WO2018216215A1 - タンデム圧延機の尾端蛇行制御装置 - Google Patents
タンデム圧延機の尾端蛇行制御装置 Download PDFInfo
- Publication number
- WO2018216215A1 WO2018216215A1 PCT/JP2017/019781 JP2017019781W WO2018216215A1 WO 2018216215 A1 WO2018216215 A1 WO 2018216215A1 JP 2017019781 W JP2017019781 W JP 2017019781W WO 2018216215 A1 WO2018216215 A1 WO 2018216215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rolling
- operation amount
- leveling operation
- tail end
- load
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B15/00—Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
- B21B37/18—Automatic gauge control
- B21B37/20—Automatic gauge control in tandem mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/68—Camber or steering control for strip, sheets or plates, e.g. preventing meandering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
- B21B38/08—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B15/00—Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B2015/0071—Levelling the rolled product
Definitions
- This invention relates to a tail end meandering control device for a tandem rolling mill.
- tandem rolling mill In a hot rolling facility or a cold rolling facility, a tandem type continuous rolling mill called a strip mill (tandem rolling mill) that continuously rolls a single material to be rolled by arranging several rolling stands in series. )It has been known.
- meandering is a phenomenon in which the width center of the material to be rolled moves to the work side or the drive side.
- differential load the difference in rolling load between the work side and the drive side
- the meandering further proceeds. If the meandering progresses, the plate breaks and narrows, and the equipment may be damaged. As a result, it develops into problems such as yield deterioration and productivity decline. Further, it is known that meandering propagates from an upstream rolling stand to a downstream rolling stand.
- a meandering control method is proposed in Japanese Patent Application Laid-Open No. 2010-247177 (Patent Document 1).
- meandering control by feedback control using a differential load of the rolling stand (i-th rolling stand) to be controlled is performed in the finishing mill.
- the output of the meandering control of the rolling stand (i-1 rolling stand) located one upstream of the i th rolling stand is multiplied by a certain ratio, and feedforward is performed with respect to the i th rolling stand.
- Serpentine control is performed by control.
- the leveling operation amount is calculated and output using the differential load of the i-th rolling stand caused by the occurrence of meandering. Therefore, when meandering suddenly occurs, the leveling operation amount does not catch up, and it is difficult to say that it is an effective control method that sufficiently suppresses meandering.
- the position of the material to be rolled is not considered, and the leveling of the i-th rolling stand is operated at the same timing as the meandering control in the upstream rolling stand (i-1 rolling stand). Yes. Therefore, leveling is not properly operated at an appropriate timing, and a sufficient meandering suppression effect at the i-th rolling stand cannot be expected.
- the present invention has been made to solve the above-described problems, and provides a tail end meandering control device for a tandem rolling mill that can suitably reduce the occurrence of meandering of a material to be rolled that occurs due to a tail end slippage.
- the purpose is to do.
- a tail end meandering control device for a tandem rolling mill is configured as follows to achieve the above object.
- This tandem rolling mill has n (n is a natural number of 3 or more) rolling stands.
- the i-th (i is a natural number of 3 to n) rolling stand includes an i-th rolling roll that rolls the material to be rolled, and an i-th reduction device that controls the roll gaps on the work side and the drive side of the i-th rolling roll.
- the i-1 rolling stand is provided upstream of the i rolling stand and detects the rolling loads of the i-1 rolling roll for rolling the material to be rolled and the work side and the drive side of the i-1 rolling roll.
- the i-2 rolling stand is provided upstream of the i-1 rolling stand, and the i-2 rolling roll for rolling the material to be rolled and the i-2 rolling roll for detecting the rolling load of the i-2 rolling roll.
- a load detection device is provided.
- the tail end meandering control device includes an i-1th differential load calculation unit, a tail end missing timing calculation unit, an i-1th differential load fluctuation amount calculation unit, an i-1 leveling manipulated variable calculation unit, a transport distance calculation unit, A leveling operation amount management unit and a leveling operation amount output unit are provided.
- the i ⁇ 1th differential load calculation unit calculates the differential load from the rolling loads on the work side and the drive side detected by the i ⁇ 1th load detection device.
- the tail end drop timing calculation unit calculates the tail end drop timing when the tail end of the material to be rolled has passed through the i-2 rolling roll from the temporal change of the rolling load detected by the i-2th load detection device.
