WO2018221221A1 - ケイ素化合物及びその製造方法 - Google Patents

ケイ素化合物及びその製造方法 Download PDF

Info

Publication number
WO2018221221A1
WO2018221221A1 PCT/JP2018/018906 JP2018018906W WO2018221221A1 WO 2018221221 A1 WO2018221221 A1 WO 2018221221A1 JP 2018018906 W JP2018018906 W JP 2018018906W WO 2018221221 A1 WO2018221221 A1 WO 2018221221A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
general formula
alkyl group
group
aryl group
Prior art date
Application number
PCT/JP2018/018906
Other languages
English (en)
French (fr)
Inventor
田中 徹
崇司 川守
雅史 海野
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020197032791A priority Critical patent/KR20200014742A/ko
Priority to JP2019522101A priority patent/JPWO2018221221A1/ja
Priority to CN201880033283.6A priority patent/CN110650992A/zh
Priority to EP18810325.3A priority patent/EP3632960A4/en
Priority to US16/617,182 priority patent/US20210054150A1/en
Publication of WO2018221221A1 publication Critical patent/WO2018221221A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/44Block-or graft-polymers containing polysiloxane sequences containing only polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages

Definitions

  • One embodiment of the present invention relates to a silicon compound and a method for producing the same.
  • the organic silicon compound is hydrolyzed with three hydrolyzable groups, as compounds obtained by condensation are known silsesquioxane represented by (RSiO 1.5) n. It has a chemical structure that can be said to be intermediate between silicone resin and glass, and has excellent features such as heat resistance, transparency, and weather resistance, and has attracted attention as an optical, semiconductor, and electronic material, and many studies have been reported.
  • This silsesquioxane is known to have a random structure without a specific structure, a double-decker structure that can determine the structure, a ladder structure, or a cage structure. Although all have excellent characteristics, from the viewpoint of correlation between precise material design and characteristic expression, ladder type and cage type that can determine the structure are excellent.
  • silsesquioxanes are highly cohesive, and when mixed to modify existing resins, phase separation may occur and the expected properties may not be obtained.
  • Patent Document 1 is proposed as an example in which double-decker silsesquioxane is introduced into the main chain
  • Non-Patent Document 1 is proposed as an example in which cage-type silsesquioxane is introduced into the main chain. All silsesquioxanes have a three-dimensional polyhedral structure and use 10 or 8 silicon atoms.
  • a ladder-type silsesquioxane having a low number of silicon and having excellent heat resistance is introduced into the main chain as compared with a silsesquioxane having a conventional polyhedral structure, which is as few as six silicon.
  • An object is to provide a polymer.
  • m represents an integer of 1 to 30
  • n represents a number satisfying the weight average molecular weight of 5,000 to 1,000,000
  • R 1 to R 4 each independently represents the number of carbon atoms.
  • R 1 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 5 and R 6 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 7 To R 10 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms, and in the n structural units, the combinations of m and R 1 to R 10 are all the same. Or some or all of them may be different.
  • m represents an integer of 1 to 30
  • n represents a number satisfying the weight average molecular weight of 5,000 to 1,000,000
  • R 1 to R 4 each independently represents the number of carbon atoms.
  • R 1 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 5 and R 6 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 7 To R 10 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms, and in the n structural units, the combinations of m and R 1 to R 10 are all the same. Or some or all of them may be different.
  • R 1 to R 4 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 5 and R 6 each independently represents a carbon number.
  • An alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms is represented.
  • m represents an integer of 1 to 30, and R 7 to R 10 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • a ladder-type silsesquioxane main chain-introduced polymer that is low in cost and excellent in heat resistance can be provided.
  • Silicon compounds The silicon compound according to one embodiment has a structural unit represented by the following general formula (I).
  • m represents an integer of 1 to 30, n represents a number satisfying a weight average molecular weight of 5,000 to 1,000,000, and R 1 to R 4 each independently represents 1 carbon atom.
  • R 1 to R 4 each independently represents 1 carbon atom.
  • R 5 and R 6 each independently represent an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 7 to R 10 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • the combinations of m and R 1 to R 10 are all the same. Or some or all of them may be different.
  • R 1 , R 2 , R 3 , and R 4 each independently represents an alkyl group or an aryl group, and is an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • the alkyl group represented by R 1 to R 4 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and may have a straight chain or a branched chain. Or it may be cyclic.
  • the aryl group represented by R 1 to R 4 preferably has 6 to 14 carbon atoms, more preferably 6 to 8 carbon atoms.
  • the aryl group may have a linear or branched alkyl group bonded to at least one carbon atom forming the carbocyclic ring.
  • R 1 to R 4 for example, a methyl group, an ethyl group, an isobutyl group, a cyclohexyl group, an isooctyl group, a phenyl group, an alkyl group-substituted phenyl group, and the like can be mentioned. It is preferably an unsubstituted or substituted phenyl group.
  • R 5 and R 6 each independently represent an alkyl group or an aryl group, preferably an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • the alkyl group represented by R 5 and R 6 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and may have a straight chain or a branched chain. Or it may be cyclic.
  • the aryl group represented by R 5 and R 6 preferably has 6 to 14 carbon atoms, more preferably 6 to 8 carbon atoms. Within this carbon number range, the aryl group may have a linear or branched alkyl group bonded to at least one carbon atom forming the carbocyclic ring.
  • R 5 and R 6 independently include a methyl group, an ethyl group, an isobutyl group, a cyclohexyl group, an isooctyl group, a phenyl group, an alkyl group-substituted phenyl group, and the like. And an unsubstituted or substituted phenyl group having 6 to 8 carbon atoms.
  • R 7 , R 8 , R 9 and R 10 each independently represents an alkyl group or an aryl group, and is an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • the alkyl group represented by R 7 to R 10 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and may have a straight chain or a branched chain. Or it may be cyclic.
  • the aryl group represented by R 7 to R 10 preferably has 6 to 14 carbon atoms, more preferably 6 to 8 carbon atoms.
  • the aryl group may have a linear or branched alkyl group bonded to at least one carbon atom forming the carbocyclic ring.
  • R 7 to R 10 each independently include a methyl group, an ethyl group, an isobutyl group, a cyclohexyl group, an isooctyl group, a phenyl group, an alkyl group-substituted phenyl group, and the like. And an unsubstituted or alkyl group-substituted phenyl group having 6 to 8 carbon atoms.
  • n is preferably a number satisfying a weight average molecular weight of 5,000 to 1,000,000.
  • n is small and the weight average molecular weight is less than 5,000, the 5% thermogravimetric reduction temperature is lowered and it becomes difficult to obtain heat resistance exceeding 400 ° C.
  • a weight average molecular weight exceeds 1,000,000, compatibility will fall and use as a raw material of a composition will become difficult.
  • n is more preferably a number with a weight average molecular weight of 3,000 to 500,000, and a number with a weight average molecular weight of 4,000 to 100,000. Further preferred.
  • m is preferably an integer of 1 to 30.
  • the siloxane main chain that connects ladder-type silsesquioxanes moves violently at high temperatures as a soft segment.
  • ladder-type silsesquioxanes have strong cohesiveness, and cohesive force works between molecules and within molecules. Therefore, it is considered that the heat resistance of the polymer according to one embodiment is improved by the polymer main chain in which the ladder-type silsesquioxane is connected by the soft segment performs a specific molecular chain movement at a high temperature.
  • m is more preferably 1 to 25, and further preferably m is 1 to 20.
  • the combinations of R 1 to R 10 between the structural units and m may be all the same, or part or all may be different.
  • Method for producing silicon compound an example of the manufacturing method of the silicon compound which has a structural unit represented by general formula (I) is demonstrated.
  • the silicon compound which has a structural unit represented by general formula (I) is not limited to what was manufactured by the following manufacturing methods.
  • a manufacturing method of the silicon compound which has a structural unit represented by general formula (I) it is preferable to include the process manufactured using the compound represented, for example by the following general formula (II).
  • the process manufactured using the compound represented by the following general formula (III) More preferably, it includes a step of reacting the compound represented by the general formula (II) with the compound represented by the general formula (III).
  • R 1 to R 4 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 5 and R 6 each independently represent 1 carbon atom.
