WO2018216215A1 - タンデム圧延機の尾端蛇行制御装置 - Google Patents

タンデム圧延機の尾端蛇行制御装置 Download PDF

Info

Publication number
WO2018216215A1
WO2018216215A1 PCT/JP2017/019781 JP2017019781W WO2018216215A1 WO 2018216215 A1 WO2018216215 A1 WO 2018216215A1 JP 2017019781 W JP2017019781 W JP 2017019781W WO 2018216215 A1 WO2018216215 A1 WO 2018216215A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
operation amount
leveling operation
tail end
load
Prior art date
Application number
PCT/JP2017/019781
Other languages
English (en)
French (fr)
Inventor
之博 山崎
佐野 光彦
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to KR1020197021554A priority Critical patent/KR102232334B1/ko
Priority to JP2019519938A priority patent/JP6717430B2/ja
Priority to PCT/JP2017/019781 priority patent/WO2018216215A1/ja
Priority to CN201780084304.2A priority patent/CN110621422B/zh
Publication of WO2018216215A1 publication Critical patent/WO2018216215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control
    • B21B37/20Automatic gauge control in tandem mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/08Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0071Levelling the rolled product

Definitions

  • This invention relates to a tail end meandering control device for a tandem rolling mill.
  • tandem rolling mill In a hot rolling facility or a cold rolling facility, a tandem type continuous rolling mill called a strip mill (tandem rolling mill) that continuously rolls a single material to be rolled by arranging several rolling stands in series. )It has been known.
  • meandering is a phenomenon in which the width center of the material to be rolled moves to the work side or the drive side.
  • differential load the difference in rolling load between the work side and the drive side
  • the meandering further proceeds. If the meandering progresses, the plate breaks and narrows, and the equipment may be damaged. As a result, it develops into problems such as yield deterioration and productivity decline. Further, it is known that meandering propagates from an upstream rolling stand to a downstream rolling stand.
  • a meandering control method is proposed in Japanese Patent Application Laid-Open No. 2010-247177 (Patent Document 1).
  • meandering control by feedback control using a differential load of the rolling stand (i-th rolling stand) to be controlled is performed in the finishing mill.
  • the output of the meandering control of the rolling stand (i-1 rolling stand) located one upstream of the i th rolling stand is multiplied by a certain ratio, and feedforward is performed with respect to the i th rolling stand.
  • Serpentine control is performed by control.
  • the leveling operation amount is calculated and output using the differential load of the i-th rolling stand caused by the occurrence of meandering. Therefore, when meandering suddenly occurs, the leveling operation amount does not catch up, and it is difficult to say that it is an effective control method that sufficiently suppresses meandering.
  • the position of the material to be rolled is not considered, and the leveling of the i-th rolling stand is operated at the same timing as the meandering control in the upstream rolling stand (i-1 rolling stand). Yes. Therefore, leveling is not properly operated at an appropriate timing, and a sufficient meandering suppression effect at the i-th rolling stand cannot be expected.
  • the present invention has been made to solve the above-described problems, and provides a tail end meandering control device for a tandem rolling mill that can suitably reduce the occurrence of meandering of a material to be rolled that occurs due to a tail end slippage.
  • the purpose is to do.
  • a tail end meandering control device for a tandem rolling mill is configured as follows to achieve the above object.
  • This tandem rolling mill has n (n is a natural number of 3 or more) rolling stands.
  • the i-th (i is a natural number of 3 to n) rolling stand includes an i-th rolling roll that rolls the material to be rolled, and an i-th reduction device that controls the roll gaps on the work side and the drive side of the i-th rolling roll.
  • the i-1 rolling stand is provided upstream of the i rolling stand and detects the rolling loads of the i-1 rolling roll for rolling the material to be rolled and the work side and the drive side of the i-1 rolling roll.
  • the i-2 rolling stand is provided upstream of the i-1 rolling stand, and the i-2 rolling roll for rolling the material to be rolled and the i-2 rolling roll for detecting the rolling load of the i-2 rolling roll.
  • a load detection device is provided.
  • the tail end meandering control device includes an i-1th differential load calculation unit, a tail end missing timing calculation unit, an i-1th differential load fluctuation amount calculation unit, an i-1 leveling manipulated variable calculation unit, a transport distance calculation unit, A leveling operation amount management unit and a leveling operation amount output unit are provided.
  • the i ⁇ 1th differential load calculation unit calculates the differential load from the rolling loads on the work side and the drive side detected by the i ⁇ 1th load detection device.
  • the tail end drop timing calculation unit calculates the tail end drop timing when the tail end of the material to be rolled has passed through the i-2 rolling roll from the temporal change of the rolling load detected by the i-2th load detection device.
  • the i-1th differential load fluctuation amount calculation unit calculates the i-1th differential load fluctuation amount, which is the difference between the difference load at the tail end removal timing calculated by the i-1th differential load calculation unit and the current differential load. To do.
  • the i-1th leveling operation amount calculation unit calculates the leveling operation amount of the i-th rolling stand based on the i-1th differential load fluctuation amount.
  • the conveyance distance calculation unit calculates the conveyance distance of the material to be rolled that has passed through the i-1th rolling roll after the tail end drop timing.
  • the leveling operation amount management unit accumulates the leveling operation amount calculated by the i-1th leveling operation amount calculation unit after the tail end dropout timing in the storage area.
  • the leveling operation amount management unit calculates the leveling operation amount from the storage area in conjunction with the increase in the conveyance distance after the conveyance distance reaches the inter-roll distance from the i-1 rolling roll to the i-th rolling roll. Read in order of accumulation.
  • the leveling operation amount output unit outputs the leveling operation amount read by the leveling operation amount management unit to the i-th reduction device.
  • the time when the transport distance reaches the distance between rolls is when the portion of the material to be rolled that has passed through the i-1 rolling stand reaches the i rolling stand.
  • the leveling operation amount calculated when the part passes through the i-1th rolling stand is output to the i-th reduction device as a feedforward value after a delay time corresponding to the distance between the rolls has elapsed.
  • this feedforward control is started before the tail end omission in the i-1th rolling stand. That is, the meandering suppression control for the i-th rolling stand is started before the meandering due to the tail end omission at the i-th rolling stand occurs.
  • the leveling operation amount temporarily stored in the storage area is read in the order of accumulation from the time when the part reaches the i-th rolling stand.
  • the leveling operation amount predicted from the meandering actually generated at the i-1 rolling stand due to the tail end omission at the i-2 rolling stand is read out as a feedforward value at an appropriate timing.
  • the leveling operation amount predicted from the actual value is read out at an appropriate timing before the tail end omission of the i-1th rolling stand, and is fed forward. Control can start. Therefore, it is possible to reduce the risk of sudden meandering in the material to be rolled due to the tail end omission of the i-1th stand.
  • the transport distance calculation unit uses the roll peripheral speed of the i-th rolling roll and a preset reverse travel rate prediction value to determine the material to be rolled that has passed through the i-1 rolling roll after the tail end slipping timing. Calculate the transport distance.
  • the leveling operation amount management unit accumulates the leveling operation amount calculated by the i-1th leveling operation amount calculation unit in the storage area at every sampling period from the tail end missing timing.
  • the leveling operation amount management unit shifts the storage area by one section in the order of accumulation every sampling period after the transport distance reaches the distance between the rolls from the i-1 roll to the i roll.
  • the leveling operation amount stored in the storage area is read out.
  • a tail end meandering control device for a tandem rolling mill further includes the following configuration.
  • the i-th rolling stand further includes an i-th load detecting device that detects a rolling load on each of the work side and the drive side of the i-th rolling roll.
  • the tail end meandering control device further includes an i-th differential load calculation unit, an i-th differential load fluctuation amount calculation unit, and an i-th leveling operation amount calculation unit.
  • the i-th differential load calculation unit calculates the differential load from the rolling loads on the work side and the drive side detected by the i-th load detection device.
  • the i-th differential load fluctuation amount calculation unit calculates an i-th differential load fluctuation amount that is a difference between the difference load at the tail end dropout timing calculated by the i-th differential load calculation unit and the current differential load.
