,以所述催化剂的孔体积总量为基准,孔径大于75nm的孔体积之和占比为35-60体积%。
在本发明中,本发明提供的所述催化剂当含有上述特定含量的碱金属氧化物和氧化镍以及特定物相组成的载体时,可以产生协同增效作用,使催化剂获得显著的性能改进,具有催化活性高、活性稳定性好、使用寿命长、反应温度低的特点,可实现COS转化率≥99%,进而能够显著降低天然气中总硫含量。在上述限定范围之外时,获得的催化剂不能具有本发明所提供催化剂在催化活性、活性稳定性及使用寿命等方面的综合性能。
根据本发明,所述催化剂的载体由氢氧化铝快脱粉加工制得,之后负载含碱金属盐和镍盐,最后焙烧制得所述催化剂。优选地,本发明提供的催化剂可通过如下方法制备得到,方法包括:
(1)将氢氧化铝快脱粉与扩孔剂进行混合,形成固体物料;
(2)将所述固体物料与含粘结剂的溶液共同成型,并将成型产物依次进行熟化、干燥和焙烧,得到载体;
(3)将所述载体负载含碱金属盐和镍盐,之后依次进行干燥、焙烧,得到催化剂。
根据本发明,在步骤(1)中,优选地,所述氢氧化铝快脱粉的比表面积大于250m 2/g,孔容大于0.25mL/g;进一步优选地,比表面积大于300m 2/g,孔容大0.35mL/g,利于获得更好的载体性能和催化剂活性。
根据本发明,在步骤(1)中,所述扩孔剂可以选自田菁粉、甲基纤维素或淀粉,优选为田菁粉。在后续焙烧制备载体的过程中,所述扩孔剂将会被分解殆尽,可认为最终制得的催化剂中不含有所述扩孔剂的成分。
根据本发明,在步骤(1)中,所述氢氧化铝快脱粉的用量使得基于所述催化剂的总重量,载体的含量为90-97wt%,优选为93-95wt%。基于所述催化剂的总重量,所述扩孔剂的用量为1-5wt%,优选为2-4wt%。
根据本发明,在步骤(1)中,本发明对所述混合没有特别的限定,只要能够实现将所述氢氧化铝快脱粉与扩孔剂混合均匀,得到满足成型工艺要求的均匀 固体物料即可。
根据本发明,在步骤(2)中,所述含粘结剂的溶液只要能够满足将所述固体物料的颗粒之间有效粘结并能够成型即可,优选可以采用粘结剂的水溶液。本发明对所述溶液中粘结剂的浓度没有特别的限定,可以根据成型工艺的需要进行调整选择。所述粘结剂可以选自乙酸、硝酸或柠檬酸,优选为乙酸。在后续焙烧制备载体的过程中,所述粘结剂会被分解殆尽,可认为最终制得的催化剂中不含有所述粘结剂的成分。
在本发明中,基于所述催化剂的总重量,所述粘结剂的用量为1-3wt%,优选为1.5-2.5wt%。
根据本发明,在步骤(2)中,所述成型可以采用滚动成型法,可以采用常规的工艺和设备,成型过程包括将所述固体物料加料至滚球机中,同时向滚球机中的物料喷洒所述含粘结剂的溶液,混合并经连续滚动,制得球形的成型产物。
根据本发明,在步骤(2)中,所述熟化优选在水蒸汽气氛下进行,熟化的条件包括:温度为60-100℃,优选为80-90℃;时间为10-30h,优选为16-24h。
根据本发明,在步骤(2)中,所述干燥的条件包括:温度为100-150℃,优选为120-130℃;时间为4-10h,优选为5-8h。
根据本发明,在步骤(2)中,所述焙烧的条件包括:温度为380-550℃,优选为400-450℃;时间为3-10h,优选为4-6h。
根据本发明,在步骤(2)中,所述焙烧在惰性保护气氛围下进行。所述惰性保护气可以为氮气、氦气、氩气等惰性气体,优选为氮气。在本发明中,通过使用具有特定孔结构的氢氧化铝快脱粉并在相对较低的温度下焙烧,使得所得焙烧产物主要含有AlO(OH)、χ-Al 2O 3和η-Al 2O 3物相,且AlO(OH):χ-Al 2O 3:η-Al 2O 3的重量比为1:(2-5):(0.2-0.6),优选为1:(3-4):(0.4-0.5),而基本上不含γ-Al 2O 3,并且其中大孔含量高,负载活性组分后所得催化剂通过压汞法测得的孔结构中,孔径大于75nm的孔体积之和占比不低于35体积%,从而具有 较高的脱羰基硫活性和稳定性,且催化剂的使用寿命大幅度提高。