  • R 1 to R 4 each independently represent an alkyl group or an aryl group, preferably an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • the alkyl group represented by R 1 to R 4 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and may have a straight chain or a branched chain. Or it may be cyclic.
  • the aryl group represented by R 1 to R 4 preferably has 6 to 14 carbon atoms, more preferably 6 to 8 carbon atoms. Within this carbon number range, the aryl group may have a linear or branched alkyl group bonded to at least one carbon atom forming the carbocyclic ring.
  • R 1 to R 4 for example, a methyl group, an ethyl group, an isobutyl group, a cyclohexyl group, an isooctyl group, a phenyl group, an alkyl group-substituted phenyl group, and the like can be mentioned. It is preferably an unsubstituted or substituted phenyl group.
  • R 5 and R 6 each independently represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • the alkyl group represented by R 5 and R 6 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and may have a straight chain or a branched chain. Or it may be cyclic.
  • the aryl group represented by R 5 and R 6 preferably has 6 to 14 carbon atoms, more preferably 6 to 8 carbon atoms. Within this carbon number range, the aryl group may have a linear or branched alkyl group bonded to at least one carbon atom forming the carbocyclic ring.
  • R 5 and R 6 independently include a methyl group, an ethyl group, an isobutyl group, a cyclohexyl group, an isooctyl group, a phenyl group, an alkyl group-substituted phenyl group, and the like. And an unsubstituted or substituted phenyl group having 6 to 8 carbon atoms.
  • the compound represented by the general formula (II) is at least one of a plurality of compounds having different combinations of R 1 to R 6. Species or a combination of two or more can be used.
  • m represents an integer of 1 to 30, and R 7 to R 10 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • R 7 to R 10 each independently represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • the alkyl group represented by R 7 to R 10 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and may have a straight chain or a branched chain. Or it may be cyclic.
  • the aryl group represented by R 7 to R 10 preferably has 6 to 14 carbon atoms, more preferably 6 to 8 carbon atoms. Within this carbon number range, the aryl group may have a linear or branched alkyl group bonded to at least one carbon atom forming the carbocyclic ring.
  • R 7 to R 10 each independently include a methyl group, an ethyl group, an isobutyl group, a cyclohexyl group, an isooctyl group, a phenyl group, an alkyl group-substituted phenyl group, and the like. And an unsubstituted or alkyl group-substituted phenyl group having 6 to 8 carbon atoms.
  • n is preferably an integer of 1 to 30. In order to cause a specific molecular chain motion that improves heat resistance, m is more preferably 1 to 25, and even more preferably 1 to 20.
  • the compound represented by the general formula (III) is selected from the group consisting of a plurality of compounds having different combinations of R 7 to R 10 and m. Can be used in combination of at least one, or two or more.
  • the solvent used is not particularly limited, and specific examples include toluene, ethylbenzene, xylene, hexane, heptane, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, tetrahydrofuran, propylene glycol monomethyl ether acetate, ethyl acetate, isobutyl acetate and the like. be able to.
  • platinum-based catalyst Is preferably used.
  • platinum-based catalysts include chloroplatinic acid, catalysts of chloroplatinic acid and alcohols, aldehydes, ketones, platinum-olefin complexes, platinum-carbonylvinylmethyl complexes (Ossko catalysts), platinum-divinyltetramethylsiloxane complexes ( Karstedt catalyst), platinum-cyclovinylmethylsiloxane complex, platinum-octylaldehyde complex, platinum-phosphine complex Pt [P (C 6 H 5 ) 3 ] 4 , PtCl [P (C 6 H 5 ) 3 ] 3 , Pt [P (C 4 H 9 ) 3 ] 4 , platinum-phosphite complex Pt [P (OC 6
  • the compound represented by the general formula (II) has a geometric isomer. Specifically, when vinyl groups are facing each other, when vinyl groups are facing each other, one of the vinyl groups is facing inward and the other is facing outward. .
  • R 1 to R 4 are phenyl groups (C 6 H 5 ) and R 5 and R 6 are methyl groups (CH 3 )
  • the following three types of geometric isomers are considered. It is done.
  • any one of these isomers may be used alone for the compound represented by the general formula (II), Two or three types may be used in combination.
  • R 1 to R 4 each independently represents an alkyl group or an aryl group.
  • R 1 to R 4 each independently represents an alkyl group or an aryl group, X represents a monovalent metal element, and four Xs may be the same or partially or completely different May be.
  • R 1 to R 4 are groups introduced as R 1 to R 4 in the compound represented by the general formula (II). As described in II).
  • X represents a monovalent metal element, and is preferably a metal element selected from the group consisting of Li, Na, and Ka. All may be different.
  • the direction of the OX group is the same direction with respect to the siloxane ring, as described in, for example, Angewand Chemie International Edition, (2016), 55, 9336-9339. It is preferable.
  • the OH group of the compound represented by the general formula (IV) is preferably in the same direction. This is because a silane compound represented by the following general formula (VI) is allowed to act on these compounds to produce a compound represented by the general formula (II).
  • R 5 and R 6 each independently represents an alkyl group or an aryl group.
  • R 5 and R 6 are groups introduced as R 5 and R 6 in the compound represented by the general formula (II), and the details are as described in the general formula (II). It is.
  • At least one of the compound represented by the general formula (IV) and the compound represented by the general formula (V) and the compound represented by the general formula (VI) are in a solvent in the presence of a base such as triethylamine. It is preferable to react.
  • the solvent to be used is not particularly limited, and specific examples include toluene, ethylbenzene, xylene, hexane, heptane, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, tetrahydrofuran, propylene glycol monomethyl ether acetate, ethyl acetate, isobutyl acetate and the like. Can do.
  • the compound represented by the general formula (IV) and the compound represented by the general formula (V) can each be obtained by hydrolyzing and condensing an organosilane compound having three hydrolyzable groups.
  • a compound represented by the general formula (V) can be obtained by reacting an organosilane compound having three hydrolyzable groups with a base represented by X (OH).
  • X represents a monovalent metal element.
  • the compound represented by general formula (VI) can be obtained by making the compound represented by general formula (V) react with acids, such as hydrochloric acid.
  • the compound represented by the general formula (V) can be produced using a compound represented by the following general formula (VII).
  • R 1 to R 4 each independently represents an alkyl group or an aryl group, and R 11 represents an alkyl group.
  • R 1 ⁇ R 4 is In the general formula (VII), a group in the general formula (V) is introduced as R 1 ⁇ R 4, are introduced as R 1 ⁇ R 4 In still compound represented by the general formula (II) The details are as described in the general formula (II).
  • R 11 is preferably an alkyl group having 1 to 8 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, and an isobutyl group.
  • a base can be used for the purpose of promoting the reaction.
  • the basic compound represented by X (OH) can be used, Specifically, lithium hydroxide, sodium hydroxide, potassium hydroxide etc. can be mentioned.
  • the compound represented by the general formula (V) is preferably obtained by reacting the compound represented by the general formula (VII) in a solvent in the presence of water and a base.
  • the solvent used is not particularly limited, but specifically, toluene, ethylbenzene, xylene, hexane, heptane, 2-propanol, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, tetrahydrofuran, propylene glycol monomethyl ether acetate, ethyl acetate, isobutyl acetate Etc.
  • the compound represented by the general formula (IV) is preferably capable of reacting the compound represented by the general formula (V) in a solvent in the presence of water and an acid.
  • the compound represented by the general formula (IV) is easily dissolved in a solvent and the solvent to be used is not limited, specifically, toluene, ethylbenzene, xylene, hexane, heptane, 2-propanol, methyl ethyl ketone, methyl isobutyl ketone, cyclohexane Examples include pentanone, tetrahydrofuran, propylene glycol monomethyl ether acetate, ethyl acetate, and isobutyl acetate.
  • the structure and purity of the resulting compound were determined using 1 H NMR, 13 C NMR and 29 Si NMR NMR.
  • the measurement conditions of 1 H NMR, 13 C NMR, and 29 Si NMR are as follows.
  • the oil bath was removed and the mixture was allowed to cool, 50 mL of saturated aqueous ammonium chloride solution and 80 mL of ethyl acetate were added, and the contents were transferred to a separatory funnel. After liquid separation, the lower aqueous layer was removed, and the upper layer was washed twice with 50 mL of purified water and dried over anhydrous sodium sulfate. Sodium sulfate was filtered off with filter paper, the solvent was distilled off with a rotary evaporator, and further dried under reduced pressure with an oil pump to obtain 12.11 g of a viscous liquid.
  • FIG. 1 shows a 1 H NMR spectrum of the compound represented by the general formula (Z)
  • FIG. 2 shows a 13 C NMR spectrum
  • FIG. 3 shows an enlarged view thereof
  • FIG. 4 shows an NMR spectrum of 29 Si NMR. Shown in In FIG. 1, FIG. 2 and FIG. 4, the lower part is an entire spectrum view, and the upper part is a partially enlarged view thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