  • the i-th leveling operation amount calculation unit calculates the leveling operation amount of the i-th rolling stand based on the i-th differential load fluctuation amount.
  • the leveling operation amount output unit sends a final leveling operation amount based on the leveling operation amount read by the leveling operation amount management unit and the leveling operation amount calculated by the i-th leveling operation amount calculation unit to the i-th reduction device. Output.
  • tail end meandering control device not only meandering suppression control by feedforward described above but also meandering suppression control by feedback is added, thereby improving the followability of the i-th rolling stand to meandering. Can suppress meandering effect.
  • the present invention it is possible to suitably reduce the occurrence of meandering of the material to be rolled that is caused by the tail end omission. Therefore, the yield can be improved and the operation stability can be improved.
  • FIG. FIG. 1 is a diagram for explaining a system configuration according to Embodiment 1 of the present invention.
  • the system shown in FIG. 1 includes a tandem rolling mill 1 and a tail end meandering control device 2.
  • the tail end meandering control device 2 is a control device (not shown) that controls the roll gap and roll peripheral speed of the tandem rolling mill 1 so that the material 3 to be rolled has a desired thickness on the exit side of the tandem rolling mill 1. It is a part.
  • the tandem rolling mill 1 is a continuous tandem type called a strip mill that continuously rolls one rolled material by arranging several rolling stands in series in a hot rolling facility or a cold rolling facility. It is a rolling mill.
  • the tandem rolling mill 1 has n (n is a natural number of 3 or more) rolling stands.
  • FIG. 1 shows a tandem rolling mill 1 having three rolling stands as an example.
  • the three rolling stands are an i-th rolling stand, an i-1 rolling stand, and an i-2 rolling stand in this order from the downstream side (exit side).
  • These rolling stands roll the material 3 to be rolled in the rolling direction 4 (from left to right in FIG. 1).
  • the material to be rolled 3 rolled by a roughing mill (not shown) is desired on the exit side of a finishing mill (tandem mill 1) having 5 to 7 continuous rolling stands. It is rolled by the upper and lower work rolls adjusted to an appropriate roll gap and roll peripheral speed so as to achieve a plate thickness of.
  • the i-th rolling stand (i is a natural number of 3 to n) includes a pair of upper and lower i-th work rolls 11a (i-th rolling roll), a pair of upper and lower i-th backup rolls 12a, an i-th load detection device 13a, An i-th reduction device 14a.
  • the i-th rolling stand includes a speed sensor that measures the roll peripheral speed of the i-th work roll 11a.
  • the i-th work roll 11a rolls the material 3 to be rolled.
  • the i-th backup roll 12a is installed to support the i-th work roll 11a.
  • the i-th load detection device 13a detects the rolling load (the load that the work roll receives from the material to be rolled 3) on the work side and the drive side of the i-th work roll 11a.
  • the rolling load is detected every sampling period.
  • a detection method there are a direct measurement method using a load cell and a method of calculating a rolling load from a pressure detected by a hydraulic reduction device. In either method, the work side and the drive side are generally attached separately.
  • the work side (WS) and the drive side (DS) refer to one end in the width direction and the other end in the width direction of the material 3 to be rolled.
  • the side on which is arranged is called the drive side (DS).
  • the i-th reduction device 14a controls the roll gaps on the work side and the drive side of the i-th work roll 11a.
  • the reduction device is separately installed on the work side and the drive side (not shown) and can be adjusted on the work side and the drive side.
  • the i-1 rolling stand includes a pair of upper and lower i-1 work rolls 11b (i-1 rolling roll), a pair of upper and lower i-1 backup rolls 12b, and an i-th rolling roll.
  • i-1 rolling roll a pair of upper and lower i-1 work rolls 11b
  • i-1 backup rolls 12b a pair of upper and lower i-1 backup rolls 12b
  • an i-th rolling roll a pair of upper and lower i-1 backup rolls 12b
  • i-th rolling roll -1 load detection device 13b and i-1th reduction device 14b.
  • the i-1th work roll 11b rolls the material 3 to be rolled.
  • the i-1 backup roll 12b is installed to support the i-1 work roll 11b.
  • the i-1th load detection device 13b detects the rolling loads on the work side and the drive side of the i-1th work roll 11b.
  • the i-1th reduction device 14b controls the roll gaps on the work side and the drive side of the i-1th work roll 11
  • the i-2 rolling stand includes a pair of upper and lower i-2 work rolls 11c (i-2 rolling rolls), a pair of upper and lower i-2 backup rolls 12c, and an i-2 load detecting device. 13c and an i-2 reduction device 14c.
  • the i-2nd work roll 11c rolls the material 3 to be rolled.
  • the i-2 backup roll 12c is installed to support the i-2 work roll 11c.
  • the i-2th load detector 13c detects the rolling loads on the work side and the drive side of the i-2 work roll 11c.
  • the i-2 reduction device 14c controls the roll gaps on the work side and the drive side of the i-2 work roll 11c.
  • the tail end meandering control device 2 includes an i ⁇ 1th differential load calculation unit 21, a tail end missing timing calculation unit 22, an i ⁇ 1th differential load storage unit 23, and an i ⁇ 1th differential load fluctuation amount calculation unit 24. And a (i-1) th leveling operation amount calculation unit 25, a transport distance calculation unit 26, a leveling operation amount management unit 27, and a leveling operation amount output unit 28.
  • the i-1th differential load calculation unit 21 calculates a differential load (a difference in rolling load) from the rolling loads on the work side and the drive side detected by the i-1th load detecting device 13b. This differential load is calculated using the following equation (1) for each sampling period.
  • ⁇ P i-1 Differential load at the i-1th rolling stand PWS, i-1 : Rolling load at the work side (WS) detected by the i-1th load detector 13b PDS, i-1 : i- th Rolling load on drive side (DS) detected by 1 load detector 13b
  • the tail end drop timing calculation unit 22 determines the tail end drop timing (the tail end of the material 3 to be rolled passes through the i-2 work roll 11c from the temporal change of the rolling load detected by the i-2 load detection device 13c.
  • the tail end dropout timing of the i-2nd rolling stand is calculated.
  • This tail end drop-off timing is a load relay signal (L / R) for detecting the leading end of the material 3 to be rolled from the rolling load detected by the i-2 load detecting device 13c installed in the i-2 rolling stand. ) Is turned off.
  • the i-1th differential load storage unit 23 Based on the rolling load detected by the i-1th load detector 13b at the tail end slipping timing of the i-2th rolling stand, the i-1th differential load storage unit 23 The calculated differential load of the i-1th rolling stand is stored. The differential load at the tail end dropout timing is stored at least until the tail end of the material 3 to be rolled passes through the i-th rolling stand.
  • the i-1th differential load fluctuation amount calculation unit 24 is the i-1th differential load fluctuation amount which is the difference between the differential load at the tail end slipping timing calculated by the i-1th differential load calculation unit 21 and the current differential load. Is calculated.
  • the i ⁇ 1th differential load fluctuation amount ⁇ P i ⁇ 1 is calculated using the following equation (2) for each sampling period.
  • ⁇ P i-1 i-1th differential load fluctuation amount
  • ⁇ P i-1 current differential load calculated by the i-1th differential load calculation unit 21 (calculated from the equation (1) in the current sampling period)
  • ⁇ P LK, i-1 Differential load at the tail end slipping timing of the i-2 rolling stand stored in the i-1th differential load storage unit 23
  • the i-1th leveling operation amount calculation unit 25 calculates the leveling operation amount of the i-th rolling stand based on the i-1th differential load fluctuation amount obtained from Expression (2) for each sampling period. Specifically, the (i-1) th leveling operation amount calculation unit 25 multiplies the i-1th differential load fluctuation amount by a preset influence coefficient so as to close the roll gap with the larger rolling load. The leveling operation amount is calculated. For example, when the work-side rolling load is larger than the drive-side rolling load (P WS > P DS ), a leveling operation amount that closes the work-side roll gap is calculated. In addition, a dead zone may be set for the differential load fluctuation amount to remove minute changes such as noise.
  • the transport distance calculation unit 26 calculates the transport distance of the material to be rolled 3 that has passed through the i-1th work roll 11b after the tail end drop timing. Specifically, the transport distance calculation unit 26 uses the roll peripheral speed of the i-th work roll 11a and a preset reverse travel rate predicted value to pass the i-1 work roll 11b after the tail end slipping timing. The conveyance distance of the material to be rolled 3 is calculated. The transport distance of the material 3 to be rolled that advances around the sampling time is integrated, and the integrated transport distance is output to the leveling operation amount management unit 27.
  • the leveling operation amount management unit 27 accumulates (buffers) the leveling operation amount calculated by the i ⁇ 1th leveling operation amount calculation unit 25 in the storage area (data table) at every sampling period after the tail end omission timing. .