- the i-1th differential load fluctuation amount calculation unit calculates the i-1th differential load fluctuation amount, which is the difference between the difference load at the tail end removal timing calculated by the i-1th differential load calculation unit and the current differential load. To do.
- the i-1th leveling operation amount calculation unit calculates the leveling operation amount of the i-th rolling stand based on the i-1th differential load fluctuation amount.
- the conveyance distance calculation unit calculates the conveyance distance of the material to be rolled that has passed through the i-1th rolling roll after the tail end drop timing.
- the leveling operation amount management unit accumulates the leveling operation amount calculated by the i-1th leveling operation amount calculation unit after the tail end dropout timing in the storage area.
- the leveling operation amount management unit calculates the leveling operation amount from the storage area in conjunction with the increase in the conveyance distance after the conveyance distance reaches the inter-roll distance from the i-1 rolling roll to the i-th rolling roll. Read in order of accumulation.
- the leveling operation amount output unit outputs the leveling operation amount read by the leveling operation amount management unit to the i-th reduction device.
- the time when the transport distance reaches the distance between rolls is when the portion of the material to be rolled that has passed through the i-1 rolling stand reaches the i rolling stand.
- the leveling operation amount calculated when the part passes through the i-1th rolling stand is output to the i-th reduction device as a feedforward value after a delay time corresponding to the distance between the rolls has elapsed.
- this feedforward control is started before the tail end omission in the i-1th rolling stand. That is, the meandering suppression control for the i-th rolling stand is started before the meandering due to the tail end omission at the i-th rolling stand occurs.
- the leveling operation amount temporarily stored in the storage area is read in the order of accumulation from the time when the part reaches the i-th rolling stand.
- the leveling operation amount predicted from the meandering actually generated at the i-1 rolling stand due to the tail end omission at the i-2 rolling stand is read out as a feedforward value at an appropriate timing.
- the leveling operation amount predicted from the actual value is read out at an appropriate timing before the tail end omission of the i-1th rolling stand, and is fed forward. Control can start. Therefore, it is possible to reduce the risk of sudden meandering in the material to be rolled due to the tail end omission of the i-1th stand.
- the transport distance calculation unit uses the roll peripheral speed of the i-th rolling roll and a preset reverse travel rate prediction value to determine the material to be rolled that has passed through the i-1 rolling roll after the tail end slipping timing. Calculate the transport distance.
- the leveling operation amount management unit accumulates the leveling operation amount calculated by the i-1th leveling operation amount calculation unit in the storage area at every sampling period from the tail end missing timing.
- the leveling operation amount management unit shifts the storage area by one section in the order of accumulation every sampling period after the transport distance reaches the distance between the rolls from the i-1 roll to the i roll.
- the leveling operation amount stored in the storage area is read out.
- a tail end meandering control device for a tandem rolling mill further includes the following configuration.
- the i-th rolling stand further includes an i-th load detecting device that detects a rolling load on each of the work side and the drive side of the i-th rolling roll.
- the tail end meandering control device further includes an i-th differential load calculation unit, an i-th differential load fluctuation amount calculation unit, and an i-th leveling operation amount calculation unit.
- the i-th differential load calculation unit calculates the differential load from the rolling loads on the work side and the drive side detected by the i-th load detection device.
- the i-th differential load fluctuation amount calculation unit calculates an i-th differential load fluctuation amount that is a difference between the difference load at the tail end dropout timing calculated by the i-th differential load calculation unit and the current differential load.
- the i-th leveling operation amount calculation unit calculates the leveling operation amount of the i-th rolling stand based on the i-th differential load fluctuation amount.
- the leveling operation amount output unit sends a final leveling operation amount based on the leveling operation amount read by the leveling operation amount management unit and the leveling operation amount calculated by the i-th leveling operation amount calculation unit to the i-th reduction device. Output.
- tail end meandering control device not only meandering suppression control by feedforward described above but also meandering suppression control by feedback is added, thereby improving the followability of the i-th rolling stand to meandering. Can suppress meandering effect.
- the present invention it is possible to suitably reduce the occurrence of meandering of the material to be rolled that is caused by the tail end omission. Therefore, the yield can be improved and the operation stability can be improved.
- FIG. FIG. 1 is a diagram for explaining a system configuration according to Embodiment 1 of the present invention.
- the system shown in FIG. 1 includes a tandem rolling mill 1 and a tail end meandering control device 2.
- the tail end meandering control device 2 is a control device (not shown) that controls the roll gap and roll peripheral speed of the tandem rolling mill 1 so that the material 3 to be rolled has a desired thickness on the exit side of the tandem rolling mill 1. It is a part.