下記一般式(I)で表される構造単位を有する、ケイ素化合物である。一般式(I)中、mは1~30の整数を表し、nは重量平均分子量5,000~1,000,000を満たす数字を表し、R1~R4はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R5及びR6はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R7~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、n個の構造単位において、m、R1~R10の組み合わせは、全て同一であっても、一部又は全て異なってもよい。

Description

ケイ素化合物及びその製造方法
 本発明の一実施形態は、ケイ素化合物及びその製造方法に関する。
 3つの加水分解性基を有する有機ケイ素化合物を加水分解した後、縮合して得られる化合物として、(RSiO1.5で表されるシルセスキオキサンが知られている。シリコーン樹脂とガラスの中間とも言える化学構造をもち、耐熱性や透明性、耐候性など優れた特徴を持つことから、光学、半導体や電子材料として注目され、数多くの研究が報告されている。
 このシルセスキオキサンには、特定の構造がないランダム構造、構造を決定できるダブルデッカー構造、ラダー構造やかご型構造が知られている。いずれも優れた特性をもつものの、精密な材料設計と特性発現との相関という観点からは、構造が決定できるラダー型やかご型が優れている。
 しかしながら、これらシルセスキオキサンは凝集性が強く、既存樹脂を改質するために混合すると相分離を起こし、期待しているような特性が得られないことがある。そこで、シルセスキオキサンを高分子の主鎖に導入して凝集を抑制する手法が開発されている。例えば、ダブルデッカー型シルセスキオキサンを主鎖に導入した例として特許文献1が提案されており、かご型シルセスキオキサンを主鎖に導入した例として非特許文献1が提案されている。いずれのシルセスキオキサンも立体的な多面体構造をもち、ケイ素原子を10個もしくは8個使用している。
特開2008-280420号公報
Polymer Chemistry,(2015),6,7500~7504
 本発明の一実施形態では、従来の多面体構造をもつシルセスキオキサンと比較してケイ素数が6個と少なく、低コストで耐熱性の優れたラダー型のシルセスキオキサンを主鎖に導入したポリマーを提供することを一課題とする。
 前記課題を達成するための具体的手段は以下の通りである。
 [1]下記一般式(I)で表される構造単位を有する、ケイ素化合物。
Figure JPOXMLDOC01-appb-C000005
 [一般式(I)中、mは1~30の整数を表し、nは重量平均分子量5,000~1,000,000を満たす数字を表し、R~Rはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R及びRはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、n個の構造単位において、m、R~R10の組み合わせは、全て同一であっても、一部又は全て異なってもよい。]
 [2]下記一般式(I)で表される構造単位を有するケイ素化合物の製造方法であって、下記一般式(II)で表される化合物を用いて製造される工程を含む、ケイ素化合物の製造方法。
Figure JPOXMLDOC01-appb-C000006
 [一般式(I)中、mは1~30の整数を表し、nは重量平均分子量5,000~1,000,000を満たす数字を表し、R~Rはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R及びRはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、n個の構造単位において、m、R~R10の組み合わせは、全て同一であっても、一部又は全て異なってもよい。]
Figure JPOXMLDOC01-appb-C000007
 [一般式(II)中、R~Rはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R及びRはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表す。]
 [3]下記一般式(III)で表される化合物を用いて製造される工程を含む、[2]に記載のケイ素化合物の製造方法。
Figure JPOXMLDOC01-appb-C000008
 [一般式(III)中、mは1~30の整数を表し、R~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表す。]
 本発明の一実施形態によれば、低コストで耐熱性に優れたラダー型シルセスキオキサン主鎖導入ポリマーを提供できる。
一般式(Z)で表される化合物の3種幾何異性体のH NMRスペクトル。 一般式(Z)で表される化合物の3種幾何異性体の13C NMRスペクトル。 一般式(Z)で表される化合物3の種幾何異性体の13C NMRスペクトル拡大図。 一般式(Z)で表される化合物3の種幾何異性体の29Si NMRスペクトル。
 以下、本発明の一実施形態について説明するが、以下の例示によって本発明は限定されない。
 「ケイ素化合物」
 一実施形態によるケイ素化合物は、下記一般式(I)で表される構造単位を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000009
 一般式(I)中、mは1~30の整数を表し、nは重量平均分子量5,000~1,000,000を満たす数字を表し、R~Rはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R及びRはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、n個の構造単位において、m、R~R10の組み合わせは、全て同一であっても、一部又は全て異なってもよい。
 一般式(I)において、R、R、R、及びRはそれぞれ独立的にアルキル基又はアリール基を表し、炭素数1~8のアルキル基又は炭素数6~14のアリール基であることが好ましい。
 R~Rで表されるアルキル基は、炭素数1~8であることが好ましく、より好ましくは炭素数1~4であり、直鎖又は分岐鎖を有してもよく、非環式又は環式であってもよい。
 R~Rで表されるアリール基は、炭素数6~14であることが好ましく、より好ましくは炭素数6~8である。この炭素数の範囲内で、アリール基は、炭素環を形成する少なくとも1つの炭素原子に直鎖又は分岐鎖を有するアルキル基が結合していてもよい。
 R~Rとしては、それぞれ独立的に、例えば、メチル基、エチル基、イソブチル基、シクロヘキシル基、イソオクチル基、フェニル基、アルキル基置換フェニル基等を挙げることができ、炭素数6~8の無置換又は置換のフェニル基であることが好ましい。
 一般式(I)において、R及びRはそれぞれ独立的にアルキル基又はアリール基を表し、炭素数1~8のアルキル基又は炭素数6~14のアリール基であることが好ましい。
 R及びRで表されるアルキル基は、炭素数1~8であることが好ましく、より好ましくは炭素数1~4であり、直鎖又は分岐鎖を有してもよく、非環式又は環式であってもよい。
 R及びRで表されるアリール基は、炭素数6~14であることが好ましく、より好ましくは炭素数6~8である。この炭素数の範囲内で、アリール基は、炭素環を形成する少なくとも1つの炭素原子に直鎖又は分岐鎖を有するアルキル基が結合していてもよい。