  • the leveling operation amount calculated for each sampling period is stored while shifting in the storage area (buffer) one by one.
  • the leveling operation amount management unit 27 performs the leveling operation from the storage area in conjunction with the increase in the transport distance after the transport distance reaches the inter-roll distance from the i-1 work roll 11b to the i-th work roll 11a. Read quantities in order of accumulation. For example, the leveling operation amount management unit 27 shifts the storage area by one section in the order of accumulation every sampling period after the transport distance reaches the inter-roll distance from the i-1 work roll 11b to the i-th work roll 11a. Thus, the leveling operation amount stored in the storage area is read out.
  • the time when the transport distance reaches the distance between rolls is when the portion of the material to be rolled that has passed through the i-1 rolling stand reaches the i rolling stand.
  • the leveling operation amount calculated when the part passes through the i-1th rolling stand is read as a feedforward value after a delay time corresponding to the distance between rolls has elapsed.
  • the leveling operation amount may be read after the transport distance reaches a set distance shorter than the distance between the rolls in consideration of the response delay of the i-th reduction device 14a.
  • the timing for reading the leveling operation amount is not limited to each sampling period. For example, when the distance between adjacent rolls is divided into N, and the transport distance calculated by the transport distance calculation unit 26 exceeds the distance per division, the leveling operation amount corresponding to the current transport distance is read from the storage area. Also good.
  • the leveling operation amount output unit 28 outputs the leveling operation amount read by the leveling operation amount management unit 27 to the i-th reduction device 14a.
  • the leveling operation amount is converted to the i-th pressure reducing device 14a via the PID controller or the phase advance / lag compensator.
  • the i-th reduction device 14a (or its control device) adjusts the specified roll gap for satisfying the delivery target thickness of the material 3 to be rolled by the leveling operation amount output from the leveling operation amount output unit 28. Works with quantity.
  • FIG. 2 is a timing chart for explaining the feedforward control described above.
  • Time t0 is the tail end drop-off timing when the material 3 to be rolled passes through the i-2nd rolling stand. This tail end drop-off timing is detected when the load relay signal (L / R) at the i-2 rolling stand changes from on to off. After time t1, meandering due to the tail end omission of the material to be rolled 3 occurs, and differential load fluctuation occurs.
  • Time t2 is the time when the differential load exceeding the dead zone occurs.
  • Time t3 is the time at which the portion of the material to be rolled that has passed through the i-1 rolling stand reaches the i-th rolling stand at the end of the tail end of the i-2 rolling stand.
  • the leveling operation amount management unit 27 reads the leveling operation amounts from the storage area in the accumulation order in conjunction with the increase in the transport distance, and outputs them to the i-th pressure reducing device 14a by the leveling operation amount output unit 28.
  • the leveling operation amount predicted from the meandering actually generated at the i-1 rolling stand due to the tail end omission at the i-2 rolling stand is sent to the i-th reduction device 14a as a feedforward value at an appropriate timing. Is output.
  • FIG. 4 is a conceptual diagram illustrating a hardware configuration example of a processing circuit included in the control device (including the tail end meandering control device 2) of the present system. Each part in a broken line in FIG. 1 (and FIG. 3 described later) indicates a part of the function, and each function is realized by a processing circuit.
  • the processing circuit includes at least one processor 91 and at least one memory 92.
  • the processing circuit comprises at least one dedicated hardware 93.
  • the storage area of the leveling operation amount management unit 27 and the i ⁇ 1th differential load storage unit 23 (and an ith differential load storage unit 33 described later) are realized by the memory 92 or dedicated hardware 93.
  • each function is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is described as a program. At least one of software and firmware is stored in the memory 92.
  • the processor 91 implements each function by reading and executing the program stored in the memory 92.
  • the processing circuit When the processing circuit includes dedicated hardware 93, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, or a combination thereof. Each function is realized by a processing circuit.
  • FIG. 3 is a diagram for explaining a system configuration according to the second embodiment of the present invention.
  • the system configuration shown in FIG. 3 includes an i-th differential load calculation unit 31, a tail end drop timing calculation unit 32, an i-th differential load storage unit 33, an i-th differential load fluctuation amount calculation unit 34, and an i-th leveling operation amount calculation unit 35. 1 is added, and the processing of the leveling operation amount output unit 28 is changed.
  • the system according to the second embodiment executes feedback control based on the differential load of the i-th rolling stand together with the feedforward control based on the differential load of the i-th rolling stand described in the first embodiment.
  • the i-th differential load calculation unit 31 calculates the differential load from the rolling loads on the work side and the drive side detected by the i-th load detection device 13a. This differential load is calculated using the following equation (3) for each sampling period.
  • ⁇ P i Differential load at the i-th rolling stand P WS, i : Rolling load of the work side (WS) detected by the i-th load detection device 13a P DS, i : Drive side detected by the i-th load detection device 13a (DS ) Rolling load
  • the tail end drop timing calculation unit 32 determines the tail end drop timing at which the tail end of the material to be rolled 3 has passed the i-2 work roll 11c from the temporal change of the rolling load detected by the i-2th load detection device 13c. Calculate.
  • the processing of the tail end missing timing calculation unit 32 is the same as that of the tail end missing timing calculation unit 22, and thus the description thereof is omitted.
  • the i-th differential load storage unit 33 calculates the i-th rolling stand calculated by the i-th differential load calculation unit 31 based on the rolling load detected by the i-th load detection device 13a at the tail end removal timing of the i-2 rolling stand.
  • the differential load is memorized.
  • the differential load at the tail end dropout timing is stored at least until the tail end of the material 3 to be rolled passes through the i-th rolling stand.
  • the i-th differential load fluctuation amount calculation unit 34 calculates an i-th differential load fluctuation amount that is a difference between the differential load at the tail end dropout timing calculated by the i-th differential load calculation unit 31 and the current differential load.
  • the i-th differential load fluctuation amount ⁇ P i is calculated using the following equation (4) for each sampling period.
  • ⁇ P i i-th differential load fluctuation amount
  • ⁇ P i current differential load calculated by the i-th differential load calculation unit 31 (calculated from Expression (3) in the current sampling period)
  • ⁇ P LK, i Differential load at the tail end removal timing of the i-2th rolling stand stored in the i-th differential load storage unit 33
  • the i-th leveling operation amount calculator 35 calculates the leveling operation amount of the i-th rolling stand based on the i-th differential load fluctuation amount obtained from the equation (4) for each sampling period. Similar to the (i-1) -th leveling operation amount calculation unit 25 described in the first embodiment, the i-th leveling operation amount calculation unit 35 multiplies the i-th differential load fluctuation amount by a preset influence coefficient to perform rolling. The leveling operation amount for closing the roll gap with the larger load is calculated.
  • the leveling operation amount output unit 28 reduces the final leveling operation amount based on the leveling operation amount read by the leveling operation amount management unit 27 and the leveling operation amount calculated by the i-th leveling operation amount calculation unit 35 by the i-th reduction. Output to the device 14a. Specifically, the final leveling operation amount is calculated using the following equation (5) via a PID controller or a phase lead / lag compensator.
  • S L, i FF Leveling operation amount of the i-th rolling stand calculated from the differential load of the i-1th rolling stand (leveling operation amount by feedforward control)
  • S L, i FB Leveling operation amount of the i-th rolling stand calculated from the differential load of the i-th rolling stand (leveling operation amount by feedback control)
  • W FF Weighting factor for leveling operation amount by feedforward control
  • W FB Weighting factor for leveling operation amount by feedback control
  • the weighting factor of the feedforward control is made larger than the weighting factor of the feedback control (W FF > W FB ).
  • the weighting factor of feedback control is made larger than the weighting factor of feedforward control (W FB > W FF ).
  • the weighting factor for feedforward control is 1.0 and the weighting factor for feedback control is 0.
  • the weighting coefficient of feedback control is set to a value larger than zero.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

