WO2018216356A1 - 有機ハイドライド製造装置 - Google Patents

有機ハイドライド製造装置 Download PDF

Info

Publication number
WO2018216356A1
WO2018216356A1 PCT/JP2018/014110 JP2018014110W WO2018216356A1 WO 2018216356 A1 WO2018216356 A1 WO 2018216356A1 JP 2018014110 W JP2018014110 W JP 2018014110W WO 2018216356 A1 WO2018216356 A1 WO 2018216356A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
organic hydride
electrolyte membrane
hydride
Prior art date
Application number
PCT/JP2018/014110
Other languages
English (en)
French (fr)
Inventor
重徳 光島
兼作 長澤
錦 善則
節郎 尾形
昭博 加藤
アワルディン ジャエナル
孝司 松岡
佐藤 康司
Original Assignee
国立大学法人横浜国立大学
デノラ・ペルメレック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112019024205-8A priority Critical patent/BR112019024205B1/pt
Priority to MYPI2019006622A priority patent/MY197574A/en
Priority to RU2019142468A priority patent/RU2733378C1/ru
Priority to AU2018272234A priority patent/AU2018272234B2/en
Priority to CA3064173A priority patent/CA3064173C/en
Priority to EP18806725.0A priority patent/EP3633071A4/en
Application filed by 国立大学法人横浜国立大学, デノラ・ペルメレック株式会社 filed Critical 国立大学法人横浜国立大学
Priority to KR1020197024275A priority patent/KR102338318B1/ko
Priority to CN201880025985.XA priority patent/CN110546307B/zh
Publication of WO2018216356A1 publication Critical patent/WO2018216356A1/ja
Priority to PH12019550240A priority patent/PH12019550240A1/en
Priority to US16/686,369 priority patent/US20200080212A1/en
Priority to US17/858,464 priority patent/US20220333257A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to an organic hydride manufacturing apparatus.
  • the present invention relates to an organic hydride production apparatus for electrochemically hydrogenating a hydride to produce an organic hydride.
  • renewable energy obtained by solar light, wind power, water power, geothermal power generation, etc.
  • renewable energy is required to reduce its output fluctuation, particularly in the medium to long period.
  • renewable energy is relatively difficult to transport on a large scale.
  • it is effective to convert the power obtained from renewable energy into chemical energy.
  • the process of converting power directly into chemical energy includes electrochemical systems.
  • a secondary battery, which is an example of an electrochemical system, so-called storage battery is a device that converts electric power into chemical energy and stores it, and is widely used.
  • organic hydrides organic chemical hydrides
  • the organic hydride include cyclic organic compounds such as cyclohexane, methylcyclohexane and decalin.
  • Organic hydrides are generally liquid at normal temperature and pressure, and thus are easy to handle.
  • Organic hydrides can also be electrochemically hydrogenated and dehydrogenated. Therefore, if organic hydride is used as an energy carrier, it can be transported and stored more easily than liquid hydrogen.
  • a liquid having properties similar to petroleum is selected as the organic hydride, it can be easily delivered to the end of the energy supply system because it has excellent affinity with a relatively large-scale energy supply system. There is an advantage.
  • Patent Document 1 discloses an organic hydride manufacturing apparatus including an anode that generates protons from water and a cathode that hydrogenates an organic compound having an unsaturated bond, as a technology for manufacturing such an organic hydride. .
  • the present invention has been made in view of these circumstances, and an object thereof is to provide a technique for improving the production efficiency of organic hydride.
  • One embodiment of the present invention is an organic hydride production apparatus.
  • the apparatus is provided with an electrolyte membrane having proton conductivity, a cathode provided on one side of the electrolyte membrane, and including a cathode catalyst for hydrogenating a hydride with protons to form an organic hydride, and one of the electrolyte membrane
  • An anode including an anode catalyst provided on the side opposite to the side of the anode and oxidizing the water to generate protons; and an anode support provided on the opposite side of the electrolyte membrane of the anode and supporting the anode Prepare.
  • the anode support is composed of an elastic porous body having a Young's modulus of more than 0.1 N / mm 2 and less than 43 N / mm 2 .
  • the production efficiency of the organic hydride can be improved.
  • FIG. 2 (A) is a view showing an anode support and cell voltages provided in the organic hydride production apparatus according to Test Examples 1-11.
  • FIG. 2 (B) is a diagram for explaining the center-to-center distance LW, the center-to-center distance SW, and the strand length ST.
  • FIG. 2C is a view showing the relationship between the Young's modulus of the anode support and the cell voltage.
  • FIG. 3 (A) is a view showing the thicknesses of the electrolyte membrane and the anode, the ratio of the thicknesses of the two, and the cell voltage, which are provided in the organic hydride production devices according to Test Examples 2 and 12-14.
  • FIG. 3B is a view showing the relationship between the thickness ratio and the cell voltage.
  • FIG. 4 (A) is a view showing the stitch size and cell voltage of the anode provided in the organic hydride manufacturing apparatus according to Test Examples 15-19.
  • FIG. 4B is a view showing the relationship between the average value of the long-distance center-to-center distance LW and the short-direction-to-center distance SW and the cell voltage.
  • FIG. 1 is a cross-sectional view showing a schematic structure of an organic hydride manufacturing apparatus according to an embodiment.
  • the organic hydride production apparatus 100 is an electrolytic cell for hydrogenating a hydride to be hydrogenated which is a dehydrogenated product of organic hydride by an electrochemical reduction reaction, and mainly includes an electrolyte film 102, a cathode 104, and a cathode chamber 106. And an anode support 110, an anode chamber 112, and a pair of separators 114a and 114b.
  • the electrolyte membrane 102, the cathode 104 and the anode 108 constitute a membrane electrode assembly.
  • the electrolyte membrane 102 is formed of a proton conductive material (ionomer).
  • the electrolyte membrane 102 selectively conducts protons while suppressing mixing and diffusion of substances between the cathode 104 and the anode 108.
  • Materials having proton conductivity include perfluorosulfonic acid polymers such as Nafion (registered trademark) and Flemion (registered trademark).
  • the thickness of the electrolyte membrane 102 is not particularly limited, but is preferably 5 to 300 ⁇ m, more preferably 10 to 150 ⁇ m, and still more preferably 20 to 100 ⁇ m.
  • the thickness of the electrolyte film 102 By setting the thickness of the electrolyte film 102 to 5 ⁇ m or more, the barrier property of the electrolyte film 102 can be secured, and the occurrence of cross leaks of a hydride, an organic hydride, oxygen and the like can be suppressed more reliably. Further, by setting the thickness of the electrolyte membrane 102 to 300 ⁇ m or less, it is possible to suppress the ion transfer resistance from becoming excessive.
  • the electrolyte membrane 102 may be mixed with a reinforcing material such as porous PTFE (polytetrafluoroethylene). By introducing the reinforcing material, it is possible to suppress a decrease in the dimensional stability of the electrolyte membrane 102. Thereby, the durability of the electrolyte membrane 102 can be improved. In addition, crossover of a hydride, an organic hydride, oxygen and the like can be suppressed.
  • the surface of the electrolyte membrane 102 may be made hydrophilic by coating a predetermined inorganic layer or the like.
  • the cathode 104 is provided on one side of the electrolyte membrane 102. In the present embodiment, cathode 104 is provided in contact with one of the main surfaces of electrolyte membrane 102.
  • the cathode 104 has a structure in which a cathode catalyst layer 116, a microporous layer 118, and a diffusion layer 120 are stacked in this order. More specifically, cathode catalyst layer 116 is in contact with one of the main surfaces of electrolyte membrane 102.
  • the microporous layer 118 is in contact with the main surface of the cathode catalyst layer 116 opposite to the electrolyte membrane 102.
  • Diffusion layer 120 is in contact with the main surface of microporous layer 118 opposite to cathode catalyst layer 116.
  • the microporous layer 118 and the diffusion layer 120 can be omitted as appropriate.
  • the cathode catalyst layer 116 includes a cathode catalyst (reduction catalyst) for hydrogenating a hydride with protons to produce an organic hydride.
  • a cathode catalyst reduction catalyst
  • metal particles selected from the group consisting of Pt, Ru, Pd, Ir and an alloy containing at least one of them can be used.
  • the cathode catalyst may be a commercially available product, or may be one synthesized according to a known method.
  • the cathode catalyst includes a first catalyst metal (noble metal) comprising at least one of Pt, Ru, Pd, and Ir, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Sn, W , Re, Pb, Bi may be composed of a metal composition containing one or more second catalyst metals.
  • a first catalyst metal noble metal
  • examples of the form of the metal composition include an alloy of the first catalyst metal and the second catalyst metal, or an intermetallic compound composed of the first catalyst metal and the second catalyst metal.
  • the cathode catalyst is supported by a catalyst support composed of an electron conducting material.
  • a catalyst support composed of an electron conducting material.
  • the surface area of the cathode catalyst layer 116 can be expanded.
  • aggregation of the cathode catalyst can be suppressed.
  • the catalyst support include an electron conductive material containing any of porous carbon (such as mesoporous carbon), porous metal and porous metal oxide as a main component.
  • porous carbon examples include carbon black such as ketjen black (registered trademark), acetylene black, furnace black, Vulcan (registered trademark) and the like.
  • the average particle size of carbon fine particles such as carbon black is preferably 0.01 ⁇ m to 1 ⁇ m.
  • the porous metal examples include Pt black, Pd black, and Pt metal precipitated in a fractal form.
  • porous metal oxides include oxides of Ti, Zr, Nb, Mo, Hf, Ta, W.
  • porous metal compounds such as nitrides, carbides, oxynitrides, carbonitrides, and partially oxidized carbonitrides of metals such as Ti, Zr, Nb, Mo, Hf, Ta, W, etc. Can also be used.
  • the catalyst support with the cathode catalyst supported is coated with an ionomer.
  • the ion conductivity of the cathode 104 can be improved.
  • the ionomer include perfluorosulfonic acid polymers such as Nafion (registered trademark) and Flemion (registered trademark).
  • the ionomer contained in the cathode catalyst layer 116 preferably partially coats the cathode catalyst. According to this, it is possible to efficiently supply the three components (the hydride, protons, electrons) necessary for the electrochemical reaction in the cathode catalyst layer 116 to the reaction site.
  • the thickness of the cathode catalyst layer 116 is preferably 1 to 100 ⁇ m, more preferably 5 to 30 ⁇ m. As the thickness of the cathode catalyst layer 116 increases, not only the migration resistance of protons increases, but also the diffusivity of the hydride and the organic hydride decreases. For this reason, it is desirable to adjust the thickness of the cathode catalyst layer 116 within the range described above.
  • the diffusion layer 120 has a function of uniformly diffusing the externally supplied liquid to be hydrogenated to the cathode catalyst layer 116.
  • the material constituting the diffusion layer 120 preferably has a high affinity to a hydride or an organic hydride.
  • diffusion layer 120 a porous conductive base material, a fiber sintered compact, etc. are illustrated, for example. These are preferable because they have porosity suitable for supply and removal of gas and liquid and can maintain sufficient conductivity.
  • the thickness of the diffusion layer 120 is preferably 10 to 5000 ⁇ m.
  • the material constituting the diffusion layer 120 include carbon woven fabric (carbon cloth), carbon non-woven fabric, carbon paper and the like.
  • the carbon cloth is a bundle of several hundreds of thin carbon fibers with a diameter of several ⁇ m, and this bundle is woven.
  • carbon paper is obtained by sintering a carbon raw material fiber as a thin film precursor by a papermaking method.
  • the microporous layer 118 has a function of promoting the diffusion of the liquid hydride and the organic hydride in the surface direction of the cathode catalyst layer 116.
  • the microporous layer 118 can be formed, for example, by applying a paste-like kneaded product obtained by kneading a conductive powder and a water repellent onto the surface of the diffusion layer 120 and drying it.
  • a conductive powder for example, conductive carbon such as Vulcan (registered trademark) can be used.
  • the water repellent for example, a fluorine-based resin such as tetrafluoroethylene resin (PTFE) can be used.
  • the ratio of the conductive powder to the water repellent agent is appropriately determined within the range in which desired conductivity and water repellency can be obtained.
  • the microporous layer 118 can also be made of carbon cloth, carbon paper, or the like.
  • the thickness of the microporous layer 118 is preferably 1 to 50 ⁇ m.
  • the average of the film thickness of the microporous layer 118 itself including the portion underlying the diffusion layer 120 is microporous. It is defined as the thickness of the layer 118.
  • a metal component may coexist on the surface of the microporous layer 118. Thereby, the electron conductivity of the microporous layer 118 is improved, and the current can be made uniform.
  • the microporous layer 118 and the diffusion layer 120 are used under pressure in the thickness direction. Therefore, it is not preferable that the conductivity in each thickness direction is changed due to the pressure in the thickness direction at the time of use. For this reason, it is preferable that the microporous layer 118 and the diffusion layer 120 be pre-pressed. Thereby, the conductivity in the thickness direction of each layer can be enhanced and stabilized. Further, improving the degree of bonding between the cathode catalyst layer 116 and the microporous layer 118 also contributes to the improvement of the conductivity of the cathode 104. Further, the improvement in the degree of bonding improves the supply capability of the source material and the removal capability of the generated material.
  • the cathode chamber 106 is a space that accommodates the cathode 104.
  • the cathode chamber 106 is defined by the electrolyte membrane 102, a separator 114a, and a frame-like spacer 122 disposed between the electrolyte membrane 102 and the separator 114a. Not only the cathode 104 but also the flow passage portion 124 is accommodated in the cathode chamber 106.
  • the flow passage portion 124 is disposed adjacent to the diffusion layer 120. More specifically, channel portion 124 is provided to be in contact with the main surface of diffusion layer 120 on the opposite side to microporous layer 118. Accordingly, the flow path portion 124 is disposed between the diffusion layer 120 and the separator 114 a.
  • the flow path portion 124 has a structure in which a groove 124 b is provided on the main surface of the plate-like main body portion 124 a.
  • the groove 124 b constitutes a flow path of the hydride.
  • the main body portion 124 a is made of a conductive material.
  • the flow path portion 124 also functions as a cathode support for positioning the cathode 104 in the cathode chamber 106.
  • the flow path portion 124 receives the force pressed by the anode support 110 described later, and secures the electron conductivity between the separator 114 a and the cathode 104.
  • the spacer 122 also serves as a sealing material that prevents an organic substance containing a hydride and a hydride from leaking out of the cathode chamber 106, and is preferably electrically insulating.
  • a material which comprises the spacer 122 tetrafluoroethylene resin is mentioned, for example.
  • a cathode chamber inlet 126 and a cathode chamber outlet 128 are disposed, which communicate the inside and the outside of the cathode chamber 106 with each other.
  • the cathode chamber inlet 126 is disposed vertically below the cathode chamber 106. One end of the cathode chamber inlet 126 is connected to the flow path of the flow path portion 124, and the other end is connected to a catholyte storage tank (not shown). Between the cathode chamber inlet 126 and the catholyte storage tank, there is provided a catholyte supply device (not shown) composed of various pumps such as a gear pump and a cylinder pump, or a natural flow down device.
  • the catholyte storage tank accommodates a hydride to be hydrogenated by the electrochemical reduction reaction in the organic hydride production apparatus 100.
  • the organic hydride used in this embodiment is not particularly limited as long as it is an organic compound capable of adding / eliminating hydrogen by causing a hydrogenation reaction / dehydrogenation reaction reversibly, and an acetone-isopropanol system, benzoquinone- It can be used widely, such as hydroquinone type and aromatic hydrocarbon type.
  • aromatic hydrocarbon systems represented by toluene-methylcyclohexane system are preferable.
