WO2018220959A1 - 光学積層体の製造方法 - Google Patents

光学積層体の製造方法 Download PDF

Info

Publication number
WO2018220959A1
WO2018220959A1 PCT/JP2018/011605 JP2018011605W WO2018220959A1 WO 2018220959 A1 WO2018220959 A1 WO 2018220959A1 JP 2018011605 W JP2018011605 W JP 2018011605W WO 2018220959 A1 WO2018220959 A1 WO 2018220959A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
cutting
optical
workpiece
glass plate
Prior art date
Application number
PCT/JP2018/011605
Other languages
English (en)
French (fr)
Inventor
敏広 菅野
宏太 仲井
毅 村重
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018054031A external-priority patent/JP7232577B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187037860A priority Critical patent/KR102504195B1/ko
Priority to CN201880002922.2A priority patent/CN109477932B/zh
Priority to US16/309,000 priority patent/US20190168317A1/en
Publication of WO2018220959A1 publication Critical patent/WO2018220959A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for manufacturing an optical laminate.
  • a protective material for protecting the image display device is disposed on the outermost surface side of the image display device.
  • a glass plate is typically used (for example, Patent Document 1).
  • optical laminates optical laminates
  • Examples of such an optical laminate include an optical laminate including a glass plate as a protective material and a polarizing plate as an optical functional film.
  • an optical functional film cut into a predetermined size and a predetermined shape may be subjected to a cutting process for the purpose of removing burrs or the like (for example, Patent Document 2).
  • a cutting process for the purpose of removing burrs or the like for example, Patent Document 2.
  • the cutting conditions suitable for the glass plate and the cutting conditions suitable for the optical functional film (resin film) are greatly different.
  • the glass plate and the optical function film must be cut separately and then laminated. Therefore, there is a demand for a technique for cutting an optical laminate including a glass plate and an optical functional film without causing problems.
  • the present invention has been made to solve the above-described conventional problems, and a main object of the present invention is to provide a method capable of integrally cutting a glass plate and an optical functional film without causing problems. .
  • the method for producing an optical laminate of the present invention includes: laminating a glass plate and an optical functional film to form an optical laminate; forming a plurality of optical laminates to form a workpiece; and While rotating the cutting means having a rotating shaft extending in the stacking direction and a cutting blade configured as the outermost diameter of the main body rotating around the rotating shaft, relatively moving the workpiece and the cutting means, Cutting the outer peripheral surface of the workpiece, and the one-blade feed amount in the cutting is 5 ⁇ m / tooth to 30 ⁇ m / tooth.
  • the one-blade feed rate is 5 ⁇ m / tooth to 15 ⁇ m / tooth.
  • the number of blades of the cutting means is 2 to 10.
  • the feed rate of the cutting means in the cutting process is 100 mm / min or more.
  • the blade angle of the cutting means is 0 ° to 20 °.
  • the optical functional film is a polarizing plate.
  • end milling is employed in cutting of an optical laminate including a glass plate and an optical functional film, and further, the one-blade feed amount in the end milling is optimized.
  • the glass plate and the optical functional film can be integrally cut without causing any problems. More specifically, the glass band can be prevented from cracking and the yellow band (discoloration due to heat) of the optical functional film can be prevented.
  • the method for producing an optical laminate of the present invention includes: laminating a glass plate and an optical functional film to form an optical laminate; forming a plurality of optical laminates to form a workpiece; and While rotating the cutting means having a rotating shaft extending in the stacking direction and a cutting blade configured as the outermost diameter of the main body rotating around the rotating shaft, relatively moving the workpiece and the cutting means, Cutting the outer peripheral surface of the workpiece.
  • the feed rate of one blade in cutting is 5 ⁇ m / blade to 30 ⁇ m / blade, preferably 5 ⁇ m / blade to 15 ⁇ m / blade, more preferably 7 ⁇ m / blade to 10 ⁇ m / blade. is there.
  • optical functional film examples include any appropriate optical functional film on which a glass plate as a protective material can be laminated.
  • Specific examples of the optical functional film include a polarizing plate, a retardation plate, a conductive film for a touch panel, a surface treatment film, and a laminate in which these are appropriately laminated according to the purpose (for example, a circularly polarizing plate for antireflection, And a polarizing plate with a conductive layer for a touch panel).
  • a polarizing plate for example, a circularly polarizing plate for antireflection, And a polarizing plate with a conductive layer for a touch panel.
  • a glass plate and a polarizing plate are laminated.
  • Lamination can be done by any suitable method.
  • a glass plate and a polarizing plate can be laminated by so-called roll-to-roll.
  • roll-to-roll means that the long glass plate and the long polarizing plate are transported and bonded together so that their long directions are aligned.
  • the glass plate and the polarizing plate can be laminated after being cut into a predetermined shape.
  • Lamination can typically be performed via any suitable adhesive layer (adhesive layer, adhesive layer).
  • FIG. 1 is a schematic cross-sectional view of the optical layered body obtained as described above.
  • the optical laminate 100 has a glass plate 10 and a polarizing plate 20.
  • the polarizing plate 20 typically includes a polarizer 21 and a protective film 22 disposed on one surface of the polarizer 21 (the surface on the glass plate 10 side in the illustrated example).
  • the polarizing plate may further have a protective film (not shown) disposed on the surface of the polarizer opposite to the glass plate.
  • the glass plate 10 and the polarizing plate 20 are typically laminated via an adhesive layer (for example, an adhesive layer or an adhesive layer) 30.
  • the optical laminate 100 typically has an adhesive layer (not shown) as the outermost layer on the side opposite to the glass plate. Practically, a separator is temporarily attached to the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer is protected until it is used, and a roll of the optical laminate can be formed.
