WO2018216409A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2018216409A1
WO2018216409A1 PCT/JP2018/016258 JP2018016258W WO2018216409A1 WO 2018216409 A1 WO2018216409 A1 WO 2018216409A1 JP 2018016258 W JP2018016258 W JP 2018016258W WO 2018216409 A1 WO2018216409 A1 WO 2018216409A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
fuel cell
control
opening degree
power generation
Prior art date
Application number
PCT/JP2018/016258
Other languages
English (en)
French (fr)
Inventor
吉岡 衛
成人 伊東
福井 誠
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Priority to CN201880034542.7A priority Critical patent/CN110663131B/zh
Priority to DE112018002700.7T priority patent/DE112018002700T5/de
Priority to US16/495,655 priority patent/US11148536B2/en
Publication of WO2018216409A1 publication Critical patent/WO2018216409A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04686Failure or abnormal function of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present disclosure relates to a fuel cell system including a fuel cell that generates electric power by supplying a fuel gas and an oxidant gas.
  • a fuel cell system mounted on a fuel cell vehicle.
  • the fuel cell system includes a fuel cell stack (fuel cell), a gas supply passage for supplying oxidant gas to the fuel cell stack, an upstream valve for controlling supply of oxidant gas to the fuel cell stack, Compressor provided in gas supply passage, gas discharge passage for discharging oxidant gas supplied to fuel cell stack, downstream valve for controlling discharge of oxidant gas from fuel cell stack, fuel cell stack And a bypass passage that discharges the oxidant gas to the gas discharge passage, and a bypass valve that is provided in the bypass passage and adjusts the flow rate of the oxidant gas flowing through the bypass passage.
  • a fuel cell stack fuel cell
  • a gas supply passage for supplying oxidant gas to the fuel cell stack
  • Compressor provided in gas supply passage
  • gas discharge passage for discharging oxidant gas supplied to fuel cell stack
  • downstream valve for controlling discharge of oxidant gas from fuel cell stack
  • fuel cell stack And a bypass passage that discharges the oxidant gas to the gas discharge passage, and a bypass valve that is provided in the bypass passage and adjusts
  • control full-closed opening degree control in which, for example, the opening degree of the upstream valve is controlled to be a fully closed opening degree when the fuel cell vehicle is decelerated.
  • control fully closed opening degree is an opening degree that is slightly larger than 0 ° and in which the valve body is kept in contact with the seal portion provided on the valve seat.
  • the present disclosure has been made to solve the above-described problems, and an object thereof is to provide a fuel cell system that can suppress unnecessary power generation in the fuel cell.
  • the upstream side valve includes a valve seat, a valve body, and a valve body that drives the valve body to be between the valve seat and the valve body.
  • a drive mechanism that opens and closes, and a seal member provided with a seal portion that contacts the other of the valve body or the valve seat when the valve is closed is provided on either the valve seat or the valve body,
  • the control unit when fully closing the upstream valve, performs a control full-closed opening degree control by which the opening degree of the upstream valve is set to a control full-closed opening degree larger than 0 by the drive mechanism.
  • the opening degree control is performed, the oxidant gas is generated at the upstream valve.
  • leakage amount of the oxidizing agent gas the control fully-closed opening degree of the upstream valve to be corrected to the closing side until the zero position opening degree becomes zero, and said.
  • the control full-close is controlled according to the wear amount of the seal portion.
  • the amount of leakage of the oxidant gas can be made zero at the upstream valve by correcting the opening degree to the valve closing side. For this reason, since the supply of unnecessary oxidant gas to the fuel cell is suppressed, unnecessary power generation in the fuel cell can be suppressed. Therefore, the discharge due to the power consumption of the auxiliary machines for consuming the power generated by the unnecessary power generation in the fuel cell becomes unnecessary, and the reduction in fuel consumption and the occurrence of NV (noise vibration) can be suppressed.
  • NV noise vibration
  • control unit may determine a leakage amount of the oxidant gas in the upstream valve based on a power generation amount of the fuel cell.
  • a detection means such as a sensor for detecting the leakage amount of the oxidant gas in the upstream valve, so that the cost can be reduced.
  • the power generation amount of the fuel cell is an amount generated after the oxidant gas remaining in the fuel cell is consumed when the control full-closed opening degree control is started. preferable.
  • the power generation amount of the fuel cell is a power generation amount corresponding to the leakage of the oxidant gas in the upstream valve that is generated when the control fully closed opening degree control is performed. Therefore, it is possible to accurately determine the leakage amount of the oxidant gas in the upstream valve based on the power generation amount of the fuel cell.
  • the downstream valve includes a valve seat, a valve body, and the valve body that drives the valve seat and the valve.
  • the control unit responds to the required auxiliary power generation amount by the drive mechanism with the opening degree of the downstream valve.
  • Auxiliary power generation opening control is performed to make the auxiliary power generation opening, When it is determined that the flow rate of the oxidant gas in the downstream valve is larger than a first predetermined flow rate when performing the mechanical power generation opening degree control, the auxiliary power generation opening degree is set in the downstream valve. The oxidant gas flow rate is corrected to the valve closing side to the first target position opening degree at which the first predetermined flow rate is obtained.
  • the auxiliary power generation opening degree control when the flow rate of the oxidant gas increases due to wear of the seal portion in the downstream valve, the auxiliary power generation is started according to the wear amount of the seal portion.
  • the flow rate of the oxidant gas in the downstream valve can be set to the target flow rate. Therefore, since supply of unnecessary (excess) oxidant gas to the fuel cell is suppressed, unnecessary (extra) power generation in the fuel cell can be suppressed. Therefore, since it is possible to suppress an excessive amount of power generated by the fuel cell, it is possible to suppress a reduction in fuel consumption and it is not necessary to drive unnecessary auxiliary equipment.
  • the control unit when the control unit performs the auxiliary power generation opening degree control, the flow rate of the oxidant gas in the downstream valve is less than the first predetermined flow rate.
  • the auxiliary power generation opening is corrected to the valve opening side to the second target position opening at which the flow rate of the oxidant gas at the downstream valve becomes the second predetermined flow rate. It is characterized by this.
  • the auxiliary machines when performing control to correct the auxiliary power generation opening, it is possible to suppress the occurrence of hunting of the downstream valve and control the flow rate of the oxidant gas in the downstream valve within the target range. it can. Therefore, since the electric power required by the fuel cell can be generated, the auxiliary machines can be driven according to the auxiliary machine power generation request.
  • control unit determines the flow rate of the oxidant gas in the downstream valve based on the power generation amount of the fuel cell.
  • a detection means such as a sensor for detecting the flow rate of the oxidant gas in the downstream valve, so that the cost can be reduced.
  • the fuel cell system according to the present disclosure can suppress unnecessary power generation in the fuel cell.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system according to an embodiment. It is a front view of an inlet sealing valve. It is a top view of an inlet sealing valve. It is the perspective view which fractured
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG. 6.
  • FIG. 3 is a sectional view taken along line BB in FIG. FIG.
  • FIG. 3 is a cross-sectional view taken along the line CC of FIG. It is a front view which shows the state which removed the end frame from the valve housing.
  • FIG. 5 is an enlarged view (partially sectional view) of the periphery of a main gear, a return spring, and an intermediate gear when the motor is not driven. It is the schematic diagram which showed the force which acts on a main gear at the time of the non-drive of a motor, and is the figure seen from the main gear side of the center axis direction of a rotating shaft.
  • FIG. 13 is a diagram corresponding to the DD cross-sectional view of FIG. 12, and is a schematic diagram illustrating a valve seat, a valve body, a rotating shaft, a bearing, and a main gear.
  • FIG. 15 is a schematic view illustrating a valve seat, a valve body, a rotating shaft, a bearing, and a main gear, corresponding to the EE cross-sectional view of FIG. 14.
  • FIG. 16 is a diagram corresponding to FIG. 15, showing a case where the motor driving force is made larger than that in FIG. 15.
  • FIG. 6 is an enlarged view (partially sectional view) of the periphery of the main gear, the return spring, and the intermediate gear when the opening degree is ⁇ during driving of the motor. It is a figure corresponding to FIG.
  • FIG. 16 is an enlarged view (partially sectional view) of the periphery of the main gear, the return spring, and the intermediate gear when the opening degree is ⁇ when the motor is driven. It is a related figure of an opening degree and an opening area. It is a figure which shows a rubber sheet. It is a figure which shows schematic structure of an air system. It is a flowchart which shows the control content at the time of deceleration and a system stop. It is a flowchart which shows the content of the discharge control at the time of deceleration, and regenerative control.
  • the fuel cell system which is an embodiment according to the present disclosure will be described in detail with reference to FIG. In the present embodiment, a case will be described in which the present disclosure is applied to a fuel cell system that is mounted on a fuel cell vehicle and supplies power to a drive motor (not shown).
  • the fuel cell system 101 of the present embodiment includes a fuel cell stack (fuel cell) 111, a hydrogen system 112, and an air system 113, as shown in FIG.
  • the fuel cell stack 111 generates power by receiving supply of fuel gas and supply of oxidant gas.
  • the fuel gas is hydrogen gas
  • the oxidant gas is air. That is, the fuel cell stack 111 generates power by receiving supply of hydrogen gas from the hydrogen system 112 and supply of air from the air system 113.
  • the electric power generated by the fuel cell stack 111 is supplied to a drive motor (not shown) via an inverter (not shown).
  • the hydrogen system 112 is provided on the anode side of the fuel cell stack 111.
  • the hydrogen system 112 includes a hydrogen supply passage 121, a hydrogen discharge passage 122, and a filling passage 123.
  • the hydrogen supply passage 121 is a passage for supplying hydrogen gas from the hydrogen tank 131 to the fuel cell stack 111.
  • the hydrogen discharge passage 122 is a passage for discharging hydrogen gas discharged from the fuel cell stack 111 (hereinafter referred to as “hydrogen offgas” as appropriate).
  • the filling passage 123 is a passage for filling the hydrogen tank 131 with hydrogen gas from the filling port 151.
  • the hydrogen system 112 includes a main stop valve 132, a high pressure regulator 133, an intermediate pressure relief valve 134, a pressure sensor 135, an injector unit 136, a low pressure relief valve 137, and a pressure sensor 138 in order from the hydrogen tank 131 side in the hydrogen supply passage 121.
  • the main stop valve 132 is a valve that switches between supply and shutoff of hydrogen gas from the hydrogen tank 131 to the hydrogen supply passage 121.
  • the high pressure regulator 133 is a pressure adjustment valve for reducing the pressure of hydrogen gas.
  • the intermediate pressure relief valve 134 is a valve that opens when the pressure between the high pressure regulator 133 and the injector unit 136 in the hydrogen supply passage 121 exceeds a predetermined pressure, and adjusts the pressure below the predetermined pressure.
  • the pressure sensor 135 is a sensor that detects the pressure between the high-pressure regulator 133 and the injector unit 136 in the hydrogen supply passage 121.
  • the injector unit 136 is a mechanism that adjusts the flow rate of hydrogen gas.
  • the low-pressure relief valve 137 is a valve that opens when the pressure between the injector portion 136 and the fuel cell stack 111 in the hydrogen supply passage 121 is equal to or higher than a predetermined pressure, and adjusts the pressure to be lower than the predetermined pressure.
  • the pressure sensor 138 is a sensor that detects the pressure between the injector unit 136 and the fuel cell stack 111 in the hydrogen supply passage 121.
  • a gas-liquid separator 141 and an exhaust drainage valve 142 are arranged in this order from the fuel cell stack 111 side in the hydrogen discharge passage 122.
  • the gas-liquid separator 141 is a device that separates moisture in the hydrogen off-gas.
  • the exhaust / drain valve 142 is a valve that switches between discharging and shutting off hydrogen off-gas and moisture from the gas-liquid separator 141 to the diluter 182 of the air system 113.
  • the air system 113 is provided on the cathode side of the fuel cell stack 111.
  • the air system 113 includes an air supply passage 161 (oxidant gas supply passage), an air discharge passage 162, and a bypass passage 163.
  • the air supply passage 161 is a passage for supplying air from the outside of the fuel cell system 101 to the fuel cell stack 111.
  • the air discharge passage 162 is a passage for discharging air discharged from the fuel cell stack 111 (hereinafter referred to as “air off gas” as appropriate).
  • the bypass passage 163 is a passage through which air flows from the air supply passage 161 to the air discharge passage 162 without going through the fuel cell stack 111 (bypass).
  • the air system 113 includes a compressor 172, an intercooler 173, and an inlet sealing valve (upstream valve) 174 in order from the air cleaner 171 side in the air supply passage 161.
  • the air cleaner 171 is a device that cleans the air taken from the outside of the fuel cell system 101.
  • the compressor 172 is a device that supplies air to the fuel cell stack 111.
  • the intercooler 173 is a device that cools air.
  • the inlet sealing valve 174 is a sealing valve that switches between supplying and shutting off air to the fuel cell stack 111. As the inlet sealing valve 174, an eccentric valve in which the sealing surface of the valve body is arranged eccentric from the rotation shaft is applied. Details of the inlet sealing valve 174 will be described later.
  • an outlet integrated valve (downstream valve) 181 and a diluter 182 are arranged in this order from the fuel cell stack 111 side in the air discharge passage 162.
  • the outlet integrated valve 181 is a valve (a valve having a pressure adjustment (flow rate control) function) that controls the discharge amount of the air-off gas from the fuel cell stack 111 by adjusting the back pressure of the fuel cell stack 111.
  • a valve a valve having a pressure adjustment (flow rate control) function
  • an eccentric valve having basically the same configuration as the inlet sealing valve 174 (the configuration of the rubber sheet 21 may be different) is applied. Details of the outlet integrated valve 181 will be described later.
  • the diluter 182 is a device for diluting the hydrogen off-gas discharged from the hydrogen discharge passage 122 with the air off-gas and the air flowing through the bypass passage 163.
  • the air system 113 includes a bypass valve 191 in the bypass passage 163.
  • the bypass valve 191 is a valve that controls the flow rate of air in the bypass passage 163.
  • an eccentric valve having substantially the same configuration (without the rubber sheet 21) as the inlet sealing valve 174 and the outlet integrated valve 181 is applied. Details of the bypass valve 191 will be described later.
  • the fuel cell system 101 includes a controller (control unit) 201 that controls the system.
  • the controller 201 controls each device provided in the fuel cell system 101 and makes various determinations.
  • the fuel cell system 101 also includes a cooling system (not shown) that cools the fuel cell stack 111.
  • the hydrogen gas supplied from the hydrogen supply passage 121 to the fuel cell stack 111 is used for power generation in the fuel cell stack 111, and then as hydrogen off-gas from the fuel cell stack 111. It is discharged to the outside of the fuel cell system 101 through the hydrogen discharge passage 122 and the diluter 182.
  • the air supplied from the air supply passage 161 to the fuel cell stack 111 is used for power generation in the fuel cell stack 111, and then the air off gas from the fuel cell stack 111 is passed through the air discharge passage 162 and the diluter 182. It is discharged outside the fuel cell system 101.
  • the inlet sealing valve 174, the outlet integrated valve 181 and the bypass valve 191 will be described with reference to FIGS. Since these valves have basically the same configuration except that the rubber composition of the inlet sealing valve 174 and the outlet integrated valve 181 is different or the bypass valve 191 does not include a rubber sheet.
  • the description will focus on the inlet sealing valve 174, and the outlet integrated valve 181 and the bypass valve 191 will be described as appropriate.
  • the inlet sealing valve 174 includes a valve portion 2 and a drive mechanism portion 3.
  • the valve part 2 includes a pipe part 12 (see FIG. 8) having a flow path 11 through which air (air) flows.
  • a valve seat 13 In the flow path 11, a valve seat 13, a valve body 14 and a rotating shaft 15 are arranged. ing.
  • a driving force (rotational force) is transmitted from the drive mechanism unit 3 to the rotating shaft 15.
  • the drive mechanism unit 3 includes a motor 32 and a speed reduction mechanism 33 (see FIGS. 8 and 9).
  • a step portion 10 is formed in the flow path 11, and a valve seat 13 is incorporated in the step portion 10.