  • a hydrogenated compound, ie, an aromatic hydrocarbon compound used as a dehydrogenated form of an organic hydride is a compound containing at least one aromatic ring, and examples thereof include benzene, alkylbenzene, naphthalene, alkylnaphthalene, anthracene, diphenylethane and the like. It can be mentioned.
  • Alkylbenzenes include compounds in which 1 to 4 hydrogen atoms of the aromatic ring are substituted with a linear alkyl group having 1 to 6 carbon atoms or a branched alkyl group, and examples thereof include toluene, xylene, mesitylene, ethylbenzene, diethylbenzene and the like.
  • the alkyl naphthalene includes a compound in which 1 to 4 hydrogen atoms of the aromatic ring are substituted with a linear alkyl group having 1 to 6 carbon atoms or a branched alkyl group, and examples thereof include methyl naphthalene. These may be used alone or in combination.
  • the hydride is preferably at least one of toluene and benzene.
  • Nitrogen-containing heterocyclic aromatic compounds such as pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, N-alkylpyrrole, N-alkylindole, N-alkyldibenzopyrrole and the like can also be used as the hydrides.
  • the organic hydride is a hydrogenated product of the above-mentioned hydride, and examples thereof include methylcyclohexane, dimethylcyclohexane, piperidine and the like.
  • the hydride is preferably a liquid at normal temperature. Moreover, when using what mixed multiple types of the above-mentioned aromatic hydrocarbon compound and / or nitrogen-containing heterocyclic aromatic compound is used, it should just be a liquid as a mixture.
  • the hydride can be supplied to the organic hydride manufacturing apparatus 100 in a liquid state without performing processing such as heating or pressurization.
  • the liquid stored in the catholyte storage tank is referred to as “cathode liquid” as appropriate.
  • the catholyte stored in the catholyte reservoir is supplied to the cathode chamber 106 by the catholyte feeder.
  • the catholyte supplied to the cathode chamber 106 is introduced into the cathode chamber 106 via the cathode chamber inlet 126.
  • the catholyte introduced into the cathode chamber 106 is supplied to the cathode catalyst layer 116 via the groove 124 b of the flow path portion 124, the diffusion layer 120 and the microporous layer 118.
  • the cathode chamber outlet 128 is disposed vertically above the cathode chamber 106. One end of the cathode chamber outlet 128 is connected to the flow path of the flow path portion 124, and the other end is connected to, for example, a catholyte storage tank.
  • the organic hydride in the cathode chamber 106 ie, the hydride to be hydrogenated by the organic hydride production apparatus 100 and the unreacted hydride are discharged to the outside of the cathode chamber 106 via the cathode chamber outlet 128.
  • a separation vessel (not shown) is provided between the cathode chamber outlet 128 and the catholyte reservoir.
  • the separator 114 a is disposed on the cathode chamber 106 side. In the present embodiment, the separator 114 a is stacked on the main surface of the flow path 124 opposite to the diffusion layer 120.
  • the separator 114a has electron conductivity and also functions as a feed plate.
  • metals such as SUS and Ti, are mentioned, for example.
  • the anode 108 is provided on the side opposite to one side of the electrolyte membrane 102, ie, on the side opposite to the cathode 104. In the present embodiment, anode 108 is provided in contact with the other main surface of electrolyte membrane 102.
  • the anode 108 includes an anode catalyst 108 a for oxidizing water in the anolyte to generate protons.
  • the anode catalyst 108a for example, metal particles selected from the group consisting of Ru, Rh, Pd, Ir, Pt and an alloy containing at least one of them can be used.
  • produces oxygen in the state immersed in acidic electrolyte solution
  • use of a platinum group noble metal oxide type catalyst is preferable.
  • iridium oxide catalysts have low voltage loss and are excellent in durability.
  • an iridium oxide catalyst having a solid solution with tantalum oxide has a small increase in voltage loss in a system in which an organic substance is mixed, and is preferable as the anode catalyst 108a.
  • the anode 108 has a substrate 108 b supporting the anode catalyst 108 a in addition to the anode catalyst 108 a.
  • the substrate 108 b has sufficient electrical conductivity to flow the current necessary for the electrolysis.
  • the base material 108b is excellent in the corrosion resistance with respect to anolyte.
  • the base 108 b is made of a metal such as Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W, or an alloy containing any of these as a main component. More preferably, the base material 108b contains 20 parts by mass or more of at least one metal selected from the group consisting of Ti, Zr, Nb and Ta.
  • the thickness of the substrate 108 b is preferably 0.05 mm or more and 1 mm or less.
  • the thickness of the anode 108 is substantially equal to the thickness of the substrate 108 b.
  • the ratio T1 / T2 of the thickness T1 of the electrolyte membrane 102 to the thickness T2 of the anode 108 is preferably 0.35 or more, more preferably 0.6 or more, and still more preferably 1 or more. .
  • the ratio T1 / T2 By setting the ratio T1 / T2 to 0.35 or more, the curvature of the electrolyte membrane 102 can be suppressed, and thus peeling of the cathode 104 and the electrolyte membrane 102 can be suppressed. Therefore, the cell voltage required to drive the organic hydride production device 100 can be reduced more reliably.
  • the anode 108 is a gas generating electrode.
  • the substrate 108 b be a porous body in order to promote the supply of the anolyte to the anode 108 while avoiding an increase in resistance due to air bubbles.
  • the base material 108b of this embodiment is a reticulated plate-like body.
  • the substrate 108b is made of expanded mesh.
  • the mesh of the base material 108b is a rhombus, and the average value of the rhombus short-to-center distance SW (see FIG. 2B) and the long-to-center distance LW (see FIG.
  • the long direction is the direction of the slit at the time of manufacturing the expanded mesh, and the short direction is the direction orthogonal to the slit. It is desirable that the expanded mesh be smoothed after mesh processing.
  • the pressure that the anode 108 receives from the anode support 110 when the organic hydride manufacturing apparatus 100 is assembled can be more uniformly applied to the electrolyte membrane 102 side.
  • the curvature of the electrolyte membrane 102 can be suppressed more reliably.
  • the cell voltage required to drive the organic hydride manufacturing apparatus 100 can be reduced more reliably.
  • the average value of SW and LW to 0.3 mm or more, the inhibition of the infiltration of the anode fluid to the anode 108 by oxygen generated at the anode 108 can be further suppressed. Thereby, an increase in cell voltage can be more reliably suppressed.
  • the aperture ratio of the substrate 108b is defined, for example, by the hole area per projected area of the substrate 108b, and is, for example, 40% or more and 90% or less.
  • the aperture ratio is defined, for example, by the hole area per projected area of the substrate 108b, and is, for example, 40% or more and 90% or less.
  • the size of the opening of the base 108 b or the pitch of the opening is preferably equal to or less than the thickness of the electrolyte membrane 102.
  • a flat plate member having an opening other than the expanded mesh can be appropriately selected as the base material 108 b.
  • a plate provided with a round or square opening by punching or dissolving a part of a metal plate.
  • the thickness of the substrate 108b is 0.5 mm or less
  • the hole diameter is 0.1 mm or more and 0.3 mm or less
  • the hole pitch is 0.2 mm It is 5 mm or less.
  • the substrate 108 b may be made of a woven mesh made of metal fibers.
  • the fiber diameter of the metal fiber is, for example, 0.2 mm or less
  • the mesh pitch is, for example, 0.5 mm or less.
  • the base 108 b may be made of a sintered body of a porous metal body, a foam molded body, a powder molded body, or the like.
  • the metal porous body is, for example, a long fiber or a bibulous fiber having fine pores.
  • the porosity of the base material 108b is, for example, 40% or more and 90% or less.
  • porosity means the ratio of the volume of pores to the total volume, that is, the volume porosity.
  • the volume porosity can be determined by calculation from a cross-sectional image obtained using a scanning electron microscope or a metallurgical microscope.
  • the surface of the base 108 b may be provided with a conductive film such as a valve metal such as tantalum, an alloy containing a valve metal, a noble metal, or a noble metal oxide.
  • a conductive film such as a valve metal such as tantalum, an alloy containing a valve metal, a noble metal, or a noble metal oxide.
  • the anode 108 preferably has a larger Young's modulus than the anode support 110. More preferably, the Young's modulus of the anode 108 is 2 N / mm 2 or more and 40 N / mm 2 or less.
  • the anode support 110 is provided on the side opposite to the electrolyte membrane 102 of the anode 108 and supports the anode 108.
  • anode support 110 is provided in contact with the main surface of anode 108 opposite to electrolyte membrane 102.
  • the anode support 110 presses the anode 108 against the electrolyte membrane 102.
  • the anode support 110 is formed of a plate-like elastic porous body.
  • the anode support 110 is porous, so that the anolyte can be supplied to the anode 108.
  • the anode support 110 is preferably made of a material that is excellent in corrosion resistance to the anolyte, and is made of, for example, a metal such as Ti, Zr, Nb, or Ta, or an alloy containing any of these as a main component. More preferably, the anode support 110 contains 20 parts by mass or more of at least one metal selected from the group consisting of Ti, Zr, Nb and Ta. The surface of the anode support 110 may be corrosion-resistant to the anolyte as in the case of the substrate 108b.
  • the anode support 110 has electron conductivity and also functions as a current collector.
  • the thickness of the anode support 110 is, for example, 0.5 mm or more and 5 mm or less.
  • the porosity of the anode support 110 is, for example, 40% or more and 95% or less.
  • the Young's modulus of the anode support 110 is greater than 0.1 N / mm 2 and less than 43 N / mm 2 .
  • the lower limit of the Young's modulus of the anode support 110 is preferably 0.2 N / mm 2 or more, more preferably 0.3 N / mm 2 or more.
  • the upper limit of the Young's modulus of the anode support 110 is preferably 40 N / mm 2 or less, more preferably 10 N / mm 2 or less, and still more preferably 7 N / mm 2 or less.
  • Young's modulus can be calculated by the following method. That is, a support sample cut into an appropriate area is sandwiched between two hard metal plates to form a laminate. Load the stack with a load cell. The initial thickness of the support sample and the thickness under load are measured using a micrometer. The Young's modulus is calculated by dividing the magnitude of the applied load by the area of the support sample and dividing the obtained value by the amount of change in thickness.
  • the anode 108 By setting the Young's modulus of the anode support 110 to 0.1 N / mm 2 or more, the anode 108 can be more reliably suppressed. As a result, peeling between the cathode 104 and the electrolyte film 102 can be suppressed, and therefore, the cell voltage of the organic hydride manufacturing apparatus 100 can be reduced.
  • the Young's modulus is 0.1 N / mm 2 or less, it is not preferable because the thickness of the anode support must be considerably increased in order to press the anode 108 at a desired pressure.
  • the Young's modulus of the anode support 110 is set to less than 43 N / mm 2 , it is possible to prevent the elasticity of the anode support 110 from being excessively reduced and the pressure applied to the anode 108 becoming nonuniform. Thereby, the occurrence of partial contact failure between the anode 108 and the electrolyte membrane 102 or the anode support 110 can be suppressed, and the cell voltage of the organic hydride manufacturing apparatus 100 can be reduced. In addition, it is possible to prevent the amount of deformation of the anode support 110 from being excessively reduced to make the assembly of the organic hydride production apparatus 100 difficult.
  • hole and a bibili fiber, a foaming molding, a powder molding etc. are illustrated.
  • the fibers contained in the constituent material of the anode support 110 preferably have a fiber diameter of 10 ⁇ m to 100 ⁇ m, and a length of preferably 1 mm to 100 mm.
  • the basis weight of the fibers when producing the anode support 110 is, for example, 100 g / m 2 or more and 5000 g / m 2 or less.
  • the resistance value and Young's modulus of the anode support 110 can be adjusted by adjusting the temperature and time of the heat treatment even if the fiber size and the area weight are the same.
  • the laminated web obtained by sintering the fibers has an elastic deformation of 0.2 mm or more and 2 mm or less at a pressure of 0.1 MP, for example.
  • the deformation rate is, for example, 20% or more and 80% or less.
  • the anode support 110 may be formed of a flat plate member having a plurality of openings, such as an expanded mesh. That is, the "porous body" in the present application also includes a flat plate member provided with a plurality of openings.
  • the anode chamber 112 is a space that accommodates the anode 108 and the anode support 110.
  • the anode chamber 112 is defined by the electrolyte membrane 102, the separator 114b, and a frame-like spacer 130 disposed between the electrolyte membrane 102 and the separator 114b.
  • the spacer 130 also serves as a sealing material that prevents the anolyte from leaking out of the anode chamber 112, and preferably has electrical insulation.
  • a material which comprises the spacer 130 tetrafluoro ethylene resin is mentioned, for example.
  • an anode chamber inlet 132 and an anode chamber outlet 134 which communicate the inside and the outside of the anode chamber 112, are disposed.
  • the anode chamber inlet 132 is disposed vertically below the anode chamber 112.
  • the anode chamber inlet 132 is connected at one end to the anode support 110 and at the other end to an anolyte reservoir (not shown).
  • an anolyte supply device including various pumps such as a gear pump and a cylinder pump, or a natural flow down device, etc. is provided.
  • the anolyte reservoir contains anolyte.
  • an aqueous sulfuric acid solution, an aqueous nitric acid solution or an aqueous hydrochloric acid solution whose ion conductivity measured at 20 ° C. is 0.01 S / cm or more are exemplified.
  • the anolyte stored in the anolyte reservoir is supplied to the anode chamber 112 by an anolyte feeder.
  • pure water can also be used as an anolyte.
  • the anode catalyst 108a be fixed to the base material 108b with a perfluorosulfonic acid polymer or the like to suppress peeling of the anode catalyst 108a due to the generation of bubbles.
  • Anolyte supplied to the anode chamber 112 is introduced into the anode chamber 112 via the anode chamber inlet 132.
  • Anolyte introduced into the anode chamber 112 is supplied to the anode 108 via the anode support 110.
  • the anode chamber outlet 134 is disposed vertically above the anode chamber 112.
  • the anode chamber outlet 134 is connected at one end to the anode support 110 and at the other end to, for example, an anolyte storage tank.
  • the anolyte in the anode chamber 112 is discharged to the outside of the anode chamber 112 via the anode chamber outlet 134.
  • a gas-liquid separation unit (not shown) is provided between the cathode chamber outlet 128 and the anolyte storage tank.
  • oxygen generated by the electrolysis of the anolyte, and gases such as hydrides of the hydride and organic hydride mixed in the anolyte through the electrolyte membrane 102 are separated from the anolyte. Unreacted anolyte is returned to the anolyte reservoir.
  • the separator 114 b is disposed on the anode chamber 112 side. In the present embodiment, the separator 114 b is laminated on the main surface of the anode support 110 opposite to the anode 108.
  • the separator 114 b has electron conductivity and also functions as a feed plate.
  • metals such as SUS and Ti, are mentioned, for example.
  • the organic hydride manufacturing apparatus 100 can be assembled as follows. That is, the flow path portion 124, the cathode 104, the electrolyte membrane 102, the anode 108, and the anode support 110 are laminated in this order to obtain a laminate. Then, after the spacers 122 and 130 are fitted to the laminate, these are sandwiched by the pair of separators 114 a and 114 b. An appropriate clamping pressure is applied to the stack by the pair of separators 114a and 114b.
  • a pressure of 1 kgf / cm 2 or less is applied to the laminate. Since the organic hydride manufacturing apparatus 100 includes the anode support 110, the electrical connection of each layer can be well maintained with a small pressure of 1 kgf / cm 2 or less. Thereby, weight reduction and cost reduction of the organic hydride manufacturing device 100 can be achieved. In addition, even if a pressure fluctuation occurs during the operation of the organic hydride manufacturing apparatus 100, the anode support 110 elastically deforms so that a constant pressure can always be applied to each layer. In addition, when producing a laminated body, what bonded the anode 108 and the anode support body 110 beforehand may be used. Alternatively, the anode support 110 and the separator 114b may be bonded in advance. In addition, the organic hydride production device 100 may be a bipolar cell.