- the tandem rolling mill 1 is a continuous tandem type called a strip mill that continuously rolls one rolled material by arranging several rolling stands in series in a hot rolling facility or a cold rolling facility. It is a rolling mill.
- the tandem rolling mill 1 has n (n is a natural number of 3 or more) rolling stands.
- FIG. 1 shows a tandem rolling mill 1 having three rolling stands as an example.
- the three rolling stands are an i-th rolling stand, an i-1 rolling stand, and an i-2 rolling stand in this order from the downstream side (exit side).
- These rolling stands roll the material 3 to be rolled in the rolling direction 4 (from left to right in FIG. 1).
- the material to be rolled 3 rolled by a roughing mill (not shown) is desired on the exit side of a finishing mill (tandem mill 1) having 5 to 7 continuous rolling stands. It is rolled by the upper and lower work rolls adjusted to an appropriate roll gap and roll peripheral speed so as to achieve a plate thickness of.
- the i-th rolling stand (i is a natural number of 3 to n) includes a pair of upper and lower i-th work rolls 11a (i-th rolling roll), a pair of upper and lower i-th backup rolls 12a, an i-th load detection device 13a, An i-th reduction device 14a.
- the i-th rolling stand includes a speed sensor that measures the roll peripheral speed of the i-th work roll 11a.
- the i-th work roll 11a rolls the material 3 to be rolled.
- the i-th backup roll 12a is installed to support the i-th work roll 11a.
- the i-th load detection device 13a detects the rolling load (the load that the work roll receives from the material to be rolled 3) on the work side and the drive side of the i-th work roll 11a.
- the rolling load is detected every sampling period.
- a detection method there are a direct measurement method using a load cell and a method of calculating a rolling load from a pressure detected by a hydraulic reduction device. In either method, the work side and the drive side are generally attached separately.
- the work side (WS) and the drive side (DS) refer to one end in the width direction and the other end in the width direction of the material 3 to be rolled.
- the side on which is arranged is called the drive side (DS).
- the i-th reduction device 14a controls the roll gaps on the work side and the drive side of the i-th work roll 11a.
- the reduction device is separately installed on the work side and the drive side (not shown) and can be adjusted on the work side and the drive side.
- the i-1 rolling stand includes a pair of upper and lower i-1 work rolls 11b (i-1 rolling roll), a pair of upper and lower i-1 backup rolls 12b, and an i-th rolling roll.
- i-1 rolling roll a pair of upper and lower i-1 work rolls 11b
- i-1 backup rolls 12b a pair of upper and lower i-1 backup rolls 12b
- an i-th rolling roll a pair of upper and lower i-1 backup rolls 12b
- i-th rolling roll -1 load detection device 13b and i-1th reduction device 14b.
- the i-1th work roll 11b rolls the material 3 to be rolled.
- the i-1 backup roll 12b is installed to support the i-1 work roll 11b.
- the i-1th load detection device 13b detects the rolling loads on the work side and the drive side of the i-1th work roll 11b.
- the i-1th reduction device 14b controls the roll gaps on the work side and the drive side of the i-1th work roll 11
- the i-2 rolling stand includes a pair of upper and lower i-2 work rolls 11c (i-2 rolling rolls), a pair of upper and lower i-2 backup rolls 12c, and an i-2 load detecting device. 13c and an i-2 reduction device 14c.
- the i-2nd work roll 11c rolls the material 3 to be rolled.
- the i-2 backup roll 12c is installed to support the i-2 work roll 11c.
- the i-2th load detector 13c detects the rolling loads on the work side and the drive side of the i-2 work roll 11c.
- the i-2 reduction device 14c controls the roll gaps on the work side and the drive side of the i-2 work roll 11c.
- the tail end meandering control device 2 includes an i ⁇ 1th differential load calculation unit 21, a tail end missing timing calculation unit 22, an i ⁇ 1th differential load storage unit 23, and an i ⁇ 1th differential load fluctuation amount calculation unit 24. And a (i-1) th leveling operation amount calculation unit 25, a transport distance calculation unit 26, a leveling operation amount management unit 27, and a leveling operation amount output unit 28.
- the i-1th differential load calculation unit 21 calculates a differential load (a difference in rolling load) from the rolling loads on the work side and the drive side detected by the i-1th load detecting device 13b. This differential load is calculated using the following equation (1) for each sampling period.