  • the thickness of the optical laminate is preferably 1 ⁇ m to 300 ⁇ m, more preferably 10 ⁇ m to 200 ⁇ m, and more preferably 20 ⁇ m to 150 ⁇ m.
  • any appropriate glass plate can be adopted as the glass plate.
  • the glass constituting the glass plate include soda-lime glass, borate glass, aluminosilicate glass, and quartz glass according to the classification according to the composition.
  • category by an alkali component an alkali free glass and a low alkali glass are mentioned.
  • the content of alkali metal components (for example, Na 2 O, K 2 O, Li 2 O) in the glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
  • the thickness of the glass plate is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 120 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the thickness of the glass plate is preferably 5 ⁇ m or more, and more preferably 20 ⁇ m or more. When the thickness is in such a range, lamination by roll-to-roll becomes possible.
  • the light transmittance at a wavelength of 550 nm of the glass plate is preferably 85% or more.
  • the refractive index of the glass plate at a wavelength of 550 nm is preferably 1.4 to 1.65.
  • the density of the glass plate is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , and more preferably 2.3 g / cm 3 to 2.7 g / cm 3 .
  • a commercially available glass plate may be used as it is, or a commercially available glass plate may be polished to have a desired thickness.
  • Examples of commercially available glass plates include “7059”, “1737” or “EAGLE 2000” manufactured by Corning, “AN100” manufactured by Asahi Glass, “NA-35” manufactured by NH Techno Glass, and “OA-” manufactured by Nippon Electric Glass. 10 ”,“ D263 ”or“ AF45 ”manufactured by Schott.
  • the polarizer 21 and the protective film 22 may be configured in the industry, and detailed description thereof is omitted.
  • FIG. 2 is a schematic perspective view for explaining the cutting process in the manufacturing method of the present invention, and the work 1 is shown in this drawing.
  • the workpiece 1 is formed by stacking a plurality of optical laminates cut into a predetermined shape.
  • the optical layered body obtained as a result of roll-to-roll (as a result of being long or roll-shaped) is cut into a predetermined shape and then stacked to form a workpiece.
  • An optical laminate formed by laminating a glass plate and a polarizing plate cut into a predetermined shape may be stacked as it is to form a workpiece, and after being further cut into a desired shape finally They may be stacked to form a workpiece.
  • the work 1 has outer peripheral surfaces (cutting surfaces) 1a and 1b facing each other and outer peripheral surfaces (cutting surfaces) 1c and 1d orthogonal to them.
  • the workpiece 1 is preferably clamped from above and below by clamping means (not shown).
  • the total thickness of the workpiece is preferably 1 mm or more, more preferably 3 mm or more, and further preferably 5 mm or more.
  • the upper limit of the total thickness of the workpiece is, for example, 150 mm. If it is such thickness, the damage by the impact at the time of the press by a clamp means or a cutting process can be prevented.
  • the optical laminate is stacked so that the workpiece has such a total thickness.
  • the number of optical laminates constituting the workpiece is 10 or more in one embodiment, and is 30 to 50 in one embodiment.
  • the clamp means (for example, a jig) may be made of a soft material or a hard material. When composed of a soft material, its hardness (JIS A) is preferably 60 ° to 80 °. If the hardness is too high, there may be a case where a mark is left by the clamping means. If the hardness is too low, displacement may occur due to deformation of the jig and cutting accuracy may be insufficient.
  • a predetermined position on the outer peripheral surface of the workpiece 1 is cut by the cutting means 50.
  • the cutting is so-called end milling as shown in FIG.
  • the cutting means (end mill) 50 a straight end mill can be typically used.
  • the cutting means (end mill) 50 includes a rotation shaft 51 extending in the stacking direction (vertical direction) of the workpiece 1 and an outermost diameter of the main body that rotates about the rotation shaft 51. And a cutting blade 52 configured.
  • the cutting blade 52 is configured as the outermost diameter twisted along the rotation shaft 51.
  • the cutting blade 52 includes a cutting edge 52a, a rake surface 52b, and a relief surface 52c.
  • the number of cutting blades 52 can be appropriately set according to the purpose.
  • the number of blades is preferably 2 to 10, more preferably 5 to 7.
  • the illustrated example shows a configuration with three blades.
  • the blade angle of the cutting means (the twist angle ⁇ of the cutting blade in the illustrated example) is preferably 0 ° to 75 °, more preferably 0 ° to 60 °, and still more preferably 0 ° to 20 °.
  • the rake angle (not shown) of the cutting means is preferably ⁇ 45 ° to + 10 °, more preferably 0 ° to + 5 °.
  • the relief surface of the cutting blade is preferably roughened. Any appropriate process can be adopted as the roughening process. A typical example is blasting.
  • the blade surface (rake surface and relief surface) may be coated.
  • a typical example of the coating process is a DLC process. By performing DLC treatment, the surface hardness of the blade surface is increased, and wear and / or chipping of the blade edge can be suppressed.
  • the feed rate of one blade is 5 ⁇ m / blade to 30 ⁇ m / blade, preferably 5 ⁇ m / blade to 15 ⁇ m / blade, more preferably 7 ⁇ m / blade to 10 ⁇ m / blade. It is. According to the embodiment of the present invention, by optimizing the one-blade feed amount in such a range, it is possible to prevent the glass plate from cracking and to prevent the yellow band (discoloration due to heat) of the polarizing plate. .
  • the 1-blade feed amount is expressed by the following formula.
  • 1-blade feed amount f ( ⁇ m / tooth) F / (N ⁇ n)
  • F is the feed rate (mm / min)
  • N the rotational speed (rpm)
  • n is the number of blades.
  • the diameter of the cutting means (end mill) 50 is preferably 3 mm to 20 mm.
  • the rotation speed of the cutting means is preferably 1000 rpm to 60000 rpm, more preferably 10,000 rpm to 40000 rpm.
  • the feed rate of the cutting means is preferably 100 mm / min or more, more preferably 200 mm / min or more. On the other hand, the feed rate is preferably 10,000 mm / min or less, more preferably 7000 mm / min or less, and even more preferably 4000 mm / min or less.
  • the number of cuts at the cut location can be one round, two rounds, three rounds or more.