  • a power control unit and a drive control unit may be connected to the organic hydride manufacturing apparatus 100.
  • the power control unit is, for example, a DC / DC converter that converts the output voltage of the power source into a predetermined voltage.
  • the positive output terminal of the power control unit is connected to the anode 108.
  • the negative output terminal of the power control unit is connected to the cathode 104.
  • a predetermined voltage is applied between the anode 108 and the cathode 104.
  • the power control unit may be provided with a reference electrode for the purpose of detecting the positive and negative potentials.
  • the reference electrode input terminal is connected to a reference electrode (not shown) provided on the electrolyte membrane 102.
  • the reference electrode is electrically isolated from the cathode 104 and the anode 108.
  • the reference electrode is held at the reference electrode potential.
  • the reference electrode potential is, for example, a potential with respect to a reversible hydrogen electrode (RHE).
  • RHE reversible hydrogen electrode
  • the reference electrode potential may be a potential with respect to the Ag / AgCl electrode.
  • the current flowing between the cathode 104 and the anode 108 is detected by a current detection unit (not shown).
  • the current value detected by the current detection unit is input to the drive control unit, and is used to control the power control unit by the drive control unit.
  • the potential difference between the reference electrode and the cathode 104 is detected by a voltage detection unit (not shown).
  • the value of the potential difference detected by the voltage detection unit is input to the drive control unit, and is used to control the power control unit by the drive control unit.
  • the drive control unit controls the outputs of the positive electrode output terminal and the negative electrode output terminal of the power control unit so that the potential of the anode 108 or the cathode 104 becomes a desired potential.
  • the power source is preferably, but not limited to, renewable energy obtained by solar light, wind power, water power, geothermal power generation and the like.
  • the reaction which occurs when toluene (TL) is used as an example of the hydride in the organic hydride production apparatus 100 having the above-described structure is as follows.
  • the organic hydride obtained is methylcyclohexane (MCH).
  • MCH methylcyclohexane
  • the electrode reaction at the anode 108 and the electrode reaction at the cathode 104 proceed in parallel. Then, protons (H + ) generated by the electrolysis of water at the anode 108 are supplied to the cathode 104 through the electrolyte membrane 102. The protons supplied to the cathode 104 are used for hydrogenation of the hydride at the cathode 104. This hydrogenates the toluene to produce methylcyclohexane. Therefore, according to the organic hydride production apparatus 100 according to the present embodiment, the electrolysis of water and the hydrogenation reaction of the hydride can be performed in one step.
  • the organic hydride manufacturing apparatus 100 includes the electrolyte membrane 102, the cathode 104, the anode 108, and the anode support 110 provided on the opposite side of the anode 108 to the electrolyte membrane 102. Equipped with The anode support 110 is formed of a plate-like elastic porous body having a Young's modulus of more than 0.1 N / mm 2 and less than 43 N / mm 2 . By providing such an elastic and porous plate-like anode support 110, the electrical connection state of each member constituting the organic hydride production device 100 can be well maintained.
  • the cathode liquid made of an organic compound such as toluene has poor conductivity. Therefore, if the electrolyte membrane 102 and the cathode 104 are peeled off, the supply of protons from the electrolyte membrane 102 to the cathode 104 is inhibited at the peeled portion. If the supply of protons is inhibited, the cathode catalyst may be inactivated.
  • the installation of the anode support 110 can more reliably maintain the contact between the electrolyte membrane 102 and the cathode 104.
  • the cell voltage of the organic hydride manufacturing apparatus 100 can be reduced. Therefore, the production efficiency of the organic hydride can be improved.
  • the lifetime of the organic hydride manufacturing apparatus 100 can be extended.
  • the Young's modulus of the anode support 110 is more preferably 0.2 N / mm 2 or more and 10 N / mm 2 or less. Thereby, the cell voltage of the organic hydride manufacturing apparatus 100 can be further reduced.
  • the ratio T1 / T2 of the thickness T1 of the electrolyte membrane 102 to the thickness T2 of the anode 108 is 0.35 or more. Thereby, the cell voltage of the organic hydride manufacturing apparatus 100 can be reduced more reliably.
  • the base 108 b of the anode 108 is in the form of a mesh.
  • the mesh is a rhombus, and the average value of the rhombus center-to-center distance SW and the center-to-center distance LW is 0.3 mm or more and 3 mm or less. Thereby, the cell voltage of the organic hydride manufacturing apparatus 100 can be reduced more reliably.
  • FIG. 2 (A) is a view showing an anode support and cell voltages provided in the organic hydride production apparatus according to Test Examples 1-11.
  • FIG. 2 (B) is a diagram for explaining the center-to-center distance LW, the center-to-center distance SW, and the strand length ST.
  • FIG. 2C is a view showing the relationship between the Young's modulus of the anode support and the cell voltage.
  • An anode was produced by the following procedure. First, an expanded mesh having a predetermined mesh shape was prepared as a base material of the anode. The surface of this substrate was dry-blasted and subsequently washed in a 20% aqueous sulfuric acid solution. Thereafter, the substrate was set in an arc ion plating apparatus using a Ti—Ta alloy target. Then, a film of Ti—Ta alloy was formed on the surface of the substrate at a substrate temperature of 150 ° C. and a vacuum degree of 1.0 ⁇ 10 ⁇ 2 Torr. The film thickness was 2 ⁇ m.
  • a mixed aqueous solution of iridium tetrachloride / tantalum pentoxide was applied to the coated substrate, and heat treatment at 550 ° C. was performed in an electric furnace. This operation was repeated multiple times to obtain an anode containing equimolar iridium oxide and tantalum oxide.
  • the catalyst amount of the anode was 12 g / m 2 per electrode area in terms of the Ir metal amount.
  • the Young's modulus of the anode was 40 N / mm 2 .
  • titanium fibers having a fiber diameter of 50 ⁇ m were placed in a furnace with a basis weight of 600 g / m 2 . Then, the titanium fibers were sintered while applying an appropriate load under an inert atmosphere, with a furnace temperature of 900 ° C., and a heating time of 30 minutes. Thus, an anode support composed of a sintered body of metal fibers was obtained. The thickness of the anode support was 3 mm. The Young's modulus of the anode support was 0.1 N / mm 2 .
  • the laminated body of a cathode and an electrolyte membrane was formed with the following procedures. First, 5% Nafion (registered trademark) dispersion liquid (manufactured by DuPont) is added to a powder of PtRu / C catalyst TEC 61 E 54 (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), and a solvent is appropriately used to prepare a catalyst ink for cathode catalyst layer did. The Nafion / carbon ratio of the catalyst ink was 0.8.
  • This catalyst ink was prepared so that the amount of noble metal (PtRu amount) would be 0.5 mg / cm 2, and was applied to carbon paper GDL10BC (manufactured by SGL Carbon Co., Ltd.) using a bar coater. Then, the solvent component in the catalyst ink was dried by heating at 80 ° C. to obtain a cathode catalyst layer.
  • PtRu amount the amount of noble metal
  • Pt particles were supported on carbon paper to prepare a diffusion layer.
  • the Pt particles contained in the diffusion layer play a role of promoting a chemical reaction between hydrogen gas which is a by-product in the cathode and unreacted hydride.
  • H 2 PtCl 6 .6H 2 O and 1-propanol were mixed to prepare a mixed solution.
  • the amount of H 2 PtCl 6 .6H 2 O added was adjusted so that the amount of Pt supported on carbon paper was 0.02 mg / cm 2 .
  • Carbon paper GDL10BC (made by SGL carbon company) was immersed in the obtained mixed solution.
  • the carbon paper was completely dried under a 60 ° C. N 2 gas atmosphere. Subsequently, the carbon paper was immersed in a 1 mg aqueous solution of NaBH 4 and subjected to a reduction treatment for 2 hours. After the reduction treatment, the carbon paper was dipped in pure water and washed. Thereafter, the carbon paper was dried to obtain a diffusion layer.
  • Nafion (registered trademark) 117 manufactured by DuPont
  • the thickness of the electrolyte membrane was 0.175 mm.
  • the cathode catalyst layer and the diffusion layer were laminated on this electrolyte membrane, and hot pressing was performed at 120 ° C. and 1 MPa for 3 minutes. Thus, a laminate of a cathode and an electrolyte membrane was obtained.
  • a composite of the cathode side separator and the flow path portion, an anode side separator, and a cathode and an anode spacer were prepared.
  • the composite and the anode separator were made of titanium.
  • the composite, the spacer for the cathode, the laminate of the cathode and the electrolyte membrane, the anode, the anode support, the spacer for the anode and the separator on the anode side were laminated in this order. Subsequently, these laminates were assembled by applying pressure from the outside. By pressing each layer by the elastic force of the anode support, the layers were brought into close contact with each other.
  • the organic hydride production apparatus of Test Example 1 was obtained by the above steps.
  • the electrode effective area of the organic hydride manufacturing apparatus was 100 cm 2 .
  • a supply path of the hydride was connected to the cathode chamber inlet of the cathode spacer.
  • the discharge path of the organic hydride was connected to the cathode chamber outlet of the cathode spacer.
  • an anode fluid supply path was connected to the inlet of the anode chamber of the spacer for anode.
  • An anode fluid discharge path was connected to the anode chamber outlet of the anode spacer.
  • toluene was circulated as a cathode liquid.
  • 100 g / L sulfuric acid aqueous solution was circulated as an anode fluid in the anode chamber.
  • the flow rate of the catholyte was 10 mL / min.
  • the flow rate of the anolyte was 10 mL / min.
  • the electrolytic reaction was performed at a temperature of 60 ° C. and a current density of 0.4 A / cm 2 .
  • the anolyte was supplied from the anolyte reservoir to the anode chamber using a pump and circulated from the anode chamber back to the anolyte reservoir (batch operation).
  • the anolyte was supplied to the anode chamber from the lower part of the organic hydride production apparatus.
  • the anolyte was circulated while replenishing water which decreased by electrolysis.
  • the negative electrode of the constant current power supply was connected to the cathode, and the positive electrode was connected to the anode.
  • the output current of the constant current power source was 40 A (0.4 A / cm 2 ) and applied to the organic hydride manufacturing apparatus. And the cell voltage of the organic hydride manufacturing apparatus was measured. The results are shown in FIG. 2 (A).
  • Test Examples 2 to 9 As shown in FIG. 2 (A), the fiber diameter and weight of the fibers constituting the anode support, the thickness of the anode support and the Young's modulus were adjusted, and the other procedures were carried out according to Test Example 1 as test examples. Two to nine organic hydride production devices were produced. And the cell voltage of each organic hydride manufacturing device was measured. The results are shown in FIG. 2 (A).
  • Test Examples 10 and 11 As shown in FIG. 2 (A), instead of the sintered body of the metal fiber, an anode support composed of expanded mesh is used, and the other procedures are according to Test Example 1; The manufacturing apparatus was produced. And the cell voltage of each organic hydride manufacturing device was measured. The results are shown in FIG. 2 (A). The center-to-center distance LW, the center-to-center distance SW, and the strand length ST in the expanded mesh are as illustrated in FIG. 2B, which are well known to those skilled in the art.
  • FIG. 2C shows the relationship between the Young's modulus of the anode support and the cell voltage in the organic hydride manufacturing apparatus according to each of the test examples.
  • the cell voltage was below 2.2 V when the Young's modulus of the anode support was greater than 0.1 N / mm 2 and less than 43 N / mm 2 .
  • the cell voltage of 2.2 V is a cell voltage in a conventionally known organic hydride manufacturing apparatus not provided with the anode support of the present application. Therefore, it was confirmed that when the Young's modulus of the anode support is greater than 0.1 N / mm 2 and less than 43 N / mm 2 , the production efficiency of the organic hydride can be improved.
  • the Young's modulus of the anode support was 0.2 N / mm 2 or more and 10 N / mm 2 or less, it was confirmed that the cell voltage was 2.0 V or less.
  • the cell voltage of 2.0 V is a cell voltage in alkaline water electrolysis. Therefore, it is confirmed that when the Young's modulus of the anode support is 0.2 N / mm 2 or more and 10 N / mm 2 or less, the production efficiency of the organic hydride can be improved to the same or higher hydrogen production efficiency of alkaline water electrolysis.
  • the Young's modulus of the anode support is 0.3 N / mm 2 or more and 1.2 N / mm 2 or less, the production efficiency of the organic hydride can be further improved.
  • FIG. 3 (A) is a view showing the thicknesses of the electrolyte membrane and the anode, the ratio of the thicknesses of the two, and the cell voltage, which are provided in the organic hydride production devices according to Test Examples 2 and 12-14.
  • FIG. 3B is a view showing the relationship between the thickness ratio and the cell voltage.
  • the thickness ratio T1 / T2 of the electrolyte membrane is made different by fixing the thickness T1 of the electrolyte membrane and adjusting the thickness T2 of the anode.
  • the organic hydride production devices of Test Examples 2 and 12 to 14 were manufactured. In all the test examples, the Young's modulus of the anode support was 0.3 N / mm 2 . And the cell voltage of each organic hydride manufacturing device was measured. The results are shown in FIG. 3 (A).
  • FIG. 3B shows the relationship between the ratio T1 / T2 of the thickness T1 of the electrolyte membrane and the thickness T2 of the anode and the cell voltage in the organic hydride manufacturing apparatus according to each test example.
  • the cell voltage was less than 2.0 V when the thickness ratio T1 / T2 was 0.35 or more. Therefore, it was confirmed that the production efficiency of organic hydride can be more surely improved than the hydrogen production efficiency of alkaline water electrolysis by setting the thickness ratio T1 / T2 to 0.35 or more.
  • FIG. 4 (A) is a view showing the stitch size and cell voltage of the anode provided in the organic hydride manufacturing apparatus according to Test Examples 15-19.
  • FIG. 4B is a view showing the relationship between the average value of the long-distance center-to-center distance LW and the short-direction-to-center distance SW and the cell voltage.
  • Test Examples 15 to 19 As shown in FIG. 4A, in the anode base material, the distance LW in the long direction and the distance SW between the short directions in the mesh are made different from each other according to Test Example 1 in accordance with Test Example 1. Nineteen organic hydride manufacturing devices were manufactured. In all the test examples, the Young's modulus of the anode support was 0.3 N / mm 2 . And the cell voltage of each organic hydride manufacturing device was measured. The results are shown in FIG. 4 (A).
  • FIG. 4B shows the relationship between the cell voltage and the average value of the distance LW in the long direction and the distance SW in the short direction in the organic hydride manufacturing apparatus according to each test example.
  • the cell voltage was 2.0 V or less. Therefore, it was confirmed that the production efficiency of organic hydride can be more reliably improved more than the hydrogen production efficiency of alkaline water electrolysis by setting the average value to 0.3 mm or more and 3 mm or less.
  • the cell voltage was less than 2.0 V. Therefore, it was confirmed that the production efficiency of organic hydride can be more surely improved than the hydrogen production efficiency of alkaline water electrolysis by setting the average value to more than 0.3 mm and 3 mm or less.
  • organic hydride production apparatus 102 electrolyte membrane, 104 cathode, 108 anode, 108a anode catalyst, 108b substrate, 110 anode support.
  • the present invention can be used in an organic hydride production apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