  • the valve seat 13 has an annular shape and has a valve hole 16 in the center.
  • An annular seat surface 17 is formed at the edge of the valve hole 16.
  • the valve body 14 includes a disk-shaped portion, and an annular seal surface 18 corresponding to (contacts with) the seat surface 17 is formed on the outer periphery thereof.
  • the valve body 14 is provided integrally with the rotary shaft 15 and rotates integrally with the rotary shaft 15.
  • valve seat 13 is provided with a rubber sheet (seal member) 21 (see FIG. 21).
  • a sheet surface 17 is formed on the rubber sheet 21. Details of the rubber sheet 21 will be described later. Since the bypass valve 191 does not include the rubber sheet 21, the seat surface 17 is formed on the valve seat 13.
  • a flow path 11 disposed on the fuel cell stack 111 side (downstream of the air flow) and formed on the valve body 14 and the rotary shaft 15 side (lower side in the drawing) with respect to the valve seat 13 is connected to the compressor side (air flow). (Upstream). That is, in this embodiment, air flows from the valve body 14 (rotating shaft 15) side toward the valve seat 13 side in the flow path 11.
  • the flow path 11 formed on the side opposite to the valve body 14 and the rotating shaft 15 with respect to the valve seat 13 is opposite to the inlet sealing valve 174 on the fuel cell stack 111 side (
  • the flow path 11 formed on the valve body 14 and the rotary shaft 15 side with respect to the valve seat 13 is arranged on the diluter 182 side (downstream side of the air flow). . That is, in the outlet integrated valve 181, the air flows from the valve seat 13 side toward the valve body 14 (rotating shaft 15) side in the flow path 11.
  • the flow path 11 formed on the valve body 14 and the rotary shaft 15 side with respect to the valve seat 13 is disposed on the air supply passage 161 side (upstream side of the air flow), and the valve seat 13
  • the flow path 11 formed on the opposite side to the valve body 14 and the rotary shaft 15 is disposed on the air discharge passage 162 side (downstream side of the air flow). That is, in the bypass valve 191, air flows from the valve body 14 (rotating shaft 15) side toward the valve seat 13 side in the flow path 11.
  • the central axis Ls of the rotating shaft 15 extends in parallel with the radial direction of the valve body 14 (specifically, the radial direction of the disc-shaped portion of the valve body 14), and the valve hole 16.
  • the seal surface 18 of the valve body 14 is eccentrically arranged in the direction in which the central axis Lv of the valve body 14 extends from the central axis Ls of the rotary shaft 15. ing.
  • the valve housing 35 made of metal or synthetic resin includes a flow path 11 and a pipe portion 12.
  • the end frame 36 made of metal or synthetic resin closes the open end of the valve housing 35.
  • the valve body 14 and the rotating shaft 15 are provided in the valve housing 35.
  • the rotating shaft 15 includes a pin 15a at the tip.
  • the pin 15 a is provided at one end (the valve body 14 side) of the rotation shaft 15 in the direction of the central axis Ls.
  • the diameter of the pin 15 a is smaller than the diameter of the portion other than the pin 15 a on the rotating shaft 15.
  • a base end portion 15b is provided at the other end portion (on the main gear 41 side) of the rotation shaft 15 in the direction of the central axis Ls.
  • the rotary shaft 15 is arranged such that the distal end side with the pin 15 a is a free end, and the distal end portion is inserted into the flow path 11 of the tube portion 12.
  • the rotating shaft 15 is cantilevered so as to be rotatable with respect to the valve housing 35 via a first bearing 37 and a second bearing 38 which are two bearings arranged apart from each other. Both the first bearing 37 and the second bearing 38 are ball bearings.
  • the 1st bearing 37 and the 2nd bearing 38 are arrange
  • the first bearing 37 is disposed at a position on the main gear 41 side with respect to the second bearing 38.
  • the valve body 14 is fixed by welding to a pin 15 a formed at the distal end portion of the rotating shaft 15 and is disposed in the flow path 11.
  • the end frame 36 is fixed to the valve housing 35 by a plurality of clips 39 (see FIGS. 2 and 3).
  • a main gear 41 including a sector gear is fixed to the base end portion 15 b of the rotating shaft 15.
  • a return spring 40 that generates a return spring force Fs1 is provided between the valve housing 35 and the main gear 41.
  • the return spring force Fs1 is a force that rotates the rotating shaft 15 in the valve closing direction, and is a force that urges the valve body 14 in the valve closing direction.
  • the return spring 40 is an elastic body formed by winding a wire in a coil shape. As shown in FIG. 11, the return spring 40 includes a rear hook 40a and a front hook 40b at both ends of the wire. The back side hook 40a and the near side hook 40b are disposed at a position separated by about 180 ° in the circumferential direction of the return spring 40.
  • the back side hook 40a is disposed on the valve housing 35 side (the back side in FIG. 11), and is in contact with the spring hook portion 35c (see FIG. 19) of the valve housing 35.
  • the front side hook 40b is disposed on the main gear 41 side (the front side in FIG. 11) and is in contact with the spring hook part 41c of the main gear 41.
  • the main gear 41 includes a fully closed stopper portion 41a, a gear portion 41b, a spring hook portion 41c, a spring guide portion 41d, and the like.
  • a fully closed stopper portion 41a, a gear portion 41b, and a spring hook portion 41c are sequentially formed.
  • the main gear 41 is provided integrally with the rotary shaft 15 and receives a driving force generated by the motor 32.
  • the fully closed stopper portion 41 a is a portion that contacts the fully closed stopper portion 35 b of the valve housing 35 when the opening ⁇ is “0”.
  • the motor 32 is housed and fixed in a housing recess 35 a formed in the valve housing 35.
  • the motor 32 generates a driving force that rotates the rotating shaft 15 in the valve opening and closing directions.
  • the motor 32 is coupled so that the driving force is transmitted to the rotary shaft 15 via the speed reduction mechanism 33 in order to open and close the valve body 14. That is, the motor gear 43 is fixed to the output shaft 32a (see FIG. 10) of the motor 32.
  • the motor gear 43 is coupled so that a driving force is transmitted to the main gear 41 via the intermediate gear 42.
  • the intermediate gear 42 is a two-stage gear having a large-diameter gear 42a and a small-diameter gear 42b, and is rotatably supported by the valve housing 35 via a pin shaft 44.
  • the diameter of the large diameter gear 42a is larger than the diameter of the small diameter gear 42b.
  • a motor gear 43 is drivingly connected to the large diameter gear 42a, and a main gear 41 is drivingly connected to the small diameter gear 42b.
  • the main gear 41, the intermediate gear 42, and the motor gear 43 that constitute the speed reduction mechanism 33 are made of resin.
  • the motor 32 is an example of the “drive mechanism” in the present disclosure. Further, the intermediate gear 42 (drive transmission unit) transmits the driving force of the motor 32 to the rotary shaft 15.
  • the inlet sealing valve 174 having such a configuration is in a closed state as shown in FIG. 4 (the entire circumference of the sealing surface 18 of the valve body 14 and the seat surface of the valve seat 13 (rubber sheet 21)).
  • a force (motor driving force Fm1 (see FIG. 14)) for pushing gear teeth is applied to the main gear 41, and the valve element 14 is driven by the lever principle. Is moved in the direction toward the valve seat 13 (see FIG. 15).
  • the operation of the inlet sealing valve 174 in this embodiment will be described in detail.
  • the opening ⁇ is “0”, that is, the inlet sealing valve 174 is fully closed ( Mechanical fully closed position).
  • the fully closed stopper portion 41 a of the main gear 41 is in contact with the fully closed stopper portion 35 b of the valve housing 35.
  • the return spring force Fs 1 is applied to the spring hook portion 41 c of the main gear 41 from the front side hook 40 b of the return spring 40.
  • the x axis is the horizontal direction
  • the y axis is the vertical direction
  • the + x direction and the + y direction are in the first quadrant
  • ⁇ The x direction and the + y direction are the second quadrant
  • the ⁇ x direction and the ⁇ y direction are the third quadrant
  • the + x direction and the ⁇ y direction are the fourth quadrant.
  • the rear side hook 40a and the fully closed stopper part 41a are arranged so as to be located in the first quadrant
  • the front side hook 40b and the spring hook part 41c are arranged so as to be located in the third quadrant.
  • a fulcrum is set for the fully closed stopper portion 41a
  • a force point is set for the spring hook portion 41c
  • an action point is set at the central portion between the fully closed stopper portion 41a and the spring hook portion 41c.
  • the force Fs2 acts on the central portion between the fully closed stopper portion 41a and the spring hook portion 41c by the return spring force Fs1 applied to the spring hook portion 41c.
  • (force Fs2) 2 ⁇ (return spring force Fs1).
  • the distance between the fully closed stopper portion 41a and the spring hook portion 41c is “2R”.
  • the + y direction component of the force Fs2 is a component force Fs3 as shown in FIG.
  • the + y direction is a direction perpendicular to the central axis Lj direction (x direction) of the first bearing 37 and the second bearing 38, and is the direction of the valve seat 13 with respect to the valve body 14 (FIG. 12 and FIG. 13 on the drawing).
  • (component force Fs3) (force Fs2) ⁇ (sin ⁇ 1).
  • the angle ⁇ 1 is an angle formed by the arrangement direction of the fully closed stopper portion 41a and the spring hook portion 41c with respect to the x direction.
  • the force Fs4 (counter valve seat direction biasing force) acts in the + y direction.
  • (force Fs4) (component force Fs3) ⁇ Lb / La.
  • the force Fs4 is a force generated due to the return spring force Fs1 and is a force acting in a direction perpendicular to the central axis Lj of the first bearing 37 and the second bearing 38.
  • the distance La is the distance from the position where the first bearing 37 is arranged in the x direction to the position where the force Fs4 acts.
  • the distance Lb is a distance from the position where the first bearing 37 is disposed in the x direction to the position where the component force Fs3 acts.
  • the valve body 14 is in contact with the rubber sheet 21 (seal member) provided on the valve seat 13.
  • the valve body 14 is in contact with a seal portion 21 a provided in the rubber sheet 21.
  • the valve body 14 is in contact with the entire circumference of the seat surface 17 of the seal portion 21a.
  • the seal portion 21a is formed so as to be bent by being pushed by the valve body 14.
  • the seal portion 21a has a shape in which the surface pressure that comes into contact with the seal surface 18 of the valve body 14 increases as the upstream pressure of the inlet sealing valve 174 becomes larger than the downstream pressure (the differential pressure increases and decreases). I am doing.
  • a bead seal, a lip seal, or the like can be applied as the seal portion 21a.
  • the valve seat 13 and the valve body 14 are sealed (sealed) with the rubber sheet 21, and the inlet sealing valve 174 has a simple configuration and a sealing property is ensured.
  • the inlet sealing valve 174 is fully closed to increase the pressure of the air supply passage 161.
  • air can be sealed at the inlet side of the fuel cell stack 111 by lowering the stack pressure of the fuel cell stack 111. Therefore, when the supply of air to the fuel cell stack 111 is stopped, the supply of surplus (unnecessary) air to the fuel cell stack 111 can be reduced, so that unnecessary fuel cell stack 111 during deceleration is unnecessary. Power generation can be minimized.
  • the relationship between the opening ⁇ and the opening area S is as indicated by a point P1a shown in FIG.
  • “when the inlet sealing valve 174 is in a fully closed (mechanically fully closed) state” means when the opening degree ⁇ (the opening degree of the valve body 14) is “0”, in other words, rotation. This is when the rotation angle of the shaft 15 is the angle when the shaft 15 is fully closed (the minimum angle within the rotation range of the rotation shaft 15).
  • the main gear 41 is rotated from the small-diameter gear 42b (see FIG. 11) of the intermediate gear 42 to the gear portion 41b (see FIG. 11) of the main gear 41.
  • the motor driving force Fm1 is applied.
  • the motor driving force Fm1 acts in the -y direction as shown in FIG.
  • the ⁇ y direction is a direction perpendicular to the central axis Lj direction (x direction) of the first bearing 37 and the second bearing 38, and is a direction in which the valve body 14 is disposed with respect to the valve seat 13. (Downward direction in FIGS. 12 and 13).
  • This force Fm3 is a force generated due to the motor driving force Fm1, and is a force acting in a direction perpendicular to the central axis Lj of the first bearing 37 and the second bearing 38. Then, the force Fm3 rotates and tilts the rotary shaft 15 with the first bearing 37 as a fulcrum, and biases the valve body 14 in a direction toward the valve seat 13.
  • the seal portion 21a of the rubber sheet 21 is pushed and deformed by the valve body 14, but the deformation of the seal portion 21a is performed in the elastic region and is not plastically deformed.
  • the relationship between the opening degree ⁇ and the opening area S is as shown by a point P1b in FIG.
  • the rotary shaft 15 further rotates counterclockwise in FIG. 16 with the first bearing 37 as a fulcrum.
  • the main gear 41 further moves in the ⁇ y direction, while the valve body 14 further moves in the + y direction.
  • the rotating shaft 15 rotates about the central axis Ls, and the opening degree ⁇ (the rotation angle of the rotating shaft 15) becomes the opening degree “ ⁇ ” slightly opened from the opening degree “0 °” (see FIG. 17).
  • the fully closed stopper portion 41 a of the main gear 41 is separated from the fully closed stopper portion 35 b of the valve housing 35.
  • This state is a control fully closed state to be described later, and the opening “ ⁇ ” becomes the control fully closed opening. Details of the control fully closed opening will be described later.
  • the rotating shaft 15 is restrained by the second bearing 38.
  • the opening degree ⁇ and the opening area S are as indicated by a point P1c shown in FIG. 20, and the opening area S is almost zero.
  • the outlet integrated valve 181 has the above-described configuration. However, the seal portion of the rubber sheet in the outlet integrated valve 181 is configured such that the surface pressure in contact with the sealing surface of the valve body decreases as the upstream pressure of the outlet integrated valve 181 becomes larger than the downstream pressure. .
  • the bypass valve 191 has the above-described configuration except that the rubber sheet 21 is not provided. As described above, in the air system 113, as shown in FIG. 22, the rubber composition of the inlet sealing valve 174 and the outlet integrated valve 181 is different between the inlet sealing valve 174, the outlet integrated valve 181 and the bypass valve 191. Except that the bypass valve 191 does not include a rubber sheet, an eccentric valve having the same basic configuration is used to share the valve in the air system 113.
  • the valve body 14 is seated on the valve seat 13 while the seal surface 18 of the valve body 14 slides on the seal portion 21 a of the rubber sheet 21 when the system is fully closed when the system is stopped or decelerated. To do. For this reason, if the wear of the seal portion 21a progresses, the sealing performance of the inlet sealing valve 174 may not be ensured.
  • the sealing performance of the inlet sealing valve 174 cannot be ensured when the system is stopped, the degree of sealing of the fuel cell stack 111 when the system is stopped is lowered, and a reaction occurs in the fuel cell stack 111 and the fuel Deterioration due to oxidation occurs in the battery stack 111.
  • the following control based on the above control is performed to prevent the deterioration of the fuel cell stack 111. It is preferable to suppress wear of the seal portion 21a so that the sealing performance of the inlet sealing valve 174 can be secured when the system is stopped.
  • the controller 201 may execute control based on the control flowcharts shown in FIGS. First, as shown in FIG. 23, the controller 201 determines whether or not the operation request for the fuel cell stack 111 is continued (step S50). When the operation request for the fuel cell stack 111 is continued (step S50: YES), the controller 201 determines whether or not the vehicle is decelerated from the acceleration / steady state (step S51).
  • step S51 When the vehicle changes from the acceleration / steady state to the deceleration state (step S51: YES), the controller 201 determines whether or not the discharge release flag is “0” (step S52).
  • the discharge release flag indicates that there is a discharge request when “0”, and indicates that there is no discharge request when “1”.
  • the discharge request is generated when the battery cannot charge the electricity generated by the fuel cell stack 111 during deceleration.
  • step S52 When the discharge release flag is “0” (step S52: YES), the controller 201 performs full opening control for opening the bypass valve 191 from the fully closed state (step S53). Thereby, since the compressor pressure of the compressor 172 does not act on the inlet sealing valve 174, the differential pressure across the inlet sealing valve 174 is reduced.
