WO2018221402A1 - 移植用脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物 - Google Patents

移植用脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物 Download PDF

Info

Publication number
WO2018221402A1
WO2018221402A1 PCT/JP2018/020141 JP2018020141W WO2018221402A1 WO 2018221402 A1 WO2018221402 A1 WO 2018221402A1 JP 2018020141 W JP2018020141 W JP 2018020141W WO 2018221402 A1 WO2018221402 A1 WO 2018221402A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
branch
transplantation
decellularized
treatment
Prior art date
Application number
PCT/JP2018/020141
Other languages
English (en)
French (fr)
Inventor
哲哉 樋上
謙一郎 日渡
雄 山口
春樹 小原
拓矢 木村
光将 本間
恭平 落合
敬太 木下
奈保喜 森本
Original Assignee
哲哉 樋上
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲哉 樋上 filed Critical 哲哉 樋上
Priority to US16/615,177 priority Critical patent/US20200222589A1/en
Priority to CN201880036506.4A priority patent/CN110740762A/zh
Priority to EP18809381.9A priority patent/EP3632481B1/en
Priority to JP2019522186A priority patent/JPWO2018221402A1/ja
Priority to KR1020197035144A priority patent/KR20200016226A/ko
Priority to CA3065498A priority patent/CA3065498A1/en
Publication of WO2018221402A1 publication Critical patent/WO2018221402A1/ja
Priority to JP2023061981A priority patent/JP2023076668A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3625Vascular tissue, e.g. heart valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/062Apparatus for the production of blood vessels made from natural tissue or with layers of living cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking

Definitions

  • the present invention relates to a method for producing a decellularized material that can be used for transplantation, and a graft composition comprising a biocompatible material containing the material.
  • Properties required for decellularized materials include (i) strength as a graft, (ii) removal of DNA in a decellularized tissue that causes rejection, and (iii) infiltration of autologous cells after transplantation. It is easy to do. In order to obtain a decellularized material that satisfies these requirements, various production methods have been studied.
  • a method using a surfactant for example, see Patent Documents 1 and 2), a method using an enzyme (for example, see Patent Document 3), a method using an oxidizing agent (for example, see Patent Document 4) ), A method by high hydrostatic pressure treatment (for example, see Patent Documents 5 to 7), a method by freeze-thaw treatment (for example, see Patent Documents 8 to 9), and a method for treatment with a hypertonic electrolyte solution (for example, Patent Document 10) For example).
  • a surfactant for example, see Patent Documents 1 and 2
  • a method using an enzyme for example, see Patent Document 3
  • a method using an oxidizing agent for example, see Patent Document 4
  • a method by high hydrostatic pressure treatment for example, see Patent Documents 5 to 7
  • a method by freeze-thaw treatment for example, see Patent Documents 8 to 9
  • a method for treatment with a hypertonic electrolyte solution for example, Patent Document 10.
  • JP-A-60-501540 Special table 2003-518981 gazette Japanese translation of PCT publication No. 2002-507907
  • Table 2003-52562 gazette Japanese Patent Laid-Open No. 2004-094552 International Publication No. 2008/111530
  • Table 2013-502275 gazette JP-A-2005-185507 JP 2005-21480 A JP 2010-2221012 A
  • the present inventor has found that, when processing by suturing, which is considered to cause less damage to the decellularized tissue, prevents infiltration of self cells. Based on such results, it is considered important for the graft composition derived from the living tissue to contain the sutured portion within the necessary minimum.
  • a decellularized tissue obtained from a blood vessel having a branch (branch vessel)
  • a branch branch vessel
  • the tube is closed by performing protein denaturation treatment instead of suturing as a means for closing the excision part of the branch, the tissue of the transplanted part is regenerated without hindering the infiltration of the self-cells of the decellularized tissue. I found out.
  • the present invention (A) collecting a blood vessel having a branch from a vertebrate (donor); There is provided a method for producing a decellularized material for transplantation, comprising: (b) decellularizing the blood vessel; and (c) adhering a portion where the branch has been excised by protein denaturation treatment and closing the tube.
  • the method for producing a decellularized material for transplantation of the present invention may further include a step of excising a branch portion of the blood vessel collected in the step (a).
  • the present invention also relates to a biocompatible material comprising a decellularized material for transplantation, comprising a vertebrate (donor) blood vessel in which a branch is excised and having at least one branch excision closed by protein denaturation.
  • a biocompatible material comprising a decellularized material for transplantation, comprising a vertebrate (donor) blood vessel in which a branch is excised and having at least one branch excision closed by protein denaturation.
  • An implant composition is also provided.
  • the production method of the present invention can provide a decellularized material for transplantation for a graft composition in which autologous cells tend to infiltrate after transplantation.
  • the graft composition containing at least a portion of the transplanted decellularized material obtained by the production method of the present invention functions as a normal living tissue even after transplantation because the autologous cells after transplantation are easily wetted. be able to.
  • FIG. 1 shows a schematic view of a blood vessel with branches.
  • 1 is a blood vessel having a branch
  • 2 is a branch portion (branch blood vessel)
  • a broken line is an example of a position where the branch portion is excised.
  • This broken line is preferably 1 mm to 2 mm away from the blood vessel.
  • the position of the broken line may be 5 mm to several cm away from the blood vessel.
  • 3 of (ii) shows a protein denaturation part.
  • FIG. 2 is a diagram illustrating an internal thoracic artery fragment in which a branch portion collected from a pig is excised in the embodiment.
  • the internal thoracic artery piece (3) in the figure was used as a comparative example.
  • ( ⁇ ) is an enlarged photograph of a cross-sectional view of the collected porcine internal thoracic artery piece stained with hematoxylin and eosin. Further, ( ⁇ ) is an enlarged photograph of a sectional view of the transplanted decellularized material obtained by decellularizing the collected porcine inner thoracic artery piece and staining it with hematoxylin and eosin. It can be confirmed that no nucleic acid is present and decellularized. Each scale bar represents 1000 ⁇ m. In the following examples, the internal thoracic artery piece (3) in the figure was used as a comparative example. FIG.
  • the figure on the left side is an enlarged photograph of a section of a branch portion obtained by HE staining of a decellularized porcine internal thoracic artery piece which is a decellularization material for transplantation of the present invention before transplantation.
  • the figure on the right side is an enlarged photograph of a section of a branch portion stained with HE 1 month after transplantation. Cell infiltration is observed after transplantation.
  • Each scale bar represents 500 ⁇ m.
  • a blood vessel having a branch is collected from a vertebrate (donor). Collecting here means separating a blood vessel having a branch from a donor.
  • the “blood vessel having a branch” means a blood vessel having a branch in the donor, and includes those in which the branch is excised at the time of collection.
  • the vertebrate is not particularly limited. However, since it is preferable that blood vessels are easily available, animals other than humans are preferable, and mammal livestock and avian livestock are particularly preferable.
  • Mammalian livestock includes cattle, horses, camels, llamas, donkeys, yaks, sheep, pigs, goats, deer, alpaca, dogs, raccoon dogs, weasels, foxes, cats, rabbits, hamsters, guinea pigs, rats, squirrels and raccoons, etc. Is mentioned.
  • avian livestock examples include parakeets, parrots, chickens, ducks, turkeys, geese, guinea fowls, pheasants, ostriches, emu and quail. Of these, pigs, rabbits or cows are preferred because of their availability.
  • a blood vessel having a branch refers to a blood vessel having at least one branch portion (branch blood vessel) as shown in FIG.
  • a blood vessel having a blood vessel with a branched structure has a complicated shape, so it is said that it is not suitable for processing even if it is decellularized, and since it has a branched structure, it is mostly used as a blood vessel for transplantation. It never happened.
  • the blood vessel can be used as a blood vessel without a branch by adhering the branch portions of the blood vessel and closing the tube. The significance that a blood vessel having a branch that has been difficult to use in the past can be used as a graft composition is extremely large.
  • blood vessels having branches include the internal thoracic artery, abdominal wall artery, gastroepiploic artery, carotid artery, radial artery, intercostal artery, muscular phrenic artery, femoral artery, deep femoral artery, aorta, ulnar artery, and upper arm Artery, anterior tibial artery, posterior tibial artery, mesenteric artery, splenic artery, internal thoracic vein, anterior intercostal vein, odd vein, semi-even vein, jugular vein, intestinal vein, femoral vein, saphenous vein, mesenteric vein, spleen Examples include veins. In consideration of physical properties (elongation, biocompatibility, strength, etc.) as the graft composition, an artery is preferable, and an internal thoracic artery is more preferable.
  • a part of the body such as the chest, abdomen, or leg is incised, and the blood vessels having branches to be collected are excised.
  • anesthesia method and the slaughter method methods conventionally used by those skilled in the art can be used as they are.
  • a scalpel, scissors, etc. which are usually used in animal experiments and surgical operations.
  • a scalpel, scissors, or the like that is usually used in animal experiments or surgical operations.
  • an ultrasonic scalpel or an electric scalpel These can excise the blood vessel while coagulating the blood by ultrasonic vibration or high-frequency current at the place where the blood vessel is excised.
  • an ultrasonic knife since the degree of protein denaturation at the excised portion is moderate, it is preferable to use an ultrasonic knife.
  • “ultrasonic knife” and “ultrasonic vibratory knife” are used synonymously.
  • Examples of the electrosurgical knife that can be used in the present invention include the Bio series manufactured by Elbe and the SHAPPER series manufactured by Izumi Engineering & Medical Co., Ltd.
  • Examples of the ultrasonic scalpel that can be used in the present invention include SONOpet UST-2001 manufactured by Stryker Medtech, and Harmonic Scalpel manufactured by Ethicon End Surgery.
  • the blood vessel collected in the step (a) may be in a state where the branch portion has already been excised, or in a state where the branch portion remains with a sufficient length (for example, 5 mm to several cm). If the branch part remains with a sufficient length, it is excised appropriately.
  • the length of the branching portion for performing protein denaturation treatment is preferably a position 1 mm to 10 mm away from the branching portion of the blood vessel, more preferably a position 2 mm to 7 mm away, and a position 3 to 5 mm away Is most preferred. Performing protein denaturation treatment within the above range minimizes the effects of denaturation treatment (such as changes in physical properties and blood flow prevention and antithrombogenicity) when using the decellularized material for transplantation of the present invention. Can be suppressed and reorganized.
  • Decellularization treatment is performed using a surfactant treatment (Singelyn JM, et al., Biomaterials, 2009, 30, 5409-5416; Singelyn JM, et al., J. Am. Coll. Cardiol., 2012, 59, 751. -763; Sonya B., et al., Sci. Transl. Med., 2013, 5, 173ra25), enzyme treatment, osmotic pressure treatment, freeze-thaw treatment, oxidant treatment, high hydrostatic pressure treatment (Sasaki S., et al. al., Mol.
  • the cell is decellularized by high hydrostatic pressure treatment.
  • the pressure at which high hydrostatic pressure treatment is performed may be a pressure that can destroy cells and pathogens derived from a vertebrate donor, and can be appropriately selected according to the animal species and blood vessel type of the donor. .
  • the hydrostatic pressure is exemplified by 2 to 1,500 MPa.
  • the applied hydrostatic pressure is higher than 50 MPa, decellularization from the blood vessel is sufficiently performed. Therefore, it is preferably 50 to 1,500 MPa, more preferably 80 to 1,300 MPa, still more preferably 90 to 1,200 MPa, and most preferably 95 to 1,100 MPa.
  • Examples of the medium used for applying the high hydrostatic pressure include water, physiological saline, buffer solution, propylene glycol or an aqueous solution thereof, glycerin or an aqueous solution thereof, and an aqueous saccharide solution.
  • Examples of the buffer solution include acetate buffer solution, phosphate buffer solution, citrate buffer solution, borate buffer solution, tartaric acid buffer solution, Tris buffer solution, HEPES buffer solution, and MES buffer solution.
  • saccharide in the aqueous saccharide solution examples include erythrose, xylose, arabinose, allose, talose, glucose, mannose, galactose, erythritol, xylitol, mannitol, sorbitol, galactitol, sucrose, lactose, maltose, trehalose, dextran, alginic acid, and hyaluronic acid. Is mentioned.
  • the temperature of the medium for high hydrostatic pressure treatment is not particularly limited as long as it does not generate ice and does not damage the tissue due to heat. It is preferably 0 to 45 ° C., more preferably 4 to 40 ° C., still more preferably 10 to 37 ° C., and most preferably 15 to 35 ° C., because the decellularization treatment is performed smoothly and the influence on the tissue is small. is there.
  • the time for the high hydrostatic pressure treatment is too short, the decellularization treatment is not sufficiently performed, and if it is long, energy is wasted, so 5 minutes to 12 hours is preferable, and 7 minutes to 5 hours is more preferable. More preferably, min-3 hours.
  • the suitability of decellularization can be confirmed by histological staining (hematoxylin-eosin staining) or residual DNA quantification.
  • the cleaning liquid may be the same liquid as the medium used for applying the high hydrostatic pressure, may be a different cleaning liquid, or a combination of a plurality of types of cleaning liquids.
  • the cleaning liquid preferably contains a nucleolytic enzyme, an organic solvent, or a chelating agent. Nucleolytic enzymes can improve the efficiency of removing nucleic acid components from blood vessels to which hydrostatic pressure is applied, organic solvents are lipids, and chelating agents are calcium ions and magnesium ions in decellularized tissues. By inactivating, calcification can be prevented when decellularized tissue is applied to the affected area.