有機ハイドライド製造装置100は、プロトン伝導性を有する電解質膜102と、電解質膜102の一方の側に設けられ、プロトンで被水素化物を水素化して有機ハイドライドを生成するためのカソード触媒を含むカソード104と、電解質膜102の一方の側とは反対側に設けられ、水を酸化してプロトンを生成するためのアノード触媒108aを含むアノード108と、アノード108の電解質膜102とは反対側に設けられ、アノード108を支持するアノード支持体110とを備える。アノード支持体110は、ヤング率が0.1N/mm2超43N/mm2未満である弾性多孔体で構成される。

Description

有機ハイドライド製造装置
 本発明は、有機ハイドライド製造装置に関する。特に本発明は、被水素化物を電気化学的に水素化して有機ハイドライドを生成する有機ハイドライド製造装置に関する。
 近年、火力発電で得られるエネルギーに比べて生成過程での二酸化炭素排出量を抑制することができる新エネルギーとして、太陽光、風力、水力、地熱発電等で得られる再生可能エネルギーの普及が望まれている。しかしながら、再生可能エネルギーは、その出力変動、特に中長周期での出力変動の緩和が求められる。また、再生可能エネルギーは、大規模輸送が比較的困難である。これに対し、再生可能エネルギーから得られる電力を化学エネルギーに変換することが有効である。電力を直接化学エネルギーに変換するプロセスとしては、電気化学システムが挙げられる。電気化学システムの一例である二次電池、いわゆる蓄電池は、電力を化学エネルギーに変換して貯蔵するデバイスであり、広く用いられている。
 再生可能エネルギーを基盤とする電気化学システムとしては、大規模な太陽光発電システムや風力発電システムを世界の適地に設置し、これにより得られる再生可能エネルギーを、輸送に適したエネルギーキャリアに変換して国内に輸送し、国内でエネルギーを消費するシステムが有望である。エネルギーキャリアとしては、液体水素が考えられる。しかしながら、水素は常温常圧で気体であるため、輸送や貯蔵には特殊なタンカーが必要となる。
 このような状況の中、液体水素に代わるエネルギーキャリアとして、有機ハイドライド(有機ケミカルハイドライド)が注目されている。有機ハイドライドとしては、シクロヘキサンやメチルシクロヘキサン、デカリン等の環式有機化合物が挙げられる。有機ハイドライドは、一般に常温常圧で液体であるため、取り扱いが容易である。また、有機ハイドライドは、電気化学的に水素付加及び脱水素することができる。このため、有機ハイドライドをエネルギーキャリアとして用いれば、液体水素に比べて簡単に輸送、貯蔵することができる。特に、石油と似た性状の液体を有機ハイドライドとして選択した場合には、比較的大規模なエネルギー供給システムとの親和性に優れるため、エネルギー供給システムの末端にまで容易に配送することができるという利点がある。
 従来、有機ハイドライドの製造方法としては、再生可能エネルギーでの水電解により水素を製造し、水素化反応器中で被水素化物(有機ハイドライドの脱水素化体)に水素を付加して有機ハイドライドを製造する方法が知られている。
 これに対し、電解合成法によれば、被水素化物に直接水素を付加することができるため、有機ハイドライドの製造工程を簡略化することができる。また、規模によらず効率損失が少なく、さらに有機ハイドライド製造装置の起動停止に対する追従性にも優れる。このような有機ハイドライドの製造技術に関して、例えば特許文献1には、水からプロトンを生成するアノードと、不飽和結合を有する有機化合物を水素化するカソードとを備える有機ハイドライド製造装置が開示されている。
国際公開第2012/091128号
 本発明者らは、上述した有機ハイドライドを製造する技術について鋭意検討を重ねた結果、従来の技術には、有機ハイドライドの製造効率を向上させる余地があることを認識するに至った。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、有機ハイドライドの製造効率を向上させる技術を提供することにある。
 本発明のある態様は、有機ハイドライド製造装置である。当該装置は、プロトン伝導性を有する電解質膜と、電解質膜の一方の側に設けられ、プロトンで被水素化物を水素化して有機ハイドライドを生成するためのカソード触媒を含むカソードと、電解質膜の一方の側とは反対側に設けられ、水を酸化してプロトンを生成するためのアノード触媒を含むアノードと、アノードの電解質膜とは反対側に設けられ、アノードを支持するアノード支持体と、を備える。アノード支持体は、ヤング率が0.1N/mm超43N/mm未満である弾性多孔体で構成される。
 本発明によれば、有機ハイドライドの製造効率を向上させることができる。
実施の形態に係る有機ハイドライド製造装置の概略構造を示す断面図である。 図2(A)は、試験例1~11に係る有機ハイドライド製造装置が備えるアノード支持体とセル電圧とを示す図である。図2(B)は、長目方向中心間距離LW、短目方向中心間距離SW及びストランド長さSTを説明するための図である。図2(C)は、アノード支持体のヤング率とセル電圧との関係を示す図である。 図3(A)は、試験例2,12~14に係る有機ハイドライド製造装置が備える電解質膜及びアノードの厚さと、両者の厚さの比と、セル電圧とを示す図である。図3(B)は、厚さの比とセル電圧との関係を示す図である。 図4(A)は、試験例15~19に係る有機ハイドライド製造装置が備えるアノードの編目寸法とセル電圧とを示す図である。図4(B)は、長目方向中心間距離LW及び短目方向中心間距離SWの平均値とセル電圧との関係を示す図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限り、いかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。
 図1は、実施の形態に係る有機ハイドライド製造装置の概略構造を示す断面図である。有機ハイドライド製造装置100は、有機ハイドライドの脱水素化体である被水素化物を電気化学還元反応により水素化する電解セルであり、主な構成として、電解質膜102と、カソード104と、カソード室106と、アノード108と、アノード支持体110と、アノード室112と、一対のセパレータ114a,114bと備える。電解質膜102、カソード104及びアノード108により膜電極接合体が構成される。
 電解質膜102は、プロトン伝導性を有する材料(アイオノマー)で形成される。電解質膜102は、プロトンを選択的に伝導する一方で、カソード104とアノード108との間で物質が混合したり拡散したりすることを抑制する。プロトン伝導性を有する材料としては、ナフィオン(登録商標)、フレミオン(登録商標)などのパーフルオロスルホン酸ポリマーが挙げられる。電解質膜102の厚さは、特に限定されないが、好ましくは5~300μmであり、より好ましくは10~150μmであり、さらに好ましくは20~100μmである。電解質膜102の厚さを5μm以上とすることで、電解質膜102のバリア性を確保して、被水素化物、有機ハイドライド及び酸素等のクロスリークの発生をより確実に抑制することができる。また、電解質膜102の厚さを300μm以下とすることで、イオン移動抵抗が過大になることを抑制することができる。
 電解質膜102には、多孔性のPTFE(ポリテトラフルオロエチレン)等の補強材が混合されてもよい。補強材を導入することで、電解質膜102の寸法安定性の低下を抑制することができる。これにより、電解質膜102の耐久性を向上させることができる。また、被水素化物、有機ハイドライド及び酸素等のクロスオーバーを抑制することができる。また、電解質膜102の表面は、所定の無機物層の被覆等によって親水化してもよい。
 カソード104は、電解質膜102の一方の側に設けられる。本実施の形態では、カソード104は電解質膜102の一方の主表面に接するように設けられている。カソード104は、カソード触媒層116と、マイクロポーラス層118と、拡散層120とがこの順に積層された構造を有する。より具体的には、カソード触媒層116は、電解質膜102の一方の主表面に接する。マイクロポーラス層118は、カソード触媒層116の電解質膜102とは反対側の主表面に接する。拡散層120は、マイクロポーラス層118のカソード触媒層116とは反対側の主表面に接する。なお、マイクロポーラス層118及び拡散層120は、適宜省略することができる。
 カソード触媒層116は、プロトンで被水素化物を水素化して有機ハイドライドを生成するためのカソード触媒(還元触媒)を含む。カソード触媒としては、例えばPt、Ru、Pd、Ir及びこれらの少なくとも1つを含む合金からなる群から選択される金属粒子を用いることができる。カソード触媒は、市販品を用いてもよいし、公知の方法に従って合成したものを用いてもよい。また、カソード触媒は、Pt、Ru、Pd、Irの少なくとも1つからなる第1の触媒金属(貴金属)と、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Sn、W、Re、Pb、Biから選択される1種又は2種以上の第2の触媒金属とを含む金属組成物で構成されてもよい。この場合、当該金属組成物の形態としては、第1の触媒金属と第2の触媒金属との合金、あるいは第1の触媒金属と第2の触媒金属からなる金属間化合物などが挙げられる。
 カソード触媒は、電子伝導性材料で構成される触媒担体によって担持される。カソード触媒を触媒担体に担持させることで、カソード触媒層116の表面積を拡大することができる。また、カソード触媒の凝集を抑制することができる。触媒担体としては、例えば多孔性カーボン(メソポーラスカーボンなど)、多孔性金属、多孔性金属酸化物のいずれかを主成分として含有する電子伝導性材料を挙げることができる。
 多孔性カーボンとしては、例えばケッチェンブラック(登録商標)、アセチレンブラック、ファーネスブラック、バルカン(登録商標)などのカーボンブラックが挙げられる。カーボンブラック等の炭素微粒子の平均粒径は、好ましくは0.01μm~1μmである。多孔性金属としては、例えばPtブラック、Pdブラック、フラクタル状に析出させたPt金属などが挙げられる。多孔性金属酸化物としては、例えばTi、Zr、Nb、Mo、Hf、Ta、Wの酸化物が挙げられる。また、触媒担体には、Ti、Zr、Nb、Mo、Hf、Ta、Wなどの金属の窒化物、炭化物、酸窒化物、炭窒化物、部分酸化した炭窒化物といった、多孔性の金属化合物も用いることができる。
 カソード触媒を担持した状態の触媒担体は、アイオノマーで被覆される。これにより、カソード104のイオン伝導性を向上させることができる。アイオノマーとしては、例えばナフィオン(登録商標)、フレミオン(登録商標)などのパーフルオロスルホン酸ポリマー等を挙げることができる。カソード触媒層116に含まれるアイオノマーは、カソード触媒を部分的に被覆していることが好ましい。これによれば、カソード触媒層116における電気化学反応に必要な3要素(被水素化物、プロトン、電子)を効率的に反応場に供給することができる。
 カソード触媒層116の厚さは、好ましくは1~100μmであり、より好ましくは5~30μmである。カソード触媒層116の厚さが増加すると、プロトンの移動抵抗が増大するだけでなく、被水素化物や有機ハイドライドの拡散性も低下する。このため、カソード触媒層116の厚さは、上述した範囲で調整することが望ましい。
 拡散層120は、外部から供給される液状の被水素化物をカソード触媒層116に均一に拡散させる機能を担う。拡散層120を構成する材料は、被水素化物や有機ハイドライドに対して親和性が高いことが好ましい。拡散層120を構成する材料としては、例えば多孔性導電基材や繊維焼結体等が例示される。これらは、ガス及び液の供給や除去に適した多孔性を有し、且つ十分な電導性を保つことができるため好ましい。拡散層120の厚さは、好ましくは10~5000μmである。
 拡散層120を構成する材料のより具体的な例としては、カーボンの織布(カーボンクロス)、カーボンの不織布、カーボンペーパー等を挙げることができる。カーボンクロスは、数μmの径の細いカーボン繊維を数百本の束とし、この束を織布としたものである。また、カーボンペーパーは、カーボン原料繊維を製紙法にて薄膜の前駆体とし、これを焼結したものである。