  • step S52: NO the controller 201 performs steps S90 to S93 described later.
  • control full-closed opening degree control is performed to change the outlet integrated valve 181 from the opening degree corresponding to the output (acceleration / steady state) request before deceleration to the control full-closed opening degree ⁇ (step S54).
  • step S54 can be omitted, by performing the process of step S54 in addition to the process of step S53, either one of the valves fails (bypass valve closing failure or outlet integrated valve opening failure). Even in this case, the differential pressure across the inlet sealing valve 174 can be reduced.
  • the controller 201 performs valve closing control for closing the opening degree of the inlet sealing valve 174 from the fully opened state to the predetermined opening degree ⁇ (step S55).
  • the controller 201 performs control full-closed opening degree control that sets the opening degree of the inlet sealing valve 174 to the control full-closed degree. (Step S59). That is, the controller 201 controls the motor 32 to close the inlet sealing valve 174 to the control fully closed opening ⁇ . Thereby, the opening degree of the inlet sealing valve 174 is changed from the predetermined opening degree ⁇ to the control fully closed opening degree ⁇ .
  • control fully closed opening ⁇ is slightly larger than the mechanical fully closed opening (opening 0 °), and is an opening at which the valve body 14 is in contact with the seal portion 21a and the valve closed state is maintained.
  • it may be set to several degrees.
  • the predetermined pressure P may be set to a pressure (about several kPa) at which the seal portion 21a of the rubber sheet 21 is not reliably deformed.
  • the differential pressure ⁇ PIN across the inlet sealing valve 174 is basically small.
  • the inlet sealing valve 174 may be set to the control fully closed opening degree ⁇ before the front-rear differential pressure ⁇ PIN decreases. If it does so, there exists a possibility that the inlet sealing valve 174 may become control full closure in the state which the seal
  • the inlet sealing valve 174 is controlled to be fully closed, as described above, the inlet sealing valve 174 is first closed to the predetermined opening ⁇ , and the differential pressure ⁇ PIN across the inlet sealing valve 174 is set to the predetermined pressure P.
  • the control full-closed opening degree control after becoming smaller, it is possible to surely prevent the inlet seal valve 174 from being fully closed when the seal portion 21a is deformed.
  • the controller 201 determines whether or not the opening degree of the inlet sealing valve 174 that has been subjected to the control full-closed opening degree control in step S59 has reached the control full-closed opening degree ⁇ (step S60).
  • the control full closing flag of the inlet sealing valve 174 is set to “1” (step S61).
  • Fully closed control for fully closing the bypass valve 191 in the fully opened state is performed (step S62). Accordingly, the compressor pressure of the compressor 172 acts on the seal portion 21a of the inlet sealing valve 174, and the seal portion 21a is pressed against the valve body 14.
  • the opening degree of the inlet sealing valve 174 is controlled to the control fully closed opening degree ⁇ , the sealing performance can be ensured. Accordingly, when the supply of air to the fuel cell stack 111 is stopped during deceleration, the air can be sealed by the inlet sealing valve 174 even if the control is fully closed without mechanically closing the inlet sealing valve 174. it can.
  • step S80 when there exists a discharge request
  • the controller 201 determines whether or not the compressor speed (cprpm) is smaller than the target discharge speed B (cprpm ⁇ B) (step S85). At this time, when the compressor rotation speed (cprpm) is smaller than the target discharge rotation speed B (step S85: YES), the rotation speed of the compressor 172 is increased (step S86). On the other hand, when the compressor rotational speed (cprpm) is equal to or higher than the discharge target rotational speed B (step S85: NO), the rotational speed of the compressor 172 is decreased (step S87).
  • the compressor pressure and the compressor rotation speed are respectively controlled in the vicinity of the discharge target pressure A and the discharge target rotation speed B, and excessively generated electricity in the fuel cell stack 111 is efficiently discharged by the compressor 172. be able to.
  • step S80 when there is no discharge request, in other words, when the battery can be charged (step S80: NO), the controller 201 sets the discharge release flag to “1” (step S88). Then, it is determined whether or not there is an auxiliary machinery power generation request (step S90). When there is no auxiliary power generation request (step S90: YES), bypass is performed according to the regenerative brake request in order to charge the electricity generated by the fuel cell stack 111 by performing regenerative brake control. The valve 191 is opened to control the rotation speed of the compressor 172. Even when the compressor 172 maintains a constant rotation speed, the load (power consumption) of the compressor 172 is small because the bypass valve 191 is opened.
  • step S92 determines whether or not the control fully closed flag of the inlet sealing valve 174 is “0” (step S92).
  • step S92: YES the opening degree of the outlet integrated valve 181 and the opening degree of the bypass valve 191 are determined according to the auxiliary machinery power generation request.
  • step S93 the rotational speed of the compressor 172 are controlled.
  • step S70 the controller 201 controls the inlet sealing valve 174 as shown in FIG. It is determined whether or not the fully closed flag is “1” (step S70).
  • step S70 YES
  • the return control from the deceleration control is performed. That is, the controller 201 performs full opening control for making the bypass valve 191 fully open from the fully closed state (step S71).
  • step S72 the control fully closed opening degree control is continued for the outlet integrated valve 181 (step S72).
  • the process of step S72 becomes unnecessary when the process of step S54 is omitted.
  • the seal portion 21a of the rubber sheet 21 may be warped and deformed due to the differential pressure. And as shown in FIG. 27, when the inlet sealing valve 174 is opened, if the seal portion 21a of the rubber sheet 21 is warped and deformed, the seal portion 21a may be abnormally worn. . If the seal portion 21a is worn abnormally, the sealing performance cannot be ensured when the inlet sealing valve 174 is fully closed.
  • the controller 201 performs full opening control for fully opening the opening degree of the inlet sealing valve 174 from the control fully closed opening degree (step S76). Thereafter, the controller 201 sets the control fully closed flag of the inlet sealing valve 174 to “0” (step S77), and sets the discharge release flag to “0” (step S78).
  • the inlet sealing valve 174 is opened after the differential pressure ⁇ PIN before and after the inlet sealing valve 174 decreases, and therefore the seal portion 21a of the rubber sheet 21 warps when the inlet sealing valve 174 is opened. Deformation can be reliably prevented. Therefore, when the inlet sealing valve 174 is opened after completion of deceleration, it is possible to prevent the seal portion 21a of the rubber sheet 21 from being abnormally worn and to ensure the sealing performance of the inlet sealing valve 174. .
  • step S70 When the control fully closed flag is “0”, in other words, when the acceleration / steady state is maintained (step S70: NO), the inlet sealing valve 174 is maintained in the fully open state, and the controller 201 controls the opening degree of the outlet integrated valve 181 and the opening degree of the bypass valve 191 according to the output (acceleration / steady state) request at that time, and also controls the rotational speed of the compressor 172 (step S79). .
  • step S50 when the operation request for the fuel cell stack 111 is not continued, that is, when there is a system stop request (step S50: NO), the controller 201 performs the process after step S100 to perform fuel processing.
  • the battery system 101 is stopped.
  • the controller 201 performs the following zero opening degree control on the inlet sealing valve 174 to ensure that the inlet sealing valve 174 is fully closed (mechanically fully closed) when the system is stopped. Degree).
  • the controller 201 performs full open control for making the bypass valve 191 fully open from the fully closed state (step S100). Further, zero opening control is performed to forcibly set the opening of the inlet sealing valve 174 to “0 °” by the motor 32, and the inlet sealing valve 174 is fully closed (mechanically fully closed) (Ste S101). Similarly, the zero opening degree control is performed on the outlet integrated valve 181 to fully close the outlet integrated valve 181 (step S102).
  • step S103 YES
  • step S104 the controller 201 performs full-closed control to fully close the bypass valve 191 (step S104).
  • the system 101 is stopped (step S105).
  • the inlet sealing valve 174 can be reliably closed to the mechanical fully closed opening by the motor 32 even if the step D occurs in the seal portion 21a.
  • the wear of the seal portion 21a in the mechanical fully closed position is greatly suppressed. Therefore, the sealing performance of the inlet sealing valve 174 is ensured when the system is stopped.
  • the zero opening degree control is performed also in the outlet integrated valve 181 similarly to the inlet sealing valve 174, the sealing performance of the outlet integrated valve 181 is ensured when the system is stopped. For this reason, the degree of sealing of the fuel cell stack 111 when the system is stopped can be increased, so that the reaction does not easily occur in the fuel cell stack 111, and deterioration due to oxidation in the fuel cell stack 111 can be suppressed.
  • the controller 201 when the controller 201 fully closes the inlet sealing valve 174 during deceleration, the controller 201 performs control full-closed opening degree control so that the opening degree of the inlet sealing valve 174 is the control full-closed opening degree ⁇ (FIG. 23, step S59).
  • the control fully closed opening degree control is performed at the time of deceleration with a large number of operations, the frequency at which the opening degree of the inlet sealing valve 174 becomes the control fully closed opening degree ⁇ increases. Therefore, the frequency with which the valve body 14 comes into contact with the seal portion 21a of the rubber sheet 21 provided on the valve seat 13 increases, and the wear of the seal portion 21a may increase. Therefore, in order to reduce the wear of the seal portion 21a, it is required to control the control fully closed opening degree ⁇ .
  • the control fully closed opening degree ⁇ is controlled in accordance with the wear amount in the seal portion 21a, the amount of air leakage at the inlet sealing valve 174 when performing the control fully closed opening degree control can be maintained at zero. Therefore, in the present embodiment, the amount of air leakage at the inlet sealing valve 174 is determined based on the power generation amount of the fuel cell stack 111, and the control fully closed opening ⁇ is changed (learned) to the valve closing (0 °) side. In the following description, for the sake of convenience, the control fully closed opening degree K ⁇ + is described instead of the control fully closed opening degree ⁇ .
  • the controller 201 performs the control shown in FIG. As shown in FIG. 31, the controller 201 performs control when the control fully closed opening degree control is being performed (step S201: YES), after the power for the remaining stack power generation is consumed (step S202: YES).
  • the fully closed opening degree K ⁇ + (opening degree ⁇ + (i)) is taken in (step S203). Note that the control fully closed opening degree K ⁇ + taken in step S203 is defined as the opening degree ⁇ + (i).
  • control full-closed opening degree control when the control full-closed opening degree control is being performed” can be considered, for example, when the inlet sealing valve 174 is fully closed during deceleration (step S59 in FIG. 23) as described above.
  • the present invention may include a case where the inlet sealing valve 174 is fully closed at times other than during deceleration.
  • Power remaining in the stack means the air remaining in the fuel cell stack 111 when the control full-closed opening degree control is performed and the supply of air to the fuel cell stack 111 is stopped. Is the amount of power generated by the fuel cell stack 111.
  • control fully closed opening degree K ⁇ + (opening degree ⁇ + (i)) is slightly larger than the mechanical fully closed opening degree (opening degree 0 °), and the valve body 14 comes into contact with the seal portion 21a to close the valve.
  • the opening degree at which the state is maintained for example, set to several degrees.
  • the control fully closed opening degree K ⁇ + (opening degree ⁇ + (i)) is set to 3 ° or less. Note that i is a positive integer.
  • the controller 201 takes in the stack power generation amount sekw, which is the power generation amount of the fuel cell stack 111 (step S204), and determines whether or not the stack power generation amount sekw is less than the predetermined power generation amount Akw (step S205). ).
  • the predetermined power generation amount Akw is a power generation amount that can be determined (deemed) that power generation is stopped in the fuel cell stack 111, and is, for example, 0 kW to several (for example, 3) kW.
  • the fuel cell stack 111 is maintained in a state where the hydrogen gas is rich (a state where there is a lot of hydrogen gas). Therefore, power generation of the fuel cell stack 111 is performed or stopped depending on whether or not air is supplied to the fuel cell stack 111. Therefore, when air is not leaked at the inlet sealing valve 174 when the control full-closed opening degree control is performed, the supply of air to the fuel cell stack 111 is stopped. Power generation stops. Then, when the power generation of the fuel cell stack 111 is continued, air is supplied to the fuel cell stack 111, so that it can be considered that air leakage occurs at the inlet sealing valve 174. .
  • the controller 201 determines the amount of air leakage at the inlet sealing valve 174 using the stack power generation amount sekw.
  • the stack power generation amount sekw is the amount of power generated by the fuel cell stack 111 after the air remaining in the fuel cell stack 111 is consumed when the control fully closed opening degree control is started.
  • the amount of air remaining in the fuel cell stack 111 when the control full-closed opening degree control is started is based on the air flow rate in the air supply passage 161 immediately before the control full-closed opening degree control is started ( For example, based on the rotational speed of the compressor 172).
  • control fully closed opening / closing control (update of control fully closed opening) is performed (step S206).
  • the “control fully closed opening valve closing control” is control for correcting (updating) the opening ⁇ + (i) (control fully closed opening) to the valve closing side (0 ° side).
  • step S207 After performing the control full-closed opening / closing control in step S206, after a predetermined time t (for example, several seconds (1 to 2 seconds)) has elapsed (step S207: YES), the controller 201 again sets the stack. The power generation amount sekw is taken in (step S204).
  • a predetermined time t for example, several seconds (1 to 2 seconds)
  • step S205 When the controller 201 determines that the stack power generation amount sekw is less than the predetermined power generation amount Akw (step S205: YES), no air leakage occurs at the inlet sealing valve 174 (leakage amount is zero). Therefore, the control fully closed position learning (memory of the control fully closed opening) is performed (step S208). That is, in step S208, the controller 201 performs learning (correction) to change the control fully closed opening degree K ⁇ + to the opening degree ⁇ + (i).
  • the controller 201 performs the control full-closed opening degree control, and after the power for the remaining stack power generation is consumed, the inlet sealing valve is based on the stack power generation amount sekw.
  • the amount of air leakage at 174 is determined.
  • the controller 201 determines that air leakage has occurred at the inlet sealing valve 174 because the stack power generation amount sekw is equal to or greater than the predetermined power generation amount Akw, the controller fully closes the opening degree K ⁇ + at the inlet.
  • the valve 174 is corrected to the valve closing side until the zero position opening at which the amount of air leakage at the valve 174 becomes zero.
  • the controller 201 determines that the stack power generation amount sekw is less than the predetermined power generation amount Akw and therefore no air leakage has occurred at the inlet sealing valve 174 (the leakage amount is zero), the control is fully closed. The opening degree K ⁇ + is maintained.
  • the controller 201 when the controller 201 performs the control fully closed opening degree control and determines that air leakage has occurred at the inlet sealing valve 174, the controller 201 fully opens and closes the control.
  • the degree K ⁇ + is corrected to the valve closing side until the zero position opening at which the amount of air leakage at the inlet sealing valve 174 becomes zero.
  • control fully closed opening degree K ⁇ + is set to such an opening degree that the surface pressure of the seal portion 21a acting on the seal surface 18 of the valve body 14 is lowered, the air is caused by slight wear of the seal portion 21a. Leakage is likely to occur.
  • the control fully closed opening degree K ⁇ + according to the wear amount of the seal portion 21a as in the present embodiment, the surface pressure of the seal portion 21a is lowered to suppress the wear of the seal portion 21a (durability). The amount of air leakage when performing the control fully closed opening degree control can be maintained at zero.
  • the controller 201 determines the amount of air leakage at the inlet sealing valve 174 based on the stack power generation amount sekw. As a result, it is not necessary to newly add a detection means such as a sensor for detecting the amount of air leakage at the inlet sealing valve 174, so that the cost can be reduced.
  • the stack power generation amount sekw is the amount of power generated after the air remaining in the fuel cell stack 111 is consumed when the control fully closed opening degree control is started. As a result, the stack power generation amount sekw becomes a power generation amount corresponding to the air leakage at the inlet sealing valve 174 that is generated when the control fully closed opening degree control is performed. Therefore, the amount of air leakage at the inlet sealing valve 174 can be accurately determined based on the stack power generation amount sekw.