本発明は、尾端抜けにより生じる被圧延材の蛇行の発生を低減することのできるタンデム圧延機の尾端蛇行制御装置を提供することを目的とする。尾端蛇行制御装置2は、以下の構成を備える。搬送距離演算部26は、被圧延材3の尾端が第i-2ワークロール11cを通過した尾端抜けタイミング以降に第i-1ワークロール11bを通過した被圧延材3の搬送距離を演算する。レベリング操作量管理部27は、尾端抜けタイミング以降にレベリング操作量を記憶領域に蓄積する。加えて、レベリング操作量管理部27は、搬送距離が第i-1ワークロール11bから第iワークロール11aまでのロール間距離に達した後、搬送距離の増加に連動して記憶領域からレベリング操作量を読み出す。レベリング操作量出力部28は、レベリング操作量管理部27により読み出されたレベリング操作量を第i圧下装置14aへ出力する。

Description

タンデム圧延機の尾端蛇行制御装置
 この発明は、タンデム圧延機の尾端蛇行制御装置に関する。
 熱間圧延設備や冷間圧延設備において、圧延スタンドを数台近接して直列に配列し、1本の被圧延材を連続して圧延するストリップミルと呼ばれるタンデム形式の連続圧延機(タンデム圧延機)が知られている。
 被圧延材の尾端が圧延スタンドを通過した時に、これまで拘束力として働いていた張力がなくなり、急激に蛇行が発生する場合がある。蛇行とは、被圧延材の幅中心がワークサイドもしくはドライブサイドに移動してしまう現象である。蛇行が発生すると、ワークサイドとドライブサイドの圧延荷重の差(以下、差荷重という)が大きくなり、さらに蛇行が進行してしまう。蛇行が進行すれば、板破断や絞込みが生じ、さらには設備に損傷を与える可能性も生じる。その結果、歩留まり悪化や生産性低下などの問題に発展する。また、蛇行は、上流側圧延スタンドから下流側圧延スタンドへ伝播することが知られている。
 尾端部の蛇行を抑制する方法として、日本特開2010-247177号公報(特許文献1)には蛇行制御方法が提案されている。この蛇行制御方法では、仕上圧延機において、制御対象である当該圧延スタンド(第i圧延スタンド)の差荷重を用いたフィードバック制御による蛇行制御を行っている。また、この蛇行制御方法では、第i圧延スタンドの1つ上流に位置する圧延スタンド(第i-1圧延スタンド)の蛇行制御の出力に一定比率を乗算し、第i圧延スタンドに対してフィードフォワード制御による蛇行制御を行っている。
日本特開2010-247177号公報
 しかしながら、このフィードバック制御では、蛇行発生により生じた第i圧延スタンドの差荷重を用いて、後追いでレベリング操作量を演算・出力する。そのため、急激に蛇行が発生した場合、レベリング操作量が追い付かず、十分に蛇行を抑制する有効な制御方法とは言い難い。
 また、このフィードフォワード制御では、被圧延材の位置を考慮しておらず、上流側圧延スタンド(第i-1圧延スタンド)での蛇行制御と同じタイミングで第i圧延スタンドのレベリングを操作している。そのため、適切なタイミングで適切にレベリングを操作しておらず、第i圧延スタンドでの十分な蛇行抑制効果は見込めない。
 本発明は、上述のような課題を解決するためになされたもので、尾端抜けにより生じる被圧延材の蛇行の発生を好適に低減することのできるタンデム圧延機の尾端蛇行制御装置を提供することを目的とする。
 本発明の実施形態に係るタンデム圧延機の尾端蛇行制御装置は、上記の目的を達成するため次のように構成される。
 このタンデム圧延機は、n(nは3以上の自然数)基の圧延スタンドを有する。
 第i(iは3以上n以下の自然数)圧延スタンドは、被圧延材を圧延する第i圧延ロールと、第i圧延ロールのワークサイドとドライブサイドそれぞれのロールギャップを制御する第i圧下装置とを有する。
 第i-1圧延スタンドは、第i圧延スタンドの上流に設けられ、被圧延材を圧延する第i-1圧延ロールと、第i-1圧延ロールのワークサイドとドライブサイドそれぞれの圧延荷重を検出する第i-1荷重検出装置とを有する。
 第i-2圧延スタンドは、第i-1圧延スタンドの上流に設けられ、被圧延材を圧延する第i-2圧延ロールと、第i-2圧延ロールの圧延荷重を検出する第i-2荷重検出装置とを有する。
 この尾端蛇行制御装置は、第i-1差荷重演算部、尾端抜けタイミング演算部、第i-1差荷重変動量演算部、第i-1レベリング操作量演算部、搬送距離演算部、レベリング操作量管理部、レベリング操作量出力部を備える。
 第i-1差荷重演算部は、第i-1荷重検出装置が検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する。
 尾端抜けタイミング演算部は、第i-2荷重検出装置が検出した圧延荷重の時間的変化から被圧延材の尾端が第i-2圧延ロールを通過した尾端抜けタイミングを演算する。
 第i-1差荷重変動量演算部は、第i-1差荷重演算部が演算した尾端抜けタイミングの差荷重と現在の差荷重との差である第i-1差荷重変動量を演算する。
 第i-1レベリング操作量演算部は、第i-1差荷重変動量に基づいて第i圧延スタンドのレベリング操作量を演算する。
 搬送距離演算部は、尾端抜けタイミング以降に第i-1圧延ロールを通過した被圧延材の搬送距離を演算する。
 レベリング操作量管理部は、尾端抜けタイミング以降に第i-1レベリング操作量演算部により演算されたレベリング操作量を記憶領域に蓄積する。加えて、レベリング操作量管理部は、搬送距離が第i-1圧延ロールから前記第i圧延ロールまでのロール間距離に達した後、搬送距離の増加に連動して記憶領域からレベリング操作量を蓄積順に読み出す。
 レベリング操作量出力部は、レベリング操作量管理部により読み出されたレベリング操作量を第i圧下装置へ出力する。
 ここで、搬送距離がロール間距離に達した時とは、第i-1圧延スタンドを通過した被圧延材の部位が第i圧延スタンドに到達した時である。当該部位が第i-1圧延スタンドを通過した時に演算したレベリング操作量は、ロール間距離分の遅れ時間経過後にフィードフォワード値として第i圧下装置に出力される。
 圧延により被圧延材は伸びるため、当該部位が第i圧延スタンドに到達した時には、被圧延材の尾端は未だ第i-1スタンドを通過していない。そのため、このフィードフォワード制御は、第i-1圧延スタンドでの尾端抜けよりも前に開始される。すなわち、第i-1圧延スタンドでの尾端抜けによる蛇行が生じる前に、第i圧延スタンドに対する蛇行抑制制御が開始される。また、この蛇行抑制制御では、上述の記憶領域に一時記憶されたレベリング操作量を当該部位が第i圧延スタンドに到達した時から蓄積順に読み出す。これにより、第i-2圧延スタンドでの尾端抜けによって第i-1圧延スタンドで実際に生じた蛇行から予測されるレベリング操作量が、適切なタイミングでフィードフォワード値として読み出される。このように、本実施形態に係る尾端蛇行制御装置によれば、第i-1圧延スタンドの尾端抜けより前の適切なタイミングで、実績値から予測されたレベリング操作量を読み出してフィードフォワード制御を開始できる。そのため、第i-1スタンドの尾端抜けにより被圧延材に急激な蛇行が発生するリスクを低減することができる。
 好ましくは、上記搬送距離演算部は、第i圧延ロールのロール周速度および予め設定された後進率予測値を用いて、尾端抜けタイミング以降に第i-1圧延ロールを通過した被圧延材の搬送距離を演算する。
 好ましくは、上記レベリング操作量管理部は、尾端抜けタイミングからサンプリング周期毎に、第i-1レベリング操作量演算部により演算されたレベリング操作量を記憶領域に蓄積する。加えて、レベリング操作量管理部は、搬送距離が第i-1圧延ロールから前記第i圧延ロールまでのロール間距離に達した後、サンプリング周期毎に、記憶領域内を1区分ずつ蓄積順にシフトすることにより、記憶領域に記憶されたレベリング操作量を読み出す。
 本発明の他の実施形態に係るタンデム圧延機の尾端蛇行制御装置は、さらに次の構成を備える。
 第i圧延スタンドは、第i圧延ロールのワークサイドとドライブサイドそれぞれの圧延荷重を検出する第i荷重検出装置をさらに備える。
 尾端蛇行制御装置は、第i差荷重演算部、第i差荷重変動量演算部、第iレベリング操作量演算部をさらに備える。
 第i差荷重演算部は、第i荷重検出装置が検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する。
 第i差荷重変動量演算部は、第i差荷重演算部が演算した尾端抜けタイミングの差荷重と現在の差荷重との差である第i差荷重変動量を演算する。
 第iレベリング操作量演算部は、第i差荷重変動量に基づいて第i圧延スタンドのレベリング操作量を演算する。
 上記レベリング操作量出力部は、レベリング操作量管理部により読み出されたレベリング操作量と、第iレベリング操作量演算部により演算されたレベリング操作量とに基づく最終レベリング操作量を第i圧下装置へ出力する。
 本実施形態に係る尾端蛇行制御装置によれば、上述したフィードフォワードによる蛇行抑制制御のみならず、フィードバックによる蛇行抑制制御も加わることで、第i圧延スタンドの蛇行に対する追従性が向上し、さらなる蛇行抑制効果が見込める。
 本発明によれば、尾端抜けにより生じる被圧延材の蛇行の発生を好適に低減することができる。そのため、歩留まり向上および操業の安定性を向上できる。
本発明の実施の形態1に係るシステム構成を説明するための図である。 本発明の実施の形態1に係るフィードフォワード制御について説明するためのタイミングチャートである。 本発明の実施の形態2に係るシステム構成を説明するための図である。 本発明に係る制御装置が有する処理回路のハードウェア構成例を示す概念図である。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