 マイクロポーラス層118は、液体の被水素化物及び有機ハイドライドの、カソード触媒層116の面方向への拡散を促す機能を有する。マイクロポーラス層118は、例えば導電性粉末と撥水剤とを混練して得られるペースト状の混練物を、拡散層120の表面に塗布し、乾燥させることで形成することができる。導電性粉末としては、例えばバルカン(登録商標)等の導電性カーボンを用いることができる。撥水剤としては、例えば四フッ化エチレン樹脂(PTFE)などのフッ素系樹脂を用いることができる。導電性粉末と撥水剤の割合は、所望の導電性及び撥水性が得られる範囲内で適宜定められる。なお、マイクロポーラス層118は、拡散層120と同様にカーボンクロスやカーボンペーパー等で構成することもできる。
 マイクロポーラス層118の厚さは、好ましくは1~50μmである。マイクロポーラス層118が拡散層120の表面よりも内部に落ち込むように形成されている場合には、拡散層120に潜っている部分を含めて、マイクロポーラス層118自体の膜厚の平均をマイクロポーラス層118の厚さと定義する。マイクロポーラス層118の表面には、金属成分を共存させてもよい。これにより、マイクロポーラス層118の電子伝導性が向上し、電流の均一化を図ることができる。
 マイクロポーラス層118と拡散層120とは、それぞれ厚さ方向に圧力が加えられた状態で使用される。したがって、使用時の厚さ方向への加圧によって、それぞれの厚さ方向における導電性が変化することは好ましくない。このため、マイクロポーラス層118及び拡散層120は、予めプレス加工が施されることが好ましい。これにより、各層の厚さ方向における導電性を高め、且つ安定させることができる。また、カソード触媒層116とマイクロポーラス層118との接合度を向上させることも、カソード104の導電性向上に寄与する。また、当該接合度の向上によって、原料物質の供給能力と生成物質の除去能力とが向上する。
 カソード室106は、カソード104を収容する空間である。カソード室106は、電解質膜102と、セパレータ114aと、電解質膜102及びセパレータ114aの間に配置される枠状のスペーサ122とで画成される。カソード室106には、カソード104だけでなく、流路部124が収容される。
 流路部124は、拡散層120に隣接して配置される。より具体的には、流路部124は、拡散層120のマイクロポーラス層118とは反対側の主表面に接するように設けられる。したがって、流路部124は、拡散層120とセパレータ114aとの間に配置される。流路部124は、板状の本体部124aの主表面に溝124bが設けられた構造を有する。溝124bは、被水素化物の流路を構成する。本体部124aは、導電性材料からなる。流路部124は、カソード室106内において、カソード104の位置決めをするカソード支持体としても機能する。流路部124は、後述するアノード支持体110により押し付けられる力を受け止めて、セパレータ114aとカソード104との間の電子伝導性を確保する。
 スペーサ122は、被水素化物及び水素化物を含む有機物がカソード室106の外へ漏洩することを防ぐシール材を兼ねており、好ましくは電子的に絶縁性を有する。スペーサ122を構成する材料としては、例えば4フッ化エチレン樹脂が挙げられる。また、スペーサ122には、カソード室106の内部と外部とを連通する、カソード室入口126及びカソード室出口128が配置される。
 カソード室入口126は、カソード室106の鉛直方向下方に配置される。カソード室入口126は、一端が流路部124の流路に接続され、他端がカソード液貯蔵槽(図示せず)に接続される。カソード室入口126とカソード液貯蔵槽との間には、ギアポンプやシリンダーポンプ等の各種ポンプ、または自然流下式装置等で構成されるカソード液供給装置(図示せず)が設けられる。
 カソード液貯蔵槽には、有機ハイドライド製造装置100での電気化学還元反応により水素化される被水素化物が収容される。本実施の形態において用いられる有機ハイドライドは、水素化反応/脱水素反応を可逆的に起こすことにより、水素を添加/脱離できる有機化合物であれば特に限定されず、アセトン-イソプロパノール系、ベンゾキノン-ヒドロキノン系、芳香族炭化水素系等広く用いることができる。これらの中で、エネルギー輸送時の運搬性、毒性、安全性、保存安定性等の観点から、また、体積あるいは質量当たりに輸送できる水素量、水素添加及び脱水素反応の容易性、Gibbs自由エネルギー変化が著しく大きくない等のエネルギー変換効率の観点から、トルエン-メチルシクロヘキサン系に代表される芳香族炭化水素系が好ましい。
 被水素化物、すなわち有機ハイドライドの脱水素化体として用いられる芳香族炭化水素化合物は、少なくとも1つの芳香環を含む化合物であり、例えば、ベンゼン、アルキルベンゼン、ナフタレン、アルキルナフタレン、アントラセン、ジフェニルエタン等が挙げられる。アルキルベンゼンには、芳香環の1~4の水素原子が炭素数1~6の直鎖アルキル基又は分岐アルキル基で置換された化合物が含まれ、例えば、トルエン、キシレン、メシチレン、エチルベンゼン、ジエチルベンゼン等が挙げられる。アルキルナフタレンには、芳香環の1~4の水素原子が炭素数1~6の直鎖アルキル基又は分岐アルキル基で置換された化合物が含まれ、例えばメチルナフタレン等が挙げられる。これらは単独で用いられても、組み合わせて用いられてもよい。
 被水素化物は、好ましくはトルエン及びベンゼンの少なくとも一方である。なお、ピリジン、ピリミジン、ピラジン、キノリン、イソキノリン、N-アルキルピロール、N-アルキルインドール、N-アルキルジベンゾピロール等の含窒素複素環式芳香族化合物も、被水素化物として用いることができる。有機ハイドライドは、上述の被水素化物が水素化されたものであり、メチルシクロヘキサン、ジメチルシクロヘキサン、ピペリジン等が例示される。
 被水素化物は、常温で液体であることが好ましい。また、上述の芳香族炭化水素化合物及び/又は含窒素複素環式芳香族化合物の複数種を混合したものを用いる場合は、混合物として液体であればよい。被水素化物が常温で液体である場合、加熱や加圧などの処理を行うことなく、液体の状態で被水素化物を有機ハイドライド製造装置100に供給することができる。以下では適宜、カソード液貯蔵槽に貯蔵される液体を「カソード液」という。カソード液貯蔵槽に貯蔵されたカソード液は、カソード液供給装置によってカソード室106に供給される。
 カソード室106に供給されるカソード液は、カソード室入口126を介してカソード室106内に導入される。カソード室106に導入されたカソード液は、流路部124の溝124b、拡散層120及びマイクロポーラス層118を経由してカソード触媒層116に供給される。
 カソード室出口128は、カソード室106の鉛直方向上方に配置される。カソード室出口128は、一端が流路部124の流路に接続され、他端が例えばカソード液貯蔵槽に接続される。カソード室106内の有機ハイドライド、すなわち有機ハイドライド製造装置100により水素化された被水素化物と、未反応の被水素化物とは、カソード室出口128を介してカソード室106の外部に排出される。カソード室出口128とカソード液貯蔵槽との間には、分離槽(図示せず)が設けられる。分離槽において、有機ハイドライド及び被水素化物の混合物から、副生成物である水素ガスや、電解質膜102を介してカソード104側に流入したアノード液等が分離される。分離されたアノード液は再利用される。その後、有機ハイドライド及び被水素化物は、カソード液貯蔵槽に戻される。
 セパレータ114aは、カソード室106側に配置される。本実施の形態では、セパレータ114aは、流路部124の拡散層120とは反対側の主表面に積層される。セパレータ114aは電子伝導性を有し、給電板としても機能する。セパレータ114aを構成する材料としては、例えば、SUS、Ti等の金属が挙げられる。
 アノード108は、電解質膜102の一方の側とは反対側、すなわちカソード104とは反対側に設けられる。本実施の形態では、アノード108は電解質膜102の他方の主表面に接するように設けられている。アノード108は、アノード液中の水を酸化してプロトンを生成するためのアノード触媒108aを含む。アノード触媒108aとしては、例えばRu、Rh、Pd、Ir、Pt及びこれらの少なくとも1つを含む合金からなる群から選択される金属粒子を用いることができる。また、酸性電解液に浸漬された状態で酸素を発生させるアノード触媒108aとしては、白金族貴金属酸化物系触媒の使用が好ましい。中でも、酸化イリジウム系の触媒は電圧損失が少なく、耐久性に優れる。特に、酸化タンタルと固溶体を形成した酸化イリジウム系の触媒は、有機物が混入する系での電圧損失の増加が小さく、アノード触媒108aとして好ましい。
 アノード108は、アノード触媒108aに加えて、アノード触媒108aを担持する基材108bを有する。基材108bは、電解に必要な電流を流す上で十分な電気伝導性を有する。また、基材108bは、アノード液に対する耐食性に優れることが好ましい。基材108bとしては、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ta、Wなどの金属、あるいはこれらを主成分とする合金などで構成される。より好ましくは、基材108bは、Ti、Zr、Nb及びTaからなる群から選択される少なくとも一種の金属を20質量部以上含む。
 基材108bの厚さは、好ましくは0.05mm以上1mm以下である。アノード108の厚さは、実質的に基材108bの厚さと等しい。また、電解質膜102の厚さT1とアノード108の厚さT2との比T1/T2は、好ましくは0.35以上であり、より好ましくは0.6以上であり、さらに好ましくは1以上である。比率T1/T2を0.35以上とすることで、電解質膜102の湾曲を抑制でき、よってカソード104と電解質膜102の剥離を抑制することができる。このため、有機ハイドライド製造装置100の駆動に要するセル電圧をより確実に低減することができる。
 アノード108は、ガス発生電極である。このため、基材108bは、気泡による抵抗の増大を避けてアノード108へのアノード液の供給を促進するために、多孔体であることが好ましい。本実施の形態の基材108bは、網目状の板状体である。例えば、基材108bはエキスパンドメッシュで構成される。基材108bの網目は、菱形であり、菱形の短目方向中心間距離SW(図2(B)参照)と長目方向中心間距離LW(図2(B)参照)との平均値は、好ましくは0.3mm以上3mm以下であり、より好ましくは0.3mm超3mm以下であり、さらに好ましくは1.0mm以上1.5mm以下である。長目方向は、エキスパンドメッシュ製造時のスリットの方向であり、短目方向は、当該スリットに直交する方向である。エキスパンドメッシュは、メッシュ加工後に平滑化処理を行うことが望ましい。
 SWとLWとの平均値を3mm以下とすることで、有機ハイドライド製造装置100を組み付けた際にアノード108がアノード支持体110から受ける圧力を、より均一に電解質膜102側に与えることができる。また、電解質膜102の湾曲をより確実に抑制することができる。これにより、有機ハイドライド製造装置100の駆動に要するセル電圧をより確実に低減することができる。また、SWとLWとの平均値を0.3mm以上とすることで、アノード108で発生する酸素によりアノード液のアノード108への浸潤が阻害されることをより抑制することができる。これにより、セル電圧の増加をより確実に抑制することができる。
 基材108bの開口率は、例えば基材108bの投影面積当たりの孔面積で定義され、例えば40%以上90%以下である。開口率を40%以上とすることで、アノード108で発生する酸素の気泡をより速やかに除去することができる。これにより、いわゆる気泡効果によるセル抵抗の増大(言い換えればセル電圧の増大)を抑制することができる。また、開口率を90%以下とすることで、有効な電極面積が過度に減少することを抑制することができる。
 また、基材108bが有する開口の大きさ、あるいは開口のピッチは、電解質膜102の厚さ以下であることが好ましい。これにより、電解質膜102が歪んでアノード108の開口に陥入することを抑制することができる。この結果、電解質膜102とカソード104との接触を維持でき、セル電圧の増大を抑制することができる。
 基材108bには、エキスパンドメッシュ以外の、開口を有する平板部材も適宜選択することができる。例えば、金属板の一部を打ち抜いたり溶解させたりして、丸型や角型の開口を設けた板を用いることができる。基材108bに丸穴打ち抜き板を用いる場合、ある一態様では、基材108bの厚さは0.5mm以下であり、孔径は0.1mm以上0.3mm以下であり、孔ピッチは0.2mm以上5mm以下である。