  • the portion where the branch is excised is subjected to protein denaturation treatment and closed.
  • the means for denaturing the protein is not particularly limited, but from the viewpoint of ease of work and efficiency, and less damage to the tissue, it is preferable to use an ultrasonic scalpel or an electric scalpel, and damage to the tissue will be reduced. It is preferable to use an ultrasonic scalpel from the viewpoint of reducing the branch stump closing property.
  • the ultrasonic scalpel has a structure in which the blade edge is mechanically ultrasonically vibrated, and frictional heat is generated near the living tissue contacted by the blade edge, so that proteins in the living tissue are denatured.
  • the part where the branch blood vessel is excised and opened is adhered and closed when the protein is denatured.
  • the frequency at the time of performing the treatment using ultrasonic waves as described above is preferably 20 kHz to 100 kHz, more preferably about 30 kHz to about 60 kHz.
  • the output is preferably 50 to 500 mA, more preferably 100 to 400 mA, and still more preferably 200 to 300 mA (when 100 VAC is used).
  • the sonication time varies depending on the frequency and output and is not particularly limited, but is preferably 0.1 second to 10 minutes, more preferably 1 second to 5 minutes, and still more preferably 3 to 60 seconds.
  • the steps (a), (b), and (c) are not limited to the above order.
  • the step (c) may be performed after the step (a), and then the step (b) may be performed.
  • a branch portion of a blood vessel having a branch is excised before being collected from a vertebrate animal as a donor, and the portion where the branch is excised is subjected to protein denaturation treatment and collected from a donor. Later, it is also possible to decellularize the step (b). That is, the aspect included in order of a process (c), a process (a), and a process (b) is also included by this invention.
  • the method may further include a step (d) of cutting the branch portion.
  • this step (d) is not particularly limited. For example, it is possible to carry out in the order of step (a), step (d), step (b) and step (c), step (a), step (b), step (d) and step (c). It is.
  • step (c) it is possible to close the tube without overlooking the branch vessel, and in the point that the operation becomes more efficient, in the step (c), “removing the branch” and “closing the tube by performing protein denaturation treatment” More preferably, the steps (c) and (a) are performed continuously. Even in this case, step (c) may be performed again before and after step (b).
  • a branch of a vertebrate is composed of a biocompatible material including a decellularized material for transplantation which includes a resected blood vessel and has at least one branch resection part closed by protein denaturation.
  • An implant composition is also provided.
  • the vertebrate in the graft composition of the present invention is not particularly limited, but is preferably an animal other than a human because blood vessels are easily available, and in particular, a mammal livestock and an avian livestock are preferred.
  • the mammal livestock and the avian livestock here are the same as the livestock mentioned in the specific examples of the mammalian livestock and the avian livestock used in the method for producing the decellularized material for transplantation of the present invention. Of these, pigs, rabbits or cows are preferred because of their availability.
  • the blood vessel from which the branch has been excised means that a branch portion is excised from the blood vessel having the branch used for producing the decellularized material for transplantation of the present invention. It is a blood vessel.
  • the blood vessel having a branch the same blood vessel as that used in the above production method can be used, and considering the physical properties (elongation, biocompatibility, strength, etc.) as the graft composition, an artery is preferable. The thoracic artery is more preferred.
  • the decellularized material for transplantation used in the graft composition of the present invention has a protein-denatured part.
  • the excision site of the branch portion is in an open tube state, and the open tube portion can be blocked by performing protein denaturation treatment.
  • the specific method of protein denaturation treatment is not particularly limited, as with the above-described decellularized material for transplantation, but an ultrasonic scalpel or an electric scalpel can be used. It is preferable to use an ultrasonic scalpel because there is little damage to the tissue.
  • the conditions regarding the frequency of ultrasonic waves and the treatment time for denaturing proteins are the same as the conditions for the frequency of ultrasonic waves and the treatment time in the above-described method for producing a decellularized material for transplantation. It is.
  • the decellularization treatment can be carried out in the same manner as the decellularization treatment described above, and the decellularization treatment can be carried out by a high hydrostatic pressure treatment. It is preferable that it is processed.
  • any pressure may be used as long as the cells and pathogens derived from the vertebrate donor are destroyed, and can be performed under the same conditions as the hydrostatic pressure described above.
  • Examples of the medium used for applying the high hydrostatic pressure include water, physiological saline, buffer solution, propylene glycol or an aqueous solution thereof, glycerin or an aqueous solution thereof, and an aqueous saccharide solution.
  • Specific examples of each solvent include The same solvent as the specific example of said solvent can be used.
  • the graft composition of the present invention is made of a specific biocompatible material.
  • biocompatible means that the graft is accepted by the transplanted tissue and does not induce toxicity or significant immune rejection.
  • the biocompatible material is not particularly limited as long as it has no fluidity and is solid, and examples thereof include non-resorbable polymers, absorbent polymers, metals, glasses, and ceramics.
  • non-resorbable polymer examples include polyethylene, polyethylene terephthalate, polybutylene, polybutylene terephthalate, polypropylene, acrylic, polyamide-imide, polyether ether ketone, polyaryl ether ketone, polycarbonate, polyamide, polyvinyl fluoride, and polyvinylidene fluoride. , Polymethyl methacrylate, and combinations and equivalents thereof, but are not limited thereto.
  • the absorbent polymer may be a synthetic polymer or a natural polymer.
  • Polyamino acids, polyamides, fatty acid polyesters, and natural polymers include collagen, elastin, hyaluronic acid, laminin, gelatin, keratin, chondroitin sulfate And decellularized tissue.
  • metals examples include tantalum, tantalum alloy, stainless steel, titanium, titanium alloy, cobalt-chromium alloy, and the like, and biocompatible metals conventionally used in medical devices and the like can be used.
  • glass or ceramic examples include tetracalcium phosphate, alpha- and beta-tricalcium phosphate, octacalcium phosphate, hydroxyapatite, substituted apatite, monetite, metaphosphate, pyrophosphate, phosphate glass, etc. Phosphates, calcium and magnesium carbonates, sulfates, and oxides, and combinations thereof, but are not limited thereto.
  • the graft composition of the present invention is composed of a biocompatible material containing at least a part of a specific decellularized material for transplantation.
  • “included in at least a part” means that the decellularized material for transplantation can be present in one or more and a plurality of biocompatible materials. It is more preferable that the biocompatible material is composed only of a decellularized material in that self cell infiltration is more effectively achieved.
  • the graft composition of the present invention can function as a part of living tissue after transplantation.
  • it can function as a blood vessel substitute for transplantation.
  • FIG. 2 shows the porcine internal thoracic arteries (1) to (4).
  • FIG. 3 shows a cross-sectional view (HE staining).
  • the porcine internal thoracic artery was treated with an ultrahigh hydrostatic apparatus (Dr. Chef, manufactured by Kobe Steel) using water as a medium.
  • the ultra-high hydrostatic pressure treatment was performed under the conditions of an applied pressure of 600 MPa, a pressure increase time of 9 minutes, a pressure maintenance time of 120 minutes, a pressure decrease time of 9 minutes, and a pressure medium temperature of 30 ° C.
  • washing with 50 mg / L DNase I solution was performed for 4 days, EtOH solution for 3 days, and citric acid solution for 4 days to complete decellularization.
  • HE staining is a method that uses two types of dyes, hematoxylin and eosin, to separate the cell nucleus and tissues and components other than the nucleus. Hematoxylin makes the nucleus blue-blue, and eosin removes cytoplasm, fibers, and red blood cells. Can be dyed pink.
  • the pressure strength is measured by using a syringe pump (YSP-101) to feed physiological saline into the porcine internal thoracic artery from a 20 mL syringe at a rate of 3 mL / min, and the pressure at that time is a digital pressure gauge (KDM30). Measured with.
  • YSP-101 syringe pump
  • KDM30 digital pressure gauge
  • the part of the branched blood vessel in which the leakage of physiological saline was confirmed was ligated with 6-0 proline thread. Ligation was performed by passing a suture thread through the adventitia part and then tying up the branched tubular part from the outside.
  • the decellularized porcine internal thoracic artery and the peripheral part of the abdominal aorta were anastomosed in the same manner to produce a bypass blood vessel.
  • the abdominal aorta between the central anastomosis and the peripheral anastomosis was ligated with 6-0 proline thread to direct blood flow to the bypass vessel.
  • the abdomen was closed by suturing the peritoneum with 4-0 PDS thread, the muscle layer with 2-0 PDS, and the skin with 4-0 PDS thread.
  • Vitoril (registered trademark) 0.5 mL was administered as an antibiotic, and atipamezole hydrochloride (trade name: Atipame injection 1 ml) was injected subcutaneously into the thigh as a medetomidine hydrochloride antagonist. After confirming wakefulness, the rabbit was transferred to the breeding cage.
  • -Necropsy An autopsy was performed on rabbits 1 month or 3 months after transplantation of decellularized porcine internal thoracic artery.
  • the abdominal aorta (transplanted decellularized porcine internal thoracic artery) was exposed by the same method as at the time of transplantation without taking an infusion line from the rabbit.
  • vascular patency evaluation and thrombus formation evaluation were performed.
  • Vascular patency evaluation was performed by cutting the peripheral side of the abdominal aorta and determining whether or not blood was released. All samples confirmed exsanguination and indicated that the blood vessels were patent.
  • pentobarbital sodium Somnopentyl (registered trademark) 5 mL was injected into the ear vein and sacrificed. After the heart, breathing stopped, the decellularized porcine internal thoracic artery was removed. The inside of the decellularized porcine internal thoracic artery was washed with physiological saline, then incised in the longitudinal direction, and thrombus formation was visually observed. There was no adhesion of thrombus to the luminal surface of decellularized porcine internal thoracic artery, indicating high antithrombogenicity. “Patent” means that a hollow state is maintained without occluding the lumen of a blood vessel.
  • the pathological specimen of the transplanted decellularized porcine internal thoracic artery was produced by the Institute for New Histological Science.
  • an ultrasonic scalpel of the decellularized porcine internal thoracic artery or a portion where the tissue structure of the branched blood vessel portion occluded with 6-0 proline thread can be confirmed is an HE-stained section, Elastica van Gieson stain (Elastica van Gieson stain)
  • EVG staining Elastica van Gieson stain
  • a section is continuously prepared with a thickness of approximately 5 ⁇ m in the longitudinal direction of the blood vessel, and the section is cut at a portion where the tissue structure of the branch blood vessel portion blocked with an ultrasonic knife or 6-0 proline thread can be confirmed. It was created.
  • EVG staining is a staining method for identifying elastic fibers, in which elastin in connective tissue can be dyed in black purple and collagen in red purple.
  • FIG. 4 An HE-stained image, an EVG-stained image (3 months) of an example sample, and an HE-stained image and an EVG-stained image (3 months) of a comparative example sample are shown below (FIG. 4).
  • the cells also infiltrated into the decellularized porcine internal thoracic artery tissue portion stained in dark purple by EVG staining.
  • the comparative sample no cell infiltration was observed in the decellularized porcine internal thoracic artery tissue portion stained in dark purple by EVG staining.
  • a finding was found in which the step of the branch blood vessel was covered with rabbit cells at one month after transplantation (FIG. 5).
  • 1 a blood vessel having a branch
  • 2 a branched portion (branched blood vessel)
  • 3 a protein denatured portion