根据本发明,在步骤(3)中,所述负载含碱金属盐和镍盐可通过将所述载体浸渍于含上述盐的浸渍液中实现。本发明对所述浸渍的过程没有特别的限定,可以采用本领域中常规的浸渍方法,可以一步浸渍,也可多步浸渍。当采用一步浸渍时,浸渍液为含碱金属盐和镍盐的溶液;当采用多步浸渍时,浸渍液可以分别为含碱金属盐的溶液以及含镍盐的溶液,可以将所述载体先后浸渍于含碱金属盐的溶液以及含镍盐的溶液中,本发明对所述载体在不同浸渍液中的浸渍顺序没有特别的限定。所述浸渍液可以通过将所述碱金属盐和/或镍盐溶于溶剂中获得。其中,所述碱金属盐优选可以为碱金属的碳酸盐和/或硝酸盐,所述镍盐优选可以为硝酸镍、碳酸镍和醋酸镍中的至少一种,所述碱金属优选可以为钠和/或钾,所述溶剂优选可以为水。
根据本发明,在所述浸渍液中,所述碱金属盐的用量使得基于所述催化剂的总重量,负载在载体上的碱金属氧化物的含量为2-6wt%,优选为3-4wt%;所述镍盐的用量使得基于所述催化剂的总重量,负载在载体上的氧化镍的含量为1-4wt%,优选为2-3wt%;所述碱金属盐和镍盐的用量使得在所述催化剂中,碱金属氧化物的含量高于氧化镍的含量,优选地,碱金属氧化物的含量比氧化镍的含量高0.5-3wt%。
根据本发明,在步骤(3)中,所述浸渍可以在常温下进行,浸渍的时间优选为1-4h,进一步优选为2-3h。
根据本发明,在步骤(3)中,将完成浸渍后的载体进行干燥,条件包括:温度为100-160℃,优选为120-140℃;时间为2-8h,优选为4-6h。
根据本发明,在步骤(3)中,将完成干燥后的载体进行焙烧,得到所述COS转化催化剂。优选地,所述焙烧的条件包括:温度为360-600℃,优选为400-500℃;时间为3-8h,优选为3-5h。
上述方法制得的所述催化剂,其中至少部分载体为AlO(OH)、χ-Al 2O 3和 η-Al 2O 3物相,以所述催化剂的总重量为基准,γ-Al 2O 3的含量不超过0.5wt%,AlO(OH)、χ-Al 2O 3和η-Al 2O 3的总含量不少于90wt%,其中,AlO(OH):χ-Al 2O 3:η-Al 2O 3的重量比为1:(2-5):(0.2-0.6);所述载体上负载碱金属氧化物,以及氧化镍;基于所述催化剂的总重量,所述载体的含量为90-97wt%,碱金属氧化物的含量为2-6wt%,氧化镍的含量为1-4wt%;在所述催化剂中,优选碱金属氧化物的含量高于氧化镍的含量;所述催化剂的比表面积大于300m 2/g,孔容大于0.45mL/g;所述催化剂的弱碱性中心含量为2.15-2.3mmolCO 2/g催化剂;所述催化剂通过压汞法测得的孔结构中,孔径呈双峰分布,双峰峰位分别位于1000-4000nm和4-20nm;以所述催化剂的孔体积总量为基准,孔径大于75nm的孔体积之和占比为35体积%以上。所制得的催化剂具有催化活性高、活性稳定性好、使用寿命长、反应温度低的优点,可实现COS转化率≥99%,使用寿命可达到8年以上。
本发明第二方面提供前述第一方面所述的催化剂在脱除羰基硫中的应用。
在本发明中,所述催化剂具有特定含量的碱金属氧化物和氧化镍以及特定物相组成的载体,并具有高比表面积和大孔容,能够高效地将羰基硫进行转化,催化活性高、活性稳定性好、使用温度低,使用寿命长,应用领域广泛,可以用于包括但不限于天然气化工、煤化工等行业中羰基硫的高效脱除。
本发明第三方面提供一种脱除天然气中羰基硫的方法,包括:将原料天然气与脱硫剂接触进行反应并分离,得到产品天然气和H 2S;其中,
所述脱硫剂为前述第一方面所述的催化剂;
所述反应的条件包括:原料天然气的体积空速为1000-5000h -1,反应温度为100-140℃。
在本发明中,所述原料天然气是指需要进行脱硫处理的天然气,所述产品天然气是指脱硫处理后硫含量满足使用要求的天然气。所述原料天然气主要含有甲烷和少量的乙烷等烷烃以及二氧化碳、一氧化碳、氮气、氢气、硫化氢、水蒸气、 有机硫等,其中,有机硫主要包括羰基硫(COS在所述原料天然气中的含量为20-600mg/m 3)。采用本发明的方法能够有效对羰基硫进行转化,转化反应的稳定性好,催化剂使用寿命长,反应温度低,可实现羰基硫的转化率达到99%以上,进而显著降低脱硫后产品天然气中总硫含量。优选地,脱硫后产品天然气中总硫含量≤20mg/m 3
以下将通过实施例对本发明进行详细描述。以下实施例和对比例中,在没有特别说明的情况下,所用材料均采用普通市售产品。以下实施例中,
氢氧化铝快脱粉购自山东淄博凯欧新材料有限公司。
实施例1
(1)将1343g氢氧化铝快脱粉(比表面积为350m 2/g,孔容为0.60mL/g)、30g田菁粉混合均匀,形成固体物料;