- ⁇ P i-1 Differential load at the i-1th rolling stand PWS, i-1 : Rolling load at the work side (WS) detected by the i-1th load detector 13b PDS, i-1 : i- th Rolling load on drive side (DS) detected by 1 load detector 13b
- the tail end drop timing calculation unit 22 determines the tail end drop timing (the tail end of the material 3 to be rolled passes through the i-2 work roll 11c from the temporal change of the rolling load detected by the i-2 load detection device 13c.
- the tail end dropout timing of the i-2nd rolling stand is calculated.
- This tail end drop-off timing is a load relay signal (L / R) for detecting the leading end of the material 3 to be rolled from the rolling load detected by the i-2 load detecting device 13c installed in the i-2 rolling stand. ) Is turned off.
- the i-1th differential load storage unit 23 Based on the rolling load detected by the i-1th load detector 13b at the tail end slipping timing of the i-2th rolling stand, the i-1th differential load storage unit 23 The calculated differential load of the i-1th rolling stand is stored. The differential load at the tail end dropout timing is stored at least until the tail end of the material 3 to be rolled passes through the i-th rolling stand.
- the i-1th differential load fluctuation amount calculation unit 24 is the i-1th differential load fluctuation amount which is the difference between the differential load at the tail end slipping timing calculated by the i-1th differential load calculation unit 21 and the current differential load. Is calculated.
- the i ⁇ 1th differential load fluctuation amount ⁇ P i ⁇ 1 is calculated using the following equation (2) for each sampling period.
- ⁇ P i-1 i-1th differential load fluctuation amount
- ⁇ P i-1 current differential load calculated by the i-1th differential load calculation unit 21 (calculated from the equation (1) in the current sampling period)
- ⁇ P LK, i-1 Differential load at the tail end slipping timing of the i-2 rolling stand stored in the i-1th differential load storage unit 23
- the i-1th leveling operation amount calculation unit 25 calculates the leveling operation amount of the i-th rolling stand based on the i-1th differential load fluctuation amount obtained from Expression (2) for each sampling period. Specifically, the (i-1) th leveling operation amount calculation unit 25 multiplies the i-1th differential load fluctuation amount by a preset influence coefficient so as to close the roll gap with the larger rolling load. The leveling operation amount is calculated. For example, when the work-side rolling load is larger than the drive-side rolling load (P WS > P DS ), a leveling operation amount that closes the work-side roll gap is calculated. In addition, a dead zone may be set for the differential load fluctuation amount to remove minute changes such as noise.
- the transport distance calculation unit 26 calculates the transport distance of the material to be rolled 3 that has passed through the i-1th work roll 11b after the tail end drop timing. Specifically, the transport distance calculation unit 26 uses the roll peripheral speed of the i-th work roll 11a and a preset reverse travel rate predicted value to pass the i-1 work roll 11b after the tail end slipping timing. The conveyance distance of the material to be rolled 3 is calculated. The transport distance of the material 3 to be rolled that advances around the sampling time is integrated, and the integrated transport distance is output to the leveling operation amount management unit 27.
- the leveling operation amount management unit 27 accumulates (buffers) the leveling operation amount calculated by the i ⁇ 1th leveling operation amount calculation unit 25 in the storage area (data table) at every sampling period after the tail end omission timing. .
- the leveling operation amount calculated for each sampling period is stored while shifting in the storage area (buffer) one by one.
- the leveling operation amount management unit 27 performs the leveling operation from the storage area in conjunction with the increase in the transport distance after the transport distance reaches the inter-roll distance from the i-1 work roll 11b to the i-th work roll 11a. Read quantities in order of accumulation. For example, the leveling operation amount management unit 27 shifts the storage area by one section in the order of accumulation every sampling period after the transport distance reaches the inter-roll distance from the i-1 work roll 11b to the i-th work roll 11a. Thus, the leveling operation amount stored in the storage area is read out.
- the time when the transport distance reaches the distance between rolls is when the portion of the material to be rolled that has passed through the i-1 rolling stand reaches the i rolling stand.
- the leveling operation amount calculated when the part passes through the i-1th rolling stand is read as a feedforward value after a delay time corresponding to the distance between rolls has elapsed.
- the leveling operation amount may be read after the transport distance reaches a set distance shorter than the distance between the rolls in consideration of the response delay of the i-th reduction device 14a.