 R及びRとしては、それぞれ独立的に、例えば、メチル基、エチル基、イソブチル基、シクロヘキシル基、イソオクチル基、フェニル基、アルキル基置換フェニル基等を挙げることができ、炭素数1~4のアルキル基、炭素数6~8の無置換又は置換のフェニル基であることが好ましい。
 一般式(I)において、R、R、R、及びR10はそれぞれ独立的にアルキル基又はアリール基を表し、炭素数1~8のアルキル基又は炭素数6~14のアリール基であることが好ましい。
 R~R10で表されるアルキル基は、炭素数1~8であることが好ましく、より好ましくは炭素数1~4であり、直鎖又は分岐鎖を有してもよく、非環式又は環式であってもよい。
 R~R10で表されるアリール基は、炭素数6~14であることが好ましく、より好ましくは炭素数6~8である。この炭素数の範囲内で、アリール基は、炭素環を形成する少なくとも1つの炭素原子に直鎖又は分岐鎖を有するアルキル基が結合していてもよい。
 R~R10としては、それぞれ独立的に、例えば、メチル基、エチル基、イソブチル基、シクロヘキシル基、イソオクチル基、フェニル基、アルキル基置換フェニル基等を挙げることができ、炭素数1~4のアルキル基、炭素数6~8の無置換又はアルキル基置換のフェニル基であることが好ましい。
 nは重量平均分子量5,000~1,000,000を満たす数であることが好ましい。
 nが小さく、重量平均分子量が5,000未満の場合、5%熱重量減少温度が低下し、400℃を超えるような耐熱性を得ることが難しくなる。また、重量平均分子量が1,000,000を超えると相溶性が低下し、組成物の原料として使用が難しくなる。耐熱性と相溶性の観点から、nは重量平均分子量が3,000~500,000となる数字であることがより好ましく、重量平均分子量が4,000~100,000となる数字であることがさらに好ましい。
 mは1~30の整数であることが好ましい。
 ラダー型シルセスキオキサン同士を繋ぐシロキサン主鎖はソフトセグメントとして高温時に激しく運動する。一方、ラダー型シルセスキオキサン同士は凝集性が強く、分子間や分子内で凝集力が働く。従って、ラダー型シルセスキオキサンをソフトセグメントで繋いだ高分子主鎖が高温時に特異な分子鎖運動を行うことによって、一実施形態のポリマーは耐熱性が向上すると考えられる。しかし、mが30を超えると、ラダー型シルセスキオキサンのシロキサン主鎖に及ぼす影響が小さくなるため、耐熱性の効果は著しく減少してしまう。耐熱性を向上させる特異な分子鎖運動はmが1~25であることがより好ましく、mが1~20であることがさらに好ましい。
 一般式(I)のn個の構造単位において、各構造単位間のR~R10の組み合わせ、及びmは、全て同一であっても、一部又は全て異なってもよい。
 「ケイ素化合物の製造方法」
 以下、一般式(I)で表される構造単位を有するケイ素化合物の製造方法の一例について説明する。なお、一般式(I)で表される構造単位を有するケイ素化合物は、以下の製造方法によって製造されたものに限定されない。
 一般式(I)で表される構造単位を有するケイ素化合物の製造方法としては、例えば、下記一般式(II)で表される化合物を用いて製造される工程を含むことが好ましい。さらに、下記一般式(III)で表される化合物を用いて製造される工程を含むことが好ましい。より好ましくは、一般式(II)で表される化合物と一般式(III)で表される化合物とを反応させる工程を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(II)中、R~Rはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、R及びRはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表す。
 一般式(II)において、R~Rはそれぞれ独立的にアルキル基又はアリール基を表し、炭素数1~8のアルキル基又は炭素数6~14のアリール基であることが好ましい。
 R~Rで表されるアルキル基は、炭素数1~8であることが好ましく、より好ましくは炭素数1~4であり、直鎖又は分岐鎖を有してもよく、非環式又は環式であってもよい。
 R~Rで表されるアリール基は、炭素数6~14であることが好ましく、より好ましくは炭素数6~8である。この炭素数の範囲内で、アリール基は、炭素環を形成する少なくとも1つの炭素原子に直鎖又は分岐鎖を有するアルキル基が結合していてもよい。
 R~Rとしては、それぞれ独立的に、例えば、メチル基、エチル基、イソブチル基、シクロヘキシル基、イソオクチル基、フェニル基、アルキル基置換フェニル基等を挙げることができ、炭素数6~8の無置換又は置換のフェニル基であることが好ましい。
 一般式(II)において、R及びRはそれぞれ独立的にアルキル基又はアリール基を表し、炭素数1~8のアルキル基又は炭素数6~14のアリール基であることが好ましい。
 R及びRで表されるアルキル基は、炭素数1~8であることが好ましく、より好ましくは炭素数1~4であり、直鎖又は分岐鎖を有してもよく、非環式又は環式であってもよい。
 R及びRで表されるアリール基は、炭素数6~14であることが好ましく、より好ましくは炭素数6~8である。この炭素数の範囲内で、アリール基は、炭素環を形成する少なくとも1つの炭素原子に直鎖又は分岐鎖を有するアルキル基が結合していてもよい。
 R及びRとしては、それぞれ独立的に、例えば、メチル基、エチル基、イソブチル基、シクロヘキシル基、イソオクチル基、フェニル基、アルキル基置換フェニル基等を挙げることができ、炭素数1~4のアルキル基、炭素数6~8の無置換又は置換のフェニル基であることが好ましい。
 一般式(I)で表される構造単位を有するケイ素化合物の製造方法において、一般式(II)で表される化合物は、上記R~Rの組み合わせが異なる複数の化合物の中から少なくとも1種、又は2種以上を組み合わせて用いることができる。
Figure JPOXMLDOC01-appb-C000011
 一般式(III)中、mは1~30の整数を表し、R~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表す。
 一般式(III)において、R~R10はそれぞれ独立的にアルキル基又はアリール基を表し、炭素数1~8のアルキル基又は炭素数6~14のアリール基であることが好ましい。
 R~R10で表されるアルキル基は、炭素数1~8であることが好ましく、より好ましくは炭素数1~4であり、直鎖又は分岐鎖を有してもよく、非環式又は環式であってもよい。
 R~R10で表されるアリール基は、炭素数6~14であることが好ましく、より好ましくは炭素数6~8である。この炭素数の範囲内で、アリール基は、炭素環を形成する少なくとも1つの炭素原子に直鎖又は分岐鎖を有するアルキル基が結合していてもよい。
 R~R10としては、それぞれ独立的に、例えば、メチル基、エチル基、イソブチル基、シクロヘキシル基、イソオクチル基、フェニル基、アルキル基置換フェニル基等を挙げることができ、炭素数1~4のアルキル基、炭素数6~8の無置換又はアルキル基置換のフェニル基であることが好ましい。
 mは1~30の整数であることがよい。耐熱性を向上させる特異な分子鎖運動を作用させるために、mは1~25であることがより好ましく、mは1~20であることがさらに好ましい。
 一般式(I)で表される構造単位を有するケイ素化合物の製造方法において、一般式(III)で表される化合物は、上記R~R10、及びmの組み合わせが異なる複数の化合物の中から少なくとも1種、又は2種以上を組み合わせて用いることができる。