 また、基材108bは、金属繊維からなる織物メッシュで構成されてもよい。この場合、金属繊維の繊維径は、例えば0.2mm以下であり、メッシュのピッチは例えば0.5mm以下である。また、基材108bは、金属多孔体の焼結体や、発泡成形体、あるいは粉末成形体等で構成されてもよい。金属多孔体は、例えば微細な空孔を有する長繊維やビビリ繊維である。基材108bが織物メッシュや焼結体等で構成される場合、基材108bの空孔率は、例えば40%以上90%以下である。本明細書において、「空孔率」は、全体の体積に占める空孔の体積の割合、すなわち体積空孔率を意味する。体積空孔率は、走査型電子顕微鏡や金属顕微鏡を用いて得られる断面画像から計算により求めることができる。
 基材108bの表面には、タンタル等の弁金属、弁金属を含む合金、貴金属、貴金属酸化物等の導電性皮膜が設けられてもよい。これにより、アノード108とアノード液との接触によって基材108bの表面に絶縁性の酸化皮膜が形成されることを抑制することができる。よって、アノード触媒108aと基材108bとの間の導電性を良好に維持することができる。
 アノード108は、好ましくはアノード支持体110よりも大きいヤング率を有する。より好ましくは、アノード108のヤング率は2N/mm以上40N/mm以下である。
 アノード支持体110は、アノード108の電解質膜102とは反対側に設けられ、アノード108を支持する。本実施の形態では、アノード支持体110はアノード108の電解質膜102とは反対側の主表面に接するように設けられている。アノード支持体110によって、アノード108は電解質膜102に押し付けられる。アノード支持体110は、板状の弾性多孔体で構成される。アノード支持体110が多孔体であることで、アノード液をアノード108へ供給することができる。
 アノード支持体110は、アノード液に対する耐食性に優れる材料で構成されることが好ましく、例えば、Ti、Zr、Nb、Taなどの金属、あるいはこれらを主成分とする合金などで構成される。より好ましくは、アノード支持体110は、Ti、Zr、Nb及びTaからなる群から選択される少なくとも一種の金属を20質量部以上含む。アノード支持体110の表面には、基材108bと同様にアノード液に対する耐食処理が施されてもよい。
 アノード支持体110は電子伝導性を有し、集電板としても機能する。アノード支持体110の厚さは、例えば0.5mm以上5mm以下である。また、アノード支持体110の空孔率は、例えば40%以上95%以下である。
 アノード支持体110のヤング率は、0.1N/mm超43N/mm未満である。アノード支持体110のヤング率の下限は、好ましくは0.2N/mm以上であり、より好ましくは0.3N/mm以上である。アノード支持体110のヤング率の上限は、好ましくは40N/mm以下であり、より好ましくは10N/mm以下であり、さらに好ましくは7N/mm以下である。ヤング率は、以下の方法で算出することができる。すなわち、適切な面積に切り出した支持体試料を2枚の硬い金属板で挟んで積層体を形成する。この積層体にロードセルにて荷重を掛ける。支持体試料の初期の厚さと、荷重を掛けているときの厚さとを、マイクロメーターを用いて測定する。与えた荷重の大きさを支持体試料の面積で除し、得られる値を厚さの変化量で除することで、ヤング率が算出される。
 アノード支持体110のヤング率を0.1N/mm超とすることで、アノード108をより確実に押さえ付けることができる。これにより、カソード104と電解質膜102との剥離を抑制することができるため、有機ハイドライド製造装置100のセル電圧を低減することができる。また、ヤング率が0.1N/mm以下である場合、所望の圧力でアノード108を押さえ付けるために、アノード支持体の厚さを相当大きくしなければならないため好ましくない。
 また、アノード支持体110のヤング率を43N/mm未満とすることで、アノード支持体110の弾性が過度に低下してアノード108に与える圧力が不均一になることを抑制することができる。これにより、アノード108と電解質膜102又はアノード支持体110との間の部分的な接触不良の発生を抑制することができ、有機ハイドライド製造装置100のセル電圧を低減することができる。また、アノード支持体110の変形量が過度に低下して有機ハイドライド製造装置100の組み立てが困難になることを、回避することができる。
 アノード支持体110を構成する材料としては、微細な空孔を有する長繊維やビビリ繊維の焼結体、発泡成形体、粉末成形体等が例示される。アノード支持体110の構成材料に含まれる繊維は、繊維径が好ましくは10μm以上100μm以下であり、長さが好ましくは1mm以上100mm以下である。アノード支持体110を作製する際の繊維の目付量は、例えば100g/m以上5000g/m以下である。なお、繊維の寸法及び目付量が同じであっても、熱処理の温度や時間を調整することで、アノード支持体110の抵抗値やヤング率を調整することができる。繊維を焼結して得た積層ウェブは、例えば圧力0.1MPにおいて、0.2mm以上2mm以下の弾性変形量を有する。変形率は、例えば20%以上80%以下である。また、アノード支持体110は、エキスパンドメッシュ等の、複数の開口を有する平板部材で構成されてもよい。つまり、本願における「多孔体」には、複数の開口が設けられた平板部材も含まれる。
 アノード室112は、アノード108及びアノード支持体110を収容する空間である。アノード室112は、電解質膜102と、セパレータ114bと、電解質膜102及びセパレータ114bの間に配置される枠状のスペーサ130とで画成される。
 スペーサ130は、アノード液がアノード室112の外へ漏洩することを防ぐシール材を兼ねており、好ましくは電子的に絶縁性を有する。スペーサ130を構成する材料としては、例えば4フッ化エチレン樹脂が挙げられる。また、スペーサ130には、アノード室112の内部と外部とを連通する、アノード室入口132及びアノード室出口134が配置される。
 アノード室入口132は、アノード室112の鉛直方向下方に配置される。アノード室入口132は、一端がアノード支持体110に接続され、他端がアノード液貯蔵槽(図示せず)に接続される。アノード室入口132とアノード液貯蔵槽との間には、ギアポンプやシリンダーポンプ等の各種ポンプ、または自然流下式装置等で構成されるアノード液供給装置(図示せず)が設けられる。
 アノード液貯蔵槽には、アノード液が収容される。アノード液としては、20℃で測定したイオン伝導度が0.01S/cm以上である、硫酸水溶液、硝酸水溶液又は塩酸水溶液が例示される。アノード液のイオン伝導度を0.01S/cm以上とすることで、工業的に十分な電気化学反応を起こさせることができる。アノード液貯蔵槽に貯蔵されたアノード液は、アノード液供給装置によってアノード室112に供給される。なお、アノード液として純水を用いることもできる。この場合は、パーフルオロスルホン酸ポリマー等でアノード触媒108aを基材108bに固着させ、気泡発生によるアノード触媒108aの剥離を抑制することが好ましい。
 アノード室112に供給されるアノード液は、アノード室入口132を介してアノード室112内に導入される。アノード室112に導入されたアノード液は、アノード支持体110を経由してアノード108に供給される。
 アノード室出口134は、アノード室112の鉛直方向上方に配置される。アノード室出口134は、一端がアノード支持体110に接続され、他端が例えばアノード液貯蔵槽に接続される。アノード室112内のアノード液は、アノード室出口134を介してアノード室112の外部に排出される。カソード室出口128とアノード液貯蔵槽との間には、気液分離部(図示せず)が設けられる。気液分離部において、アノード液の電気分解によって生じる酸素や、電解質膜102を介してアノード液に混入する被水素化物及び有機ハイドライドの気化物等のガスは、アノード液から分離される。未反応のアノード液は、アノード液貯蔵槽に戻される。
 セパレータ114bは、アノード室112側に配置される。本実施の形態では、セパレータ114bは、アノード支持体110のアノード108とは反対側の主表面に積層される。セパレータ114bは電子伝導性を有し、給電板としても機能する。セパレータ114bを構成する材料としては、例えば、SUS、Ti等の金属が挙げられる。
 有機ハイドライド製造装置100は、以下のようにして組み立てることができる。すなわち、流路部124、カソード104、電解質膜102、アノード108及びアノード支持体110をこの順に積層して積層体を得る。そして、積層体にスペーサ122,130を嵌め合わせた後、一対のセパレータ114a,114bでこれらを挟み込む。一対のセパレータ114a,114bにより、積層体には適切な締め付け圧力が印加される。
 例えば、積層体には、1kgf/cm以下の圧力がかけられる。有機ハイドライド製造装置100は、アノード支持体110を備えるため、1kgf/cm以下の小さい圧力で各層の電気的接続状態を良好に維持することができる。これにより、有機ハイドライド製造装置100の軽量化、低コスト化を図ることができる。また、有機ハイドライド製造装置100の運転中に圧力変動が生じても、アノード支持体110が弾性変形することで、常に一定の圧力を各層に付与することができる。なお、積層体を作製する際、アノード108とアノード支持体110とを予め接合したものを用いてもよい。また、アノード支持体110とセパレータ114bとを予め接合したものを用いてもよい。また、有機ハイドライド製造装置100は、バイポーラセルであってもよい。
 有機ハイドライド製造装置100には、図示しない電力制御部及び駆動制御部が接続されてもよい。電力制御部は、例えば、電力源の出力電圧を所定の電圧に変換するDC/DCコンバータである。電力制御部の正極出力端子は、アノード108に接続される。電力制御部の負極出力端子は、カソード104に接続される。これにより、アノード108とカソード104との間に所定の電圧が印加される。
 電力制御部には、正及び負極の電位検知の目的で参照極が設けられていてもよい。この場合、参照極入力端子は、電解質膜102に設けられる参照電極(図示せず)に接続される。参照電極は、カソード104及びアノード108から電気的に隔離される。参照電極は、参照電極電位に保持される。参照電極電位は、例えば可逆水素電極(RHE)に対する電位である。なお、参照電極電位は、Ag/AgCl電極に対する電位であってもよい。カソード104とアノード108との間を流れる電流は、電流検出部(図示せず)によって検出される。電流検出部で検出された電流値は、駆動制御部に入力され、駆動制御部による電力制御部の制御に用いられる。参照電極とカソード104との間の電位差は、電圧検出部(図示せず)によって検出される。電圧検出部で検出された電位差の値は駆動制御部に入力され、駆動制御部による電力制御部の制御に用いられる。
 駆動制御部は、アノード108又はカソード104の電位が所望の電位となるように、電力制御部の正極出力端子及び負極出力端子の出力を制御する。電力源は、好ましくは太陽光、風力、水力、地熱発電等で得られる再生可能エネルギーであるが、特にこれに限定されない。
 上述した構造を備える有機ハイドライド製造装置100において、被水素化物の一例としてトルエン(TL)を用いた場合に起こる反応は、以下の通りである。被水素化物としてトルエンを用いた場合、得られる有機ハイドライドはメチルシクロヘキサン(MCH)である。
<アノードでの電極反応>
 2HO→O+4H+4e
<カソードでの電極反応>
 TL+6H+6e→MCH
<全反応>
 2TL+6HO→2MCH+3O
 すなわち、アノード108での電極反応と、カソード104での電極反応とが並行して進行する。そして、アノード108における水の電気分解により生じたプロトン(H)が、電解質膜102を介してカソード104に供給される。カソード104に供給されたプロトンは、カソード104において被水素化物の水素化に用いられる。これにより、トルエンが水素化されて、メチルシクロヘキサンが生成される。したがって、本実施の形態に係る有機ハイドライド製造装置100によれば、水の電気分解と被水素化物の水添反応とを1ステップで行うことができる。