  • the cutting process can be performed as a wet process. Specifically, the cutting can be performed while supplying the cutting fluid to the cutting location. According to such a configuration, since the cutting fluid can function as a lubricant, wear of the cutting edge can be suppressed and the life of the cutting means can be extended.
  • a polarizer As a polarizer, a long polyvinyl alcohol (PVA) resin film containing iodine and uniaxially stretched in the longitudinal direction (MD direction) (thickness 28 ⁇ m) was used. A pressure-sensitive adhesive layer (thickness 5 ⁇ m) is formed on one side of the polarizer, and a long triacetyl cellulose (TAC) film (25 ⁇ m) is pasted through the pressure-sensitive adhesive layer so that the longitudinal directions thereof are aligned with each other. In addition, a long polarizing plate having a TAC film (protective film) / polarizer configuration was obtained.
  • PVA polyvinyl alcohol
  • MD direction longitudinal direction
  • TAC triacetyl cellulose
  • An ultraviolet curable adhesive was applied to the TAC film side of the polarizing plate obtained above so that the thickness after curing was 2 ⁇ m, and a long glass plate (trade name “D263”, manufactured by Schott Corp.) was applied to the coating surface. And a thickness of 100 ⁇ m) were bonded together so that their longitudinal directions were aligned with each other, and then the ultraviolet ray was irradiated to cure the adhesive. In this way, a long optical laminate having a configuration of glass plate / TAC film (protective film) / polarizer was obtained. An adhesive layer was formed on the surface of the polarizer of the obtained optical laminate, and a separator was bonded to the adhesive layer. The optical laminated body was punched into a size of 5.7 inches (about 140 mm in length and 65 mm in width), and 40 pieces of the punched optical laminated body were stacked to obtain a workpiece.
  • a long glass plate trade name “D263”, manufactured by Schott Corp.
  • Example 1 With the workpiece obtained in Reference Example 1 sandwiched between clamps (jigs), the outer peripheral surface of the workpiece was cut by end milling (incision amount 0.15 mm, one cut). Here, the number of blades of the end mill was 6, the blade angle was 10 °, the feed rate was 1440 mm / min, the rotation speed was 30000 rpm, and therefore the feed rate of 1 blade was 8 ⁇ m / blade. .
  • the cut optical laminated body was evaluated as described in (1) and (2) above. The results are shown in Table 1.
  • Example 2 A cut optical laminated body was obtained in the same manner as in Example 1 except that the feed rate was changed to 1800 mm / min (thus, the feed rate for one blade was changed to 10 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A cut optical laminated body was obtained in the same manner as in Example 1 except that the feed rate was changed to 900 mm / min (therefore, the one-blade feed amount was changed to 5 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 A cut optical laminated body was obtained in the same manner as in Example 1 except that the feed rate was changed to 3600 mm / min (therefore, the feed rate per blade was changed to 20 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 A cut optical laminated body was obtained in the same manner as in Example 1 except that the feed rate was changed to 720 mm / min (therefore, the 1-blade feed amount was changed to 4 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 A cut optical laminated body was obtained in the same manner as in Example 1 except that the number of revolutions was changed to 24000 rpm (thus, the feed amount per blade was changed to 10 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 A cut optical laminated body was obtained in the same manner as in Example 1 except that the number of revolutions was changed to 48000 rpm (therefore, the feed amount per blade was changed to 5 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 A cut optical laminated body was obtained in the same manner as in Example 1 except that the rotation speed was changed to 12000 rpm (therefore, the single blade feed amount was changed to 20 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A cut optical laminate was obtained in the same manner as in Example 1 except that the number of revolutions was changed to 60000 rpm (therefore, the feed amount per blade was changed to 4 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 A cut optical laminated body was obtained in the same manner as in Example 1 except that the number of blades was changed to 8 (thus, the feed amount of 1 blade was changed to 6 ⁇ m / blade). The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 Example 1 except that the number of blades was changed to 10 blades, the blade angle was changed to 5 °, and the rotation speed was changed to 14400 rpm (thus changing the blade feed amount to 10 ⁇ m / blade). Thus, a cut optical laminated body was obtained. The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 The number of blades was changed to 10, the blade angle was changed to 5 °, the rotation speed was changed to 14400 rpm, and the feed rate was changed to 2880 mm / min (thus, the feed rate for one blade was changed to 20 ⁇ m / blade). Except for the above, a cut optical laminated body was obtained in the same manner as in Example 1. The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 11 With the workpiece obtained in Reference Example 1 sandwiched between clamps (jigs), the outer peripheral surface of the workpiece was cut by end milling (cutting amount: 1 mm, one cut). Here, the number of blades of the end mill was 2, the blade angle was 45 °, the feed rate was 400 mm / min, the rotation speed was 20000 rpm, and therefore the feed rate of 1 blade was 10 ⁇ m / blade. .
  • the cut optical laminated body was evaluated as described in (1) and (2) above. The results are shown in Table 1.
  • Example 12 The optical laminated body cut in the same manner as in Example 11 except that the feed rate was changed to 200 mm / min and the rotation speed was changed to 10000 rpm (therefore, the feed rate of one blade remained at 10 ⁇ m / blade). Got. The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 13 Optical machined in the same manner as in Example 11 except that the feed rate was changed to 100 mm / min and the rotation speed was changed to 10000 rpm (therefore, the 1-blade feed amount was changed to 5 ⁇ m / blade). A laminate was obtained. The cut optical laminated body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the production method of the present invention includes a glass plate and an optical functional film, and can be suitably used for the production of an optical laminate that requires cutting.
  • the optical laminate obtained by the production method of the present invention can be suitably used for various image display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