 一般式(I)で表させる構造単位を有するケイ素化合物を、一般式(II)で表される化合物及び一般式(III)で表される化合物の少なくとも一方を用いて製造する場合、溶剤中で反応を行うことが好ましい。用いる溶剤は、特に制限されないが、具体的には、トルエン、エチルベンゼン、キシレン、ヘキサン、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸イソブチル等を挙げることができる。
 一般式(I)で表させる構造単位を有するケイ素化合物を、一般式(II)で表される化合物及び一般式(III)で表される化合物の少なくとも一方を用いて製造する場合、白金系触媒を用いることが好ましい。白金系触媒としては、例えば、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との触媒、白金-オレフィン錯体、白金-カルボニルビニルメチル錯体(Ossko触媒)、白金-ジビニルテトラメチルシロキサン錯体(Karstedt触媒)、白金-シクロビニルメチルシロキサン錯体、白金-オクチルアルデヒド錯体、白金-ホスフィン錯体であるPt[P(C、PtCl[P(C、Pt[P(C、白金-ホスファイト錯体であるPt[P(OC,Pt(OC、ジカルボニルジクロロ白金等が挙げられる。
 一般式(II)で表される化合物は幾何異性体を有する。具体的にはビニル基同士が内側に向き合った位置になる場合、ビニル基同士が外側に向いた位置になる場合、ビニル基の一方が内側に向き、残りが外側に向いた位置になる場合ある。例えば、一般式(II)においてR~Rがフェニル基(C)、R、Rがメチル基(CH)の場合は、下記に示す3種類の幾何異性体が考えられる。一般式(I)で表される構造単位を有するケイ素化合物の製造方法において、一般式(II)で表される化合物には、これら異性体のいずれか1種を単独で用いてもよいし、2種又は3種を組み合わせて用いてよい。
Figure JPOXMLDOC01-appb-C000012
 「一般式(II)で表される化合物の製造方法」
 以下、一般式(II)で表される化合物の製造方法の一例について説明する。なお、一般式(II)で表される化合物は、以下の製造方法によって製造されたものに限定されない。
 一般式(II)で表される化合物の製造には、例えば、下記一般式(IV)で表される化合物及び下記一般式(V)で表される化合物の少なくとも一方を用いることができる。
Figure JPOXMLDOC01-appb-C000013
 一般式(IV)中、R~Rはそれぞれ独立的にアルキル基又はアリール基を表す。
 一般式(V)中、R~Rはそれぞれ独立的にアルキル基又はアリール基を表し、Xは1価の金属元素を表し、4つのXは全て同一であっても一部又は全て異なってもよい。
 一般式(IV)及び一般式(V)においてR~Rは、一般式(II)で表される化合物においてR~Rとして導入される基であり、詳細については上記一般式(II)において説明した通りである。
 一般式(V)において、Xは1価の金属元素を表し、Li、Na、Kaからなる群より選択される金属元素であることが好ましく、4つのXは全て同一であっても一部又は全て異なってもよい。
 一般式(V)で表される化合物において、OX基の向きは、例えばAngewandt Chemie International Edition,(2016),55,9336~9339で説明されているように、シロキサン環に対して同一方向であることが好ましい。一般式(IV)で表される化合物のOH基も同様に同一方向であることが好ましい。これは、これらの化合物に下記一般式(VI)で表されるシラン化合物を作用させて、一般式(II)で表される化合物を製造するためである。
Figure JPOXMLDOC01-appb-C000014
 一般式(VI)中、R及びRはそれぞれ独立的にアルキル基又はアリール基を表す。
 一般式(VI)においてR及びRは、一般式(II)で表される化合物においてR及びRとして導入される基であり、詳細については上記一般式(II)において説明した通りである。
 一般式(IV)で表される化合物及び一般式(V)で表される化合物の少なくとも一方と、一般式(VI)で表される化合物とは、トリエチルアミン等の塩基の存在下で溶剤中で反応させることが好ましい。用いる溶剤は、特に制限されないが、具体的にはトルエン、エチルベンゼン、キシレン、ヘキサン、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸イソブチル等を挙げることができる。
 一般式(IV)で表される化合物及び一般式(V)で表される化合物は、それぞれ3つの加水分解性基を有する有機シラン化合物を加水分解し、縮合することで得ることができる。
 例えば、3つの加水分解性基を有する有機シラン化合物をX(OH)表される塩基と反応させることで、一般式(V)で表される化合物を得ることができる。ここで、Xは1価の金属元素を表す。そして、一般式(V)で表される化合物を塩酸等の酸と反応させることで、一般式(VI)で表される化合物を得ることができる。
 一例として、一般式(V)で表される化合物は、下記一般式(VII)で表される化合物を用いて製造することができる。
Figure JPOXMLDOC01-appb-C000015
 一般式(VII)中、R~Rはそれぞれ独立的にアルキル基又はアリール基を表し、R11はアルキル基を表す。
 一般式(VII)においてR~Rは、一般式(V)においてR~Rとして導入され、さらに一般式(II)で表される化合物においてR~Rとして導入される基であり、詳細については上記一般式(II)において説明した通りである。
 一般式(VII)において、R11は炭素数1~8のアルキル基が好ましく、炭素数1~4のアルキル基であることがより好ましい。具体的にはメチル基、エチル基、イソブチル基を挙げることができる。
 一般式(V)で表される化合物を一般式(VII)で表される化合物から製造する場合、反応を促進する目的で塩基を用いることができる。塩基に特に制限はないが、X(OH)で表される塩基性化合物を用いることができ、具体的には水酸化リチウム、水酸化ナトリウム、水酸化カリウム等を挙げることができる。
 一般式(V)で表される化合物は、一般式(VII)で表される化合物を水及び塩基の存在下で溶剤中で反応させて得ることが好ましい。用いる溶剤は、特に制限されないが、具体的にはトルエン、エチルベンゼン、キシレン、ヘキサン、ヘプタン、2-プロパノール、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸イソブチル等を挙げることができる。
 一般式(IV)で表される化合物は、一般式(V)で表される化合物を水及び酸の存在下で溶剤中で反応させれ得ることが好ましい。一般式(IV)で表される化合物は溶剤に溶解しやすく、用いる溶剤に制限はないものの、具体的にはトルエン、エチルベンゼン、キシレン、ヘキサン、ヘプタン、2-プロパノール、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸イソブチル等を挙げることができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 得られた化合物の構造及び純度は、H NMR、13C NMR及び29Si NMRのNMRを用いて決定した。H NMR、13C NMR及び29Si NMRの測定条件は、それぞれ以下のとおりである。
 (H NMR)