 以上説明したように、本実施の形態に係る有機ハイドライド製造装置100は、電解質膜102と、カソード104と、アノード108と、アノード108の電解質膜102とは反対側に設けられるアノード支持体110とを備える。アノード支持体110は、ヤング率が0.1N/mm超43N/mm未満である、板状の弾性多孔体で構成される。このような弾性且つ多孔性で板状のアノード支持体110を設けることで、有機ハイドライド製造装置100を構成する各部材の電気的接続状態を良好に維持することができる。
 特に、電解質膜102とカソード104との接触を維持することは重要である。すなわち、トルエンなどの有機化合物からなるカソード液は、導電性が乏しい。このため、電解質膜102とカソード104とが剥離してしまうと、この剥離した部分において電解質膜102からカソード104へのプロトンの供給が阻害される。プロトンの供給が阻害されると、カソード触媒が失活してしまうおそれがある。
 これに対し、アノード支持体110の設置により、電解質膜102とカソード104との接触をより確実に維持することができる。これにより、有機ハイドライド製造装置100のセル電圧を低減することができる。よって、有機ハイドライドの製造効率を向上させることができる。また、有機ハイドライド製造装置100の長寿命化を図ることもできる。
 また、アノード支持体110のヤング率は、より好ましくは0.2N/mm以上10N/mm以下である。これにより、有機ハイドライド製造装置100のセル電圧をより低減することができる。また、電解質膜102の厚さT1とアノード108の厚さT2との比T1/T2は、0.35以上である。これにより、有機ハイドライド製造装置100のセル電圧をより確実に低減することができる。また、アノード108が有する基材108bは、網目状である。網目は菱形であり、菱形の短目方向中心間距離SWと長目方向中心間距離LWとの平均値は、0.3mm以上3mm以下である。これにより、有機ハイドライド製造装置100のセル電圧をより確実に低減することができる。
 本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
 以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。
[アノード支持体のヤング率とセル電圧との関係の評価]
 図2(A)は、試験例1~11に係る有機ハイドライド製造装置が備えるアノード支持体とセル電圧とを示す図である。図2(B)は、長目方向中心間距離LW、短目方向中心間距離SW及びストランド長さSTを説明するための図である。図2(C)は、アノード支持体のヤング率とセル電圧との関係を示す図である。
(試験例1)
 以下の手順によりアノードを作製した。まず、アノードの基材として、所定の網目形状を有するエキスパンドメッシュを用意した。この基材の表面に乾式ブラスト処理を施し、続いて20%硫酸水溶液中で洗浄処理を施した。その後、Ti-Ta合金ターゲットを用いたアークイオンプレーティング装置に基材をセットした。そして、基材温度150℃、真空度1.0×10-2Torrで、基材の表面にTi-Ta合金の皮膜を形成した。膜厚は2μmとした。その後、コーティング処理を施した基材に対して、四塩化イリジウム/五酸化タンタルの混合水溶液を塗布し、電気炉にて550℃の熱処理を施した。この操作を複数回繰り返して、酸化イリジウムと酸化タンタルを等モル含むアノードを得た。アノードの触媒量は、Ir金属量換算で電極面積当たり12g/mとした。アノードのヤング率は、40N/mmとした。
 また、図2(A)に示すように、繊維径50μmのチタン繊維を、目付量を600g/mとして炉内に載置した。そして、不活性雰囲気下、炉内温度900℃、加熱時間30分として、適切な荷重を与えながらチタン繊維を焼結させた。これにより、金属繊維の焼結体で構成されるアノード支持体を得た。アノード支持体の厚さは、3mmとした。アノード支持体のヤング率は、0.1N/mmとした。
 また、以下の手順によりカソードと電解質膜の積層体を形成した。まず、PtRu/C触媒TEC61E54(田中貴金属工業社製)の粉末に、5%ナフィオン(登録商標)分散液(デュポン社製)を添加し、適宜溶媒を用いてカソード触媒層用の触媒インクを調製した。触媒インクのナフィオン/カーボン比は0.8とした。この触媒インクを貴金属量(PtRu量)が0.5mg/cmとなるよう調製し、カーボンペーパーGDL10BC(SGLカーボン社製)にバーコータを用いて塗布した。そして、80℃で加熱して触媒インク中の溶媒成分を乾燥し、カソード触媒層を得た。
 また、カーボンペーパーにPt粒子を担持させて拡散層を作製した。拡散層に含まれるPt粒子は、カソードにおける副生成物である水素ガスと未反応の被水素化物との化学反応を促進させる役割を果たす。まず、HPtCl・6HOと、1-プロパノールとを混合して混合溶液を作製した。HPtCl・6HOの添加量は、カーボンペーパーへのPtの担持量が0.02mg/cmとなるように調整した。得られた混合溶液に、カーボンペーパーGDL10BC(SGLカーボン社製)を浸漬した。
 その後、60℃のNガス雰囲気下でカーボンペーパーを完全に乾燥させた。続いて、1mgのNaBH水溶液にカーボンペーパーを浸漬し、2時間の還元処理を施した。還元処理の後、カーボンペーパーを純水に漬け込んで洗浄した。その後、カーボンペーパーを乾燥させて、拡散層を得た。また、電解質膜として、ナフィオン(登録商標)117(デュポン社製)を用意した。電解質膜の厚さは、0.175mmとした。この電解質膜に、カソード触媒層と拡散層とを積層し、120℃、1MPaで3分間のホットプレスを実施した。これにより、カソードと電解質膜の積層体を得た。
 また、カソード側セパレータ及び流路部の複合体と、アノード側セパレータと、カソード用及びアノード用スペーサを用意した。複合体及びアノード側セパレータは、チタン製のものを用いた。そして、当該複合体、カソード用スペーサ、カソードと電解質膜の積層体、アノード、アノード支持体、アノード用スペーサ及びアノード側セパレータをこの順に積層した。続いて、これらの積層体に外部から圧力をかけて組み付けた。アノード支持体の弾性力によって各層を押し付けることで、各層が互いに密着した状態を作り出した。以上の工程により、試験例1の有機ハイドライド製造装置を得た。有機ハイドライド製造装置の電極有効面積は、100cmとした。
 カソード用スペーサのカソード室入口には、被水素化物の供給経路を接続した。カソード用スペーサのカソード室出口には、有機ハイドライドの排出経路を接続した。また、アノード用スペーサのアノード室入口には、アノード液の供給経路を接続した。アノード用スペーサのアノード室出口には、アノード液の排出経路を接続した。
 この有機ハイドライド製造装置のカソード室に、カソード液としてトルエンを流通させた。また、アノード室に、アノード液として100g/L硫酸水溶液を流通させた。カソード液の流量は、10mL/分とした。アノード液の流量は、10mL/分とした。そして、温度60℃、電流密度0.4A/cmで電解反応を実施した。アノード液は、ポンプを用いてアノード液貯蔵槽からアノード室に供給し、またアノード室からアノード液貯蔵槽に戻して循環させた(バッチ運転)。アノード液は、有機ハイドライド製造装置の下部からアノード室に供給した。また、アノード液は、電解により減少する水分を補充しながら循環させた。
 また、定電流電源の負極をカソードに、正極をアノードにそれぞれ接続した。定電流電源の出力電流を40A(0.4A/cm)として、有機ハイドライド製造装置に印加した。そして、有機ハイドライド製造装置のセル電圧を測定した。結果を図2(A)に示す。
 (試験例2~9)
 図2(A)に示すように、アノード支持体を構成する繊維の繊維径と目付量、アノード支持体の厚さ及びヤング率を調整し、その他の手順は試験例1に準じて、試験例2~9の有機ハイドライド製造装置を作製した。そして、各有機ハイドライド製造装置のセル電圧を測定した。結果を図2(A)に示す。
 (試験例10,11)
 図2(A)に示すように、金属繊維の焼結体に代えてエキスパンドメッシュで構成されるアノード支持体を用い、その他の手順は試験例1に準じて、試験例10,11の有機ハイドライド製造装置を作製した。そして、各有機ハイドライド製造装置のセル電圧を測定した。結果を図2(A)に示す。エキスパンドメッシュにおける長目方向中心間距離LW、短目方向中心間距離SW及びストランド長さSTは、図2(B)に図示される通りであり、これは当業者に周知の事項である。
 図2(C)に、各試験例に係る有機ハイドライド製造装置における、アノード支持体のヤング率とセル電圧との関係を示す。図2(C)に示すように、アノード支持体のヤング率が0.1N/mm超43N/mm未満の場合に、セル電圧が2.2Vを下回ることが確認された。セル電圧2.2Vは、本願のアノード支持体を備えない従来公知の有機ハイドライド製造装置におけるセル電圧である。よって、アノード支持体のヤング率が0.1N/mm超43N/mm未満であるとき、有機ハイドライドの製造効率を向上できることが確認された。また、アノード支持体のヤング率が0.2N/mm以上10N/mm以下の場合に、セル電圧が2.0V以下となることが確認された。セル電圧2.0Vは、アルカリ水電解におけるセル電圧である。よって、アノード支持体のヤング率が0.2N/mm以上10N/mm以下であるとき、有機ハイドライドの製造効率をアルカリ水電解の水素製造効率と同程度かそれ以上まで向上できることが確認された。また、アノード支持体のヤング率が0.3N/mm以上1.2N/mm以下の場合に、有機ハイドライドの製造効率をさらに向上できることが確認された。
[電解質膜及びアノードの厚さの比率とセル電圧との関係の評価]
 図3(A)は、試験例2,12~14に係る有機ハイドライド製造装置が備える電解質膜及びアノードの厚さと、両者の厚さの比と、セル電圧とを示す図である。図3(B)は、厚さの比とセル電圧との関係を示す図である。
 (試験例2,12~14)
 図3(A)に示すように、電解質膜の厚さT1を固定し、アノードの厚さT2を調整することで厚さ比T1/T2を異ならせ、その他の手順は試験例1に準じて、試験例2,12~14の有機ハイドライド製造装置を作製した。全ての試験例において、アノード支持体のヤング率は、0.3N/mmとした。そして、各有機ハイドライド製造装置のセル電圧を測定した。結果を図3(A)に示す。
 図3(B)に、各試験例に係る有機ハイドライド製造装置における、電解質膜の厚さT1及びアノードの厚さT2の比T1/T2と、セル電圧との関係を示す。図3(B)に示すように、厚さ比T1/T2が0.35以上のとき、セル電圧は2.0V未満であった。よって、厚さ比T1/T2を0.35以上とすることで、より確実に有機ハイドライドの製造効率をアルカリ水電解の水素製造効率よりも向上できることが確認された。
[アノードの開口寸法とセル電圧との関係の評価]
 図4(A)は、試験例15~19に係る有機ハイドライド製造装置が備えるアノードの編目寸法とセル電圧とを示す図である。図4(B)は、長目方向中心間距離LW及び短目方向中心間距離SWの平均値とセル電圧との関係を示す図である。
 (試験例15~19)
 図4(A)に示すように、アノード基材における網目の長目方向中心間距離LW及び短目方向中心間距離SWを異ならせ、その他の手順は試験例1に準じて、試験例15~19の有機ハイドライド製造装置を作製した。全ての試験例において、アノード支持体のヤング率は、0.3N/mmとした。そして、各有機ハイドライド製造装置のセル電圧を測定した。結果を図4(A)に示す。
 図4(B)に、各試験例に係る有機ハイドライド製造装置における、長目方向中心間距離LW及び短目方向中心間距離SWの平均値と、セル電圧との関係を示す。図4(B)に示すように、平均値が0.3mm以上3mm以下のとき、セル電圧は2.0V以下であった。よって、平均値を0.3mm以上3mm以下とすることで、より確実に有機ハイドライドの製造効率をアルカリ水電解の水素製造効率以上に向上できることが確認された。また、平均値を0.3mm超3mm以下のとき、セル電圧は2.0V未満であった。よって、平均値を0.3mm超3mm以下とすることで、より確実に有機ハイドライドの製造効率をアルカリ水電解の水素製造効率よりも向上できることが確認された。
 100 有機ハイドライド製造装置、 102 電解質膜、 104 カソード、 108 アノード、 108a アノード触媒、 108b 基材、 110 アノード支持体。
 本発明は、有機ハイドライド製造装置に利用することができる。