Abstract

移植片組成物に利用可能な、糸による縫合部を最小限に抑えた移植用脱細胞化材料を製造する方法を提供することを目的とする。 上記目的を達成するため、本発明は(a)脊椎動物(ドナー)から分枝を有する血管を採取する工程、(b)当該血管を脱細胞化する工程、及び(c)分枝を切除した部分をタンパク質変性処理により接着し閉管する工程を含む、移植用脱細胞化材料の製造方法を提供する。さらに、本発明は当該移植用脱細胞化材料を含む生体適合性材料からなる移植片組成物も提供する。

Description

移植用脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物
 本発明は、移植に用いることができる脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物に関する。
 他人の生体組織由来の移植片を移植する場合、被移植者側組織による移植片の拒絶反応が問題となる。このような問題の解決方法として、人工組織の開発が期待されている。素材として種々の高分子が試されているが、これら素材と生体組織との適合性が低いため、移植片と生体組織との接合部位における脱落や感染症が発生する場合がある。そこで、生体組織との適合性を向上すべく、生体組織から細胞を除却して残存する支持組織である脱細胞化生体組織を移植片として使用する技術が開発されてきた。
 脱細胞化材料に求められる性質としては、(i)移植片としての強度、(ii)拒絶反応を引き起こす脱細胞化組織中のDNAが除去されていること、(iii)移植後に自己細胞が浸潤しやすいこと等が挙げられる。これらを満たす脱細胞化材料を得るため、種々の製造方法が検討されてきた。例えば、界面活性剤を使用する方法(例えば、特許文献1、2を参照)、酵素を使用する方法(例えば、特許文献3を参照)、酸化剤を使用する方法(例えば、特許文献4を参照)、高静水圧処理による方法(例えば、特許文献5~7を参照)、凍結融解処理による方法(例えば、特許文献8~9を参照)、高張電解質溶液で処理する方法(例えば、特許文献10を参照)等が知られている。
特開昭60-501540号公報 特表2003-518981号公報 特表2002-507907号公報 特表2003-525062号公報 特開2004-094552号公報 国際公開第2008/111530号 特表2013-502275号公報 特開2005-185507号公報 特開2005-211480号公報 特開2010-221012号公報
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A, OCT 2015 Vol.103A, 10
 一般に、脱細胞化組織としての機能性を維持するためには、表面状態が保たれていること、つまりその組織の形態的な損傷が極力抑えられていることが重要とされ(例えば非特許文献1)、比較的わずかな障害であっても自己細胞の浸潤に影響する。そこで本発明者は脱細胞化組織への損傷がより少ないと考えられた縫合による加工を行ったところ、自己細胞の浸潤を妨げることとなることを知見した。このような結果を踏まえると、生体組織に由来する移植片組成物は、その中に縫合部を必要最小限に収めることが重要であると考えられる。
 具体的に、分枝(分枝血管)を有する血管から得られる脱細胞化組織を移植片組成物として使用する場合は、分枝部分を切除し閉管する必要がある。このような、分枝の切除部を閉管する手段として縫合ではなく、タンパク質変性処理を行うことで閉管すると脱細胞化組織の自己細胞の浸潤が妨げられることなく、移植部の組織が再生されることを見出した。
 つまり、本発明は、
 (a)脊椎動物(ドナー)から分枝を有する血管を採取する工程、
 (b)当該血管を脱細胞化する工程、及び
 (c)分枝を切除した部分をタンパク質変性処理により接着し閉管する工程
を含む、移植用脱細胞化材料の製造方法を提供する。
 また、本発明の移植用脱細胞化材料の製造方法は、(a)工程で採取した血管の分枝部を切除する工程をさらに含んでもよい。
 また、本発明は、脊椎動物(ドナー)の分枝が切除された血管からなり、かつタンパク質変性により閉管された分枝切除部を少なくとも1以上有する移植用脱細胞化材料を含む生体適合性材料からなる移植片組成物も提供する。
 本発明の製造方法では、移植後に自己細胞が浸潤しやすい移植片組成物のための移植用脱細胞化材料を提供することができる。そして、本発明の製造方法により得られた移植用脱細胞化材料を少なくとも一部に含む移植片組成物は、移植後の自己細胞が湿潤しやすいため、移植後も正常な生体組織として機能することができる。
図1は、分枝を有する血管の概略図を示す。(i)の1は分枝を有する血管、2は分枝部分(分枝血管)及び破線は分枝部分を切除する位置の一例を示す。この破線は血管から1mm~2mm離れていることが好ましい。また、別の実施態様として、この破線の位置は血管から5mm~数cm離れていてもよい。(ii)の3はタンパク質変性部を示す。 図2は、実施例において、ブタから採取した分枝部分が切除された内胸動脈片を示す図である。なお、以下の実施例において、図中(3)の内胸動脈片を比較例として用いた。 図中(α)は、採取されたブタの内胸動脈片をヘマトキシリン・エオシン染色した断面図の拡大写真である。また、(β)は、採取されたブタの内胸動脈片を脱細胞化し、ヘマトキシリン・エオシン染色した移植用脱細胞化材料の断面図の拡大写真である。核酸が存在せず、脱細胞化されていることが確認できる。なお、各スケールバーは1000μmを示す。また、以下の実施例において、図中(3)の内胸動脈片を比較例として用いた。 図4は、移植用脱細胞化材料である脱細胞化ブタ内胸動脈片をウサギに移植して3カ月後のヘマトキシリン・エシオン染色(HE染色)又はエラスチカ・ワンギーソン染色(EVG染色)により染色した切片の拡大写真である。比較例において、円で囲われた部分の矢印が指している白い小さな円はプロリン糸が通っていた痕跡である。プロリン糸は、紙面に対して垂直に通っていた。プロリン糸が通っていた周辺では細胞の浸潤が認められないのが認識できる。なお、各スケールバーは500μmを示す。 左側の図は、移植前の本発明の移植用脱細胞化材料である脱細胞化ブタ内胸動脈片をHE染色した分枝部分の切片の拡大写真である。右側の図は、移植して1カ月後のHE染色した分枝部分の切片の拡大写真である。移植後に細胞の浸潤が認められる。なお、各スケールバーは500μmを示す。
 本発明の移植用脱細胞材料の製造方法について説明する。
 本発明は、分枝を有する血管を脊椎動物(ドナー)から採取する。
 ここでいう採取とは、分枝を有する血管をドナーから分離することを意味する。また、「分枝を有する血管」はドナーの中で分枝を有していた血管の意であり、採取する際に分枝が切除されているものも含む。
 本発明において、脊椎動物とは特に限定されないが、血管が容易に入手できることが好ましいため、ヒト以外の動物であることが好ましく、特に哺乳類の家畜や鳥類の家畜が好ましい。哺乳類の家畜としては、ウシ、ウマ、ラクダ、リャマ、ロバ、ヤク、ヒツジ、ブタ、ヤギ、シカ、アルパカ、イヌ、タヌキ、イタチ、キツネ、ネコ、ウサギ、ハムスター、モルモット、ラット、リス及びアライグマ等が挙げられる。また、鳥類の家畜としては、インコ、オウム、ニワトリ、アヒル、七面鳥、ガチョウ、ホロホロ鳥、キジ、ダチョウ、エミュー及びウズラ等が挙げられる。この中でも入手の安定性からブタ、ウサギ又はウシが好ましい。
 本発明の移植用脱細胞材料の製造方法では、分枝を有する血管を使用する。ここで、分枝を有する血管とは、図1に示す通り、分枝部分(分枝血管)を少なくとも1以上有する血管を言う。
 枝分かれした構造の血管を有する血管は複雑な形状であるため、脱細胞化しても加工に適するものではないとされているほか、分枝構造を有するため、移植用血管用途としてもほとんど利用されることはなかった。本発明により、血管の分枝部分を接着させ閉管することで、分枝のない血管として利用できる。従来、利用が困難であった分枝を有する血管を移植片組成物として利用できる意義は極めて大きいものである。
 分枝を有する血管としては、具体的に、内胸動脈、腹壁動脈、胃大網動脈、頚動脈、橈骨動脈、肋間動脈、筋横隔動脈、大腿動脈、大腿深動脈、大動脈,尺骨動脈,上腕動脈,前脛骨動脈,後脛骨動脈,腸管膜動脈,脾動脈、内胸静脈、前肋間静脈、奇静脈、半奇静脈、頚静脈、腸管静脈、大腿静脈、伏在静脈、腸管膜静脈,脾静脈等が挙げられる。移植片組成物としての物理的特性(伸び、生体適合性、強度等)を考慮すると、動脈が好ましく、内胸動脈がより好ましい。
 分枝を有する血管は、脊椎動物を麻酔または屠殺した後、胸部、腹部、脚部などの身体の一部を切開して、採取の対象となる分枝を有する血管を切除する。麻酔方法や屠殺方法は当業者が従来行っている方法をそのまま用いることができる。
 脊椎動物の身体の一部を切開するときは、動物実験や外科用手術で通常用いるメスやハサミ等を使用することが可能である。
 同様に、分枝を有する血管を採取する場合は、動物実験や外科用手術で通常用いるメスやハサミ等を使用することが可能である。血管を切除する場合に、超音波メスや電気メスを使用することが好ましい。これらは、血管を切除する箇所に超音波振動又は高周波電流により、血液を凝固させながら血管を切除することが可能である。特に、切除部分のタンパク質の変性の程度が適度であるため、超音波メスを使用することが好ましい。
 なお、本明細書においては「超音波メス」と「超音波振動メス」を同義で用いるものとする。
 本発明で使用可能な電気メスは、エルベ社製のバイオシリーズや泉工医科工業社製のSHAPPERシリーズ社等が挙げられる。本発明で使用可能な超音波メスは、ストライカーメドテック社製のソノペットUST-2001、エチコンエンドサージェリー社製のハーモニックスカルペル等が挙げられる。
 (a)工程で採取された血管は、既に分枝部分を切除した状態でもよく、分枝部分が十分な長さで残った状態(例えば、5mm~数cm)であってもよい。分枝部分が十分な長さで残っている場合は、適宜これを切除する。