 機種:Avance300(Bruker製)
 観測核:1H
 共鳴周波数:300MHz
 測定温度:25℃
 (13CNMR)
 機種:Avance300(Bruker製)
 観測核:1H
 共鳴周波数:75MHz
 測定温度:25℃
 (29Si NMR)
 機種:Avance300(Bruker製)
 共鳴周波数:60MHz
 測定温度:40℃
 (一般式(X)で表される化合物の合成)
 下記一般式(X)で表される化合物を以下の手順で合成した。一般式(X)においてCはフェニル基を示す(以下の各式においても同じである。)。特に説明のない成分については和光純薬工業株式会社製の試薬を用い、同じ表記の成分は実施例を通して同じ成分を用いている(以下同じである。)。
 500mLなすフラスコに、粉砕した水酸化ナトリウムを6.00g、精製水を2.71g、2-プロパノールを117.61g加えた。マグネチックスターラーで激しく撹拌しながら、フェニルトリメトキシシラン(信越化学工業株式会社製「KBM-103」)29.98gをゆっくり滴下した。そのまま撹拌を続けるとフラスコ内容物は一旦、均一透明化した後に白濁した。18時間後に内容物を桐山ロートでろ過し、白色固体をろ別した。この固体をヘキサンで洗浄した後、減圧乾燥したところ、白色粉末状の固体を24.71g得た。一般式(X)で表される化合物の構造はNMRで決定した。
 H NMR(300MHz、DMSO-d)δ=7.76(br、8H)、7.20(br、12H)。13C NMR(75NHz、DMSO-d)δ=145.45、135.35、127.21。29Si NMR(60NHz、DMSO-d)δ=-67.77。
Figure JPOXMLDOC01-appb-C000016
 (一般式(Y)で表される化合物の合成)
 下記一般式(Y)で表される化合物を以下の手順で合成した。
 1Lなすフラスコに、上記一般式(X)で表される化合物を8.53g、テトラヒドロフランを85mL加え、氷水バスに浸し、マグネチックスターラーで撹拌した。ポリ瓶に1N塩酸溶液48.81g、精製水448.24gを秤取し、氷水バスに浸して冷却した。この塩酸溶液を前述のなすフラスコに5分間かけて加えた。そのまま10分間撹拌した後、飽和炭酸水素ナトリウム溶液をゆっくり加え、PH試験紙でPHを評価しながら中和した。酢酸エチル180mLを加え、内容物を分液ロートに移して激しく振った。水性下層を除き、上層に精製水100mLを加え分液して下層の除く操作を3回繰り返した後、上層に無水硫酸ナトリウムを加えた。ろ紙で硫酸ナトリウムを除き、ロータリーエバポレーター、さらにオイルポンプで減圧乾燥して白色結晶を5.48g得た。一般式(Y)で表される化合物の構造はNMRで決定した。
 H NMR(300MHz、THF-d)δ=7.64~7.57(m、8H)、7.40~7.32(m、4H)7.27~7.20(m、8H)、6.61(s、4H)。13C NMR(75NHz、THF-d)δ=135.35、135.22、130.64、128.36。29Si NMR(60NHz、THF-d)δ=-71.86。
Figure JPOXMLDOC01-appb-C000017
 (一般式(Z)で表される化合物の合成)
 下記一般式(Z)で表される化合物を以下の手順で合成した。
 ジムロース冷却管、滴下ロートを備えた200mL3口フラスコに、上記一般式(Y)で表される化合物を8.01g加えて窒素雰囲気に置換した。テトラヒドロフラン80mLを加えて撹拌したところ、溶解して透明溶液となった。氷水バスで0℃に冷却した。別の200mLにジクロロメチルビニルシラン(東京化成工業株式会社製)を4.40g、トリエチルアミン(和光純薬工業株式会社製)を6.00g、テトラヒドロフランを80mL加え透明溶液を調製し、滴下ロートに移した。約1時間かけて氷水バスで冷却しながら透明溶液をゆっくり滴下した。滴下後そのまま氷水バスで冷却しながら30分間撹拌した後、氷水バスを外した。次にオイルバスに浸して加熱し10時間還流した。オイルバスを外して放冷し、飽和塩化アンモニウム水溶液を50mL、酢酸エチルを80mL加えて内容物を分液ロートに移した。分液した後、下層水層を除き、上層を精製水50mLで2回洗浄し、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ紙でろ別し、ロータリーエバポレーターで溶剤留去、さらにオイルポンプで減圧乾燥して粘性液体12.11gを得た。この液体にヘキサン10mLを加え激しく振り、2500回転/分の条件で遠心分離して上澄みをフラスコに移した。さらに、残った粘性液体にヘキサン10mLを加え激しく振り、2500回転/分の条件で遠心分離して上澄みを先のフラスコに合一した。ロータリーエバポレーターで溶剤留去し粘性液体7.22gを得た。メタノール20mLを加え激しく振り、2500回転/分の条件で遠心分離して上澄みを除いた。さらに、メタノール4mLで2回洗浄した後、オイルポンプで減圧乾燥し、白色結晶1.97gを得た。一般式(Z)で表される化合物は、3種の幾何異性体の混合物であることをNMRで決定した。推定される異性体の構造を下記に示す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 得られた一般式(Z)で表される化合物のH NMRスペクトルを図1に示し、13C NMRスペクトルを図2、その拡大図を図3に示し、29Si NMRのNMRスペクトルを図4に示す。図1、図2、図4において、下段はスペクトル全体図であり、上段はその部分拡大図である。
 (一般式(P)で表される構造単位を有するケイ素化合物、m=2の合成)
 下記一般式(P)で表される構造単位を有するケイ素化合物(m=2)を以下の手順で合成した。
 30mL二口フラスコに、上記方法で得られた一般式(Z)で表される化合物を0.678g秤量し、ジムロート冷却器を備えて窒素雰囲気とした。シリンジでトルエンを8mL、1,1,3,3,5,5-ヘキサメチルトリシロキサン(東京化成工業株式会社製)を0.332mL、白金(0)-2,4,6,8-テトラメチルー2,4,6,8-テトラビニルシクロテトラシロキサン錯体溶液を0.030mLを加えた。還流条件で12時間加熱し、エバポレーターで溶剤を留去してオイルポンプで減圧乾燥し、薄褐色透明液体0.99gを得た。YMCテクノス株式会社製LC-forte/Rを用いて上記薄褐色透明液体を0.75g分GPCで分取し、0.40g無色固体を得た。重量平均分子量は10,400であった。
Figure JPOXMLDOC01-appb-C000020
 <比較例1>
 比較例1として、耐熱性シリコーンオイルのメチルフェニルポリシロキサン(信越化学工業株式会社製「KF-54」)を用いた。
 (5%熱重量減少温度の比較)
 耐熱性の評価方法として加熱時の5%熱重量減少温度を比較した。株式会社島津製作所製示差熱・熱重量同時測定装置「DHG-60H」を用い、窒素雰囲気下、昇温速度10L/minの条件で測定を行い、5%熱重量減少温度を記録した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000021
 本願の開示は、2017年5月31日に出願された特願2017-108038号に記載の主題と関連しており、それらのすべての開示内容は引用によりここに援用される。
 既に述べられたもの以外に、本発明の新規かつ有利な特徴から外れることなく、上記の実施形態に様々な修正や変更を加えてもよいことに注意すべきである。したがって、そのような全ての修正や変更は、添付の請求の範囲に含まれることが意図されている。