(2)将15g乙酸加入80g水中搅拌均匀配成乙酸溶液;将步骤(1)中得到的固体物料置于滚球机中,同时向滚球机中的固体物料喷洒上述乙酸溶液,混合并经转动滚球成型,得到直径为Φ3-4mm的小球;之后依次将小球在90℃水蒸汽气氛下熟化20h、130℃下烘干5h、氮气氛围下以400℃焙烧6h,得到载体;
(3)采用等体积浸渍法将58.7g碳酸钾、49.0g硝酸镍负载到步骤(2)制得的载体上,浸渍时间为2.5h;将浸渍好的载体在130℃下干燥4h,之后在400℃下焙烧5h,得到催化剂(记为S1)。
对S1进行XRD测试(日本理学Smartlab-3型X射线衍射仪,使用一维检测器,测试参数:管压40kV,管流40μA,Cu靶,光路狭缝系统IS=0.5°,RS1=20mm,RS2=20mm,扫描速度10(d·min -1),扫描范围10°-70°),结果如图1所示,在2θ为14.44°、28.24°、38.24°和48.80°处出现AlO(OH)的特征衍射峰,在2θ为37.31°、45.93°和66.76°处出现η-Al 2O 3的特征衍射峰,在2θ为37.31°、42.41°、45.56°和67.50°处出现χ-Al 2O 3的特征衍射峰,在2θ为37.80°、45.90°和67.00°处未见γ-Al 2O 3的特征 衍射峰;进一步地,由测试样品的上述特征衍射峰的峰面积计算得到,AlO(OH):χ-Al 2O 3:η-Al 2O 3的重量比为1:3.5:0.45,以S1的总重量为基准,γ-Al 2O 3的含量为0.01wt%,AlO(OH)、χ-Al 2O 3和η-Al 2O 3的总含量为94wt%。
采用压汞法对S1进行孔结构测试(美国康塔公司的PoreMaster-60型全自动压汞仪,测量孔径范围为0.003-1000μm,低压分析压力范围为1.5-350kPa,高压分析压力范围为140-420kPa),结果为孔径大于75nm的孔体积之和占比孔体积总量为48体积%;孔径分布如图2所示,可见,孔径呈双峰分布,双峰峰位分别位于1000-4000nm和4-20nm。
采用氮吸附法测得S1的比表面积为314m 2·g -1,采用压汞法测得S1的孔容为0.53mL·g -1
采用二氧化碳程序升温脱附法进行催化剂的弱碱性中心含量测定,测试过程:称取250mg催化剂样品,在高纯氮气(流量30mL/min)吹扫下升温至300℃进行催化剂预处理,300℃保持20min,随后降至30℃,切换至CO 2(流量30mL/min,浓度99.999%)进行吸附30min,吸附结束后氮气吹扫15min,随后升温脱附至700℃,升温速率保持在10℃/min,升温过程采用质谱仪记录CO 2(m/z=44)的变化趋势,得到CO 2-TPD图谱,根据脱附温度低于200℃的CO 2量计算得到S1的弱碱性中心含量为2.25mmol CO 2/g催化剂。
催化剂S1中的各组分含量、所含物相组成以及理化指标如表1所示。
实施例2
(1)将1357g氢氧化铝快脱粉(比表面积为360m 2/g,孔容为0.65mL/g)、40g田菁粉混合均匀,形成固体物料;
(2)将20g乙酸加入90g水中搅拌均匀配成乙酸溶液;将步骤(1)中得到的固体物料置于滚球机中,同时向滚球机中的固体物料喷洒上述乙酸溶液,混合并经转动滚球成型,得到直径为Φ3-4mm的小球;之后将小球在85℃水蒸汽气氛下熟化16h、125℃烘干8h、氮气氛围下以430℃焙烧5h,得到载体;
(3)采用等体积浸渍法将51.3g碳酸钠、31.9g碳酸镍负载到步骤(2)制得的载体上,浸渍时间为3h;将浸渍好的载体在120℃下干燥5h,在500℃下焙烧3h,得到催化剂(记为S2)。
催化剂S2中的各组分含量、所含物相组成以及理化指标如表1所示。
实施例3
(1)将1329g氢氧化铝快脱粉(比表面积为320m 2/g,孔容为0.53mL/g)、20g田菁粉混合均匀,形成固体物料;
(2)将25g乙酸加入90g水中搅拌均匀配成乙酸溶液;将步骤(1)中得到的固体物料置于滚球机中,同时向滚球机中的物料喷洒上述硝酸溶液,混合并经转动滚球成型,得到直径为Φ3-4mm的小球;之后将小球在80℃水蒸汽气氛下熟化24h、120℃烘干6h、氮气氛围下以450℃焙烧4h,得到载体;
(3)采用等体积浸渍法将86.0g硝酸钾、100g四水醋酸镍负载到步骤(2)制得的载体上,浸渍时间为2h;将浸渍好的载体在140℃下烘干6h,在450℃下焙烧4h,得到催化剂(记为S3)。