 なお、タンパク質変性処理を行う分枝部分の長さは、血管の枝分れ部分から1mm~10mm離れた位置であることが好ましく、2mm~7mm離れた位置がより好ましく、3~5mm離れた位置が最も好ましい。上記範囲でタンパク質変性処理を行うことで、本発明の移植用脱細胞材料を利用する際の変性処理に伴う影響(物性の変化および血流を妨げないことや抗血栓性など)を最小限に抑え、再組織化を促すことができる。
 脊椎動物から採取された上記血管は脱細胞化処理が行われる。脱細胞化処理は、界面活性剤処理(Singelyn J.M., et al., Biomaterials, 2009, 30, 5409-5416;Singelyn J.M,, et al., J. Am. Coll. Cardiol., 2012, 59, 751-763;Sonya B., et al., Sci. Transl. Med., 2013,  5, 173ra25)、酵素処理、浸透圧処理、凍結融解処理、酸化剤処理、高静水圧処理(Sasaki S., et al., Mol. Vis., 2009, 15, 2022-2028;Yoshihide H., et al., Biomaterials, 2010, 31, 3941-3949;Seiichi F., et al., Biomaterials, 2010, 31, 3590-3595;Negishi J., et  al., J. Artif. Organs, 2011, 14, 223-231;特許第4092397号公報;再公表2008-111530号公報;特開2009-50297号公報)及びこれらの組み合わせが例示されるが、高静水圧処理によって脱細胞化処理されることが好ましい。
 高静水圧処理を行う際の圧力に関し、脊椎動物であるドナー由来の細胞や病原体が破壊される程度の圧力であればよく、ドナーの動物種や血管の種類に応じて適宜選択することができる。静水圧としては、2~1,500MPaが例示される。印加する静水圧が50MPaよりも高い場合には、血管からの脱細胞化が十分に行われる。そのため、好ましくは、50~1,500MPa、更に好ましくは80~1,300MPa、更に一層好ましくは90~1,200MPa、最も好ましくは95~1,100MPaである。
 高静水圧の印加に使用する媒体としては、水、生理食塩水、緩衝液、プロピレングリコール又はその水溶液、グリセリン又はその水溶液、及び糖類水溶液等が挙げられる。緩衝液としては、酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液、HEPES緩衝液、及びMES緩衝液等が挙げられる。糖類水溶液の糖類としては、エリトロース、キシロース、アラビノース、アロース、タロース、グルコース、マンノース、ガラクトース、エリスリトール、キシリトール、マンニトール、ソルビトール、ガラクチトール、スクロース、ラクトース、マルトース、トレハロース、デキストラン、アルギン酸、及びヒアルロン酸等が挙げられる。
 高静水圧処理の媒体の温度は、氷を生成せず、熱による組織へのダメージがない温度であれば、特に限定されない。脱細胞化処理が円滑に行われ、組織への影響も少ないことから0~45℃が好ましく、更に好ましくは4~40℃、更に一層好ましくは10~37℃、最も好ましくは15~35℃である。
 高静水圧処理の時間は、短すぎると脱細胞化処理が十分行われず、長い場合にはエネルギーの浪費につながることから、5分~12時間が好ましく、7分~5時間がより好ましく、10分~3時間が更に好ましい。
 脱細胞化の適否は、組織学的染色(ヘマトキシリン-エオジン染色)又は残存DNA定量で確認することができる。
 高静水圧が印加された血管は、組織中の細胞が破壊されており、この細胞成分は洗浄液により除去される。洗浄液は、高静水圧の印加に使用した媒体と同じ液でもよいし、異なる洗浄液でもよく、複数の種類の洗浄液を組み合わせて用いてもよい。洗浄液は、核酸分解酵素、有機溶媒又はキレート剤を含有することが好ましい。核酸分解酵素は、静水圧が印加された血管からの核酸成分について、有機溶媒は脂質について、それぞれの除去効率を向上させることができ、キレート剤は、脱細胞化組織中のカルシウムイオンやマグネシウムイオンを不活性化することにより、脱細胞化組織を患部へ適用した場合の石灰化を防ぐことができる。
 本発明では、分枝を切除した部分を、タンパク質変性処理を行って閉管する。ここで、タンパク質を変性する手段として特に限定されないが、作業の簡易性や効率、組織への損傷を少なくするという観点から、超音波メスや電気メスを使用することが好ましく、組織への損傷が少なく,かつ,分枝断端の閉鎖性を確実にする点から超音波メスを使用することが好ましい。
 超音波メスは、刃先が機械的超音波振動する構造を有して、刃先が接触した生体組織近傍が摩擦熱を生じ、生体組織内部のタンパク質が変性する。分枝血管を切除して開管している部分は、当該タンパク質が変性することで接着して閉管する。
 なお、上記「分枝を切除した部分を、タンパク質変性処理を行って閉管する」とは、「分枝の切除」と「タンパク質変性処理を行って閉管する」ことを同時に行う場合も含むものとする。
 上記のように超音波を用いて処理を行う際の周波数は、好ましくは20kHz~100kHz、より好ましくは約30kHz~約60kHzである。出力は好ましくは50~500mA、より好ましくは100~400mA、さらに好ましくは200~300mAである(100VAC利用時)。
 超音波処理が行われる時間は周波数や出力に応じて様々であり特に限定されるものではないが、好ましくは0.1秒~10分、より好ましくは1秒~5分、さらに好ましくは3~60秒である。
 次に、本発明の、
 (a)脊椎動物(ドナー)から分枝を有する血管を採取する工程、
 (b)当該血管を脱細胞化する工程、及び
 (c)分枝を切除した部分をタンパク質変性処理により接着し閉管する工程
を含む、移植用脱細胞化材料の製造方法の各工程の順序について説明する。
 この実施形態において(a)、(b)、(c)のそれぞれ工程は上記の順序に限定されない。
 例えば、工程(a)、工程(b)及び工程(c)をこの順番で行う他に、工程(a)の後に、工程(c)を行い、その後、工程(b)を行ってもよい。また、別の態様として、分枝を有する血管の分枝部分をドナーである脊椎動物から採取する前に切除し、その分枝を切除した部分をタンパク質変性処理して、ドナーから採取し、この後に、工程(b)の脱細胞化を行うことも可能である。つまり、工程(c)、工程(a)、工程(b)の順序で含む態様も本発明に包含される。
 別の態様として、工程(a)で採取された分枝を有する血管の分枝部分が十分な長さで存在する場合(例えば、分枝部分の長さが5mm~数cm)は、この分枝部分を切除する工程(d)をさらに含むことができる。この工程(d)をいつ行うかも特に限定されない。
 例えば、工程(a)、工程(d)、工程(b)及び工程(c)の順序、工程(a)、工程(b)、工程(d)及び工程(c)の順序で行うことも可能である。
 本発明においては、分枝血管を見落とすことなく閉管できること、また作業がより効率的となる点で、(c)工程において「分枝の切除」と「タンパク質変性処理を行って閉管する」ことを同時に行い、さらに(c)工程と(a)工程を連続的に行うことがより好ましい。なお、この場合であっても(b)工程の前後に再度工程(c)を行ってもよい。
 本発明では、脊椎動物(ドナー)の分枝が切除された血管からなり、かつタンパク質変性により閉管された分枝切除部を少なくとも1以上有する移植用脱細胞化材料を含む生体適合性材料からなる移植片組成物も提供する。
 本発明の移植片組成物における脊椎動物とは特に限定されないが、血管が容易に入手できることが好ましいため、ヒト以外の動物であることが好ましく、特に哺乳類の家畜や鳥類の家畜が好ましい。ここでの哺乳類の家畜や鳥類の家畜は、本発明の移植用脱細胞化材料の製造方法で使用する哺乳類の家畜や鳥類の家畜の具体例で挙げられている家畜と同じである。この中でも入手の安定性からブタ、ウサギ又はウシが好ましい。
 本発明の移植片組成物において、「分枝が切除された血管」とは、本発明の移植用脱細胞化材料を製造するために用いた、分枝を有する血管から分枝部分を切除した血管である。分枝を有する血管としては、上記製造方法で用いた血管と同じものが使用でき、移植片組成物としての物理的特性(伸び、生体適合性、強度等)を考慮すると、動脈が好ましく、内胸動脈がより好ましい。
 本発明の移植片組成物に使用される移植用脱細胞化材料はタンパク質変性部を有する。具体的には、分枝部分の切除箇所は開管の状態になっており、タンパク質変性処理を行うことで開管部を塞ぐことができる。
 タンパク質変性処理の具体的な方法は、上記の移植用脱細胞化材料と同様に特に限定されないが、超音波メスや電気メスを使用することができる。組織への損傷が少ないことから超音波メスを使用することが好ましい。
 本発明の移植片組成物において、タンパク質を変性させるための超音波の周波数及び処理時間に関する条件は、上記の移植用脱細胞化材料の製造方法での超音波の周波数及び処理時間の条件と同じである。
 本発明の移植片組成物に使用される移植用脱細胞化材料について、脱細胞化処理は上述の脱細胞化処理と同様の脱細胞化処理を行うことができ、高静水圧処理によって脱細胞化処理されることが好ましい。
 高静水圧処理を行う際の圧力に関し、脊椎動物であるドナー由来の細胞や病原体が破壊される程度の圧力であればよく、上記の静水圧の条件と同じ条件で行うことができる。また、高静水圧の印加に使用する媒体としては、水、生理食塩水、緩衝液、プロピレングリコール又はその水溶液、グリセリン又はその水溶液、及び糖類水溶液等が挙げられ、各溶媒の具体例としては、上記の溶媒の具体例と同じ溶媒を使用することができる。
 本発明の移植片組成物は、特定の生体適合性材料からなる。ここで、「生体適合性」とは、移植片が被移植組織により受け容れられ、毒性や著しい免疫拒絶を誘発しないことを意味する。
 生体適合性材料としては流動性を有さず固体状のものであれば特に限定されるものではないが、非再吸収性ポリマーや吸収性ポリマー、金属類、ガラス類、セラミック類が挙げられる。