  • step S90 the controller 201 causes the motor 32 to adjust the opening of the outlet integrated valve 181 to the auxiliary power generation amount corresponding to the required auxiliary power generation amount.
  • Auxiliary power generation opening degree control is performed to make the machine power generation opening degree. Note that “when auxiliary machine power generation is requested” is when power generation in the fuel cell stack 111 is required to drive auxiliary machines such as the compressor 172.
  • the auxiliary power generation opening is controlled to a very small opening, and the contact area between the valve body 14 and the seal portion 21a is large, so that the flow rate of air at the outlet integrated valve 181 due to wear of the seal portion 21a. (Leakage amount) may increase. As a result, the amount of air supplied to the fuel cell stack 111 increases and the amount of power generated by the fuel cell stack 111 becomes excessive. Therefore, in order to consume unnecessary power, fuel consumption decreases or unnecessary auxiliary equipment is installed. It is necessary to drive.
  • the air flow rate due to wear of the seal portion 21a is determined based on the stack power generation amount sekw when the auxiliary integrated valve 181 is controlled for the outlet integrated valve 181.
  • the increase is determined, and the auxiliary power generation control opening is changed (learned) to the valve closing side (0 ° side).
  • the controller 201 performs the control shown in FIG. As shown in FIG. 32, the controller 201 performs the required auxiliary machine power generation amount when performing auxiliary machine control for controlling the opening degree of the outlet integrated valve 181 in accordance with the auxiliary machine power generation request (step S301: YES). Bkw is obtained (step S302).
  • the “required auxiliary power generation amount Bkw” is the power generation amount in the fuel cell stack 111 required when performing auxiliary device control.
  • the controller 201 obtains the auxiliary power generation control opening degree ⁇ (target outlet valve control opening degree) based on the obtained required auxiliary power generation amount Bkw based on the relationship diagram shown in FIG. 33 (step S303).
  • the controller 201 controls the opening degree of the outlet integrated valve 181 to the auxiliary power generation outlet valve control opening degree t ⁇ (step S306). Then, after a predetermined time (for example, several seconds (1 to 2 seconds)) has elapsed (step S307: YES), the controller 201 captures the stack power generation amount sekw (step S308), and the stack power generation amount sekw is It is determined whether or not the required auxiliary power generation amount Bkw is equal to or less (step S309).
  • a predetermined time for example, several seconds (1 to 2 seconds)
  • the air in the outlet integrated valve 181 is based on the stack power generation amount sekw. Determine the flow rate.
  • the controller 201 takes in the correction control opening k ⁇ (i) (step S304).
  • the controller 201 determines that the stack power generation amount sekw is equal to or less than the required auxiliary power generation amount Bkw after performing the processes of steps S305 to S308 (step S309: YES)
  • the stack power generation amount sekw is predetermined. It is determined whether or not it is equal to or greater than the power generation amount (Bkw ⁇ Ckw) (step S311).
  • Ckw is, for example, 10% to 20% larger than Bkw.
  • step S311 determines that the stack power generation amount sekw is equal to or greater than the predetermined power generation amount (Bkw ⁇ Ckw) (step S311: YES)
  • the controller 201 performs auxiliary machine control position learning (memory) (step S312). In this way, the controller 201 corrects the auxiliary power generation opening degree to the valve closing side (0 ° side) until the first target position opening degree at which the air flow rate at the outlet integrated valve 181 becomes the first predetermined flow rate.
  • step S311 NO
  • the controller 201 determines that the stack power generation amount sekw is less than the predetermined power generation amount (Bkw ⁇ Ckw) (step S311: NO)
  • the air flow rate at the outlet integrated valve 181 is too low, that is, Since it is considered that the flow rate is further smaller than the second predetermined flow rate that is smaller than the first predetermined flow rate
  • the correction control opening degree k ⁇ (i) is obtained (step S313), and the processing after step S304 is performed.
  • the controller 201 corrects the auxiliary power generation opening to the valve opening side to the second target position opening at which the air flow rate at the outlet integrated valve 181 becomes the second predetermined flow rate.
  • the auxiliary machine control is a control performed at a very small opening, and since it is expected that the power generation request (opening) slightly shifts, feedback control based on the stack power generation amount sekw is performed. Do.
  • the controller 201 determines that the flow rate of air in the outlet integrated valve 181 is higher than the first predetermined flow rate when performing auxiliary power generation opening degree control
  • the auxiliary power generation opening is corrected to the valve closing side until the first target position opening at which the air flow rate at the outlet integrated valve 181 becomes the first predetermined flow rate.
  • the auxiliary power generation opening degree control when the air flow rate increases due to wear of the seal portion 21a in the outlet integrated valve 181, the auxiliary power generation opening degree is set according to the wear amount of the seal portion 21a.
  • the air flow rate at the outlet integrated valve 181 can be set to the target flow rate by correcting the valve closing side. Therefore, since unnecessary (excessive) air supply to the fuel cell stack 111 is suppressed, unnecessary (excessive) power generation in the fuel cell stack 111 can be suppressed. Therefore, since it is possible to suppress an excessive amount of power generation in the fuel cell stack 111, it is possible to suppress a reduction in fuel consumption, and it is not necessary to drive unnecessary auxiliary machines.
  • auxiliary power generation opening degree control when it is determined that the air flow rate in the outlet integrated valve 181 is further smaller than the second predetermined flow rate that is smaller than the first predetermined flow rate, the auxiliary power generation opening is corrected to the valve opening side to the second target position opening at which the air flow rate at the outlet integrated valve 181 becomes the second predetermined flow rate.
  • the auxiliary machines can be driven according to the auxiliary machine power generation request.
  • the controller 201 determines the air flow rate at the outlet integrated valve 181 based on the stack power generation amount sekw. This eliminates the need to add a detection means such as a sensor for detecting the air flow rate in the outlet integrated valve 181, thereby reducing the cost.
  • the rubber sheet 21 is provided on the valve seat 13, but the rubber sheet 21 may be provided on the valve body 14.
  • the rotary shaft 15 may be supported at both ends by the first bearing 37 and a bearing separately provided on the opposite side of the valve body 14.
  • the inlet sealing valve 174, the outlet integrated valve 181 and the bypass valve 191 are not limited to the valves configured in the above-described embodiments, and a poppet type valve in which the valve body moves in a direction perpendicular to the seat surface of the valve seat. Other valves may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本開示の一態様は、燃料電池システムにおいて、制御部は、上流側弁を全閉にする場合、駆動機構により上流側弁の開度を0よりも大きい制御全閉開度にする制御全閉開度制御を行い、前記制御全閉開度制御を行っているときに、前記上流側弁にて酸化剤ガスの洩れが発生したと判断したときには、前記制御全閉開度を前記上流側弁における前記酸化剤ガスの洩れ量がゼロとなるゼロ位置開度まで閉弁側に補正する。

Description

燃料電池システム
 本開示は、燃料ガスと酸化剤ガスとを供給することにより発電する燃料電池を備える燃料電池システムに関するものである。特に、燃料電池車に搭載される燃料電池システムに好適なものである。
 従来技術として、特許文献1に開示されるような燃料電池システムが存在する。この燃料電池システムは、燃料電池スタック(燃料電池)と、燃料電池スタックに酸化剤ガスを供給するためのガス供給通路と、燃料電池スタックへの酸化剤ガスの供給を制御する上流側弁と、ガス供給通路に設けられるコンプレッサと、燃料電池スタックに供給された酸化剤ガスを排出するためのガス排出通路と、燃料電池スタックからの酸化剤ガスの排出を制御する下流側弁と、燃料電池スタックを迂回させて酸化剤ガスをガス排出通路に排出するバイパス通路と、バイパス通路に設けられ、バイパス通路を流れる酸化剤ガスの流量を調節するバイパス弁とを備えている。
 そして、このような燃料電池システムにおいて、例えば燃料電池車の減速時に上流側弁の開度を制御全閉開度にする制御全閉開度制御を行うことを、本出願人が特願2017-041580号にて提案している。ここで、前記の制御全閉開度は、0°より僅かに大きく弁体が弁座に設けたシール部に接触して閉弁状態が維持される開度である。
特開2010-192251号公報