催化剂S3中的各组分含量、所含物相组成以及理化指标如表1所示。
实施例4
(1)将1300g氢氧化铝快脱粉(比表面积为326m 2/g,孔容为0.45mL/g)、20g甲基纤维素混合均匀,形成固体物料;
(2)将30g柠檬酸加入80g水中搅拌均匀配成柠檬酸溶液;将步骤(1)中得到的固体物料置于滚球机中,同时向滚球机中的物料喷洒上述柠檬酸溶液,混合并经转动滚球成型,得到直径为Φ3-4mm的小球;之后将小球在70℃水蒸汽气氛下熟化12h、115℃烘干4h、氮气氛围下以380℃焙烧3h,得到载体;
(3)采用等体积浸渍法将73.4g碳酸钾、63.7g碳酸镍负载到步骤(2)制得的载体上,浸渍时间为4h;将浸渍好的载体在100℃下烘干2h,在380℃下焙烧6h, 得到催化剂(记为S4)。
催化剂S4中的各组分含量、所含物相组成以及理化指标如表1所示。
实施例5
(1)将1386g氢氧化铝快脱粉(比表面积为330m 2/g,孔容为0.57ml/g)、50g淀粉混合均匀,形成固体物料;
(2)将54.8g乙酸加入100水中搅拌均匀配成乙酸溶液;将步骤(1)中得到的固体物料置于滚球机中,同时向滚球机中的物料喷洒上述硝酸溶液,混合并经转动滚球成型,得到直径为Φ3-4mm的小球;将小球在95℃水蒸汽气氛下熟化28h、140℃烘干10h、氮气氛围下以520℃焙烧8h,得到载体;
(3)采用等体积浸渍法将54.8g碳酸钠、15.9g碳酸镍负载到步骤(2)制得的载体上,浸渍时间为1h;将浸渍好的载体在150℃下烘干5h,在550℃下焙烧8h,得到催化剂(记为S5)。
催化剂S5中的各组分含量、所含物相组成以及理化指标如表1所示。
实施例6
按照实施例1的方法,不同的是,步骤(2)中制备载体的焙烧温度为600℃,步骤(3)中浸渍好的载体的焙烧温度为580℃。其他条件与实施例1相同。制得催化剂(记为S6)。
催化剂S6中的各组分含量、所含物相组成以及理化指标如表1所示。
实施例7
按照实施例1的方法,不同的是,步骤(3)中碳酸钾的用量为29.4g、硝酸镍的用量为98g。其他条件与实施例1相同。制得催化剂(记为S7)。
催化剂S7中的各组分含量、所含物相组成以及理化指标如表1所示。
对比例1
按照实施例1的方法,不同的是,在步骤(3)中不加入硝酸镍。其他条件与实施例1相同。制得催化剂(记为D1)。
催化剂D1中的各组分含量、所含物相组成以及理化指标如表1所示。
对比例2
按照实施例2的方法,不同的是,在步骤(3)中不加入碳酸钠。其他条件与实施例2相同。制得催化剂(记为D2)。
催化剂D2中的各组分含量、所含物相组成以及理化指标如表1所示。
对比例3
按照实施例1的方法,不同的是,在步骤(1)使用偏钛酸替代氢氧化铝快脱粉。其他条件与实施例1相同。制得催化剂(记为D3)。
催化剂D3中的各组分含量、所含物相组成以及理化指标如表1所示。
对比例4
按照实施例1的方法,不同的是,不进行步骤(1),改用1200g的α-Al 2O 3粉替代步骤(1)所得到的固体物料,依次进行步骤(2)和步骤(3)。其他条件与实施例1相同。制得催化剂(记为D4)。
催化剂D4中的各组分含量、所含物相组成以及理化指标如表1所示。
对比例5
按照实施例1的方法,不同的是,在步骤(1)中,将氧化铝快脱粉的用量由1343g调整为1143g;同时将步骤(3)中“58.7g碳酸钾、49.0g硝酸镍”替换为“278.9g碳酸钾、24.5g硝酸镍”。其他条件与实施例1相同。制得催化剂(记为D5)。
催化剂D5中的各组分含量、所含物相组成以及理化指标如表1所示。
对比例6
按照实施例1的方法,不同的是,步骤(2)中焙烧温度改为800℃,步骤(3)中浸渍好的载体的焙烧温度为800℃。其他条件与实施例1相同。制得催化剂(记为D6)。
催化剂D6的孔径分布测试(压汞法)结果如图3所示。催化剂D6中的各组分含量、所含物相组成以及理化指标如表1所示。
表1
Figure PCTCN2022127628-appb-000001
续表1
Figure PCTCN2022127628-appb-000002
Figure PCTCN2022127628-appb-000003
注:表1中,大孔比例为孔径大于75nm的孔体积之和占催化剂的孔体积总量的百分比;各物相的重量含量百分比是以催化剂的总重量为基准