 図1は、本発明の実施の形態1に係るシステム構成を説明するための図である。図1に示すシステムは、タンデム圧延機1と尾端蛇行制御装置2を備える。尾端蛇行制御装置2は、タンデム圧延機1の出側で被圧延材3が所望の板厚になるようにタンデム圧延機1のロールギャップやロール周速度を制御する制御装置(図示省略)の一部である。
(タンデム圧延機)
 タンデム圧延機1は、熱間圧延設備または冷間圧延設備において、圧延スタンドを数台近接して直列に配列し、1本の被圧延材を連続して圧延するストリップミルと呼ばれるタンデム形式の連続圧延機である。
 タンデム圧延機1は、n(nは3以上の自然数)基の圧延スタンドを有する。図1には、一例として、3基の圧延スタンドを有するタンデム圧延機1が描かれている。3基の圧延スタンドは、下流側(出側)から順に、第i圧延スタンド、第i-1圧延スタンド、第i-2圧延スタンドである。これらの圧延スタンドは、被圧延材3を圧延方向4(図1の左から右へ)へ圧延する。例えば、熱間圧延設備の場合、粗圧延機(図示省略)で圧延された被圧延材3は、5~7基連続する圧延スタンドを有する仕上圧延機(タンデム圧延機1)の出側で所望の板厚となるように、適切なロールギャップとロール周速度に調整された上下ワークロールによって圧延される。
 第i圧延スタンド(iは3以上n以下の自然数)は、上下一対の第iワークロール11a(第i圧延ロール)と、上下一対の第iバックアップロール12aと、第i荷重検出装置13aと、第i圧下装置14aとを有する。また、第i圧延スタンドは、第iワークロール11aのロール周速度を計測する速度センサを備える。
 第iワークロール11aは、被圧延材3を圧延する。第iバックアップロール12aは、第iワークロール11aを支えるように設置されている。
 第i荷重検出装置13aは、第iワークロール11aのワークサイドとドライブサイドそれぞれの圧延荷重(ワークロールが被圧延材3から受ける荷重)を検出する。圧延荷重はサンプリング周期毎に検出される。検出方法としては、ロードセルによる直接的な測定方法や、油圧圧下装置における検出した圧力から圧延荷重を計算する方法がある。いずれの方法においても、ワークサイド、ドライブサイド別々に取り付けられることが一般的である。なお、ワークサイド(WS)、ドライブサイド(DS)とは、被圧延材3の一方の幅方向端部および他方の幅方向端部を指すものであり、圧延ラインを境として、電動機やドライブ装置が配置された側をドライブサイド(DS)という。
 第i圧下装置14aは、第iワークロール11aのワークサイドとドライブサイドそれぞれのロールギャップを制御する。圧下装置は、ワークサイド、ドライブサイドで別々に設置されており(図示省略)、ワークサイド、ドライブサイドそれぞれで調整可能である。
 第i圧延スタンドと同様に、第i-1圧延スタンドは、上下一対の第i-1ワークロール11b(第i-1圧延ロール)と、上下一対の第i-1バックアップロール12bと、第i-1荷重検出装置13bと、第i-1圧下装置14bとを有する。第i-1ワークロール11bは、被圧延材3を圧延する。第i-1バックアップロール12bは、第i-1ワークロール11bを支えるように設置されている。第i-1荷重検出装置13bは、第i-1ワークロール11bのワークサイドとドライブサイドそれぞれの圧延荷重を検出する。第i-1圧下装置14bは、第i-1ワークロール11bのワークサイドとドライブサイドそれぞれのロールギャップを制御する。
 同様に、第i-2圧延スタンドは、上下一対の第i-2ワークロール11c(第i-2圧延ロール)と、上下一対の第i-2バックアップロール12cと、第i-2荷重検出装置13cと、第i-2圧下装置14cとを有する。第i-2ワークロール11cは、被圧延材3を圧延する。第i-2バックアップロール12cは、第i-2ワークロール11cを支えるように設置されている。第i-2荷重検出装置13cは、第i-2ワークロール11cのワークサイドとドライブサイドそれぞれの圧延荷重を検出する。第i-2圧下装置14cは、第i-2ワークロール11cのワークサイドとドライブサイドそれぞれのロールギャップを制御する。
(尾端蛇行制御装置)
 尾端蛇行制御装置2は、第i-1差荷重演算部21と、尾端抜けタイミング演算部22と、第i-1差荷重記憶部23と、第i-1差荷重変動量演算部24と、第i-1レベリング操作量演算部25と、搬送距離演算部26と、レベリング操作量管理部27と、レベリング操作量出力部28とを備える。
 第i-1差荷重演算部21は、第i-1荷重検出装置13bが検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重(圧延荷重の差)を演算する。この差荷重は、サンプリング周期毎に次式(1)を用いて演算される。
Figure JPOXMLDOC01-appb-I000001
ここで、
 δPi-1:第i-1圧延スタンドにおける差荷重
 PWS,i-1:第i-1荷重検出装置13bが検出したワークサイド(WS)の圧延荷重
 PDS,i-1:第i-1荷重検出装置13bが検出したドライブサイド(DS)の圧延荷重
 尾端抜けタイミング演算部22は、第i-2荷重検出装置13cが検出した圧延荷重の時間的変化から被圧延材3の尾端が第i-2ワークロール11cを通過した尾端抜けタイミング(以下、第i-2圧延スタンドの尾端抜けタイミングという)を演算する。この尾端抜けタイミングは、第i-2圧延スタンドに設置されている第i-2荷重検出装置13cが検出する圧延荷重から被圧延材3の先尾端を検出するロードリレー信号(L/R)がオフになったタイミングである。被圧延材3の尾端が第i-2圧延スタンドを通過することで、第i-1圧延スタンド入側における被圧延材3への拘束が弱くなり、差荷重は大きく変化し始める。
 第i-1差荷重記憶部23は、第i-2圧延スタンドの尾端抜けタイミングにおいて第i-1荷重検出装置13bが検出した圧延荷重に基づいて、第i-1差荷重演算部21が演算した第i-1圧延スタンドの差荷重を記憶する。この尾端抜けタイミングにおける差荷重は、少なくとも被圧延材3の尾端が第i圧延スタンドを通過するまでの間保存される。
 第i-1差荷重変動量演算部24は、第i-1差荷重演算部21が演算した尾端抜けタイミングの差荷重と現在の差荷重との差である第i-1差荷重変動量を演算する。第i-1差荷重変動量ΔPi-1は、サンプリング周期毎に次式(2)を用いて演算される。
Figure JPOXMLDOC01-appb-I000002
ここで、
 ΔPi-1:第i-1差荷重変動量
 δPi-1:第i-1差荷重演算部21が演算した現在の差荷重(現サンプリング周期において式(1)から算出される)
 δPLK,i-1:第i-1差荷重記憶部23に記憶された第i-2圧延スタンドの尾端抜けタイミングにおける差荷重
 第i-1レベリング操作量演算部25は、サンプリング周期毎に式(2)から得られた第i-1差荷重変動量に基づいて第i圧延スタンドのレベリング操作量を演算する。具体的には、第i-1レベリング操作量演算部25は、予め設定されている影響係数を第i-1差荷重変動量に乗算し、圧延荷重の大きい方のロールギャップを閉めるようにするレベリング操作量を演算する。例えば、ワークサイドの圧延荷重がドライブサイドの圧延荷重より大きい(PWS>PDS)場合、ワークサイドのロールギャップを閉めるようなレベリング操作量が算出される。また、差荷重変動量について不感帯を設定し、ノイズなどの微小な変化分を除くようにしてもよい。
 搬送距離演算部26は、尾端抜けタイミング以降に第i-1ワークロール11bを通過した被圧延材3の搬送距離を演算する。具体的には、搬送距離演算部26は、第iワークロール11aのロール周速度および予め設定された後進率予測値を用いて、尾端抜けタイミング以降に第i-1ワークロール11bを通過した被圧延材3の搬送距離を演算する。サンプリング時間あたりに進む被圧延材3の搬送距離が積算され、積算された搬送距離はレベリング操作量管理部27へ出力される。
 レベリング操作量管理部27は、尾端抜けタイミング以降にサンプリング周期毎に、第i-1レベリング操作量演算部25により演算されたレベリング操作量を記憶領域(データテーブル)に蓄積する(バッファする)。サンプリング周期毎に演算されたレベリング操作量は、記憶領域(バッファ)内を1区分ずつシフトしつつ記憶される。
 加えて、レベリング操作量管理部27は、搬送距離が第i-1ワークロール11bから第iワークロール11aまでのロール間距離に達した後、搬送距離の増加に連動して記憶領域からレベリング操作量を蓄積順に読み出す。例えば、レベリング操作量管理部27は、搬送距離が第i-1ワークロール11bから第iワークロール11aまでのロール間距離に達した後、サンプリング周期毎に記憶領域内を1区分ずつ蓄積順にシフトすることにより、記憶領域に記憶されたレベリング操作量を読み出す。
 ここで、搬送距離がロール間距離に達した時とは、第i-1圧延スタンドを通過した被圧延材の部位が第i圧延スタンドに到達した時である。当該部位が第i-1圧延スタンドを通過した時に演算したレベリング操作量は、ロール間距離分の遅れ時間経過後にフィードフォワード値として読み出される。
 なお、第i圧下装置14aの応答遅れを考慮して、搬送距離がロール間距離よりも短く設定した距離に達した後、レベリング操作量を読み出すこととしても良い。なお、レベリング操作量を読み出すタイミングはサンプリング周期毎に限られない。例えば、隣接するロール間距離をN分割し、搬送距離演算部26で演算した搬送距離が1分割あたりの距離を超えた時に、記憶領域から現在の搬送距離に応じたレベリング操作量を読み出すこととしても良い。