 しかしながら、上記した燃料電池システムでは、作動回数が多い減速時に制御全閉開度制御を行うので、上流側弁の開度が制御全閉開度となる頻度が多くなる。そのため、弁座に設けたシール部に弁体が接触する頻度が多くなりシール部が摩耗すると、上流側弁の開度を制御全閉開度にしたときに、上流側弁において酸化剤ガスの洩れが生じるおそれがある。したがって、燃料電池に不要な酸化剤ガスが供給されてしまうため、その酸化剤ガスと燃料電池に既に供給された燃料ガスとが反応して発電が行われて、燃料電池で不要な発電がなされるおそれがある。
 そこで、本開示は上記した問題点を解決するためになされたものであり、燃料電池での不要な発電を抑制できる燃料電池システムを提供することを目的とする。
 上記課題を解決するためになされた本開示の一形態は、燃料電池と、前記燃料電池に酸化剤ガスを供給するための酸化剤ガス供給通路と、前記酸化剤ガス供給通路に設けられた上流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、前記上流側弁は、弁座と、弁体と、前記弁体を駆動させて前記弁座と前記弁体との間を開閉させる駆動機構と、を有し、前記弁座又は前記弁体のいずれか一方に、閉弁時に前記弁体又は前記弁座の他方に接触するシール部を備えるシール部材が設けられ、前記制御部は、前記上流側弁を全閉にする場合、前記駆動機構により前記上流側弁の開度を0よりも大きい制御全閉開度にする制御全閉開度制御を行い、前記制御全閉開度制御を行っているときに、前記上流側弁にて前記酸化剤ガスの洩れが発生したと判断したときには、前記制御全閉開度を前記上流側弁における前記酸化剤ガスの洩れ量がゼロとなるゼロ位置開度まで閉弁側に補正すること、を特徴とする。
 この態様によれば、制御全閉開度制御を行っているときに、上流側弁にてシール部の摩耗による酸化剤ガスの洩れが発生したときには、シール部の摩耗量に応じて制御全閉開度を閉弁側に補正して、上流側弁にて酸化剤ガスの洩れ量をゼロにできる。そのため、燃料電池への不要な酸化剤ガスの供給が抑制されるので、燃料電池での不要な発電を抑制できる。したがって、燃料電池での不要な発電により生じた電力を消費するための補機類の電力消費による放電が不要になり、燃費の低下やNV(ノイズ・バイブレーション)の発生を抑制できる。
 上記の態様においては、前記制御部は、前記燃料電池の発電量に基づいて前記上流側弁における前記酸化剤ガスの洩れ量を判断すること、を特徴とする。
 この態様によれば、上流側弁における酸化剤ガスの洩れ量を検出するためのセンサなどの検出手段を新たに追加する必要がないので、コストを低減できる。
 上記の態様においては、前記燃料電池の発電量は、前記制御全閉開度制御を開始したときに前記燃料電池内に残存する前記酸化剤ガスが消費された後に発電した量であること、が好ましい。
 この態様によれば、燃料電池の発電量は、制御全閉開度制御を行っているときに発生した上流側弁における酸化剤ガスの洩れに対応した発電量となる。そのため、燃料電池の発電量に基づいて上流側弁における酸化剤ガスの洩れ量を正確に判断できる。
 上記課題を解決するためになされた本開示の他の形態は、燃料電池と、前記燃料電池に供給された酸化剤ガスを排出するための酸化剤ガス排出通路と、前記酸化剤ガス排出通路に設けられた下流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、前記下流側弁は、弁座と、弁体と、前記弁体を駆動させて前記弁座と前記弁体との間を開閉させる駆動機構と、を有し、前記弁座又は前記弁体のいずれか一方に、閉弁時に前記弁体又は前記弁座の他方に接触するシール部を備えるシール部材が設けられ、前記制御部は、補機類を駆動させるために前記燃料電池で発電させる補機類発電要求がある場合、前記駆動機構により前記下流側弁の開度を要求補機発電量に対応した補機発電開度にする補機発電開度制御を行い、前記補機発電開度制御を行っているときに、前記下流側弁における前記酸化剤ガスの流量が第1の所定流量よりも多いと判断したときには、前記補機発電開度を前記下流側弁における前記酸化剤ガスの流量が前記第1の所定流量となる第1目標位置開度まで閉弁側に補正すること、を特徴とする。
 この態様によれば、補機発電開度制御を行っているときに、下流側弁においてシール部の摩耗により酸化剤ガスの流量が増加したときには、シール部の摩耗量に応じて補機発電開度を閉弁側に補正して、下流側弁における酸化剤ガスの流量を目標流量にできる。そのため、燃料電池への不要な(余分な)酸化剤ガスの供給が抑制されるので、燃料電池での不要な(余分な)発電を抑制できる。したがって、燃料電池での発電量が過剰になることを抑制できるので、燃費の低下を抑制でき、また、不要な補機類を駆動させる必要もなくなる。
 上記の態様においては、前記制御部は、前記補機発電開度制御を行っているときに、前記下流側弁における前記酸化剤ガスの流量が前記第1の所定流量よりも少ない第2の所定流量よりもさらに少ないと判断したときには、前記補機発電開度を前記下流側弁における前記酸化剤ガスの流量が前記第2の所定流量となる第2目標位置開度まで開弁側に補正すること、を特徴とする。
 この態様によれば、補機発電開度を補正する制御を行うときに、下流側弁のハンチングの発生を抑制して、下流側弁における酸化剤ガスの流量を目標範囲内に制御することができる。そのため、燃料電池で要求される電力を発電できるので、補機類発電要求に応じて補機類を駆動させることができる。
 上記の態様においては、前記制御部は、前記燃料電池の発電量に基づいて前記下流側弁における前記酸化剤ガスの流量を判断すること、を特徴とする。
 この態様によれば、下流側弁における酸化剤ガスの流量を検出するためのセンサなどの検出手段を新たに追加する必要がないので、コストを低減できる。
 本開示の燃料電池システムによれば、燃料電池での不要な発電を抑制できる。
実施形態に係る燃料電池システムの概略構成図である。 入口封止弁の正面図である。 入口封止弁の上面図である。 弁体が弁座に接触した閉弁状態(全閉状態)における弁部を一部破断して示した斜視図である。 弁体が弁座から最も離れた全開状態における弁部を一部破断して示した斜視図である。 入口封止弁が閉弁状態であるときの弁座、弁体及び回転軸を示す側面図である。 図6のA-A断面図である。 図2のB-B断面図である。 図2のC-C断面図である。 弁ハウジングからエンドフレームを取り外した状態を示す正面図である。 モータの非駆動時において、メインギヤとリターンスプリングと中間ギヤの周辺の拡大図(一部断面図)である。 モータの非駆動時において、メインギヤに作用する力を示した模式図であり、回転軸の中心軸方向のメインギヤ側から見た図である。 図12のD-D断面図に相当する図であって、弁座と弁体と回転軸と軸受とメインギヤを表した模式図である。 モータの駆動時において、メインギヤに作用する力を示した模式図であり、回転軸の中心軸方向のメインギヤ側から見た図である。 図14のE-E断面図に相当する図であって、弁座と弁体と回転軸と軸受とメインギヤを表した模式図である。 図15に対応する図であって、図15のときよりもモータ駆動力を大きくしたときを表した図である。 モータの駆動時において、開度がαのときのメインギヤとリターンスプリングと中間ギヤの周辺の拡大図(一部断面図)である。 図16に対応する図であって、図16のときよりもモータ駆動力を大きくしたときを表した図である。 モータの駆動時において、開度がβのときのメインギヤとリターンスプリングと中間ギヤの周辺の拡大図(一部断面図)である。 開度と開口面積の関係図である。 ゴムシートを示す図である。 エア系の概略構成を示す図である。 減速時及びシステム停止時における制御内容を示すフローチャートである。 減速時における放電制御及び回生制御の内容を示すフローチャートである。 減速終了時及び加速/定常時の制御内容を示すフローチャートである。 機械的全閉状態と制御全閉状態における弁体とシール部との接触状態を示す図である。 開弁中にゴムシートのシール部が反り返った状態を示す図である。 制御全閉開度制御を実施した場合に弁体がシール部に接触・摺動する様子を示した図である。 図28に示す丸枠部分を拡大した図である。 図29に示す四角枠部分を拡大してシール部のみを示す図である。 制御全閉位置学習の内容を示すフローチャートである。 補機制御位置学習の内容を示すフローチャートである。 要求補機発電量と補機発電制御開度の関係を示す図である。
 本開示に係る実施形態である燃料電池システムについて、図1を参照しながら詳細に説明する。本実施形態では、燃料電池車に搭載され、その駆動用モータ(図示略)に電力を供給する燃料電池システムに、本開示を適用した場合について説明する。
 本実施形態の燃料電池システム101は、図1に示すように、燃料電池スタック(燃料電池)111と、水素系112と、エア系113を有する。
 燃料電池スタック111は、燃料ガスの供給と酸化剤ガスの供給を受けて発電を行う。本実施形態では、燃料ガスは水素ガスであり、酸化剤ガスはエアである。すなわち、燃料電池スタック111は、水素系112からの水素ガスの供給と、エア系113からのエアの供給を受けて発電を行う。そして、燃料電池スタック111で発電された電力は、インバータ(図示略)を介して駆動用モータ(図示略)に供給される。
 水素系112は、燃料電池スタック111のアノード側に設けられている。この水素系112は、水素供給通路121、水素排出通路122、充填通路123を備えている。水素供給通路121は、水素タンク131から燃料電池スタック111へ水素ガスを供給するための通路である。水素排出通路122は、燃料電池スタック111から排出される水素ガス(以下、適宜、「水素オフガス」という。)を排出するための通路である。充填通路123は、充填口151から水素タンク131に水素ガスを充填するための通路である。
 水素系112は、水素供給通路121において、水素タンク131側から順に、主止弁132、高圧レギュレータ133、中圧リリーフ弁134、圧力センサ135、インジェクタ部136、低圧リリーフ弁137、圧力センサ138を備えている。主止弁132は、水素タンク131から水素供給通路121への水素ガスの供給と遮断を切り換える弁である。高圧レギュレータ133は、水素ガスを減圧するための圧力調整弁である。中圧リリーフ弁134は、水素供給通路121における高圧レギュレータ133とインジェクタ部136の間の圧力が所定圧力以上になると開弁して圧力を所定圧力未満に調整する弁である。圧力センサ135は、水素供給通路121における高圧レギュレータ133とインジェクタ部136の間の圧力を検出するセンサである。インジェクタ部136は、水素ガスの流量を調節する機構である。低圧リリーフ弁137は、水素供給通路121におけるインジェクタ部136と燃料電池スタック111の間の圧力が所定圧力以上になると開弁して圧力を所定圧力未満に調整する弁である。圧力センサ138は、水素供給通路121におけるインジェクタ部136と燃料電池スタック111の間の圧力を検出するセンサである。
 また、水素系112は、水素排出通路122において、燃料電池スタック111側から順に、気液分離器141、排気排水弁142が配置されている。気液分離器141は、水素オフガス内の水分を分離する機器である。排気排水弁142は、気液分離器141からエア系113の希釈器182への水素オフガスや水分の排出と遮断を切り換える弁である。
 エア系113は、燃料電池スタック111のカソード側に設けられている。このエア系113は、エア供給通路161(酸化剤ガス供給通路)、エア排出通路162、バイパス通路163を備えている。エア供給通路161は、燃料電池システム101の外部から燃料電池スタック111へ、エアを供給するための通路である。エア排出通路162は、燃料電池スタック111から排出されるエア(以下、適宜、「エアオフガス」という。)を排出するための通路である。バイパス通路163は、エア供給通路161から燃料電池スタック111を介さずに(迂回して)エア排出通路162へ、エアを流すための通路である。
 エア系113は、エア供給通路161において、エアクリーナ171側から順に、コンプレッサ172、インタークーラ173、入口封止弁(上流側弁)174を備えている。エアクリーナ171は、燃料電池システム101の外部から取り込んだエアを清浄化する機器である。コンプレッサ172は、エアを燃料電池スタック111に供給する機器である。インタークーラ173は、エアを冷却する機器である。入口封止弁174は、燃料電池スタック111へのエアの供給と遮断を切り換える封止弁である。この入口封止弁174として、弁体のシール面が回転軸から偏心して配置される偏心弁が適用されている。入口封止弁174の詳細については、後述する。
 また、エア系113は、エア排出通路162において、燃料電池スタック111側から順に、出口統合弁(下流側弁)181、希釈器182が配置されている。
 出口統合弁181は、燃料電池スタック111の背圧を調整して燃料電池スタック111からのエアオフガスの排出量を制御する弁(調圧(流量制御)機能を有する弁)である。この出口統合弁181として、入口封止弁174と基本的に同一構成(ゴムシート21の構成が異なる場合がある)の偏心弁が適用されている。出口統合弁181の詳細については、後述する。
 希釈器182は、エアオフガス及びバイパス通路163を流れるエアにより、水素排出通路122から排出される水素オフガスを希釈する機器である。
 また、エア系113は、バイパス通路163において、バイパス弁191を備えている。バイパス弁191は、バイパス通路163におけるエアの流量を制御する弁である。バイパス弁191として、入口封止弁174や出口統合弁181とほぼ同一構成(ゴムシート21を備えていない)の偏心弁が適用されている。バイパス弁191の詳細については、後述する。
 また、燃料電池システム101は、システムの制御を司るコントローラ(制御部)201を備えている。コントローラ201は、燃料電池システム101に備わる各機器を制御するとともに各種判定を行う。なお、燃料電池システム101は、その他、燃料電池スタック111の冷却を行う冷却系(不図示)も有する。
 以上のような構成の燃料電池システム101において、水素供給通路121から燃料電池スタック111に供給された水素ガスは、燃料電池スタック111にて発電に使用された後、燃料電池スタック111から水素オフガスとして水素排出通路122と希釈器182を介して、燃料電池システム101の外部に排出される。また、エア供給通路161から燃料電池スタック111に供給されたエアは、燃料電池スタック111にて発電に使用された後、燃料電池スタック111からエアオフガスとしてエア排出通路162と希釈器182を介して、燃料電池システム101の外部に排出される。
 ここで、入口封止弁174、出口統合弁181及びバイパス弁191について、図2~図21を参照しながら説明する。なお、これらの弁は、入口封止弁174と出口統合弁181とでゴムシートの構成が異なる場合やバイパス弁191がゴムシートを備えていないことを除いて、基本的に同一構成であるため、以下では入口封止弁174を中心に説明し、適宜、出口統合弁181及びバイパス弁191についても説明する。
 図2及び図3に示すように、入口封止弁174は、弁部2と駆動機構部3を備える。弁部2は、内部にエア(空気)が流れる流路11を有する管部12(図8参照)を備え、流路11の中には弁座13、弁体14及び回転軸15が配置されている。回転軸15に対しては、駆動機構部3から駆動力(回転力)が伝えられる。駆動機構部3は、モータ32と減速機構33(図8や図9参照)を備えている。
 図4及び図5に示すように、流路11には段部10が形成され、その段部10に弁座13が組み込まれている。弁座13は、円環状をなし、中央に弁孔16を有する。弁孔16の縁部には、環状のシート面17が形成されている。弁体14は、円板状の部分を備え、その外周には、シート面17に対応する(接触する)環状のシール面18が形成されている。弁体14は、回転軸15に一体的に設けられ、回転軸15と一体的に回転する。
 本実施形態では、弁座13に、ゴムシート(シール部材)21が設けられている(図21参照)。そして、ゴムシート21に、シート面17が形成されている。このゴムシート21の詳細については、後述する。なお、バイパス弁191には、ゴムシート21が備わっていないため、シート面17は弁座13に形成されている。
 本実施形態では、入口封止弁174においては、図4及び図5において、弁座13に対して弁体14や回転軸15とは反対側(図において上側)に形成される流路11が燃料電池スタック111側(エアの流れの下流側)に配置され、弁座13に対して弁体14や回転軸15側(図において下側)に形成される流路11がコンプレッサ側(エアの流れの上流側)に配置されている。すなわち、本実施形態では、エアは、流路11内において、弁体14(回転軸15)側から弁座13側に向かって流れる。
 なお、出口統合弁181においては、入口封止弁174とは逆に、弁座13に対して弁体14や回転軸15とは反対側に形成される流路11が燃料電池スタック111側(エアの流れの上流側)に配置され、弁座13に対して弁体14や回転軸15側に形成される流路11が希釈器182側(エアの流れの下流側)に配置されている。すなわち、出口統合弁181では、エアは、流路11内において、弁座13側から弁体14(回転軸15)側に向かって流れる。
 また、バイパス弁191においては、弁座13に対して弁体14や回転軸15側に形成される流路11がエア供給通路161側(エアの流れの上流側)に配置され、弁座13に対して弁体14や回転軸15とは反対側に形成される流路11がエア排出通路162側(エアの流れの下流側)に配置されている。すなわち、バイパス弁191では、エアは、流路11内において、弁体14(回転軸15)側から弁座13側に向かって流れる。
 図6及び図7に示すように、回転軸15の中心軸Lsは、弁体14の径方向(詳しくは、弁体14の円板状の部分の径方向)と平行に伸び、弁孔16の中心軸P1から弁孔16の径方向へ偏心して配置されると共に、弁体14のシール面18が回転軸15の中心軸Lsから弁体14の中心軸Lvが伸びる方向へ偏心して配置されている。
 また、弁体14について回転軸15の中心軸Lsを中心に回転させることにより、弁体14のシール面18が、シート面17に面接触する閉弁位置(図4参照)とシート面17から最も離れる全開位置(図5参照)との間で移動可能となっている。
 図8及び図9に示すように、金属製又は合成樹脂製の弁ハウジング35は、流路11及び管部12を備えている。また、金属製又は合成樹脂製のエンドフレーム36は、弁ハウジング35の開口端を閉鎖している。弁体14及び回転軸15は、弁ハウジング35内に設けられている。回転軸15は、その先端部にピン15aを備えている。このように、ピン15aは、回転軸15の中心軸Ls方向の一方(弁体14側)の端部に設けられている。ピン15aの径は、回転軸15におけるピン15a以外の部分の径よりも小さい。なお、回転軸15の中心軸Ls方向の他方(メインギヤ41側)の端部には、基端部15bが設けられている。
 回転軸15は、ピン15aがある先端側を自由端とし、その先端部が管部12の流路11に挿入されて配置されている。また、回転軸15は、互いに離れて配置された2つの軸受である第1軸受37と第2軸受38を介して弁ハウジング35に対し回転可能に片持ち支持されている。第1軸受37と第2軸受38は、ともにボールベアリングにより構成されている。第1軸受37と第2軸受38は、回転軸15の中心軸Ls方向について弁体14とメインギヤ41との間の位置に配置され、回転軸15を回転可能に支持している。本実施形態では、第1軸受37が、第2軸受38に対してメインギヤ41側の位置に配置されている。弁体14は、回転軸15の先端部に形成されたピン15aに対して溶接により固定され、流路11内に配置されている。