测试例
将实施例1-7和对比例1-6制备的催化剂S1-S7、D1-D6分别在10mL微反活性评价装置上进行COS转化试验,以评价催化剂性能,方法如下:
老化处理:对催化剂S1-S7、D1-D6分别进行苛刻老化(在550℃下焙烧2h,之后利用水蒸汽以体积空速1000h -1对催化剂进行老化处理),以在短时间内模拟出催化剂经较长使用时间后的状态。按照上述条件,利用水蒸气对催化剂分别进行老化处理8h、12h和16h,所得到的苛刻老化后的催化剂可以分别模拟在使用4年、6年和8年时催化剂的性能情况。
COS转化试验:微反活性评价装置的反应器由内径为20mm的不锈钢管制成,反应器放置在恒温箱内,具体工艺流程如图4。苛刻老化后的催化剂装填量10mL/(20-40目),上部装填相同粒度的石英砂进行混合预热。采用日本岛津GC-2014气相色谱仪在线分析反应器入口及出口气体中H 2S、COS的含量,TCD检测器分析常量硫化物,GDX-301作为担体,柱温为120℃,以氢气作载气,柱后流速25mL/min;FPD检测器分析微量硫化物,GDX-301作为担体,柱温为80℃,以氮气作载气,柱后流速30mL/min。
反应器入口原料天然气的组成:CH 4含量91.49v%,乙烷含量0.5v%、H 2含量0.01v%、CO 2含量3v%、水蒸气含量为5v%、H 2S含量50mg/m 3、甲硫醇含量11mg/m 3、COS含量500mg/m 3;原料天然气的体积空速为5000h -1,反应温度为130℃,反应时长为24h,反应器出口的产物经分离得到产品天然气和H 2S。自反应开始时,每经过1h测试一次COS转化率以及产品天然气中总硫含量,直至试 验结束,取各次测试结果的平均值作为最终结果,结果如表2所示。根据公式(I)计算COS转化率,
Figure PCTCN2022127628-appb-000004
在公式(I)中,M 0、M 1分别代表入口及出口处COS的体积浓度。
表2
Figure PCTCN2022127628-appb-000005
从表2可见,本发明提供的催化剂S1-S7在使用第4年时COS的转化率均能够达到99%以上,在使用第8年时依然可达到98.5%以上,表现出优异的羰基硫转化活性,活性稳定性好,经长期使用活性衰减小,使用寿命达到8年以上,并且适用于较低的反应温度(如上述试验中采用130℃反应温度),能够很好地 满足工业装置对脱除羰基硫的要求,使得脱硫后的产品天然气中总硫含量低于20mg/m 3,满足GB17820-2018所规定的一类气要求。而D1-D6的羰基硫转化活性明显更低,催化剂寿命明显更短。
本发明通过对催化剂的组成进行设计,利用特定含量的碱金属氧化物和氧化镍以及特定物相组成的载体共同作用,协同增效,赋予催化剂在COS转化反应中具有催化活性高、活性稳定性好、使用寿命长、反应温度低的优点,可实现COS转化率≥99%,使用寿命达到8年以上。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

  1. 一种催化剂,其特征在于,该催化剂包括:载体,负载在载体上的碱金属氧化物和氧化镍;其中,基于所述催化剂的总重量,所述载体的含量为90-97wt%,所述碱金属氧化物的含量为2-6wt%,氧化镍的含量为1-4wt%;至少部分所述载体为AlO(OH)、χ-Al 2O 3和η-Al 2O 3物相。
  2. 根据权利要求1所述的催化剂,其中,基于所述催化剂的总重量,所述载体的含量为93-95wt%,所述碱金属氧化物的含量为3-4wt%,氧化镍的含量为2-3wt%。
  3. 根据权利要求1或2所述的催化剂,其中,在所述催化剂中,碱金属氧化物的含量高于氧化镍的含量,优选地,碱金属氧化物的含量比氧化镍的含量高0.5-3wt%。
  4. 根据权利要求3所述的催化剂,其中,在所述载体中,AlO(OH):χ-Al 2O 3:η-Al 2O 3的重量比为1:(2-5):(0.2-0.6),优选为1:(3-4):(0.4-0.5);
    优选地,在所述催化剂中,以所述催化剂的总重量为基准,γ-Al 2O 3的含量不超过0.5wt%,AlO(OH)、χ-Al 2O 3和η-Al 2O 3的总含量不少于90wt%。
  5. 根据权利要求3或4所述的催化剂,其中,所述碱金属氧化物为钠的氧化物和/或钾的氧化物。