Claims (3)

  1.  下記一般式(I)で表される構造単位を有する、ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000001
     [一般式(I)中、
     mは1~30の整数を表し、
     nは重量平均分子量5,000~1,000,000を満たす数字を表し、
     R~Rはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、
     R及びRはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、
     R~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、
     n個の構造単位において、m、R~R10の組み合わせは、全て同一であっても、一部又は全て異なってもよい。]
  2.  下記一般式(I)で表される構造単位を有するケイ素化合物の製造方法であって、下記一般式(II)で表される化合物を用いて製造される工程を含む、ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     [一般式(I)中、
     mは1~30の整数を表し、
     nは重量平均分子量5,000~1,000,000を満たす数字を表し、
     R~Rはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、
     R及びRはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、
     R~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、
     n個の構造単位において、m、R~R10の組み合わせは、全て同一であっても、一部又は全て異なってもよい。]
    Figure JPOXMLDOC01-appb-C000003
     [一般式(II)中、
     R~Rはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、
     R及びRはそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表す。]
  3.  下記一般式(III)で表される化合物を用いて製造される工程を含む、請求項2に記載のケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
     [一般式(III)中、
     mは1~30の整数を表し、
     R~R10はそれぞれ独立的に炭素数1~8のアルキル基又は炭素数6~14のアリール基を表す。]
PCT/JP2018/018906 2017-05-31 2018-05-16 ケイ素化合物及びその製造方法 WO2018221221A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197032791A KR20200014742A (ko) 2017-05-31 2018-05-16 규소 화합물 및 그 제조 방법
JP2019522101A JPWO2018221221A1 (ja) 2017-05-31 2018-05-16 ケイ素化合物及びその製造方法
CN201880033283.6A CN110650992A (zh) 2017-05-31 2018-05-16 硅化合物及其制造方法
EP18810325.3A EP3632960A4 (en) 2017-05-31 2018-05-16 SILICON COMPOUND AND METHOD OF MANUFACTURING THEREOF
US16/617,182 US20210054150A1 (en) 2017-05-31 2018-05-16 Silicon compound and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108038 2017-05-31
JP2017108038 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221221A1 true WO2018221221A1 (ja) 2018-12-06