 エンドフレーム36は、弁ハウジング35に対し複数のクリップ39(図2及び図3参照)により固定されている。図8及び図9に示すように、回転軸15の基端部15bには、扇形ギヤを備えるメインギヤ41が固定されている。弁ハウジング35とメインギヤ41との間には、リターンスプリング力Fs1を発生させるリターンスプリング40が設けられている。リターンスプリング力Fs1は、回転軸15を閉弁方向に回転させる力であって、弁体14を閉弁方向へ付勢する力である。
 リターンスプリング40は、線材がコイル状に巻かれて形成された弾性体である。リターンスプリング40は、その線材の両端部において、図11に示すように、奥側フック40aと、手前側フック40bを備えている。奥側フック40aと手前側フック40bは、リターンスプリング40の周方向について約180°離れた位置に配置されている。奥側フック40aは、弁ハウジング35側(図11の紙面奥側)に配置され、弁ハウジング35のスプリングフック部35c(図19参照)に接触している。一方、手前側フック40bは、メインギヤ41側(図11の紙面手前側)に配置され、メインギヤ41のスプリングフック部41cに接触している。
 また、図8~図11に示すように、メインギヤ41は、全閉ストッパ部41aと、歯車部41bと、スプリングフック部41cと、スプリングガイド部41dなどを備えている。そして、メインギヤ41の周方向(図11の反時計方向)について、順に、全閉ストッパ部41a、歯車部41b、スプリングフック部41cが形成されている。メインギヤ41は、回転軸15と一体的に設けられ、モータ32で発生する駆動力を受給する。全閉ストッパ部41aは、開度θが「0」であるときに、弁ハウジング35の全閉ストッパ部35bに接触する部分である。
 図8に示すように、モータ32は、弁ハウジング35に形成された収容凹部35aに収容されて固定されている。モータ32は、回転軸15を開弁、および、閉弁方向に回転させる駆動力を発生させる。モータ32は、弁体14を開閉駆動するために減速機構33を介して回転軸15に駆動力が伝達されるようにして連結されている。すなわち、モータ32の出力軸32a(図10参照)には、モータギヤ43が固定されている。このモータギヤ43は、中間ギヤ42を介してメインギヤ41に駆動力が伝達されるようにして連結されている。
 中間ギヤ42は、大径ギヤ42aと小径ギヤ42bを有する二段ギヤであり、ピンシャフト44を介して弁ハウジング35に回転可能に支持されている。大径ギヤ42aの直径は、小径ギヤ42bの直径よりも大きい。大径ギヤ42aには、モータギヤ43が駆動連結され、小径ギヤ42bには、メインギヤ41が駆動連結されている。本実施形態では、減速機構33を構成するメインギヤ41と中間ギヤ42とモータギヤ43は、樹脂により形成されている。
 なお、モータ32は、本開示における「駆動機構」の一例である。また、中間ギヤ42(駆動伝達部)は、モータ32の駆動力を回転軸15に伝達する。
 詳しくは後述するが、このような構成の入口封止弁174は、図4に示すような閉弁状態(弁体14のシール面18の全周と弁座13(ゴムシート21)のシート面17の全周とが接触している状態)から、モータ32に通電させると、メインギヤ41にギヤ歯を押す力(モータ駆動力Fm1(図14参照))が加わり、てこの原理により弁体14を弁座13に向かう方向へ移動させる(図15参照)。その後、モータ32に印加する駆動電圧(電流)が徐々に大きくなると、出力軸32aとモータギヤ43が正方向(弁体14を開弁させる方向)へ回転して、その回転が中間ギヤ42により減速されてメインギヤ41に伝達される。そして、リターンスプリング40により発生する力であって閉弁方向へ付勢するリターンスプリング力Fs1に抗して、弁体14が開弁して流路11が開かれる(図16及び図18参照)。その後、弁体14が開弁する途中でモータ32に印加する駆動電圧が一定に維持されると、そのときの弁体14の開度にてモータ駆動力Fm1とリターンスプリング力Fs1とが均衡して、弁体14は所定開度に保持される。
 そこで、本実施形態における入口封止弁174の作用について詳細に説明する。まず、モータ32へ通電がなされていないモータ32の非駆動時(モータ32が停止しているとき)には、開度θが「0」の状態、すなわち、入口封止弁174が全閉(機械的全閉開度)になっている。そして、このとき、図11に示すように、メインギヤ41の全閉ストッパ部41aは、弁ハウジング35の全閉ストッパ部35bに接触している。
 このとき、回転軸15の周方向についての力関係を考えると、図12に示すように、メインギヤ41のスプリングフック部41cには、リターンスプリング40の手前側フック40bからリターンスプリング力Fs1が加わっている。なお、図12に示すように、回転軸15の中心軸Lsを原点とし、x軸を水平方向とし、y軸を鉛直方向とする直交座標系において、+x方向かつ+y方向を第1象限、-x方向かつ+y方向を第2象限、-x方向かつ-y方向を第3象限、+x方向かつ-y方向を第4象限とする。このとき、奥側フック40aおよび全閉ストッパ部41aは第1象限に位置するように配置され、手前側フック40bおよびスプリングフック部41cは第3象限に位置するように配置されている。
 ここで、てこの原理において、全閉ストッパ部41aに支点が設定され、スプリングフック部41cに力点が設定され、全閉ストッパ部41aとスプリングフック部41cとの間の中央部に作用点が設定されるとする。すると、スプリングフック部41cに加わるリターンスプリング力Fs1により、全閉ストッパ部41aとスプリングフック部41cとの間の中央部に力Fs2が作用する。なお、(力Fs2)=2×(リターンスプリング力Fs1)である。なお、図12において、全閉ストッパ部41aとスプリングフック部41cとの間の距離は「2R」としている。
 このとき、回転軸15の中心軸Ls方向に沿った断面における力関係を考えると、図13に示すように、力Fs2の+y方向成分は、分力Fs3となる。なお、+y方向とは、第1軸受37や第2軸受38の中心軸Lj方向(x方向)に対して垂直な方向であって、弁体14に対して弁座13方向(図12や図13の図面上方向)である。また、(分力Fs3)=(力Fs2)×(sinθ1)である。なお、図12に示すように、角度θ1は、x方向に対して、全閉ストッパ部41aとスプリングフック部41cの配列方向がなす角度である。
 そして、この分力Fs3により、スプリングガイド部41dの位置では、力Fs4(反弁座方向付勢力)が+y方向に作用している。なお、(力Fs4)=(分力Fs3)×Lb/Laである。このように、力Fs4は、リターンスプリング力Fs1に起因して発生する力であって、かつ、第1軸受37と第2軸受38の中心軸Ljに対して垂直な方向に作用する力である。なお、距離Laは、x方向について第1軸受37が配置される位置から力Fs4が作用する位置までの距離である。また、距離Lbは、x方向について第1軸受37が配置される位置から分力Fs3が作用する位置までの距離である。
 このようにスプリングガイド部41dの位置で力Fs4が+y方向に作用することにより、スプリングガイド部41dと一体の回転軸15は、第1軸受37を支点に、図13における時計回りに回転して傾く。これにより、てこの原理により、回転軸15の基端部15bに設けられるメインギヤ41は+y方向に移動する一方で、回転軸15のピン15aに設けられる弁体14は-y方向に移動する。そのため、弁体14は、弁座13から離れる方向(反弁座方向)に移動する。このようにして、モータ32の非駆動時であって、入口封止弁174が閉弁状態であるときに、弁体14は、力Fs4により、弁座13から離れる方向に移動する。なお、このとき、回転軸15は、第2軸受38により制止される。
 本実施形態では、このとき、図13に示すように、弁体14は、弁座13に設けられたゴムシート21(シール部材)に接触している。詳しくは、図21に示すように、弁体14は、ゴムシート21に備わるシール部21aに接触している。なお、このとき、弁体14は、シール部21aのシート面17の全周に亘って接触している。シール部21aは、弁体14に押されて撓むことができるように形成されている。そして、シール部21aは、入口封止弁174の上流側圧力が下流側圧力よりも大きくなる(前後差圧が大きくなる)にしたがって弁体14のシール面18に接触する面圧が高められる形状をなしている。例えば、シール部21aとして、ビードシールやリップシール等を適用することができる。このようにして、弁座13と弁体14との間はゴムシート21で封止(シール)されており、入口封止弁174は簡単な構成でシール性が確保されている。
 これにより、燃料電池システム101が搭載された車両の減速時において、燃料電池スタック111へのエアの供給を停止する場合に、入口封止弁174を全閉にしてエア供給通路161の圧力を高める、あるいは燃料電池スタック111のスタック圧を下げることにより、燃料電池スタック111の入口側でエアを封止することができる。従って、燃料電池スタック111へのエアの供給を停止する際に、燃料電池スタック111への余剰(不要)なエアの供給を少なくすることができるので、減速時における燃料電池スタック111での不要な発電を最小限に抑えることができる。
 また、このとき、開度θと開口面積Sの関係は図20に示す点P1aの様になる。ここで、「入口封止弁174が全閉(機械的全閉)状態であるとき」とは、開度θ(弁体14の開度)が「0」のときであり、言い換えると、回転軸15の回転角度が全閉のときの角度(回転軸15の回転範囲内における最小角度)であるときである。
 その後、モータ32へ通電がなされるモータ32の駆動時には、中間ギヤ42の小径ギヤ42b(図11参照)からメインギヤ41の歯車部41b(図11参照)に対して当該メインギヤ41を回転させようとするモータ駆動力Fm1が作用する。このとき、回転軸15の周方向についての力関係を考えると、図14に示すように、モータ駆動力Fm1は、-y方向に作用する。なお、-y方向とは、第1軸受37や第2軸受38の中心軸Lj方向(x方向)に対して垂直な方向であって、弁座13に対して弁体14が配置される方向(図12や図13の図面下方向)である。
 そして、モータ駆動力Fm1により、回転軸15の中心軸Lsの位置では、力Fm2が-y方向に作用している。さらに、回転軸15の中心軸Ls方向に沿った断面における力関係を考えると、図15に示すように、スプリングガイド部41dの位置では、力Fm3(弁座方向付勢力)が-y方向に作用している。なお、(力Fm3)=(力Fm2)×Lb/Laである。このように、モータ32の駆動時に、力Fm3が発生する。この力Fm3は、モータ駆動力Fm1に起因して発生する力であって、かつ、第1軸受37と第2軸受38の中心軸Ljに対して垂直な方向に作用する力である。そして、力Fm3は、第1軸受37を支点として回転軸15を回転させて傾けて、弁体14を弁座13に向かう方向に付勢する。
 そして、図15に示すように、力Fm3が前記の力Fs4よりも大きくなると、メインギヤ41のスプリングガイド部41dと一体の回転軸15は、第1軸受37を支点に図15における反時計回りに回転して傾く。これにより、てこの原理により、メインギヤ41は-y方向に移動する一方で、弁体14は+y方向に移動する。このようにして、弁体14は、力Fm3により、弁座13に向かう方向(弁座方向)に移動する。
 本実施形態では、このとき、ゴムシート21のシール部21aは、弁体14に押されて変形しているが、シール部21aの変形は弾性領域内で行われ、塑性変形はしない。なお、このとき、開度θと開口面積Sの関係は図20に示す、点P1bの様になる。
 その後、モータ32に印加させる駆動電圧が大きくなってモータ駆動力Fm1が大きくなると、回転軸15は、第1軸受37を支点に図16における反時計回りにさらに回転して傾く。これにより、メインギヤ41は-y方向にさらに移動する一方で、弁体14は+y方向にさらに移動する。このとき、回転軸15は中心軸Lsを中心に回転し、開度θ(回転軸15の回転角度)が開度「0°」から僅かに開いた開度「α」になる(図17参照)。そして、このとき、図17に示すように、メインギヤ41の全閉ストッパ部41aは、弁ハウジング35の全閉ストッパ部35bから離れる。この状態が、後述する制御全閉状態であり、開度「α」が制御全閉開度となる。制御全閉開度の詳細については後述する。なお、図16に示すように、回転軸15は、第2軸受38により制止される。また、このとき、開度θと開口面積Sは図20に示す点P1cの様になり、開口面積Sはほぼゼロである。
 そして、モータ駆動力Fm1がさらに大きくなると、回転軸15は中心軸Lsを中心にさらに回転し、図18に示すように、弁体14が弁座13から離れて、開口面積Sが増加して開弁される。このとき、開度θが「β」になる(図19参照)。また、このとき、開度θと開口面積Sの関係は図20に示す点P1dの様になる。以上のようにして、モータ駆動力Fm1による入口封止弁174の開弁動作が行われる。
 上記のような構成を出口統合弁181も有している。ただし、出口統合弁181におけるゴムシートのシール部は、出口統合弁181の上流側圧力が下流側圧力よりも大きくなるにしたがって、弁体のシール面に接触する面圧が下がるようになっている。また、バイパス弁191は、ゴムシート21を備えていない点を除き、上記のような構成を有している。このようにエア系113では、図22に示すように、入口封止弁174、出口統合弁181及びバイパス弁191として、入口封止弁174と出口統合弁181とでゴムシートの構成が異なる場合やバイパス弁191がゴムシートを備えていないことを除いて、基本的な構成が同一である偏心弁を使用して、エア系113における弁の共通化を図っている。また、入口封止弁174、出口統合弁181及びバイパス弁191において、ゴムシート以外の構成は共通しているので、開閉制御(動作)自体は同一であるため、これらの弁を協調制御することができる。これらのことにより、燃料電池システム101のコストを低減することができるとともに、コントローラ201における弁の開閉制御を簡素化することができる。
 ここで、入口封止弁174では、システム停止時や減速時に全閉にする際、弁体14のシール面18がゴムシート21のシール部21aを摺りながら、弁体14が弁座13に着座する。そのため、シール部21aの摩耗が進行していくと、入口封止弁174のシール性を確保することができなくなってしまうおそれがある。そして、システム停止時において、入口封止弁174のシール性を確保することができなくなると、システム停止時における燃料電池スタック111の密閉度が低下し、燃料電池スタック111内で反応が起こり、燃料電池スタック111内で酸化による劣化が生じてしまう。
 そこで、燃料電池システム101において、減速時又はシステム停止時に燃料電池スタック111へのエアの供給を停止する場合、燃料電池スタック111の劣化防止のために、上記の制御を基本とした以下に述べる制御を実施して、システム停止時において入口封止弁174のシール性を確保することができるように、シール部21aの摩耗を抑制することが好ましい。
 具体的には、コントローラ201が、図23~図25に示す制御フローチャートに基づく制御を実行すればよい。まず、コントローラ201は、図23に示すように、燃料電池スタック111の作動要求が継続しているか否かを判断する(ステップS50)。燃料電池スタック111の作動要求が継続している場合には(ステップS50:YES)、コントローラ201は、車両が加速/定常状態から減速状態になったか否かを判断する(ステップS51)。
 車両が加速/定常状態から減速状態になると(ステップS51:YES)、コントローラ201は、放電解除フラグが「0」であるか否かを判断する(ステップS52)。放電解除フラグは、「0」の場合に放電要求があることを示し、「1」の場合に放電要求がないことを示す。なお、放電要求は、減速時に燃料電池スタック111で発電された電気をバッテリに充電することができない場合に生じる。
 そして、放電解除フラグが「0」である場合には(ステップS52:YES)、コントローラ201は、バイパス弁191を全閉状態から全開にするための全開制御を実施する(ステップS53)。これにより、入口封止弁174にコンプレッサ172のコンプレッサ圧が作用しなくなるため、入口封止弁174の前後差圧が小さくなる。なお、放電解除フラグが「1」である場合には(ステップS52:NO)、コントローラ201は、後述するステップS90~S93の処理を実施する。
 また、出口統合弁181を減速前の出力(加速/定常)要求に応じた開度から制御全閉開度αにする制御全閉開度制御を実施する(ステップS54)。なお、このステップS54の処理は省略することもできるが、ステップS53の処理に加えてステップS54の処理を行うことにより、どちらか一方の弁が故障(バイパス弁閉故障又は出口統合弁開故障)した場合であっても、入口封止弁174の前後差圧を小さくすることができる。
 さらに、コントローラ201は、入口封止弁174の開度を全開状態から所定開度γに閉じる閉弁制御を実施する(ステップS55)。なお、所定開度γとしては、弁体14がシール部21aに接触する少し手前の開度(例えば、5~15°程度)を設定すればよい。本実施形態では、所定開度γをγ=10°に設定している。
 次に、コントローラ201は、コンプレッサ172のコンプレッサ圧(Pin)とスタック圧pstackを取り込み(ステップS56)、入口封止弁174の前後差圧ΔPIN(=Pin-pstack)を算出する(ステップS57)。そして、この前後差圧ΔPINが所定圧Pより小さくなると(ステップS58:YES)、コントローラ201は、入口封止弁174の開度を制御全閉開度にする制御全閉開度制御を実施する(ステップS59)。つまり、コントローラ201は、モータ32を制御して入口封止弁174を制御全閉開度αまで閉じていく。これにより、入口封止弁174の開度が、所定開度γから制御全閉開度αとなる。
 なお、制御全閉開度αは、機械的全閉開度(開度0°)より僅かに大きく、弁体14がシール部21aに接触して閉弁状態が維持される開度であって、例えば、数度に設定すれば良い。本実施形態では、制御全閉開度αをα=3°に設定している。また、所定圧Pは、ゴムシート21のシール部21aが確実に変形しない圧力(数kPa程度)を設定すればよい。
 このとき、バイパス弁191が全開にされているため、基本的には入口封止弁174の前後差圧ΔPINは小さくなっている。しかしながら、例えば、バイパス弁191の弁孔径を小さくした場合等に、バイパス弁191を開弁してから入口封止弁174の前後差圧ΔPINが小さくなるまでに時間がかかり、入口封止弁174の前後差圧ΔPINが下がる前に、入口封止弁174が制御全閉開度αにされてしまうおそれがある。そうすると、シール部21aが変形している状態で入口封止弁174が制御全閉となるおそれがある。
 そのため、入口封止弁174を制御全閉にする場合、上記のように、まず入口封止弁174を所定開度γまで閉弁し、入口封止弁174の前後差圧ΔPINが所定圧Pより小さくなった後に、制御全閉開度制御を行うことにより、シール部21aが変形した状態で入口封止弁174が制御全閉にされてしまうことを確実に回避することができる。
 その後、コントローラ201は、ステップS59で制御全閉開度制御が実施された入口封止弁174の開度が制御全閉開度αになったか否かを判断する(ステップS60)。そして、入口封止弁174の開度が制御全閉開度αになったことを確認すると(ステップS60:YES)、入口封止弁174の制御全閉フラグを「1」して(ステップS61)、全開状態になっているバイパス弁191を全閉にするための全閉制御を実施する(ステップS62)。これにより、入口封止弁174のシール部21aに対してコンプレッサ172のコンプレッサ圧が作用して、シール部21aが弁体14に押しつけられる。そのため、入口封止弁174において、開度が制御全閉開度αに制御されても、シール性を確保することができる。従って、減速時に燃料電池スタック111へのエアの供給を停止する際、入口封止弁174を機械的全閉にせずに制御全閉としても、入口封止弁174でエアを封止することができる。