不具合を生じることなく、ガラス板と光学機能フィルムとを一体で切削加工し得る方法が提供される。本発明の光学積層体の製造方法は、ガラス板と光学機能フィルムとを積層して光学積層体を形成すること;光学積層体を複数枚重ねてワークを形成すること;および、ワークの積層方向に延びる回転軸と回転軸を中心として回転する本体の最外径として構成された切削刃とを有する切削手段を回転させながら、ワークおよび切削手段を相対的に移動させて、ワークの外周面を切削加工すること;を含む。切削加工における1刃送り量は5μm/刃~30μm/刃である。

Description

光学積層体の製造方法
 本発明は、光学積層体の製造方法に関する。
 画像表示装置の最表面側には、多くの場合、画像表示装置を保護するための保護材が配置されている。保護材としては、代表的にはガラス板が使用されている(例えば、特許文献1)。画像表示装置の小型化、薄型化および軽量化に伴い、保護機能と光学機能とを兼ね備える薄型の保護材(光学積層体)に対する要望が高まっている。このような光学積層体としては、例えば、保護材としてのガラス板と光学機能フィルムとしての偏光板とを含む光学積層体が挙げられる。
 ところで、所定サイズおよび所定形状に切断された光学機能フィルムは、バリ等を除去する目的で、その切断加工面を切削加工に供する場合がある(例えば、特許文献2)。ここで、上記のようなガラス板と光学機能フィルムとを含む光学積層体を切削加工しようとする場合、ガラス板に適した切削条件と光学機能フィルム(樹脂フィルム)に適した切削条件が大きく異なっており、ガラス板と光学機能フィルムを別個に切削加工した後、これらを積層しなければならないのが実情である。したがって、不具合を生じることなく、ガラス板と光学機能フィルムとを含む光学積層体を切削加工する技術が望まれている。
特開2010-164938号公報 特開昭62-136746号公報
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、不具合を生じることなく、ガラス板と光学機能フィルムとを一体で切削加工し得る方法を提供することにある。
 本発明の光学積層体の製造方法は、ガラス板と光学機能フィルムとを積層して光学積層体を形成すること;該光学積層体を複数枚重ねてワークを形成すること;および、該ワークの積層方向に延びる回転軸と該回転軸を中心として回転する本体の最外径として構成された切削刃とを有する切削手段を回転させながら、該ワークおよび該切削手段を相対的に移動させて、該ワークの外周面を切削加工すること;を含み、該切削加工における1刃送り量が5μm/刃~30μm/刃である。
 1つの実施形態においては、上記1刃送り量は5μm/刃~15μm/刃である。
 1つの実施形態においては、上記切削手段の刃数は2枚~10枚である。
 1つの実施形態においては、上記切削加工における上記切削手段の送り速度は100mm/分以上である。
 1つの実施形態においては、上記切削手段の刃角度は0°~20°である。
 1つの実施形態においては、上記光学機能フィルムは偏光板である。
 本発明の光学積層体の製造方法によれば、ガラス板と光学機能フィルムとを含む光学積層体の切削加工においてエンドミル加工を採用し、さらに、当該エンドミル加工における1刃送り量を最適化することにより、不具合を生じることなく、ガラス板と光学機能フィルムとを一体で切削加工することができる。より詳細には、ガラス板のクラックを防止するとともに、光学機能フィルムのイエローバンド(熱による変色)を防止することができる。このようなガラス板および光学機能フィルムの一体での切削加工を実現したことにより、以下の効果も付随的に実現された:(1)ガラス板を単独で切削加工する場合に比べて1刃送り量を格段に大きくできるので、生産性を格段に向上させることができる;(2)ガラス板と光学機能フィルムを別個に切削加工する場合に比べて工程数を削減できるので、生産性を向上させ、かつ、コストを抑制することができる;および、(3)ガラス板と光学機能フィルムとの積層時のズレを防止できるので、積層精度に優れた光学積層体を得ることができる。このように、本発明の光学積層体の製造方法によれば、従来から知られていたが解決できなかった課題を解決することができる。
本発明の実施形態に用いられ得る光学積層体の概略断面図である。 本発明の製造方法における切削加工を説明するための概略斜視図である。 本発明の製造方法における切削加工に用いられる切削手段の構造の一例を説明するための概略図である。
 以下、図面を参照して本発明の具体的な実施形態について説明するが、本発明はこれらの実施形態には限定されない。なお、見やすくするために図面は模式的に表されており、さらに、図面における長さ、幅、厚み等の比率、ならびに角度等は、実際とは異なっている。
 本発明の光学積層体の製造方法は、ガラス板と光学機能フィルムとを積層して光学積層体を形成すること;該光学積層体を複数枚重ねてワークを形成すること;および、該ワークの積層方向に延びる回転軸と該回転軸を中心として回転する本体の最外径として構成された切削刃とを有する切削手段を回転させながら、該ワークおよび該切削手段を相対的に移動させて、該ワークの外周面を切削加工すること;を含む。本発明の実施形態においては、切削加工における1刃送り量は、5μm/刃~30μm/刃であり、好ましくは5μm/刃~15μm/刃であり、より好ましくは7μm/刃~10μm/刃である。光学機能フィルムとしては、保護材としてのガラス板が積層され得る任意の適切な光学機能フィルムが挙げられる。光学機能フィルムの具体例としては、偏光板、位相差板、タッチパネル用導電性フィルム、表面処理フィルム、および、これらを目的に応じて適切に積層した積層体(例えば、反射防止用円偏光板、タッチパネル用導電層付偏光板)が挙げられる。以下、一例として、ガラス板と偏光板とを含む光学積層体の製造方法における各工程を説明する。