  6. 根据权利要求1-5中任意一项所述的催化剂,其中,所述催化剂的比表面积大于300m 2/g,孔容大于0.45mL/g;
    优选地,所述催化剂的弱碱性中心含量为2.15-2.3mmolCO 2/g催化剂。
  7. 根据权利要求1-6中任意一项所述的催化剂,其中,所述催化剂通过压汞法测得的孔结构中,以所述催化剂的孔体积总量为基准,孔径大于75nm的孔体积之和占比为35体积%以上。
  8. 根据权利要求7所述的催化剂,其中,以所述催化剂的孔体积总量为基准,孔径大于75nm的孔体积之和占比为35-55体积%。
  9. 权利要求1-8中任意一项所述的催化剂在脱除羰基硫中的应用。
  10. 一种脱除天然气中羰基硫的方法,包括:将原料天然气与脱硫剂接触进行反应并分离,得到产品天然气和H 2S;其中,
    所述脱硫剂为权利要求1-8中任意一项所述的催化剂;
    所述反应的条件包括:原料天然气的体积空速为1000-5000h -1,反应温度为100-140℃。
PCT/CN2022/127628 2021-10-26 2022-10-26 催化剂及应用与脱除天然气中羰基硫的方法 WO2023072134A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3236009A CA3236009A1 (en) 2021-10-26 2022-10-26 Catalyst and application, and method for removing carbonyl sulfide in natural gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111250608.6A CN116020466A (zh) 2021-10-26 2021-10-26 Cos转化催化剂及制备方法与回收天然气中硫的方法
CN202111250608.6 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023072134A1 true WO2023072134A1 (zh) 2023-05-04

Family

ID=86069341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127628 WO2023072134A1 (zh) 2021-10-26 2022-10-26 催化剂及应用与脱除天然气中羰基硫的方法

Country Status (3)

Country Link
CN (1) CN116020466A (zh)
CA (1) CA3236009A1 (zh)
WO (1) WO2023072134A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019209B (zh) * 2023-10-10 2024-03-05 杭州弘钰汇新材料有限公司 一种高炉煤气羰基硫水解催化剂载体及其制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153674A (en) * 1976-12-07 1979-05-08 Shell Oil Company Sulfur recovery from gases rich in H2 S and CO2 as well as COS or organic sulfur
CN103818939A (zh) * 2014-01-14 2014-05-28 淄博贝格工贸有限公司 双氧水流化床专用氧化铝及生产工艺
CN108970618A (zh) * 2017-05-31 2018-12-11 中国石油化工股份有限公司 硫磺回收催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153674A (en) * 1976-12-07 1979-05-08 Shell Oil Company Sulfur recovery from gases rich in H2 S and CO2 as well as COS or organic sulfur