Claims (4)

  1.  プロトン伝導性を有する電解質膜と、
     前記電解質膜の一方の側に設けられ、プロトンで被水素化物を水素化して有機ハイドライドを生成するためのカソード触媒を含むカソードと、
     前記電解質膜の前記一方の側とは反対側に設けられ、水を酸化してプロトンを生成するためのアノード触媒を含むアノードと、
     前記アノードの前記電解質膜とは反対側に設けられ、前記アノードを支持するアノード支持体と、を備え、
     前記アノード支持体は、ヤング率が0.1N/mm超43N/mm未満である弾性多孔体で構成されることを特徴とする有機ハイドライド製造装置。
  2.  前記アノード支持体は、ヤング率が0.2N/mm以上10N/mm以下である請求項1に記載の有機ハイドライド製造装置。
  3.  前記電解質膜の厚さT1と前記アノードの厚さT2との比T1/T2は、0.35以上である請求項1又は2に記載の有機ハイドライド製造装置。
  4.  前記アノードは、前記アノード触媒と、前記アノード触媒を担持する網目状の基材とを有し、
     前記基材は、網目が菱形であり、前記菱形の短目方向中心間距離SWと長目方向中心間距離LWとの平均値が0.3mm以上3mm以下である請求項1乃至3のいずれか1項に記載の有機ハイドライド製造装置。
PCT/JP2018/014110 2017-05-23 2018-04-02 有機ハイドライド製造装置 WO2018216356A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
MYPI2019006622A MY197574A (en) 2017-05-23 2018-04-02 Organic hydride production device
RU2019142468A RU2733378C1 (ru) 2017-05-23 2018-04-02 Устройство для производства органического гидрида
AU2018272234A AU2018272234B2 (en) 2017-05-23 2018-04-02 Organic hydride production device
CA3064173A CA3064173C (en) 2017-05-23 2018-04-02 Organic hydride production device
EP18806725.0A EP3633071A4 (en) 2017-05-23 2018-04-02 PRODUCTION DEVICE FOR ORGANIC HYDRID
BR112019024205-8A BR112019024205B1 (pt) 2017-05-23 2018-04-02 Aparelho de produção de hidreto orgânico
KR1020197024275A KR102338318B1 (ko) 2017-05-23 2018-04-02 유기 하이드라이드 제조장치
CN201880025985.XA CN110546307B (zh) 2017-05-23 2018-04-02 有机氢化物制造装置
PH12019550240A PH12019550240A1 (en) 2017-05-23 2019-11-15 Organic hydride production device
US16/686,369 US20200080212A1 (en) 2017-05-23 2019-11-18 Organic hydride production device
US17/858,464 US20220333257A1 (en) 2017-05-23 2022-07-06 Organic hydride production device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-101419 2017-05-23
JP2017101419A JP6954561B2 (ja) 2017-05-23 2017-05-23 有機ハイドライド製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/686,369 Continuation US20200080212A1 (en) 2017-05-23 2019-11-18 Organic hydride production device

Publications (1)

Publication Number Publication Date
WO2018216356A1 true WO2018216356A1 (ja) 2018-11-29

Family

ID=64396748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014110 WO2018216356A1 (ja) 2017-05-23 2018-04-02 有機ハイドライド製造装置

Country Status (13)

Country Link
US (2) US20200080212A1 (ja)
EP (1) EP3633071A4 (ja)
JP (1) JP6954561B2 (ja)
KR (1) KR102338318B1 (ja)
CN (1) CN110546307B (ja)
AU (1) AU2018272234B2 (ja)
BR (1) BR112019024205B1 (ja)
CA (1) CA3064173C (ja)
CL (1) CL2019003400A1 (ja)
MY (1) MY197574A (ja)
PH (1) PH12019550240A1 (ja)
RU (1) RU2733378C1 (ja)
WO (1) WO2018216356A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240102192A1 (en) * 2020-12-03 2024-03-28 Eneos Corporation Organic hydride production device, water removal device, and water removal method
CN117026260A (zh) * 2023-10-08 2023-11-10 陕西氢易能源科技有限公司 一种电化学加氢的pem反应器及其系统
CN117210843A (zh) * 2023-11-09 2023-12-12 北京亿华通科技股份有限公司 一种膜电极及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091128A1 (ja) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 有機化合物の水素化装置及び水素化方法
WO2015029366A1 (ja) * 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 電気化学還元装置
WO2016076277A1 (ja) * 2014-11-10 2016-05-19 国立大学法人横浜国立大学 酸素発生用アノード
JP2016098410A (ja) * 2014-11-21 2016-05-30 国立大学法人横浜国立大学 有機ハイドライド製造装置およびこれを用いた有機ハイドライドの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693797A (en) * 1979-08-03 1987-09-15 Oronzio Denora Impianti Elettrochimici S.P.A. Method of generating halogen and electrolysis cell
US5419824A (en) * 1992-11-12 1995-05-30 Weres; Oleh Electrode, electrode manufacturing process and electrochemical cell
JP2700052B2 (ja) * 1995-03-08 1998-01-19 工業技術院長 水素化物の製造方法
US6365032B1 (en) * 1998-12-31 2002-04-02 Proton Energy Systems, Inc. Method for operating a high pressure electrochemical cell
JP3772055B2 (ja) 1999-08-30 2006-05-10 株式会社トクヤマ 電解槽
WO2004036677A2 (en) 2002-10-14 2004-04-29 Reinz-Dichtungs-Gmbh Electrochemical system
RU2319797C1 (ru) * 2006-08-14 2008-03-20 Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН) Способ получения защитных покрытий на изделиях из нитинола
JP2013084360A (ja) * 2011-10-06 2013-05-09 Hitachi Ltd 膜電極接合体及び有機ハイドライド製造装置
WO2015146944A1 (ja) * 2014-03-28 2015-10-01 国立大学法人横浜国立大学 有機ハイドライド製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091128A1 (ja) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 有機化合物の水素化装置及び水素化方法
WO2015029366A1 (ja) * 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 電気化学還元装置
WO2016076277A1 (ja) * 2014-11-10 2016-05-19 国立大学法人横浜国立大学 酸素発生用アノード
JP2016098410A (ja) * 2014-11-21 2016-05-30 国立大学法人横浜国立大学 有機ハイドライド製造装置およびこれを用いた有機ハイドライドの製造方法

Also Published As

Publication number Publication date
RU2733378C1 (ru) 2020-10-01
CA3064173A1 (en) 2018-11-29
AU2018272234B2 (en) 2021-06-24
PH12019550240A1 (en) 2020-12-07
BR112019024205B1 (pt) 2024-02-06
CA3064173C (en) 2022-04-26
JP6954561B2 (ja) 2021-10-27
MY197574A (en) 2023-06-26
JP2018197364A (ja) 2018-12-13
AU2018272234A1 (en) 2019-12-05
EP3633071A1 (en) 2020-04-08
KR20190103434A (ko) 2019-09-04
US20220333257A1 (en) 2022-10-20
EP3633071A4 (en) 2021-03-10
BR112019024205A2 (pt) 2020-06-02
CN110546307A (zh) 2019-12-06
CN110546307B (zh) 2022-02-11
CL2019003400A1 (es) 2020-04-17
US20200080212A1 (en) 2020-03-12
KR102338318B1 (ko) 2021-12-09

Similar Documents

Publication Publication Date Title
KR102471656B1 (ko) 유기 수소화물 제조 장치 및 이것을 사용한 유기 수소화물의 제조 방법
JP5705214B2 (ja) 有機ハイドライド製造装置
KR102254704B1 (ko) 유기 하이드라이드 제조장치 및 유기 하이드라이드의 제조방법
KR20050083660A (ko) 연료 전지 전극
US20220333257A1 (en) Organic hydride production device
JP6786426B2 (ja) 電気化学還元装置及び芳香族炭化水素化合物の水素化体の製造方法
WO2018037774A1 (ja) カソード、有機ハイドライド製造用電解セル及び有機ハイドライドの製造方法
JP2012072477A (ja) 有機ハイドライド製造装置
WO2015146944A1 (ja) 有機ハイドライド製造装置
EP3040449B1 (en) Electrochemical reduction device
JP6998797B2 (ja) 有機ハイドライド製造装置、有機ハイドライドの製造方法およびエネルギー輸送方法
WO2015029367A1 (ja) 電気化学還元装置
JP2023128449A (ja) カソード、膜電極接合体及び有機ハイドライド製造装置
WO2014192089A1 (ja) 有機ハイドライド製造装置
KR20190125885A (ko) 전기화학적 탈수소화 반응기 및 이것을 이용한 수소의 제조방법
WO2024034444A1 (ja) 有機ハイドライド製造装置
JP2017160475A (ja) 触媒層、膜電極接合体、電解セル及び触媒層の製造方法
KR20240051841A (ko) 수전해 장치용 확산 전극의 제조방법 및 이에 의해 제조된 확산 전극을 구비하는 양이온 교환막 수전해 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024275

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3064173

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024205

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018272234

Country of ref document: AU

Date of ref document: 20180402

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018806725

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018806725

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 112019024205

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191118