A.光学積層体の形成
 まず、ガラス板と偏光板とを積層する。積層は、任意の適切な方法により行われ得る。1つの実施形態においては、ガラス板と偏光板とは、いわゆるロールトゥロールにより積層され得る。本明細書において「ロールトゥロール」とは、長尺状のガラス板と長尺状の偏光板とを搬送しながら、互いの長尺方向を揃えるようにして貼り合わせることをいう。別の実施形態においては、ガラス板と偏光板とは、それぞれ所定形状に切断された後、積層され得る。積層は、代表的には、任意の適切な接着層(接着剤層、粘着剤層)を介して行われ得る。
 図1は、上記のようにして得られた光学積層体の概略断面図である。光学積層体100は、ガラス板10と偏光板20とを有する。偏光板20は、代表的には、偏光子21と、偏光子21の一方の面(図示例では、ガラス板10側の面)に配置された保護フィルム22とを含む。偏光板は、偏光子のガラス板とは反対側の面に配置された保護フィルム(図示せず)をさらに有していてもよい。ガラス板10と偏光板20とは、代表的には接着層(例えば、接着剤層、粘着剤層)30を介して積層されている。光学積層体100は、代表的には、ガラス板とは反対側の最外層として粘着剤層(図示せず)を有する。実用的には、粘着剤層にはセパレーターが仮着され、使用に供されるまでの間粘着剤層を保護するとともに光学積層体のロール形成を可能としている。
 光学積層体の厚みは、好ましくは1μm~300μmであり、さらに好ましくは10μm~200μmであり、より好ましくは20μm~150μmである。
 ガラス板としては、任意の適切なガラス板が採用され得る。ガラス板を構成するガラスは、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラスが挙げられる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の含有量は、好ましくは15重量%以下であり、さらに好ましくは10重量%以下である。
 ガラス板の厚みは、好ましくは200μm以下であり、より好ましくは150μm以下であり、さらに好ましくは120μm以下であり、特に好ましくは100μm以下である。一方、ガラス板の厚みは、好ましくは5μm以上であり、より好ましくは20μm以上である。厚みがこのような範囲であれば、ロールトゥロールによる積層が可能となる。
 ガラス板の波長550nmにおける光透過率は、好ましくは85%以上である。ガラス板の波長550nmにおける屈折率は、好ましくは1.4~1.65である。ガラス板の密度は、好ましくは2.3g/cm~3.0g/cmであり、さらに好ましくは2.3g/cm~2.7g/cmである。
 ガラス板は、市販のガラス板をそのまま用いてもよく、市販のガラス板を所望の厚みになるように研磨して用いてもよい。市販のガラス板としては、例えば、コーニング社製「7059」、「1737」または「EAGLE2000」、旭硝子社製「AN100」、NHテクノグラス社製「NA-35」、日本電気硝子社製「OA-10」、ショット社製「D263」または「AF45」が挙げられる。
 偏光子21および保護フィルム22については、業界で周知の構成が採用され得るので詳細な説明は省略する。
B.ワークの形成
 図2は、本発明の製造方法における切削加工を説明するための概略斜視図であり、本図にワーク1が示されている。図2に示すように、ワーク1は、所定形状に切断された光学積層体を複数枚重ねて形成される。ロールトゥロールにより得られた(結果として、長尺状またはロール状の)光学積層体は、所定形状に切断された後で重ねられて、ワークが形成される。所定形状に切断されたガラス板と偏光板とを積層して形成された光学積層体は、そのまま重ねられてワークを形成してもよく、最終的に所望される形状にさらに切断された後で重ねられてワークを形成してもよい。
 ワーク1は、互いに対向する外周面(切削面)1a、1bおよびそれらと直交する外周面(切削面)1c、1dを有している。ワーク1は、好ましくは、クランプ手段(図示せず)により上下からクランプされている。ワークの総厚みは好ましくは1mm以上、より好ましくは3mm以上、さらに好ましくは5mm以上である。ワークの総厚みの上限は、例えば150mmである。このような厚みであれば、クランプ手段による押圧または切削加工時の衝撃による損傷を防止し得る。光学積層体は、ワークがこのような総厚みとなるように重ねられる。ワークを構成する光学積層体の枚数は、1つの実施形態においては10枚以上であり、1つの実施形態においては30枚~50枚である。クランプ手段(例えば、治具)は、軟質材料で構成されてもよく硬質材料で構成されてもよい。軟質材料で構成される場合、その硬度(JIS  A)は、好ましくは60°~80°である。硬度が高すぎると、クランプ手段による押し跡が残る場合がある。硬度が低すぎると、治具の変形により位置ずれが生じ、切削精度が不十分となる場合がある。
C.切削加工
 次に、ワーク1の外周面の所定の位置を、切削手段50により切削する。切削加工は、図2に示すように、いわゆるエンドミル加工である。切削手段(エンドミル)50としては、代表的にはストレートエンドミルが用いられ得る。