 レベリング操作量出力部28は、レベリング操作量管理部27により読み出されたレベリング操作量を第i圧下装置14aへ出力する。好ましくは、制御がインターロックにかかった時など制御ホールドした場合、その後の操作量が変わってくるため、上記レベリング操作量をPID制御器あるいは位相進み遅れ補償器を介して、第i圧下装置14aへ出力する。第i圧下装置14a(あるいは、その制御装置)は、被圧延材3の出側目標板厚を満たすための規定のロールギャップをレベリング操作量出力部28から出力されたレベリング操作量で調整した制御量で動作する。
 図2は、上述したフィードフォワード制御について説明するためのタイミングチャートである。時刻t0は、被圧延材3が第i-2圧延スタンドを通過した尾端抜けタイミングである。この尾端抜けタイミングは、第i-2圧延スタンドにおけるロードリレー信号(L/R)がオンからオフに変化することで検知される。時刻t1以降、被圧延材3の尾端抜けに起因した蛇行が発生し、差荷重変動が生じる。時刻t2は、不感帯を超える差荷重が生じた時刻である。時刻t3は、第i-2圧延スタンドの尾端抜けタイミングにおいて第i-1圧延スタンドを通過した被圧延材の部位が第i圧延スタンドに到達した時刻である。圧延により被圧延材3は伸びるため、当該部位が第i圧延スタンドに到達した時(時刻t3)には、被圧延材の尾端は未だ第i-1スタンドを通過していない。蛇行抑制のためのフィードフォワード制御は、第i-1圧延スタンドの尾端抜けタイミング(時刻t4)よりも前の時刻t3から開始される。時刻t3以降、レベリング操作量管理部27により、搬送距離の増加に連動して記憶領域からレベリング操作量が蓄積順に読み出され、レベリング操作量出力部28により第i圧下装置14aへ出力される。これにより、第i-2圧延スタンドでの尾端抜けによって第i-1圧延スタンドで実際に生じた蛇行から予測されるレベリング操作量が、適切なタイミングでフィードフォワード値として第i圧下装置14aへ出力される。
 このように、本実施形態に係る尾端蛇行制御装置によれば、第i-1圧延スタンドの尾端抜けより前の適切なタイミングで、実績値から予測されたレベリング操作量を読み出したフィードフォワード制御を開始できる。そのため、第i-1スタンドの尾端抜けにより被圧延材3に急激な蛇行が発生するリスクを低減することができる。その結果、歩留まり向上および操業の安定性を向上できる。
(ハードウェア構成例)
 図4は、本システムの制御装置(尾端蛇行制御装置2を含む)が有する処理回路のハードウェア構成例を示す概念図である。図1(および後述する図3)の破線内の各部は機能の一部を示し、各機能は処理回路により実現される。一態様として、処理回路は、少なくとも1つのプロセッサ91と少なくとも1つのメモリ92とを備える。他の態様として、処理回路は、少なくとも1つの専用のハードウェア93を備える。上述したレベリング操作量管理部27の記憶領域や第i-1差荷重記憶部23(および後述する第i差荷重記憶部33)はメモリ92または専用のハードウェア93により実現される。
 処理回路がプロセッサ91とメモリ92とを備える場合、各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、各機能を実現する。
 処理回路が専用のハードウェア93を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、又はこれらを組み合わせたものである。各機能は処理回路で実現される。
実施の形態2.
(システム構成)
 次に、図3を参照して本発明の実施の形態2について説明する。図3は、本発明の実施の形態2に係るシステム構成を説明するための図である。図3に示すシステム構成は、第i差荷重演算部31、尾端抜けタイミング演算部32、第i差荷重記憶部33、第i差荷重変動量演算部34、第iレベリング操作量演算部35が追加されている点、レベリング操作量出力部28の処理が変更されている点を除いて、図1と同様である。
 実施の形態2に係るシステムは、実施の形態1で述べた第i-1圧延スタンドの差荷重に基づくフィードフォワード制御と併せて、第i圧延スタンドの差荷重に基づくフィードバック制御を実行する。
 第i差荷重演算部31は、第i荷重検出装置13aが検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する。この差荷重は、サンプリング周期毎に次式(3)を用いて演算される。
Figure JPOXMLDOC01-appb-I000003
ここで、
 δP:第i圧延スタンドにおける差荷重
 PWS,i:第i荷重検出装置13aが検出したワークサイド(WS)の圧延荷重
 PDS,i:第i荷重検出装置13aが検出したドライブサイド(DS)の圧延荷重
 尾端抜けタイミング演算部32は、第i-2荷重検出装置13cが検出した圧延荷重の時間的変化から被圧延材3の尾端が第i-2ワークロール11cを通過した尾端抜けタイミングを演算する。尾端抜けタイミング演算部32の処理は、尾端抜けタイミング演算部22と同様であるため説明を省略する。
 第i差荷重記憶部33は、第i-2圧延スタンドの尾端抜けタイミングにおいて第i荷重検出装置13aが検出した圧延荷重に基づいて、第i差荷重演算部31が演算した第i圧延スタンドの差荷重を記憶する。この尾端抜けタイミングにおける差荷重は、少なくとも被圧延材3の尾端が第i圧延スタンドを通過するまでの間保存される。
 第i差荷重変動量演算部34は、第i差荷重演算部31が演算した尾端抜けタイミングの差荷重と現在の差荷重との差である第i差荷重変動量を演算する。第i差荷重変動量ΔPは、サンプリング周期毎に次式(4)を用いて演算される。
Figure JPOXMLDOC01-appb-I000004
ここで、
 ΔP:第i差荷重変動量
 δP:第i差荷重演算部31が演算した現在の差荷重(現サンプリング周期において式(3)から算出される)
 δPLK,i:第i差荷重記憶部33に記憶された第i-2圧延スタンドの尾端抜けタイミングにおける差荷重
 第iレベリング操作量演算部35は、サンプリング周期毎に式(4)から得られた第i差荷重変動量に基づいて第i圧延スタンドのレベリング操作量を演算する。実施の形態1で述べた第i-1レベリング操作量演算部25と同様に、第iレベリング操作量演算部35は、予め設定されている影響係数を第i差荷重変動量に乗算し、圧延荷重の大きい方のロールギャップを閉めるようにするレベリング操作量を演算する。
 レベリング操作量出力部28は、レベリング操作量管理部27により読み出されたレベリング操作量と、第iレベリング操作量演算部35により演算されたレベリング操作量とに基づく最終レベリング操作量を第i圧下装置14aへ出力する。具体的には、PID制御器あるいは位相進み遅れ補償器を介して、次式(5)を用いて最終レベリング操作量を演算する。
Figure JPOXMLDOC01-appb-I000005
ここで、
 SL,i FF:第i-1圧延スタンドの差荷重より演算した第i圧延スタンドのレベリング操作量(フィードフォワード制御によるレベリング操作量)
 SL,i FB:第i圧延スタンドの差荷重より演算した第i圧延スタンドのレベリング操作量(フィードバック制御によるレベリング操作量)
 WFF:フィードフォワード制御によるレベリング操作量に対する重み係数
 WFB:フィードバック制御によるレベリング操作量に対する重み係数
 重み係数を調整すれば、蛇行に対する制御を変えることが可能である。例えば、第i圧延スタンドで予想される蛇行に対しての出力を重視したい場合は、フィードフォワード制御の重み係数をフィードバック制御の重み係数より大きくする(WFF>WFB)。一方で、第i圧延スタンドで発生する蛇行に対しての出力を重視したい場合は、フィードバック制御の重み係数をフィードフォワード制御の重み係数より大きくする(WFB>WFF)。
 このほか、フィードバック制御を考慮しない場合(実施の形態1と同じにする場合)には、フィードフォワード制御の重み係数は1.0、フィードバック制御の重み係数は0とする。フィードバック制御を考慮する場合は、フィードバック制御の重み係数を0より大きな数値に設定する。
(効果)
 以上説明したように、本発明の実施の形態2に係る尾端蛇行制御装置2によれば、実施の形態1で述べたフィードフォワードによる蛇行抑制制御のみならず、フィードバックによる蛇行抑制制御も加わることで、第i圧延スタンドの蛇行に対する追従性が上がり、さらなる蛇行抑制効果が見込める。
1 タンデム圧延機
2 尾端蛇行制御装置
3 被圧延材
4 圧延方向
11a 第iワークロール
11b 第i-1ワークロール
11c 第i-2ワークロール
12a 第iバックアップロール
12b 第i-1バックアップロール
12c 第i-2バックアップロール
13a 第i荷重検出装置
13b 第i-1荷重検出装置
13c 第i-2荷重検出装置
14a 第i圧下装置
14b 第i-1圧下装置
14c 第i-2圧下装置
21 第i-1差荷重演算部
22、32 尾端抜けタイミング演算部
23 第i-1差荷重記憶部
24 第i-1差荷重変動量演算部
25 第i-1レベリング操作量演算部
26 搬送距離演算部
27 レベリング操作量管理部
28 レベリング操作量出力部
31 第i差荷重演算部
33 第i差荷重記憶部
34 第i差荷重変動量演算部
35 第iレベリング操作量演算部
91 プロセッサ
92 メモリ
93 ハードウェア