 上記非再吸収性ポリマーとしては、ポリエチレン、ポリエチレンテレフタラート、ポリブチレン、ポリブチレンテレフタレート、ポリプロピレン、アクリル、ポリアミド-イミド、ポリエーテルエーテルケトン、ポリアリールエーテルケトン、ポリカーボネート、ポリアミド、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリメチルメタクリレート、ならびにこれらの組み合わせ及び等価物が挙げられるが、これらに限定されるものではない。
 上記吸収性ポリマーとしては、合成ポリマーであっても天然ポリマーであってもよく、ポリアミノ酸、ポリアミド、脂肪酸ポリエステル、天然ポリマーとしては、コラーゲン、エラスチン、ヒアルロン酸、ラミニン、及びゼラチン、ケラチン、硫酸コンドロイチン、及び脱細胞化組織が挙げられる。
 上記金属類としては、タンタル、タンタル合金、ステンレススチール、チタン、チタン合金、コバルト-クロム合金等が挙げられ、従来から医療機器等で用いられている生体適合性金属類を用いることができる。
 上記ガラス類又はセラミック類としては、リン酸テトラカルシウム、アルファ-及びベータ-リン酸トリカルシウム、リン酸オクタカルシウム、ヒドロキシアパタイト、置換アパタイト、モネタイト、メタリン酸塩、ピロリン酸塩、リン酸塩ガラス等のリン酸塩、カルシウム及びマグネシウムの炭酸塩、硫酸塩、及び酸化物、ならびにこれらの組み合わせが挙げられるが、これらに限定されるものではない。
 本発明の移植片組成物は、特定の移植用脱細胞化材料を少なくとも一部に含む生体適合性材料からなる。ここで、「少なくとも一部に含む」とは、当該移植用脱細胞化材料が生体適合性材料に1以上、複数で存在し得ることを意味する。自己細胞の浸潤がより効果的に達成される点で生体適合性材料は脱細胞化材料のみで構成されることがより好ましい。
 本発明の移植片組成物は、移植後生体組織の一部として機能することが可能となる。特に、移植用の血管代用物として機能することができる。
1.脱細胞化ブタ内胸動脈の作製
ブタ内胸動脈の採取(分枝血管の処理)
 月齢3~4か月の食用ブタ(SPF(specific pathogen free)ブタ、メス、体重約50キロ)を麻酔下で開胸し内胸動脈を露出させた。超音波メス(ハーモニックスカルペルII、ハーモニックSYNERGY、エチコンエンドサージェリー社)の設定を55500Hz、出力レベル2として分枝血管を接触させ凝固させながら胸壁から内胸動脈を剥離(採取)した。
 2頭のブタから4本の内胸動脈を採取した。
2.ブタ内胸動脈の観察
 採取したブタ内胸動脈4本の長さと内径を測定した。それぞれ(1)長さ:140mm、内径:3.2mm、(2)長さ:135mm、内径:2.6mm、(3)長さ:95mm、内径:2.9mm、(4)長さ:105mm、内径:2.8mmであった。図2に得られたブタ内胸動脈(1)~(4)を示す。また、図3にその断面図(HE染色)を示す。
3.ブタ内胸動脈の脱細胞化処理
[使用試薬]
・DNs溶液
 DNase I(Roche,Grade II) 50mg/L、MgCl2・6H2O(Wako、 試薬特級)2.55g/Lを含有した大塚生理食塩水
・EtOH溶液
 局方エタノールと大塚生理食塩水を体積比で80%となるように調製した溶液
・クエン酸溶液
 クエン酸三ナトリウム二水和物(Calbiochem、Molecular Biology Grade)とクエン酸無水物 (Wako、特級)を大塚生理食塩水に加え、pH7.4に調製した溶液
 上記のブタ内胸動脈を、水を媒体として超高静水圧装置(Dr. Chef、神戸製鋼(株)製)で処理した。超高静水圧処理は、印加圧力600MPa、昇圧時間9分、圧力維持時間120分、降圧時間9分、圧媒温度30℃の条件で行った。
 超高圧処理後50mg/L DNaseI溶液で4日、EtOH溶液で3日、クエン酸溶液で4日洗浄を行い、脱細胞化を完了した。
 脱細胞化は、ヘマトキシリン・エオシン染色(Hematoxylin-Eosin染色、以下、HE染色ということもある)を行い、HE染色切片画像に核酸がないことを顕微鏡で確認することで行った。
 なお、HE染色はヘマトキシリンとエオシンの2種類の色素を用いて、細胞核と核以外の組織、成分を染め分ける方法であり、ヘマトキシリンで核を青藍色に、エオシンで細胞質・線維類や赤血球をピンク色に染めることができる。
4.耐圧強度の測定
 脱細胞化後、各ブタ内胸動脈の片端をクランプで挟み反対側から20mLシリンジを用いて生理食塩水を送液して、耐圧強度を測定した。上記の(3)を除く(1)、(2)、(4)のブタ内胸動脈を用いた移植用脱細胞化材料では耐圧強度が150mmHg以上であった。
 また、分枝部分の一部が閉塞されていない(3)では生理食塩水の漏れが確認できた。
 なお、耐圧強度の測定は、シリンジポンプ(YSP-101)で20mLシリンジから3mL/minの速度で生理食塩水をブタ内胸動脈内に送液し、そのときの圧力をデジタル圧力計(KDM30)で計測した。
 以後の実験において、(1)、(2)、(4)を実施例し、(3)を比較例とする。
5.比較例の血管の縫合
 (3)の移植用脱細胞材料について、生理食塩水の漏れが確認できた分枝血管を切除した部分を6-0プロリン糸で結紮した。結紮は血管外膜部分に縫合糸を通した後、分枝の管状部分を外側から縛り上げるように行った。
6.ウサギ大動脈への脱細胞化ブタ内胸動脈(移植用脱細胞化材料からなる移植片組成物)の長期移植
・移植方法
 体重3.70-4.00kgのウサギ(品種:日本白兎、5ヶ月齢、オス)にペントバルビタールナトリウム塩酸塩(商品名:ソムノペンチル(登録商標)0.2ml)、生理食塩水(1.8ml/ウサギ)、塩酸メデトミジン(商品名:ドルベネ注1ml)を皮下注射した。不動化確認後、腹部皮膚を剃毛した。呼気麻酔としてイソフルラン吸入し(導入時2%、手術時1%)、保定台に保定した後、ポビドンヨード製剤を浸漬させたガーゼで皮膚を消毒した。続いて、生理食塩水3倍希釈リドカイン注射液(商品名:キシロカイン(登録商標))を腹部皮下に注射し、耳の静脈から点滴ラインをとりソリタ(登録商標)T-3を静注した。電気メス、ハサミを使用し、皮膚、腹膜を切開し腹部大動脈を露出させ、ヘパリン1000単位(1000単位/mLヘパリン1mL)を点滴ラインから静注し、その後ヘパリン静注後3分が経過したのを確認し、腹部大動脈中枢側を遮断した。腹部大動脈にシャントチューブを挿入後、血流遮断を解除した。シャントチューブで血流を確保しながら、8-0プロリン糸を使用し端側吻合法で脱細胞化ブタ内胸動脈と腹部大動脈中枢部を吻合した。続いて同様の方法で脱細胞化ブタ内胸動脈と腹部大動脈末梢部を吻合し、バイパス血管を作製した。加えて、バイパス血管へ血流を向かわせるため中枢吻合部と末梢吻合部の間の腹部大動脈を6-0プロリン糸で結紮した。脱細胞化ブタ内胸動脈移植後は、腹膜を4-0PDS糸、筋層を2-0PDS、皮膚を4-0PDS糸で縫合し腹部を閉じた。抗生剤としてバイトリル(登録商標)を0.5mL投与、塩酸メデトミジン拮抗剤として塩酸アチパメゾール(商品名:アチパメ注1ml)を大腿部皮下に注射した。覚醒確認後、飼育ケージにウサギを移した。
・剖検
 脱細胞化ブタ内胸動脈移植後1カ月或いは3ヶ月のウサギについて剖検を行った。ウサギから点滴ラインはとらず、移植時と同様の方法で腹部大動脈を(移植した脱細胞化ブタ内胸動脈)を露出させた。続いて血管開存評価、血栓形成評価を行った。血管開存評価は、腹部大動脈の末梢側を切断し、放血の有無で判断した。すべてのサンプルで放血を確認し、血管が開存していたことが示された。血管開存評価後、耳静脈にペントバルビタールナトリウム(ソムノペンチル(登録商標)5mL)を注射し、サクリファイスした。心臓、呼吸停止後、脱細胞化ブタ内胸動脈を取り出した。脱細胞化ブタ内胸動脈内部を生理食塩水で洗浄した後、長軸方向に切開し血栓形成を目視で観察した。脱細胞化ブタ内胸動脈の内腔面へは血栓の付着はなく抗血栓性が高いことが示された。なお「開存」とは、血管の内腔が閉塞することなく、中空の状態が維持されていることをいう。
・病理標本作製
 移植した脱細胞化ブタ内胸動脈の病理標本の作製は(株)新組織科学研究所が行った。この際、脱細胞化ブタ内胸動脈の超音波メス或いは、6-0プロリン糸で閉塞させた分枝血管部分の組織構造が確認できる部分でHE染色切片、エラスチカ・ワンギーソン染色(Elastica van Gieson染色、以下、EVG染色ということもある)を行い、EVG染色切片の作製を行った。具体的には、血管の長軸方向におよそ5μm厚で連続的に切片を作成し、超音波メス或いは、6-0プロリン糸で閉塞させた分枝血管部分の組織構造が確認できる部分で切片を作成した。
 なお、EVG染色は弾性繊維を同定する染色方法であり、結合組織のなかのエラスチンを黒紫色に、コラーゲンを赤紫色に染め分けることができる。
 実施例サンプルのHE染色像、EVG染色像(3ヶ月)、比較例サンプルのHE染色像、EVG染色像(3ヶ月)を以下に示す(図4)。実施例サンプルでは、EVG染色で黒紫色に染まる脱細胞化ブタ内胸動脈組織部分にも細胞が浸潤していることが分かる。一方、比較例サンプルでは、EVG染色で黒紫色に染まる脱細胞化ブタ内胸動脈組織部分に細胞の浸潤が認められなかった。
 また実施例サンプルでは、移植後1ヶ月の段階で分枝血管の段差がウサギ細胞で覆われる所見をみだした(図5)。
7.
 流通食用ブタ由来のブロック肉より、超音波メス(EESジェネレーター、ハーモニック SYNERGY、ハーモニック FOCUS+、<ブルーハンドピース使用>、エチコンエンドサージェリー社)の設定を55500Hz、出力レベル5および2として分枝血管を接触させ凝固させながら胸壁から内胸動脈を剥離(採取)した。分枝血管の凝固は血管の枝分かれ部分から3-5mm離れた位置で行うようにし、5本の内胸動脈を剥離(採取)した。上記「3」記載の方法にて脱細胞化処置を行った後、上記「4」記載の方法にて耐圧強度の測定を行った。その結果、5本のサンプル全てにおいて、耐圧強度は250mmHg以上であることを確認した。
1:分枝を有する血管、2:分枝部分(分枝血管)、3:タンパク質変性部