Family

ID=64454604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018906 WO2018221221A1 (ja) 2017-05-31 2018-05-16 ケイ素化合物及びその製造方法

Country Status (7)

Country Link
US (1) US20210054150A1 (ja)
EP (1) EP3632960A4 (ja)
JP (1) JPWO2018221221A1 (ja)
KR (1) KR20200014742A (ja)
CN (1) CN110650992A (ja)
TW (1) TW201902998A (ja)
WO (1) WO2018221221A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280420A (ja) 2007-05-09 2008-11-20 Chisso Corp 架橋性シロキサンポリマー、シロキサン系の架橋性組成物及びシリコーン膜
JP2011202057A (ja) * 2010-03-26 2011-10-13 Gunma Univ ポリシルセスキオキサン化合物、光素子封止材及びその用途
JP2013241497A (ja) * 2012-05-18 2013-12-05 Gunma Univ ポリシルセスキオキサン化合物、光素子封止材及びその用途
JP2017108038A (ja) 2015-12-11 2017-06-15 株式会社リコー 面発光レーザ、面発光レーザアレイ、レーザ装置、点火装置、内燃機関、光走査装置、画像形成装置、光伝送モジュール、及び光伝送システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249798B1 (ko) * 2010-08-18 2013-04-03 한국과학기술연구원 선택적으로 구조가 제어된 폴리실세스퀴옥산의 제조방법 및 이로부터 제조된 폴리실세스퀴옥산
CN104262628B (zh) * 2014-09-28 2016-08-24 吉林大学 主链含线型和笼型的有机硅氧烷聚醚砜树脂及其制备方法
JP6528203B2 (ja) * 2015-06-26 2019-06-12 国立大学法人 熊本大学 架橋性ケイ素化合物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280420A (ja) 2007-05-09 2008-11-20 Chisso Corp 架橋性シロキサンポリマー、シロキサン系の架橋性組成物及びシリコーン膜
JP2011202057A (ja) * 2010-03-26 2011-10-13 Gunma Univ ポリシルセスキオキサン化合物、光素子封止材及びその用途
JP2013241497A (ja) * 2012-05-18 2013-12-05 Gunma Univ ポリシルセスキオキサン化合物、光素子封止材及びその用途
JP2017108038A (ja) 2015-12-11 2017-06-15 株式会社リコー 面発光レーザ、面発光レーザアレイ、レーザ装置、点火装置、内燃機関、光走査装置、画像形成装置、光伝送モジュール、及び光伝送システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANGEWANDT CHEMIE INTERNATIONAL EDITION, vol. 55, 2016, pages 9336 - 9339
K. A. ANDRIANOV ET AL.: "Polyorganosiloxanes with linear and cyclic segments", POLYMER SCIENCE USSR, vol. 18, no. 10, 2 February 1976 (1976-02-02), pages 2618 - 2623, XP024123046 *
POLYMER CHEMISTRY, vol. 6, 2015, pages 7500 - 7504
See also references of EP3632960A4 *

Also Published As

Publication number Publication date
EP3632960A1 (en) 2020-04-08
TW201902998A (zh) 2019-01-16
CN110650992A (zh) 2020-01-03
JPWO2018221221A1 (ja) 2020-04-02
US20210054150A1 (en) 2021-02-25
EP3632960A4 (en) 2021-02-17
KR20200014742A (ko) 2020-02-11

Similar Documents

Publication Publication Date Title
JP7249954B2 (ja) ヒドロシリル化硬化性シリコーン樹脂
JP6073213B2 (ja) ポリオルガノシロキサンの製造方法及び新規オルガノポリシロキサン
JP5821761B2 (ja) シロキサン化合物およびその硬化物
JP5302586B2 (ja) (チオ)フェノキシフェニルシラン組成物およびその製造方法
JP5545862B2 (ja) イソシアヌル環含有末端ビニルポリシロキサン
WO2013061823A1 (ja) シロキサン系組成物およびその硬化物ならびにその用途
TW201109370A (en) Organopolysilmethylene and a cured product thereof
KR102277649B1 (ko) 오가노폴리실록세인 화합물 및 그 제조 방법, 그리고 부가 경화형 실리콘 조성물
JP6621226B2 (ja) シロキサン及びその製造方法
JP6111174B2 (ja) グリコールウリル環含有オルガノシランとグリコールウリル環含有オルガノシロキサンとそれらの製造方法
JP4141547B2 (ja) エポキシ基含有オルガノポリシロキサンの製造方法
WO2018221221A1 (ja) ケイ素化合物及びその製造方法
JPH04270765A (ja) カプセル封じされたパラジウム錯体と一液型熱硬化性オルガノポリシロキサン組成物
WO2012144481A1 (ja) シロキサン化合物およびその硬化物
CA2092445A1 (en) Phenol-modified silicones
JP2012229186A (ja) 低分子量シロキサン化合物の製造方法
JP2014098147A (ja) シロキサン化合物およびそれを含む硬化性組成物と硬化体
JP2735764B2 (ja) フェノールにより改質されたシリコーン
JP6844384B2 (ja) 液状ケイ素化合物及びその製造方法
JP2017141166A (ja) トリシラノール基を含有する有機ケイ素化合物とシルセスキオキサン誘導体の製造方法
US3389159A (en) Organopolysiloxanes
JP2018065943A (ja) 不完全縮合型シルセスキオキサン誘導体及びabx型ハイパーブランチポリマー
JP2018188562A (ja) フルオロアルキル変性オルガノポリシロキサンの製造方法
JP2016098247A (ja) オルガノポリシロキサン化合物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522101

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197032791

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018810325

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018810325

Country of ref document: EP

Effective date: 20200102