 具体的には、切削手段(エンドミル)50は、図3に示すように、ワーク1の積層方向(鉛直方向)に延びる回転軸51と、回転軸51を中心として回転する本体の最外径として構成される切削刃52と、を有する。図示例では、切削刃52は、回転軸51に沿ってねじれた最外径として構成されている。切削刃52は、刃先52aと、すくい面52bと、逃がし面52cと、を含む。切削刃52の刃数は、目的に応じて適切に設定され得る。刃数は、好ましくは2枚~10枚であり、より好ましくは5枚~7枚である。なお、見やすくするために、図示例では刃数が3枚の構成を示している。本発明の実施形態においては、刃数をこのように多く構成し、および、切削手段の送り速度(後述)を大きくすることにより、所望の1刃送り量を実現し、結果として、不具合を生じることなくガラス板と光学機能フィルムとを一体で切削加工することができる。切削手段の刃角度(図示例における切削刃のねじれ角θ)は、好ましくは0°~75°であり、より好ましくは0°~60°であり、さらに好ましくは0°~20°である。切削手段のすくい角(図示せず)は、好ましくは-45°~+10°であり、より好ましくは0°~+5°である。すくい角がこのような範囲であれば、切削加工における刃先の欠けを防止することができる。切削刃の逃がし面は、好ましくは、粗面化処理されている。粗面化処理としては、任意の適切な処理が採用され得る。代表例としては、ブラスト処理が挙げられる。また、刃面(すくい面および逃がし面)には、コーティング処理が施されてもよい。コーティング処理の代表例としては、DLC処理が挙げられる。DLC処理を施すことにより、刃面の表面硬度が大きくなり、刃先の摩耗および/またはカケを抑制することができる。
 切削加工の条件について具体的に説明する。本発明の実施形態においては、上記のとおり、1刃送り量は、5μm/刃~30μm/刃であり、好ましくは5μm/刃~15μm/刃であり、より好ましくは7μm/刃~10μm/刃である。本発明の実施形態によれば、1刃送り量をこのような範囲に最適化することにより、ガラス板のクラックを防止するとともに、偏光板のイエローバンド(熱による変色)を防止することができる。1刃送り量は、下記式で表される。
   1刃送り量f(μm/刃)=F/(N×n)
ここで、Fは送り速度(mm/分)であり、Nは回転数(rpm)であり、nは刃数である。
 切削手段(エンドミル)50の直径は、好ましくは3mm~20mmである。切削手段の回転数は、好ましくは1000rpm~60000rpmであり、より好ましくは10000rpm~40000rpmである。切削手段の送り速度は、好ましくは100mm/分以上であり、より好ましくは200mm/分以上である。一方、送り速度は、好ましくは10000mm/分以下であり、より好ましくは7000mm/分以下であり、さらに好ましくは4000mm/分以下である。切削箇所の切削回数は、1回削り、2回削り、3回削りまたはそれ以上であり得る。
 1つの実施形態においては、切削加工は湿式加工として行われ得る。具体的には、切削箇所に切削液を供給しながら切削加工を行うことができる。このような構成によれば、切削液が潤滑剤として機能し得るので、刃先の摩耗が抑制され、切削手段の寿命を長くすることができる。
 以上のようにして、切削加工された光学積層体が得られ得る。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例には限定されない。実施例における評価項目は以下のとおりである。
(1)クラック
 実施例および比較例の切削加工後の光学積層体の状態を光学顕微鏡で観察し、以下の基準で評価した。
    ◎:クラックの長さが100μm未満である
    ○:クラックの長さが100μm~200μmである
    ×:クラックの長さが200μmを超える
(2)イエローバンド
 実施例および比較例の切削加工後の光学積層体の状態を光学顕微鏡で観察し、以下の基準で評価した。
    ○:イエローバンドの長さが400μm以下である
    ×:イエローバンドの長さが400μmを超える
<参考例1:光学積層体およびワークの作製>
 偏光子として、長尺状のポリビニルアルコール(PVA)系樹脂フィルムにヨウ素を含有させ、長手方向(MD方向)に一軸延伸して得られたフィルム(厚み28μm)を用いた。この偏光子の片側に粘着剤層(厚み5μm)を形成し、当該粘着剤層を介して、長尺状のトリアセチルセルロース(TAC)フィルム(25μm)を互いの長手方向を揃えるようにして貼り合わせ、TACフィルム(保護フィルム)/偏光子の構成を有する長尺状の偏光板を得た。
 上記で得られた偏光板のTACフィルム側に紫外線硬化型接着剤を硬化後の厚みが2μmとなるように塗布し、塗布面に長尺状のガラス板(ショット社製、商品名「D263」、厚み100μm)を互いの長手方向を揃えるようにして貼り合わせ、次いで、紫外線を照射して接着剤を硬化させた。このようにして、ガラス板/TACフィルム(保護フィルム)/偏光子の構成を有する長尺状の光学積層体を得た。得られた光学積層体の偏光子表面に粘着剤層を形成し、当該粘着剤層にセパレーターを貼り合わせた。
 上記の光学積層体を5.7インチサイズ(縦140mmおよび横65mm程度)に打ち抜き、打ち抜いた光学積層体を40枚重ねてワークとした。
<実施例1>
 参考例1で得られたワークをクランプ(治具)で挟んだ状態で、エンドミル加工により、ワークの外周面を切削加工した(切込量0.15mm、1回削り)。ここで、エンドミルの刃数は6枚であり、刃角度は10°であり、送り速度は1440mm/分であり、回転数は30000rpmであり、したがって、1刃送り量は8μm/刃であった。切削加工した光学積層体について、上記(1)および(2)のようにして評価した。結果を表1に示す。
<実施例2>
 送り速度を1800mm/分に変更したこと(したがって、1刃送り量を10μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例3>
 送り速度を900mm/分に変更したこと(したがって、1刃送り量を5μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例4>