Claims (7)

  1.  (a)脊椎動物(ドナー)から分枝を有する血管を採取する工程、
     (b)当該血管を脱細胞化する工程、及び
     (c)分枝を切除した部分をタンパク質変性処理により接着し閉管する工程
    を含む、移植用脱細胞化材料の製造方法。
  2.  前記工程(a)の後に、(d)採取した血管の分枝を切除する工程を含む、請求項1に記載の移植用脱細胞化材料の製造方法。
  3.  前記タンパク質変性処理が超音波振動処理である、請求項1又は2に記載の移植用脱細胞化材料の製造方法。
  4.  工程(b)の脱細胞化が超高静水圧処理を含む、請求項1~3のいずれかに記載の移植用脱細胞化材料の製造方法。
  5.  脊椎動物(ドナー)の分枝が切除された血管からなり、かつタンパク質変性により閉管された分枝切除部を少なくとも1以上有する移植用脱細胞化材料を含む生体適合性材料からなる移植片組成物。
  6.  前記血管が内胸動脈を含む、請求項5に記載の移植片組成物。
  7.  ブタの内胸動脈を含む血管の脱細胞化組織からなり、タンパク質変性により閉管された分枝切除部を有する移植片組成物。
PCT/JP2018/020141 2017-05-30 2018-05-25 移植用脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物 WO2018221402A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/615,177 US20200222589A1 (en) 2017-05-30 2018-05-25 Method for producing decellularized material for transplantation and graft composition consisting of biocompatible material including said material
CN201880036506.4A CN110740762A (zh) 2017-05-30 2018-05-25 移植用脱细胞化材料制造方法及由包含该材料的生物相容性材料组成的移植片组成物
EP18809381.9A EP3632481B1 (en) 2017-05-30 2018-05-25 Method for producing decellularized material for transplantation and graft composition comprising biocompatible material including said material
JP2019522186A JPWO2018221402A1 (ja) 2017-05-30 2018-05-25 移植用脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物
KR1020197035144A KR20200016226A (ko) 2017-05-30 2018-05-25 이식용 탈세포화 재료의 제조 방법 및 당해 재료를 포함하는 생체 적합성 재료로 이루어지는 이식편 조성물
CA3065498A CA3065498A1 (en) 2017-05-30 2018-05-25 Method for producing decellularized material for transplantation and graft composition consisting of biocompatible material including said material
JP2023061981A JP2023076668A (ja) 2017-05-30 2023-04-06 移植用脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017106400 2017-05-30
JP2017-106400 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221402A1 true WO2018221402A1 (ja) 2018-12-06

Family

ID=64455364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020141 WO2018221402A1 (ja) 2017-05-30 2018-05-25 移植用脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物

Country Status (8)

Country Link
US (1) US20200222589A1 (ja)
EP (1) EP3632481B1 (ja)
JP (2) JPWO2018221402A1 (ja)
KR (1) KR20200016226A (ja)
CN (1) CN110740762A (ja)
CA (1) CA3065498A1 (ja)
TW (1) TWI749233B (ja)
WO (1) WO2018221402A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218059021U (zh) * 2022-09-22 2022-12-16 舩本诚一 一种医用材料处理用高压设备
CN115554472B (zh) * 2022-09-22 2023-08-18 舩本诚一 一种用于移植的生物组织处理方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60501540A (ja) 1983-06-10 1985-09-19 ユニバ−シテイ パテンツ,インコ−ポレイテイド 細胞外マトリクスの体移植片並びに該移植片の製造及び使用のための手段及び方法
JP2000505315A (ja) * 1996-01-24 2000-05-09 オリジン・メッドシステムズ,インコーポレイテッド 切開プローブをもつ組織分離カニューレ及び方法
JP2002507907A (ja) 1997-06-27 2002-03-12 バーダー、アウグスチヌス 生合成移植片及びその製造方法
JP2003518981A (ja) 1999-12-29 2003-06-17 チルドレンズ メディカル センター コーポレーション 臓器脱細胞化のための方法および組成物
JP2003525062A (ja) 1998-09-30 2003-08-26 メドトロニック・インコーポレーテッド 移植で使用される組織の無機質化を減少させる方法
JP2004094552A (ja) 2002-08-30 2004-03-25 Sumitomo Chem Co Ltd 病理組織画像解析方法および病理組織画像解析システム
JP2005185507A (ja) 2003-12-25 2005-07-14 Yoshihiro Takami 皮膚の分離無細胞化方法、無細胞化真皮マトリックス及びその製造方法並びに無細胞化真皮マトリックスを用いた複合培養皮膚
JP2005211480A (ja) 2004-01-30 2005-08-11 Yoshihiro Takami 皮膚の分離無細胞化方法、無細胞化真皮マトリックス及びその製造方法並びに無細胞化真皮マトリックスを用いた複合培養皮膚
JP4092397B2 (ja) 2002-09-10 2008-05-28 国立循環器病センター総長 超高静水圧印加による移植用生体組織の処理方法
WO2008111530A1 (ja) 2007-03-09 2008-09-18 National University Corporation, Tokyo Medical And Dental University 脱細胞化軟組織の調製方法、移植片、及び培養部材
JP2009050297A (ja) 2007-08-23 2009-03-12 Tokyo Medical & Dental Univ 脱細胞処理液、脱細胞化組織の調製方法、移植片、及び培養部材
JP2010221012A (ja) 2009-02-25 2010-10-07 Kobe Univ 高張電解質溶液による生体組織の脱細胞化処理方法
JP2013502275A (ja) 2009-08-18 2013-01-24 ライフセル コーポレーション 組織の処理方法
WO2016194895A1 (ja) * 2015-06-02 2016-12-08 株式会社Adeka 生体由来組織のシート、該シートから得られる管状構造体及び該管状構造体からなる人工血管