 このように、入口封止弁174では、減速時における全閉開度(制御全閉開度)が、システム停止時における全閉開度(機械的全閉開度)と異なっている。そのため、図26に示すように、システム停止時における機械的全閉開度状態での弁体14とシール部21aとの接点端CP1の位置と、減速時における制御全閉開度状態での弁体14とシール部21aとの接点端CP2の位置とが異なる。そして、入口封止弁174が全閉にされる作動回数の多い減速時における全閉開度位置(制御全閉開度位置:開度θ=α)でのシール部21aの摩耗は生じてしまうが、減速時に比べると大幅に作動回数の少ないシステム停止時における全閉開度位置(機械的全閉位置:開度θ=0)でのシール部21aの摩耗を大幅に抑制することができる。従って、システム停止時における入口封止弁174のシール性を確保することができる。なお、入口封止弁174において、制御全閉開度位置でシール部21aの摩耗が生じたとしても、減速時にはコンプレッサ172のコンプレッサ圧によりシール部21aが弁体14に押しつけられるため、シール性を確保することができる。
 そして、図24に示すように、放電要求がある場合には(ステップS80:YES)、コントローラ201は、コンプレッサ172のコンプレッサ圧(Pin)及びコンプレッサ回転数(cprpm)を取り込む(ステップS81)。次に、コンプレッサ圧(Pin)が放電目標圧Aより小さい(Pin<A)か否かを判断する(ステップS82)。このとき、コンプレッサ圧(Pin)が放電目標圧Aより小さい場合には(ステップS82:YES)、バイパス弁191を閉弁制御してコンプレッサ圧(Pin)を上げる(ステップS83)。一方、コンプレッサ圧(Pin)が放電目標圧A以上である場合には(ステップS82:NO)、バイパス弁191を開弁制御してコンプレッサ圧(Pin)を下げる(ステップS84)。
 次に、コントローラ201は、コンプレッサ回転数(cprpm)が放電目標回転数Bより小さい(cprpm<B)か否かを判断する(ステップS85)。このとき、コンプレッサ回転数(cprpm)が放電目標回転数Bより小さい場合には(ステップS85:YES)、コンプレッサ172の回転数を上げる(ステップS86)。一方、コンプレッサ回転数(cprpm)が放電目標回転数B以上である場合には(ステップS85:NO)、コンプレッサ172の回転数を下げる(ステップS87)。
 このような放電制御により、コンプレッサ圧及びコンプレッサ回転数をそれぞれ放電目標圧A及び放電目標回転数B付近に制御して、燃料電池スタック111で余剰に発電された電気を効率よくコンプレッサ172で放電することができる。
 一方、放電要求がない場合、言い換えるとバッテリが充電可能である場合には(ステップS80:NO)、コントローラ201は、放電解除フラグを「1」にする(ステップS88)。そして、補機類発電要求が無いか否かを判断する(ステップS90)。補機類発電要求が無い場合には(ステップS90:YES)、回生ブレーキ制御を実施して、燃料電池スタック111で発電された電気をバッテリに充電するために、回生ブレーキ要求に応じて、バイパス弁191を開弁しコンプレッサ172の回転数を制御する。なお、コンプレッサ172が一定回転数を維持していても、バイパス弁191が開弁されているため、コンプレッサ172の負荷(電力消費)は小さい。
 そして、補機類発電要求が有る場合には(ステップS90:NO)、コントローラ201は、入口封止弁174の制御全閉フラグが「0」であるか否かを判断する(ステップS92)。入口封止弁174の制御全閉フラグが「0」である場合には(ステップS92:YES)、補機類発電要求に応じて、出口統合弁181の開度とバイパス弁191の開度とをそれぞれ制御するとともに、コンプレッサ172の回転数を制御する(ステップS93)。なお、入口封止弁174の制御全閉フラグが「1」である場合には(ステップS92:NO)、後述するステップS70以降の処理を行う。
 図23に戻って、加速/定常状態が維持されている場合、又は減速が終了した場合には(ステップS51:NO)、コントローラ201は、図25に示すように、入口封止弁174の制御全閉フラグが「1」であるか否かを判断する(ステップS70)。制御全閉フラグが「1」である場合には(ステップS70:YES)、減速制御からの復帰制御を行う。すなわち、コントローラ201は、バイパス弁191を全閉状態から全開にするための全開制御を実施する(ステップS71)。このとき、出口統合弁181については制御全閉開度制御が継続される(ステップS72)。なお、ステップS72の処理は、ステップS54の処理を省略する場合には不要となる。
 このとき、入口封止弁174の前後差圧ΔPINが大きいと、その差圧によってゴムシート21のシール部21aが反り返って変形するおそれがある。そして、図27に示すように、入口封止弁174を開弁していくときに、ゴムシート21のシール部21aが反り返って変形してしまうと、シール部21aが異常に摩耗するおそれがある。そして、シール部21aが異常に摩耗すると、入口封止弁174が全閉時においてシール性を確保することができなくなる。
 そこで、コントローラ201は、コンプレッサ172のコンプレッサ圧(Pin)とスタック圧pstackを取り込み(ステップS73)、入口封止弁174の前後差圧ΔPIN(=Pin-pstack)を算出する(ステップS74)。この前後差圧ΔPINが所定圧Pより小さくなると(ステップS75:YES)、コントローラ201は、入口封止弁174の開度を制御全閉開度から全開にする全開制御を行う(ステップS76)。その後、コントローラ201は、入口封止弁174の制御全閉フラグを「0」にして(ステップS77)、放電解除フラグを「0」にする(ステップS78)。
 これにより、入口封止弁174の前後差圧ΔPINが小さくなってから、入口封止弁174が開弁されるため、入口封止弁174の開弁時にゴムシート21のシール部21aが反り返って変形することを確実に防止することができる。従って、減速終了後に入口封止弁174を開弁させる時に、ゴムシート21のシール部21aが異常に摩耗することを防止することができ、入口封止弁174のシール性を確保することができる。
 なお、制御全閉フラグが「0」である場合、言い換えると加速/定常状態が維持されている場合には(ステップS70:NO)、入口封止弁174は全開状態が維持されており、コントローラ201は、そのときの出力(加速/定常)要求に応じて、出口統合弁181の開度とバイパス弁191の開度とをそれぞれ制御するとともに、コンプレッサ172の回転数を制御する(ステップS79)。
 図23に戻って、燃料電池スタック111の作動要求が継続していない、つまりシステムの停止要求がある場合には(ステップS50:NO)、コントローラ201は、ステップS100以降の処理を実施して燃料電池システム101を停止させる。
 ここで、減速時に制御全閉開度制御が実施されると、弁体14とシール部21aとが摺動する回数が、システム停止時における機械的全閉開度位置よりも、図28に示す減速時における制御全閉開度位置で大幅に多くなる。そのため、図29に示すように、制御全閉開度位置において弁体14とシール部21aとが接触・摺動する部分(網掛け部分)でシール部21aが摩耗していくので、図30に示すように、シール部21aに段差Dが発生してしまうおそれがある。そして、シール部21aに段差Dが発生すると、システム停止時に入口封止弁174がリターンスプリング40の付勢力(リターンスプリング力Fs1)だけでは機械的全閉開度(開度「0°」)まで閉じないおそれがある。
 そこで、システム停止時には、コントローラ201は入口封止弁174に対して、以下に述べるゼロ開度制御を実施して、システム停止時において入口封止弁174を確実に全閉(機械的全閉開度)にする。
 すなわち、コントローラ201は、バイパス弁191を全閉状態から全開にするための全開制御を実施する(ステップS100)。また、入口封止弁174の開度を、モータ32によって強制的に「0°」にするゼロ開度制御を実施して、入口封止弁174を全閉(機械的全閉)にする(ステップS101)。同様に、出口統合弁181に対してもゼロ開度制御を実施して、出口統合弁181を全閉にする(ステップS102)。
 その後、コントローラ201は、コンプレッサ172を停止させ、回転数が「0」になると(ステップS103:YES)、バイパス弁191を全開から全閉にする全閉制御を実施し(ステップS104)、燃料電池システム101を停止させる(ステップS105)。
 このようにして燃料電池システム101を停止することにより、シール部21aに段差Dが生じたとしても、モータ32によって入口封止弁174を確実に機械的全閉開度まで閉じることができる。そして、上記したように機械的全閉位置におけるシール部21aの摩耗が大幅に抑制されている。従って、システム停止時において入口封止弁174のシール性が確保される。また、本実施形態では、出口統合弁181においても入口封止弁174と同様にゼロ開度制御を実施するため、システム停止時において出口統合弁181のシール性も確保される。そのため、システム停止時における燃料電池スタック111の密閉度を高めることができるので、燃料電池スタック111内で反応が起こり難くなり、燃料電池スタック111内での酸化による劣化を抑制することができる。
 次に、入口封止弁174の制御全閉位置学習について説明する。前記のように、コントローラ201は、減速時に入口封止弁174を全閉にする場合、入口封止弁174の開度を制御全閉開度αにする制御全閉開度制御を行う(図23のステップS59参照)。ここで、制御全閉開度制御は作動回数が多い減速時に行われるので、入口封止弁174の開度が制御全閉開度αとなる頻度が多くなる。そのため、弁座13に設けたゴムシート21のシール部21aに弁体14が接触する頻度が多くなり、シール部21aの摩耗が多くなるおそれがある。したがって、シール部21aの摩耗を低減するためには、制御全閉開度αを制御することが求められる。
 また、万が一、シール部21aの摩耗が多くなり、入口封止弁174の開度を制御全閉開度αにしたときに入口封止弁174においてエアの洩れが生じた場合には、燃料電池スタック111に不要なエアが供給される。そのため、供給される不要なエアと燃料電池スタック111に既に供給された水素ガスとが反応して発電が行われて、燃料電池スタック111で不要な発電がなされる。そして、燃料電池で不要な発電が多くなされると、補機類による電力消費だけでは放電を完了させることが困難になる。また、例えば、コンプレッサ172の消費電力を上昇させる必要があるため、コンプレッサ172の回転数が上昇したりコンプレッサ172の出口圧が上昇する。そして、これにより、燃費が低下したり、NV(ノイズ・バイブレーション)が発生するおそれがある。
 そこで、シール部21aにおける摩耗量に応じて制御全閉開度αを制御すれば、制御全閉開度制御を行うときの入口封止弁174におけるエアの洩れ量をゼロに維持できる。そこで、本実施形態では、燃料電池スタック111の発電量で入口封止弁174におけるエアの洩れ量を判断し、制御全閉開度αを閉弁(0°)側に変更(学習)する。なお、以下の説明では、便宜上、制御全閉開度αの代わりに制御全閉開度Kαと表記する。
 具体的には、コントローラ201は、図31に示す制御を行う。図31に示すように、コントローラ201は、制御全閉開度制御を行っているときに(ステップS201:YES)、スタック残存発電分の電力が消費された後(ステップS202:YES)において、制御全閉開度Kα(開度α(i))を取り込む(ステップS203)。なお、ステップS203において取り込んだときの制御全閉開度Kαを開度α(i)とする。
 ここで、「制御全閉開度制御を行っているとき」とは、例えば前記のように減速時に入口封止弁174が全閉になるとき(図23のステップS59)が考えられるが、これに限定されず、減速時以外の時に入口封止弁174が全閉になるときも含まれるとしてもよい。
 また、「スタック残存発電分の電力」とは、制御全閉開度制御が行われて燃料電池スタック111へのエアの供給停止が開始された時において燃料電池スタック111内に残存しているエアにより燃料電池スタック111が発電した分の電力である。
 また、制御全閉開度Kα(開度α(i))は、機械的全閉開度(開度0°)より僅かに大きく、弁体14がシール部21aに接触して閉弁状態が維持される開度であって、例えば、数度に設定されている。本実施形態では、制御全閉開度Kα(開度α(i))は3°以下に設定されている。なお、iは正の整数である。
 次に、コントローラ201は、燃料電池スタック111の発電量であるスタック発電量sekwを取り込んで(ステップS204)、このスタック発電量sekwが所定発電量Akw未満であるか否かを判断する(ステップS205)。なお、所定発電量Akwは、燃料電池スタック111にて発電停止であると判定すること(みなすこと)ができる発電量であり、例えば、0kW~数(例えば、3)kWである。
 ここで、燃料電池スタック111は、水素ガスがリッチな状態(多い状態)に維持されている。そのため、燃料電池スタック111へのエアの供給の有無により、燃料電池スタック111の発電が行われたり停止したりする。したがって、制御全閉開度制御を行っているときに、入口封止弁174にてエアの洩れが生じていなければ燃料電池スタック111へのエアの供給が停止されるので、燃料電池スタック111の発電は停止する。そうすると、燃料電池スタック111の発電が継続している場合には、燃料電池スタック111へエアが供給されていることから、入口封止弁174にてエアの洩れが生じていると考えることができる。
 そこで、本実施形態では、コントローラ201は、スタック発電量sekwを用いて、入口封止弁174におけるエアの洩れ量を判断する。ここで、スタック発電量sekwは、制御全閉開度制御を開始したときに燃料電池スタック111内に残存するエアが消費された後において燃料電池スタック111により発電した量である。なお、制御全閉開度制御を開始したときに燃料電池スタック111内に残存するエアの量は、制御全閉開度制御を開始する直前のエア供給通路161におけるエアの流量をもとに(例えば、コンプレッサ172の回転数をもとに)求められる。
 そこで、コントローラ201は、スタック発電量sekwが所定発電量Akw以上であると判断した場合(ステップS205:NO)には、入口封止弁174にてエアの洩れが生じていると考えられるので、制御全閉開度閉弁制御(制御全閉開度の更新)を行う(ステップS206)。ここで、「制御全閉開度閉弁制御」とは、開度α(i)(制御全閉開度)を閉弁側(0°側)に補正(更新)する制御である。具体的には、コントローラ201は、以下の数式に示す演算を行う。なお、a%=0.01~0.1%である。
  (数1)
 α(i)=α(i-1)-a%
 そして、ステップS206にて制御全閉開度閉弁制御を行った後、一定時間t(例えば、数秒間(1~2秒間))経過後(ステップS207:YES)、コントローラ201は、改めて、スタック発電量sekwを取り込む(ステップS204)。
 そして、コントローラ201は、スタック発電量sekwが所定発電量Akw未満であると判断した場合(ステップS205:YES)には、入口封止弁174にてエアの洩れが生じていない(洩れ量がゼロである)と考えられるので、制御全閉位置学習(制御全閉開度の記憶)を行う(ステップS208)。すなわち、ステップS208においては、コントローラ201は、制御全閉開度Kαを開度α(i)にする学習(補正)を行う。
 このようにして本実施形態では、コントローラ201は、制御全閉開度制御を行っているときに、スタック残存発電分の電力が消費された後において、スタック発電量sekwに基づいて入口封止弁174におけるエアの洩れ量を判断する。そして、コントローラ201は、スタック発電量sekwが所定発電量Akw以上であるため、入口封止弁174にてエアの洩れが生じていると判断したときには、制御全閉開度Kαを入口封止弁174におけるエアの洩れ量がゼロとなるゼロ位置開度まで閉弁側に補正する。一方、コントローラ201は、スタック発電量sekwが所定発電量Akw未満であるため、入口封止弁174にてエアの洩れが生じていない(洩れ量がゼロである)と判断したときには、制御全閉開度Kαは維持される。
 以上のように本実施形態によれば、コントローラ201は、制御全閉開度制御を行っているときに、入口封止弁174にてエアの洩れが発生したと判断したときには、制御全閉開度Kαを入口封止弁174におけるエアの洩れ量がゼロとなるゼロ位置開度まで閉弁側に補正する。
 これにより、制御全閉開度制御を行っているときに、入口封止弁174にてシール部21aの摩耗によるエアの洩れが発生したときに、シール部21aの摩耗量に応じて制御全閉開度Kαを閉弁側に補正して、入口封止弁174にてエアの洩れ量をゼロにできる。そのため、燃料電池スタック111への不要なエアの供給が抑制されるので、燃料電池スタック111での不要な発電を抑制できる。したがって、燃料電池スタック111での不要な発電により生じた電力を消費するための補機類の電力消費による放電が不要になり、燃費の低下やNVの発生を抑制できる。
 ここで、制御全閉開度Kαを弁体14のシール面18に作用するシール部21aの面圧が低くなるような開度に設定しておくと、僅かなシール部21aの摩耗によりエアの洩れが生じ易くなる。しかしながら、本実施形態のようにシール部21aの摩耗量に応じて制御全閉開度Kαを制御することで、シール部21aの面圧を低くしてシール部21aの摩耗を抑制し(耐久性を向上させ)つつ、制御全閉開度制御を行うときのエアの洩れ量をゼロに維持できる。
 また、コントローラ201は、スタック発電量sekwに基づいて入口封止弁174におけるエアの洩れ量を判断する。これにより、入口封止弁174におけるエアの洩れ量を検出するためのセンサなどの検出手段を新たに追加する必要がないので、コストを低減できる。
 また、スタック発電量sekwは、制御全閉開度制御を開始したときに燃料電池スタック111内に残存するエアが消費された後に発電した量である。これにより、スタック発電量sekwは、制御全閉開度制御を行っているときに発生した入口封止弁174におけるエアの洩れに対応した発電量となる。そのため、スタック発電量sekwに基づいて入口封止弁174におけるエアの洩れ量を正確に判断できる。
 次に、出口統合弁181の補機制御位置学習について説明する。補機発電要求時、例えば図24において補機類発電要求が有る場合(ステップS90:NO)において、コントローラ201は、モータ32により出口統合弁181の開度を要求補機発電量に対応した補機発電開度にする補機発電開度制御を行う。なお、「補機発電要求時」とは、コンプレッサ172などの補機類を駆動させるために燃料電池スタック111での発電が要求されるときである。
 そして、このとき、補機発電開度は微少開度に制御されており、弁体14とシール部21aとの接触面積が大きいので、シール部21aの摩耗により、出口統合弁181におけるエアの流量(洩れ量)が増加するおそれがある。すると、燃料電池スタック111へのエアの供給量が多くなって燃料電池スタック111の発電量が過剰になるので、不要な電力を消費させるために、燃費が低下したり、不要な補機類を駆動させる必要が生じる。
 そこで、本実施形態では、入口封止弁174と同様に、出口統合弁181について、補機制御を行っているときのスタック発電量sekwをもとに、シール部21aの摩耗によるエアの流量の増加を判断し、補機発電制御開度を閉弁側(0°側)に変更(学習)する。