 送り速度を3600mm/分に変更したこと(したがって、1刃送り量を20μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例1>
 送り速度を720mm/分に変更したこと(したがって、1刃送り量を4μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例2>
 送り速度を7200mm/分に変更したこと(したがって、1刃送り量を40μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例5>
 回転数を24000rpmに変更したこと(したがって、1刃送り量を10μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例6>
 回転数を48000rpmに変更したこと(したがって、1刃送り量を5μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例7>
 回転数を12000rpmに変更したこと(したがって、1刃送り量を20μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例3>
 回転数を60000rpmに変更したこと(したがって、1刃送り量を4μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例4>
 回転数を6000rpmに変更したこと(したがって、1刃送り量を40μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例8>
 刃数を8枚に変更したこと(したがって、1刃送り量を6μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例9>
 刃数を10枚に変更し、刃角度を5°に変更し、回転数を14400rpmに変更したこと(したがって、1刃送り量を10μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例10>
 刃数を10枚に変更し、刃角度を5°に変更し、回転数を14400rpmに変更し、送り速度を2880mm/分に変更したこと(したがって、1刃送り量を20μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例5>
 刃数を10枚に変更し、刃角度を5°に変更し、回転数を60000rpmに変更し、送り速度を600mm/分に変更したこと(したがって、1刃送り量を1μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例6>
 回転数を15000rpmに変更し、送り速度を7200mm/分に変更したこと(したがって、1刃送り量を80μm/刃に変更したこと)以外は実施例1と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例11>
 参考例1で得られたワークをクランプ(治具)で挟んだ状態で、エンドミル加工により、ワークの外周面を切削加工した(切込量1mm、1回削り)。ここで、エンドミルの刃数は2枚であり、刃角度は45°であり、送り速度は400mm/分であり、回転数は20000rpmであり、したがって、1刃送り量は10μm/刃であった。切削加工した光学積層体について、上記(1)および(2)のようにして評価した。結果を表1に示す。
<実施例12>
 送り速度を200mm/分に変更したこと、回転数を10000rpmに変更したこと(したがって、1刃送り量を10μm/刃のまま)以外は実施例11と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<実施例13>
 送り速度を100mm/分に変更したこと、回転数を10000rpmに変更したこと(したがって、1刃送り量を5μm/刃に変更したこと)以外は実施例11と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例7>
 送り速度を20mm/分に変更したこと、回転数を10000rpmに変更したこと(したがって、1刃送り量を1μm/刃に変更したこと)以外は実施例11と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例8>
 送り速度を1000mm/分に変更したこと、回転数を10000rpmに変更したこと(したがって、1刃送り量を50μm/刃に変更したこと)以外は実施例11と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
<比較例9>
 送り速度を1400mm/分に変更したこと、回転数を10000rpmに変更したこと(したがって、1刃送り量を70μm/刃に変更したこと)以外は実施例11と同様にして、切削加工された光学積層体を得た。切削加工した光学積層体について、実施例1と同様にして評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、エンドミル加工における1刃送り量を所定の範囲に制御することにより、ガラス板のクラックおよび偏光板のイエローバンドの両方が抑制された切削加工を実現することができる。
 本発明の製造方法は、ガラス板と光学機能フィルムとを含み、切削加工が必要とされる光学積層体の製造に好適に用いられ得る。本発明の製造方法により得られる光学積層体は、各種画像表示装置に好適に用いられ得る。
  1   ワーク
 10   ガラス板
 20   偏光板
 50   切削手段
100   光学積層体