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279832A (ja) * 1987-05-12 1988-11-16 Sugino Mach:Kk 液体ジェット手術装置
US5026387A (en) * 1990-03-12 1991-06-25 Ultracision Inc. Method and apparatus for ultrasonic surgical cutting and hemostatis
US5336616A (en) * 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US6293970B1 (en) * 1998-06-30 2001-09-25 Lifenet Plasticized bone and soft tissue grafts and methods of making and using same
US6310036B1 (en) * 1999-01-09 2001-10-30 Last Chance Tissue Adhesives Corporation High strength, Bio-compatible tissue adhesive and methods for treating vigorously bleeding surfaces
IL139708A0 (en) * 2000-11-15 2002-02-10 Amiel Gilad Process of decellularizing biological matrices and acellular biological matrices useful in tissue engineering
WO2005063316A1 (ja) * 2003-12-26 2005-07-14 Cardio Incorporated 移植可能な生体材料およびその作成方法
CN101185770A (zh) * 2007-12-27 2008-05-28 南京市儿童医院 猪带瓣血管脱细胞的支架的超高压制备方法
KR101335203B1 (ko) * 2010-03-26 2013-11-29 숙명여자대학교산학협력단 혈관신생촉진용 펩타이드 및 이의 용도
US20130013083A1 (en) * 2011-01-06 2013-01-10 Humacyte Tissue-Engineered Constructs
CN104411816B (zh) * 2012-03-16 2018-01-02 诺瓦赫普有限公司 经生物工程改造的同种异体血管
EP2967629B1 (en) * 2013-03-14 2019-05-29 Saphena Medical, Inc. Unitary endoscopic vessel harvesting devices
CN203802502U (zh) * 2013-09-06 2014-09-03 姚建新 超声切割止血手术仪
CN104287869B (zh) * 2014-09-19 2017-03-29 上海市肺科医院 一种用于气管移植的新型纳米纤维膜/纱支架及其制备方法
CN204293229U (zh) * 2014-11-28 2015-04-29 徐胜前 一种超声手术刀
TWI711455B (zh) * 2015-05-13 2020-12-01 臺北榮民總醫院 多層視網膜細胞移植物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60501540A (ja) 1983-06-10 1985-09-19 ユニバ−シテイ パテンツ,インコ−ポレイテイド 細胞外マトリクスの体移植片並びに該移植片の製造及び使用のための手段及び方法
JP2000505315A (ja) * 1996-01-24 2000-05-09 オリジン・メッドシステムズ,インコーポレイテッド 切開プローブをもつ組織分離カニューレ及び方法
JP2002507907A (ja) 1997-06-27 2002-03-12 バーダー、アウグスチヌス 生合成移植片及びその製造方法
JP2003525062A (ja) 1998-09-30 2003-08-26 メドトロニック・インコーポレーテッド 移植で使用される組織の無機質化を減少させる方法
JP2003518981A (ja) 1999-12-29 2003-06-17 チルドレンズ メディカル センター コーポレーション 臓器脱細胞化のための方法および組成物
JP2004094552A (ja) 2002-08-30 2004-03-25 Sumitomo Chem Co Ltd 病理組織画像解析方法および病理組織画像解析システム
JP4092397B2 (ja) 2002-09-10 2008-05-28 国立循環器病センター総長 超高静水圧印加による移植用生体組織の処理方法
JP2005185507A (ja) 2003-12-25 2005-07-14 Yoshihiro Takami 皮膚の分離無細胞化方法、無細胞化真皮マトリックス及びその製造方法並びに無細胞化真皮マトリックスを用いた複合培養皮膚
JP2005211480A (ja) 2004-01-30 2005-08-11 Yoshihiro Takami 皮膚の分離無細胞化方法、無細胞化真皮マトリックス及びその製造方法並びに無細胞化真皮マトリックスを用いた複合培養皮膚
WO2008111530A1 (ja) 2007-03-09 2008-09-18 National University Corporation, Tokyo Medical And Dental University 脱細胞化軟組織の調製方法、移植片、及び培養部材
JP2009050297A (ja) 2007-08-23 2009-03-12 Tokyo Medical & Dental Univ 脱細胞処理液、脱細胞化組織の調製方法、移植片、及び培養部材
JP2010221012A (ja) 2009-02-25 2010-10-07 Kobe Univ 高張電解質溶液による生体組織の脱細胞化処理方法
JP2013502275A (ja) 2009-08-18 2013-01-24 ライフセル コーポレーション 組織の処理方法
WO2016194895A1 (ja) * 2015-06-02 2016-12-08 株式会社Adeka 生体由来組織のシート、該シートから得られる管状構造体及び該管状構造体からなる人工血管

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A, vol. 103A, October 2015 (2015-10-01), pages 10
NEGISHI J. ET AL., J. ARTIF. ORGANS, vol. 14, 2011, pages 223 - 231
SASAKI S. ET AL., MOL. VIS., vol. 15, 2009, pages 2022 - 2028
SINGELYN J. M. ET AL., BIOMATERIALS, vol. 30, 2009, pages 5409 - 5416
SINGELYN J. M. ET AL., J. AM. COLL. CARDIOL., vol. 59, 2012, pages 751 - 763
SONYA B. ET AL., SCI. TRANSL. MED., vol. 5, 2013, pages 173ra25
YOSHIHIDE H. ET AL., BIOMATERIALS, vol. 31, 2010, pages 3590 - 3595

Also Published As

Publication number Publication date
TW201906586A (zh) 2019-02-16
KR20200016226A (ko) 2020-02-14
CA3065498A1 (en) 2018-12-06
EP3632481A4 (en) 2021-03-31
JP2023076668A (ja) 2023-06-01
TWI749233B (zh) 2021-12-11
EP3632481A1 (en) 2020-04-08
CN110740762A (zh) 2020-01-31
US20200222589A1 (en) 2020-07-16
JPWO2018221402A1 (ja) 2020-04-30
EP3632481B1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US8835166B2 (en) Extracellular matrix material created using non-thermal irreversible electroporation
Pennel et al. The performance of cross-linked acellular arterial scaffolds as vascular grafts; pre-clinical testing in direct and isolation loop circulatory models
Chaouat et al. The evaluation of a small-diameter polysaccharide-based arterial graft in rats
Assmann et al. Development of a growing rat model for the in vivo assessment of engineered aortic conduits
JP2023076668A (ja) 移植用脱細胞化材料の製造方法及び当該材料を含む生体適合性材料からなる移植片組成物
AU2013373262B2 (en) Artificial blood vessel using decellularized blood vessel sheet
WO2017175870A1 (ja) 肝切除を受けた肝臓の組織再構築用移植材、その製造方法、及び肝切除を受けた肝臓の再構築方法
US20220323647A1 (en) Sheet of biological tissue, tubular structure obtained from said sheet, and artificial blood vessel comprising said tubular structure
Shirakigawa et al. Decellularization of liver and organogenesis in rats
JP2010221012A (ja) 高張電解質溶液による生体組織の脱細胞化処理方法
JPS60501540A (ja) 細胞外マトリクスの体移植片並びに該移植片の製造及び使用のための手段及び方法
WO2019087880A1 (ja) シート状脱細胞化材料及び同材料を用いる人工血管
KR102659840B1 (ko) 생체 유래 조직의 시트, 상기 시트에서 얻은 관상 구조체 및 상기 관상 구조체로 이루어진 인공 혈관
Wang Evaluation of Amnion Membrane Made Vascular Graft in Rat Model and Porcine Model
JP6515429B2 (ja) 人工血管、および、人工血管の製造方法
KR101709008B1 (ko) 생체 적합성이 증진된 진피대체물의 제조방법
JP2011130989A (ja) 抗血栓性修飾剤、医療用具、及び、多孔質コラーゲン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019522186

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20197035144

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3065498

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018809381

Country of ref document: EP

Effective date: 20200102