 具体的には、コントローラ201は、図32に示す制御を行う。図32に示すように、コントローラ201は、補機類発電要求に応じて出口統合弁181の開度を制御する補機制御を行っているとき(ステップS301:YES)に、要求補機発電量Bkwを求める(ステップS302)。ここで、「要求補機発電量Bkw」とは、補機制御を行うときに要求される燃料電池スタック111での発電量である。
 次に、コントローラ201は、求めた要求補機発電量Bkwにより、図33に示す関係図をもとに、補機発電制御開度β(目標出口弁制御開度)を求める(ステップS303)。
 次に、コントローラ201は、補正制御開度kβ(i)を取り込み(ステップS304)、補機発電出口弁制御開度tβを求める(ステップS305)。すなわち、コントローラ201は、以下の数式に示すように、補機発電制御開度βを補正制御開度kβ(i)により補正して、補機発電出口弁制御開度tβを算出する。
  (数2)
 tβ=β+kβ(i)
 次に、コントローラ201は、出口統合弁181の開度を補機発電出口弁制御開度tβに制御する(ステップS306)。そして、その後、一定時間(例えば、数秒間(1~2秒間))経過後(ステップS307:YES)に、コントローラ201は、スタック発電量sekwを取り込んで(ステップS308)、このスタック発電量sekwが要求補機発電量Bkw以下であるか否かを判断する(ステップS309)。
 このようにして、本実施形態では、出口統合弁181を補機発電出口弁制御開度tβに制御してから一定時間経過した後において、スタック発電量sekwに基づいて出口統合弁181におけるエアの流量を判断する。
 そして、コントローラ201は、スタック発電量sekwが要求補機発電量Bkwよりも多いと判断した場合(ステップS309:NO)には、出口統合弁181におけるエアの流量が過大である、すなわち、第1の所定流量よりも多いと考えられるので、補正制御開度kβ(i)を求める(ステップS310)。ここで、ステップS310においては、コントローラ201は、補正制御開度kβ(i)を閉弁側(0°側)に更新する。そこで、ステップS310においては、コントローラ201は、以下の数式に示す演算を行う。
なお、b%は、例えば0.1%~1%であり、前記のa%よりも大きい。
  (数3)
 kβ(i)=kβ(i-1)-b%
 次に、コントローラ201は、補正制御開度kβ(i)を取り込む(ステップS304)。そして、コントローラ201は、ステップS305~S308の処理を行った後、スタック発電量sekwが要求補機発電量Bkw以下であると判断した場合(ステップS309:YES)には、スタック発電量sekwが所定発電量(Bkw-Ckw)以上であるか否かを判断する(ステップS311)。なお、Ckwは、例えば、Bkwに対して10%~20%の大きさである。
 そして、コントローラ201は、スタック発電量sekwが所定発電量(Bkw-Ckw)以上であると判断した場合(ステップS311:YES)には、補機制御位置学習(記憶)を行う(ステップS312)。このようにして、コントローラ201は、補機発電開度を出口統合弁181におけるエアの流量が第1の所定流量となる第1目標位置開度まで閉弁側(0°側)に補正する。
 一方、コントローラ201は、スタック発電量sekwが所定発電量(Bkw-Ckw)未満であると判断した場合(ステップS311:NO)には、出口統合弁181におけるエアの流量が過少である、すなわち、第1の所定流量よりも少ない第2の所定流量よりもさらに少ないと考えられるので、補正制御開度kβ(i)を求め(ステップS313)、ステップS304以降の処理を行う。ここで、ステップS313においては、コントローラ201は、補正制御開度kβ(i)を開弁側に更新する。そこで、ステップS313においては、コントローラ201は、以下の数式に示す演算を行う。
  (数4)
 kβ(i)=kβ(i-1)+b%
 このようにして、コントローラ201は、補機発電開度を出口統合弁181におけるエアの流量が第2の所定流量となる第2目標位置開度まで開弁側に補正する。
 このように本実施形態では、補機制御は、微少開度にて行う制御であり、また、発電要求(開度)で微妙にずれることが予想されるので、スタック発電量sekwによるフィードバック制御を行う。
 以上のように本実施形態によれば、コントローラ201は、補機発電開度制御を行っているときに、出口統合弁181におけるエアの流量が第1の所定流量よりも多いと判断したときには、補機発電開度を出口統合弁181におけるエアの流量が第1の所定流量となる第1目標位置開度まで閉弁側に補正する。
 これにより、補機発電開度制御を行っているときに、出口統合弁181においてシール部21aの摩耗によりエアの流量が増加したときには、シール部21aの摩耗量に応じて補機発電開度を閉弁側に補正して、出口統合弁181におけるエアの流量を目標流量にできる。そのため、燃料電池スタック111への不要な(余分な)エアの供給が抑制されるので、燃料電池スタック111での不要な(余分な)発電を抑制できる。したがって、燃料電池スタック111での発電量が過剰になることを抑制できるので、燃費の低下を抑制でき、また、不要な補機類を駆動させる必要もなくなる。
 また、コントローラ201は、補機発電開度制御を行っているときに、出口統合弁181におけるエアの流量が第1の所定流量よりも少ない第2の所定流量よりもさらに少ないと判断したときには、補機発電開度を出口統合弁181におけるエアの流量が第2の所定流量となる第2目標位置開度まで開弁側に補正する。
 これにより、補機発電開度を補正する制御を行うときに、出口統合弁181のハンチングの発生を抑制して、出口統合弁181におけるエアの流量を目標範囲内に制御することができる。そのため、燃料電池スタック111で要求される電力を発電できるので、補機類発電要求に応じて補機類を駆動させることができる。
 また、コントローラ201は、スタック発電量sekwに基づいて出口統合弁181におけるエアの流量を判断する。これにより、出口統合弁181におけるエアの流量を検出するためのセンサなどの検出手段を新たに追加する必要がないので、コストを低減できる。
 なお、上記した実施の形態は単なる例示にすぎず、本開示を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。例えば、上記した実施形態では、ゴムシート21は弁座13に設けられているが、ゴムシート21は弁体14に設けられていてもよい。また、回転軸15が第1軸受37と弁体14の反対側に別途設けられる軸受とにより両持ち支持されていてもよい。また、入口封止弁174や出口統合弁181やバイパス弁191は、上記した実施形態で構成される弁に限定されず、弁体が弁座のシート面から直角方向に移動するポペット式の弁などの他の弁であってもよい。
2 弁部
3 駆動機構部
11 流路
13 弁座
14 弁体
15 回転軸
21 ゴムシート
21aシール部
32 モータ
37 第1軸受
38 第2軸受
40 リターンスプリング
41 メインギヤ
101 燃料電池システム
111 燃料電池スタック(燃料電池)
113 エア系
161 エア供給通路
162 エア排出通路
163 バイパス通路
172 コンプレッサ
174 入口封止弁
181 出口統合弁
191 バイパス弁
201 コントローラ
α,Kα 制御全閉開度
sekw スタック発電量
Akw 所定発電量
Bkw 要求補機発電量
β 補機発電制御開度
kβ(i) 補正制御開度
tβ 補機発電出口弁制御開度
(Bkw-Ckw) 所定発電量

Claims (6)

  1.  燃料電池と、前記燃料電池に酸化剤ガスを供給するための酸化剤ガス供給通路と、前記酸化剤ガス供給通路に設けられた上流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、
     前記上流側弁は、
      弁座と、
      弁体と、
      前記弁体を駆動させて前記弁座と前記弁体との間を開閉させる駆動機構と、を有し、
      前記弁座又は前記弁体のいずれか一方に、閉弁時に前記弁体又は前記弁座の他方に接触するシール部を備えるシール部材が設けられ、
     前記制御部は、
      前記上流側弁を全閉にする場合、前記駆動機構により前記上流側弁の開度を0よりも大きい制御全閉開度にする制御全閉開度制御を行い、
      前記制御全閉開度制御を行っているときに、前記上流側弁にて前記酸化剤ガスの洩れが発生したと判断したときには、前記制御全閉開度を前記上流側弁における前記酸化剤ガスの洩れ量がゼロとなるゼロ位置開度まで閉弁側に補正すること、
     を特徴とする燃料電池システム。
  2.  請求項1の燃料電池システムにおいて、
     前記制御部は、前記燃料電池の発電量に基づいて前記上流側弁における前記酸化剤ガスの洩れ量を判断すること、
     を特徴とする燃料電池システム。
  3.  請求項2の燃料電池システムにおいて、
     前記燃料電池の発電量は、前記制御全閉開度制御を開始したときに前記燃料電池内に残存する前記酸化剤ガスが消費された後に発電した量であること、
     を特徴とする燃料電池システム。
  4.  燃料電池と、前記燃料電池に供給された酸化剤ガスを排出するための酸化剤ガス排出通路と、前記酸化剤ガス排出通路に設けられた下流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、
     前記下流側弁は、
      弁座と、
      弁体と、
      前記弁体を駆動させて前記弁座と前記弁体との間を開閉させる駆動機構と、を有し、
      前記弁座又は前記弁体のいずれか一方に、閉弁時に前記弁体又は前記弁座の他方に接触するシール部を備えるシール部材が設けられ、
     前記制御部は、
      補機類を駆動させるために前記燃料電池で発電させる補機類発電要求がある場合、前記駆動機構により前記下流側弁の開度を要求補機発電量に対応した補機発電開度にする補機発電開度制御を行い、
      前記補機発電開度制御を行っているときに、前記下流側弁における前記酸化剤ガスの流量が第1の所定流量よりも多いと判断したときには、前記補機発電開度を前記下流側弁における前記酸化剤ガスの流量が前記第1の所定流量となる第1目標位置開度まで閉弁側に補正すること、
     を特徴とする燃料電池システム。
  5.  請求項4の燃料電池システムにおいて、
     前記制御部は、前記補機発電開度制御を行っているときに、前記下流側弁における前記酸化剤ガスの流量が前記第1の所定流量よりも少ない第2の所定流量よりもさらに少ないと判断したときには、前記補機発電開度を前記下流側弁における前記酸化剤ガスの流量が前記第2の所定流量となる第2目標位置開度まで開弁側に補正すること、
     を特徴とする燃料電池システム。
  6.  請求項4または5の燃料電池システムにおいて、
     前記制御部は、前記燃料電池の発電量に基づいて前記下流側弁における前記酸化剤ガスの流量を判断すること、
     を特徴とする燃料電池システム。
PCT/JP2018/016258 2017-05-25 2018-04-20 燃料電池システム WO2018216409A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880034542.7A CN110663131B (zh) 2017-05-25 2018-04-20 燃料电池系统
DE112018002700.7T DE112018002700T5 (de) 2017-05-25 2018-04-20 Brennstoffzellensystem
US16/495,655 US11148536B2 (en) 2017-05-25 2018-04-20 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-103837 2017-05-25
JP2017103837A JP6783188B2 (ja) 2017-05-25 2017-05-25 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2018216409A1 true WO2018216409A1 (ja) 2018-11-29

Family

ID=64395470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016258 WO2018216409A1 (ja) 2017-05-25 2018-04-20 燃料電池システム

Country Status (5)

Country Link
US (1) US11148536B2 (ja)
JP (1) JP6783188B2 (ja)
CN (1) CN110663131B (ja)
DE (1) DE112018002700T5 (ja)
WO (1) WO2018216409A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202140310A (zh) * 2020-03-20 2021-11-01 吳震洋 增程系統
CN112319497B (zh) * 2020-10-22 2022-03-15 黄冈格罗夫氢能汽车有限公司 氢能汽车燃料电池发动机背压阀自学习标定方法及系统
JP7441880B2 (ja) 2022-03-30 2024-03-01 本田技研工業株式会社 燃料電池システム
DE102022114019A1 (de) 2022-06-02 2023-12-07 ECO Holding 1 GmbH Kolben für ein Ventil, elektromagnetisches Ventil und Brennstoffzellensystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179335A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd 燃料電池用カソード圧力制御装置及び燃料電池用カソード圧力制御方法
JP2009259577A (ja) * 2008-04-16 2009-11-05 Honda Motor Co Ltd 燃料電池システム
JP2010192422A (ja) * 2009-01-23 2010-09-02 Toshiba Corp 燃料電池発電システム
JP2016096087A (ja) * 2014-11-15 2016-05-26 トヨタ自動車株式会社 電源システムおよび燃料電池の電圧制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152616B2 (ja) * 2006-01-06 2013-02-27 トヨタ自動車株式会社 燃料電池システムとその運転停止方法
JP5342265B2 (ja) 2009-02-18 2013-11-13 本田技研工業株式会社 燃料電池システム
JP6179672B2 (ja) * 2014-08-08 2017-08-23 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
EP3185344A4 (en) * 2014-08-20 2017-09-20 Nissan Motor Co., Ltd Fuel cell system and fuel cell system control method
JP6164200B2 (ja) * 2014-11-15 2017-07-19 トヨタ自動車株式会社 酸化ガスの流量調整弁の制御方法と流量調整装置
JP6387928B2 (ja) * 2015-09-03 2018-09-12 トヨタ自動車株式会社 燃料電池システム
US10505210B2 (en) 2016-07-28 2019-12-10 Aisan Kogyo Kabushiki Kaisha Fuel cell system
JP2018026319A (ja) 2016-07-28 2018-02-15 愛三工業株式会社 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179335A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd 燃料電池用カソード圧力制御装置及び燃料電池用カソード圧力制御方法
JP2009259577A (ja) * 2008-04-16 2009-11-05 Honda Motor Co Ltd 燃料電池システム
JP2010192422A (ja) * 2009-01-23 2010-09-02 Toshiba Corp 燃料電池発電システム
JP2016096087A (ja) * 2014-11-15 2016-05-26 トヨタ自動車株式会社 電源システムおよび燃料電池の電圧制御方法

Also Published As

Publication number Publication date
US20200099069A1 (en) 2020-03-26
DE112018002700T5 (de) 2020-02-20
CN110663131A (zh) 2020-01-07
JP6783188B2 (ja) 2020-11-11
JP2018200760A (ja) 2018-12-20
CN110663131B (zh) 2022-07-22
US11148536B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2018216409A1 (ja) 燃料電池システム
JP6989669B2 (ja) 燃料電池システム
JP6490002B2 (ja) 偏心弁
JP5011709B2 (ja) 燃料電池システム及び燃料電池システムの水素漏れ検知方法
JP6612142B2 (ja) 流量制御弁
KR20100001162A (ko) 수소 공급 시스템의 일체형 압력 조절 액츄에이터 어셈블리
WO2008023503A1 (fr) Système de pile à combustible et procédé de diagnostic de soupape de marche-arrêt
US10601058B2 (en) Fuel cell system
US11205790B2 (en) Fuel cell system and method of controlling the same
JP2018026319A (ja) 燃料電池システム
US10862147B2 (en) Fuel cell system
JP2008153079A (ja) 燃料電池システム
JP6664957B2 (ja) 流量制御弁
JP2007046662A (ja) バタフライ弁、調圧弁、及び、それらの制御装置
JP2017162759A (ja) 燃料電池システム
JP7002876B2 (ja) 封止弁制御システムおよび燃料電池システム
JP2019027569A (ja) 二重偏心弁及びそれを用いた燃料電池システム
JP2018137150A (ja) 燃料電池システム
JP2010218904A (ja) 燃料電池システムの制御方法
JP4645805B2 (ja) 燃料電池システム
JP2007250427A (ja) 燃料電池システム
JP2000260449A (ja) 流路遮断装置及び燃料電池の燃料流路遮断装置
JP2017133529A (ja) 流量調整弁
JP2009170224A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806730

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18806730

Country of ref document: EP

Kind code of ref document: A1