Claims (4)

  1.  n(nは3以上の自然数)基の圧延スタンドを有するタンデム圧延機の尾端蛇行制御装置であって、
     前記タンデム圧延機は、
     被圧延材を圧延する第i圧延ロールと、前記第i圧延ロールのワークサイドとドライブサイドそれぞれのロールギャップを制御する第i圧下装置とを有する第i(iは3以上n以下の自然数)圧延スタンドと、
     前記第i圧延スタンドの上流に設けられ、前記被圧延材を圧延する第i-1圧延ロールと、前記第i-1圧延ロールのワークサイドとドライブサイドそれぞれの圧延荷重を検出する第i-1荷重検出装置とを有する第i-1圧延スタンドと、
     前記第i-1圧延スタンドの上流に設けられ、前記被圧延材を圧延する第i-2圧延ロールと、前記第i-2圧延ロールの圧延荷重を検出する第i-2荷重検出装置とを有する第i-2圧延スタンドと、を備え、
     前記尾端蛇行制御装置は、
     前記第i-1荷重検出装置が検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する第i-1差荷重演算部と、
     前記第i-2荷重検出装置が検出した圧延荷重の時間的変化から前記被圧延材の尾端が前記第i-2圧延ロールを通過した尾端抜けタイミングを演算する尾端抜けタイミング演算部と、
     前記第i-1差荷重演算部が演算した前記尾端抜けタイミングの差荷重と現在の差荷重との差である第i-1差荷重変動量を演算する第i-1差荷重変動量演算部と、
     前記第i-1差荷重変動量に基づいて前記第i圧延スタンドのレベリング操作量を演算する第i-1レベリング操作量演算部と、
     前記尾端抜けタイミング以降に前記第i-1圧延ロールを通過した前記被圧延材の搬送距離を演算する搬送距離演算部と、
     前記尾端抜けタイミング以降に前記第i-1レベリング操作量演算部により演算されたレベリング操作量を記憶領域に蓄積し、前記搬送距離が前記第i-1圧延ロールから前記第i圧延ロールまでのロール間距離に達した後、前記搬送距離の増加に連動して前記記憶領域からレベリング操作量を蓄積順に読み出すレベリング操作量管理部と、
     前記レベリング操作量管理部により読み出されたレベリング操作量を前記第i圧下装置へ出力するレベリング操作量出力部と、
     を備えることを特徴とするタンデム圧延機の尾端蛇行制御装置。
  2.  前記搬送距離演算部は、前記第i圧延ロールのロール周速度および予め設定された後進率予測値を用いて、前記尾端抜けタイミング以降に前記第i-1圧延ロールを通過した前記被圧延材の搬送距離を演算すること、
     を特徴とする請求項1記載のタンデム圧延機の尾端蛇行制御装置。
  3.  前記レベリング操作量管理部は、
     前記尾端抜けタイミング以降にサンプリング周期毎に、前記第i-1レベリング操作量演算部により演算されたレベリング操作量を前記記憶領域に蓄積し、
     前記搬送距離が前記第i-1圧延ロールから前記第i圧延ロールまでのロール間距離に達した後、サンプリング周期毎に前記記憶領域内を1区分ずつ蓄積順にシフトすることにより、前記記憶領域に記憶されたレベリング操作量を読み出すこと、
     を特徴とする請求項1又は2記載のタンデム圧延機の尾端蛇行制御装置。
  4.  前記第i圧延スタンドは、前記第i圧延ロールのワークサイドとドライブサイドそれぞれの圧延荷重を検出する第i荷重検出装置をさらに備え、
     前記尾端蛇行制御装置は、
     前記第i荷重検出装置が検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する第i差荷重演算部と、
     前記第i差荷重演算部が演算した前記尾端抜けタイミングの差荷重と現在の差荷重との差である第i差荷重変動量を演算する第i差荷重変動量演算部と、
     前記第i差荷重変動量に基づいて前記第i圧延スタンドのレベリング操作量を演算する第iレベリング操作量演算部と、をさらに備え、
     前記レベリング操作量出力部は、前記レベリング操作量管理部により読み出されたレベリング操作量と、前記第iレベリング操作量演算部により演算されたレベリング操作量とに基づく最終レベリング操作量を前記第i圧下装置へ出力すること、
     を特徴とする請求項1乃至3のいずれか1項記載のタンデム圧延機の尾端蛇行制御装置。
PCT/JP2017/019781 2017-05-26 2017-05-26 タンデム圧延機の尾端蛇行制御装置 WO2018216215A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197021554A KR102232334B1 (ko) 2017-05-26 2017-05-26 탠덤 압연기의 후미 단부 사행 제어 장치
JP2019519938A JP6717430B2 (ja) 2017-05-26 2017-05-26 タンデム圧延機の尾端蛇行制御装置
PCT/JP2017/019781 WO2018216215A1 (ja) 2017-05-26 2017-05-26 タンデム圧延機の尾端蛇行制御装置
CN201780084304.2A CN110621422B (zh) 2017-05-26 2017-05-26 串列轧机的尾端蛇行控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019781 WO2018216215A1 (ja) 2017-05-26 2017-05-26 タンデム圧延機の尾端蛇行制御装置