CN103818939A (zh) * 2014-01-14 2014-05-28 淄博贝格工贸有限公司 双氧水流化床专用氧化铝及生产工艺
CN108970618A (zh) * 2017-05-31 2018-12-11 中国石油化工股份有限公司 硫磺回收催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG CHI: "COS, CS2 Catalytic Hydrolysis Technology and Equipment", TYPICAL TOXIC AND HAZARDOUS GAS PURIFICATION TECHNOLOGIES, 31 March 2019 (2019-03-31), XP009545765 *

Also Published As

Publication number Publication date
CA3236009A1 (en) 2023-05-04
CN116020466A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
Wang et al. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions
WO2012027948A1 (zh) 含硫气体的处理方法及用于该方法的加氢催化剂
CN103394367B (zh) 利用粉煤灰制备zsm-5分子筛核壳双层催化剂的方法
SG178312A1 (en) Sorbent
Yi et al. Effects of preparation conditions for active carbon-based catalyst on catalytic hydrolysis of carbon disulfide
JP2002500094A (ja) 炭化水素流からの痕跡量除去用吸着剤とその使用方法
CN103272610B (zh) 一种钛基精脱硫催化剂及其制备方法和使用方法
CN104741071B (zh) 一种凹凸棒石基纳米复合脱硫剂的制备方法
CN103769116A (zh) 耐硫变换催化剂及制备方法
WO2023072134A1 (zh) 催化剂及应用与脱除天然气中羰基硫的方法
JP2010538824A (ja) ガス流体に含有される硫黄化合物の接触還元において有用な触媒組成物ならびに当該組成物を製造および使用する方法
Zhao et al. Cu promoted hydrotalcite-based NiAl mixed oxides in adsoption and oxidation of SO2 reaction: Experimental and theoretical study
CN102773108B (zh) 一种硫化氢制氢气催化剂的制备方法
CN103028363B (zh) 气体脱硫吸附剂及其制备方法和含硫气体的脱硫方法
CN112569953B (zh) 一种脱硫催化剂及其制备方法
CN110496618A (zh) 异丁烷脱氢催化剂及其制备方法以及异丁烷脱氢制异丁烯的方法
CN103769043B (zh) 一种气体脱硫吸附剂、其制备方法及应用
Xu et al. Influence of support precursor on FeCe-TiO2 for selective catalytic reduction of NO with ammonia
CN102773109B (zh) 一种由硫化氢制氢气的催化剂及其制备方法
CN103769038B (zh) 一种气体脱硫吸附剂、其制备方法及应用
CN114522691A (zh) 一种用于有机硫催化水解的复合金属氧化物的制备方法
CN105312092B (zh) 一种催化剂及其制备方法和费托合成方法
CN104974066B (zh) 一种二甲基硫醚的制备方法
CN103769041B (zh) 一种气体脱硫吸附剂、其制备方法及应用
CN103028365B (zh) 气体脱硫吸附剂及其制备方法和含硫气体的脱硫方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3236009

Country of ref document: CA