Claims (6)

  1.  ガラス板と光学機能フィルムとを積層して光学積層体を形成すること、
     該光学積層体を複数枚重ねてワークを形成すること、および、
     該ワークの積層方向に延びる回転軸と該回転軸を中心として回転する本体の最外径として構成された切削刃とを有する切削手段を回転させながら、該ワークおよび該切削手段を相対的に移動させて、該ワークの外周面を切削加工すること、
     を含み、
     該切削加工における1刃送り量が5μm/刃~30μm/刃である、
     光学積層体の製造方法。
  2.  前記1刃送り量が5μm/刃~15μm/刃である、請求項1に記載の製造方法。
  3.  前記切削手段の刃数が2枚~10枚である、請求項1または2に記載の製造方法。
  4.  前記切削加工における前記切削手段の送り速度が100mm/分以上である、請求項1から3のいずれかに記載の製造方法。
  5.  前記切削手段の刃角度が0°~20°である、請求項1から4のいずれかに記載の製造方法。
  6.  前記光学機能フィルムが偏光板である、請求項1から5のいずれかに記載の製造方法。
     
     
PCT/JP2018/011605 2017-05-29 2018-03-23 光学積層体の製造方法 WO2018220959A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187037860A KR102504195B1 (ko) 2017-05-29 2018-03-23 광학 적층체의 제조 방법
CN201880002922.2A CN109477932B (zh) 2017-05-29 2018-03-23 光学叠层的制造方法
US16/309,000 US20190168317A1 (en) 2017-05-29 2018-03-23 Production method for optical laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017105199 2017-05-29
JP2017-105199 2017-05-29
JP2018-054031 2018-03-22
JP2018054031A JP7232577B2 (ja) 2017-05-29 2018-03-22 光学積層体の製造方法

Publications (1)

Publication Number Publication Date
WO2018220959A1 true WO2018220959A1 (ja) 2018-12-06

Family

ID=64455356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011605 WO2018220959A1 (ja) 2017-05-29 2018-03-23 光学積層体の製造方法

Country Status (1)

Country Link
WO (1) WO2018220959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029172A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 偏光板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136746A (ja) 1984-12-03 1986-06-24 Nitto Electric Ind Co Ltd 異方性フイルムの切断加工法
JP2010164938A (ja) 2009-01-16 2010-07-29 Samsung Mobile Display Co Ltd タッチスクリーンパネル
JP2010201565A (ja) * 2009-03-03 2010-09-16 Mitsubishi Materials Corp エンドミル
JP2012203209A (ja) * 2011-03-25 2012-10-22 Sumitomo Chemical Co Ltd 端面加工偏光板の製造方法
JP2013202722A (ja) * 2012-03-28 2013-10-07 Mitsubishi Materials Corp スクエアエンドミル
WO2015100015A1 (en) * 2013-12-23 2015-07-02 3M Innovative Properties Company Integrated optical component and method of making
WO2017047510A1 (ja) * 2015-09-16 2017-03-23 シャープ株式会社 異形状偏光板の製造方法
WO2017077963A1 (ja) * 2015-11-05 2017-05-11 シャープ株式会社 液晶表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136746A (ja) 1984-12-03 1986-06-24 Nitto Electric Ind Co Ltd 異方性フイルムの切断加工法
JP2010164938A (ja) 2009-01-16 2010-07-29 Samsung Mobile Display Co Ltd タッチスクリーンパネル
JP2010201565A (ja) * 2009-03-03 2010-09-16 Mitsubishi Materials Corp エンドミル
JP2012203209A (ja) * 2011-03-25 2012-10-22 Sumitomo Chemical Co Ltd 端面加工偏光板の製造方法
JP2013202722A (ja) * 2012-03-28 2013-10-07 Mitsubishi Materials Corp スクエアエンドミル
WO2015100015A1 (en) * 2013-12-23 2015-07-02 3M Innovative Properties Company Integrated optical component and method of making
WO2017047510A1 (ja) * 2015-09-16 2017-03-23 シャープ株式会社 異形状偏光板の製造方法
WO2017077963A1 (ja) * 2015-11-05 2017-05-11 シャープ株式会社 液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029172A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 偏光板
JP2021028672A (ja) * 2019-08-09 2021-02-25 住友化学株式会社 偏光板

Similar Documents

Publication Publication Date Title
JP7232577B2 (ja) 光学積層体の製造方法
JP7014653B2 (ja) 非直線加工された粘着剤層付光学積層体の製造方法
JP7018349B2 (ja) 切削加工された粘着剤層付光学積層体の製造方法
JP7018339B2 (ja) 非直線加工された樹脂シートの製造方法
WO2019208138A1 (ja) 樹脂シートおよびその製造方法
WO2018220959A1 (ja) 光学積層体の製造方法
JP2022092624A (ja) 光学積層体、カバーガラス付光学積層体、およびこれらの製造方法、ならびにカバーガラス付画像表示装置
JP2020067653A (ja) カバーガラス付光学積層体およびカバーガラス付画像表示装置
JP2020001160A (ja) 光学フィルム切削用エンドミルおよび該エンドミルを用いた光学フィルムの製造方法
JP7018348B2 (ja) 切削加工されたハードコート層付光学積層体の製造方法
WO2018180977A1 (ja) 非直線加工された粘着剤層付光学積層体の製造方法
WO2019244505A1 (ja) 光学フィルム切削用エンドミルおよび該エンドミルを用いた光学フィルムの製造方法
WO2021131120A1 (ja) 光学フィルム切削用エンドミルおよび該エンドミルを用いた光学フィルムの製造方法
WO2020079875A1 (ja) カバーガラス付光学積層体およびカバーガラス付画像表示装置
TW202040174A (zh) 光學薄膜的製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187037860

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018809550

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018809550

Country of ref document: EP

Effective date: 20200102

122 Ep: pct application non-entry in european phase

Ref document number: 18809550

Country of ref document: EP

Kind code of ref document: A1