Publications (1)

Publication Number Publication Date
WO2018216215A1 true WO2018216215A1 (ja) 2018-11-29

Family

ID=64395498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019781 WO2018216215A1 (ja) 2017-05-26 2017-05-26 タンデム圧延機の尾端蛇行制御装置

Country Status (4)

Country Link
JP (1) JP6717430B2 (ja)
KR (1) KR102232334B1 (ja)
CN (1) CN110621422B (ja)
WO (1) WO2018216215A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255863A1 (ja) * 2019-06-20 2020-12-24 Jfeスチール株式会社 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP2021023970A (ja) * 2019-08-06 2021-02-22 日本製鉄株式会社 制御方法および圧延装置
EP3919196A1 (en) * 2019-08-28 2021-12-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Roll state monitor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165913A (ja) * 1989-11-22 1991-07-17 Nippon Steel Corp 熱間連続仕上圧延機における蛇行制御方法および制御装置
JP2002137011A (ja) * 2000-08-24 2002-05-14 Nippon Steel Corp タンデム圧延機の蛇行制御方法
JP2002292416A (ja) * 2001-03-30 2002-10-08 Kobe Steel Ltd 通板材の尾端部における蛇行制御方法
JP2006150415A (ja) * 2004-11-30 2006-06-15 Jfe Steel Kk 連続熱間圧延における鋼帯の蛇行制御方法
JP2013212523A (ja) * 2012-04-02 2013-10-17 Nippon Steel & Sumitomo Metal Corp 被圧延材の蛇行制御方法および被圧延材の蛇行制御システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105296A (zh) * 1993-10-05 1995-07-19 日立有限公司 辊轧机控制方法及装置
JP3273117B2 (ja) * 1996-03-29 2002-04-08 新日本製鐵株式会社 熱間タンデム圧延機の蛇行制御方法
JP3526554B2 (ja) * 2001-02-13 2004-05-17 株式会社日立製作所 タンデム圧延設備及びその圧延方法
JP4128813B2 (ja) * 2002-07-05 2008-07-30 株式会社日立製作所 タンデム圧延機の通板制御方法および圧延制御システム
JP4437753B2 (ja) * 2005-02-18 2010-03-24 東芝三菱電機産業システム株式会社 タンデム圧延機の板厚制御方法
JP2010247177A (ja) 2009-04-15 2010-11-04 Jfe Steel Corp 熱間圧延における尾端蛇行制御方法
CN102120224B (zh) * 2010-01-08 2012-10-10 宝山钢铁股份有限公司 热连轧机轧制时自动纠偏的控制方法
JP6315818B2 (ja) * 2014-10-07 2018-04-25 株式会社日立製作所 タンデム圧延ミルの制御装置および制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165913A (ja) * 1989-11-22 1991-07-17 Nippon Steel Corp 熱間連続仕上圧延機における蛇行制御方法および制御装置
JP2002137011A (ja) * 2000-08-24 2002-05-14 Nippon Steel Corp タンデム圧延機の蛇行制御方法
JP2002292416A (ja) * 2001-03-30 2002-10-08 Kobe Steel Ltd 通板材の尾端部における蛇行制御方法
JP2006150415A (ja) * 2004-11-30 2006-06-15 Jfe Steel Kk 連続熱間圧延における鋼帯の蛇行制御方法
JP2013212523A (ja) * 2012-04-02 2013-10-17 Nippon Steel & Sumitomo Metal Corp 被圧延材の蛇行制御方法および被圧延材の蛇行制御システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255863A1 (ja) * 2019-06-20 2020-12-24 Jfeスチール株式会社 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP6863532B1 (ja) * 2019-06-20 2021-04-21 Jfeスチール株式会社 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP2021181114A (ja) * 2019-06-20 2021-11-25 Jfeスチール株式会社 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP7036241B2 (ja) 2019-06-20 2022-03-15 Jfeスチール株式会社 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
US12083569B2 (en) 2019-06-20 2024-09-10 Jfe Steel Corporation Meandering control method for hot-rolled steel strip, meandering control device, and hot rolling equipment
JP2021023970A (ja) * 2019-08-06 2021-02-22 日本製鉄株式会社 制御方法および圧延装置
JP7252458B2 (ja) 2019-08-06 2023-04-05 日本製鉄株式会社 制御方法
EP3919196A1 (en) * 2019-08-28 2021-12-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Roll state monitor device
US11786948B2 (en) 2019-08-28 2023-10-17 Toshiba Mitsubishi—Electric Industrial Systems Corporation Roll state monitor device

Also Published As

Publication number Publication date
KR20190101407A (ko) 2019-08-30
CN110621422A (zh) 2019-12-27
JP6717430B2 (ja) 2020-07-01
CN110621422B (zh) 2021-03-23
KR102232334B1 (ko) 2021-03-25
JPWO2018216215A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP5587825B2 (ja) 熱間圧延機の張力制御装置および制御方法
WO2018216215A1 (ja) タンデム圧延機の尾端蛇行制御装置
JP4437753B2 (ja) タンデム圧延機の板厚制御方法
JP4227497B2 (ja) 圧延機のフィードフォワード板厚制御装置及びその制御方法
JP6670261B2 (ja) タンデム圧延ミル制御装置およびタンデム圧延ミル制御方法
CN109070163B (zh) 鲁棒的带张力控制
US20160214153A1 (en) Method for processing material to be rolled on a rolling line, and rolling line
EP0109235B1 (en) Rolling mill control for tandem rolling
JP2011088172A (ja) 冷間圧延機の板厚制御装置及び板厚制御方法
JP6045420B2 (ja) 熱間タンデム圧延ミル制御装置及び熱間タンデム圧延ミルの制御方法
JP2010253501A (ja) 多段圧延機の張力制御方法及び多段圧延機の張力制御装置
JP2002210513A (ja) 熱間圧延におけるキャンバおよびウエッジの防止方法
KR101597591B1 (ko) 장력 제어 장치
JP5631233B2 (ja) 圧延機の板厚制御方法
JP3120007B2 (ja) タンデム冷間圧延機の板厚制御装置
JP5385643B2 (ja) 多段圧延機における板厚制御方法及び板厚制御装置
JP6562010B2 (ja) 圧延機の制御装置および制御方法
JP3541596B2 (ja) 連続式タンデム圧延機における板材の板厚制御方法
JP3588960B2 (ja) 連続式タンデム圧延機における板材の走間板厚変更方法
JP3617227B2 (ja) 連続式タンデム圧延機における板材の板厚制御方法
CN115397574A (zh) 连续式轧机的蛇行控制装置
KR20020047750A (ko) 압연기의 임팩트 드롭 보상장치 및 그 보상방법
JP2023177918A (ja) 熱間圧延におけるレベリング制御方法、レベリング制御装置、熱間圧延設備、及び熱間圧延鋼帯の製造方法
JP5907157B2 (ja) 圧延機の制御装置および制御方法
JP6091411B2 (ja) 圧延機の板厚制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019519938

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20197021554

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910513

Country of ref document: EP

Kind code of ref document: A1