- the timing for reading the leveling operation amount is not limited to each sampling period. For example, when the distance between adjacent rolls is divided into N, and the transport distance calculated by the transport distance calculation unit 26 exceeds the distance per division, the leveling operation amount corresponding to the current transport distance is read from the storage area. Also good.
- the leveling operation amount output unit 28 outputs the leveling operation amount read by the leveling operation amount management unit 27 to the i-th reduction device 14a.
- the leveling operation amount is converted to the i-th pressure reducing device 14a via the PID controller or the phase advance / lag compensator.
- the i-th reduction device 14a (or its control device) adjusts the specified roll gap for satisfying the delivery target thickness of the material 3 to be rolled by the leveling operation amount output from the leveling operation amount output unit 28. Works with quantity.
- FIG. 2 is a timing chart for explaining the feedforward control described above.
- Time t0 is the tail end drop-off timing when the material 3 to be rolled passes through the i-2nd rolling stand. This tail end drop-off timing is detected when the load relay signal (L / R) at the i-2 rolling stand changes from on to off. After time t1, meandering due to the tail end omission of the material to be rolled 3 occurs, and differential load fluctuation occurs.
- Time t2 is the time when the differential load exceeding the dead zone occurs.
- Time t3 is the time at which the portion of the material to be rolled that has passed through the i-1 rolling stand reaches the i-th rolling stand at the end of the tail end of the i-2 rolling stand.
- the leveling operation amount management unit 27 reads the leveling operation amounts from the storage area in the accumulation order in conjunction with the increase in the transport distance, and outputs them to the i-th pressure reducing device 14a by the leveling operation amount output unit 28.
- the leveling operation amount predicted from the meandering actually generated at the i-1 rolling stand due to the tail end omission at the i-2 rolling stand is sent to the i-th reduction device 14a as a feedforward value at an appropriate timing. Is output.
- FIG. 4 is a conceptual diagram illustrating a hardware configuration example of a processing circuit included in the control device (including the tail end meandering control device 2) of the present system. Each part in a broken line in FIG. 1 (and FIG. 3 described later) indicates a part of the function, and each function is realized by a processing circuit.
- the processing circuit includes at least one processor 91 and at least one memory 92.
- the processing circuit comprises at least one dedicated hardware 93.
- the storage area of the leveling operation amount management unit 27 and the i ⁇ 1th differential load storage unit 23 (and an ith differential load storage unit 33 described later) are realized by the memory 92 or dedicated hardware 93.
- each function is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is described as a program. At least one of software and firmware is stored in the memory 92.
- the processor 91 implements each function by reading and executing the program stored in the memory 92.
- the processing circuit When the processing circuit includes dedicated hardware 93, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, or a combination thereof. Each function is realized by a processing circuit.
- FIG. 3 is a diagram for explaining a system configuration according to the second embodiment of the present invention.
- the system configuration shown in FIG. 3 includes an i-th differential load calculation unit 31, a tail end drop timing calculation unit 32, an i-th differential load storage unit 33, an i-th differential load fluctuation amount calculation unit 34, and an i-th leveling operation amount calculation unit 35. 1 is added, and the processing of the leveling operation amount output unit 28 is changed.
- the system according to the second embodiment executes feedback control based on the differential load of the i-th rolling stand together with the feedforward control based on the differential load of the i-th rolling stand described in the first embodiment.
- the i-th differential load calculation unit 31 calculates the differential load from the rolling loads on the work side and the drive side detected by the i-th load detection device 13a. This differential load is calculated using the following equation (3) for each sampling period.
- ⁇ P i Differential load at the i-th rolling stand P WS, i : Rolling load of the work side (WS) detected by the i-th load detection device 13a P DS, i : Drive side detected by the i-th load detection device 13a (DS ) Rolling load
- the tail end drop timing calculation unit 32 determines the tail end drop timing at which the tail end of the material to be rolled 3 has passed the i-2 work roll 11c from the temporal change of the rolling load detected by the i-2th load detection device 13c. Calculate.
- the processing of the tail end missing timing calculation unit 32 is the same as that of the tail end missing timing calculation unit 22, and thus the description thereof is omitted.
- the i-th differential load storage unit 33 calculates the i-th rolling stand calculated by the i-th differential load calculation unit 31 based on the rolling load detected by the i-th load detection device 13a at the tail end removal timing of the i-2 rolling stand.
- the differential load is memorized.
- the differential load at the tail end dropout timing is stored at least until the tail end of the material 3 to be rolled passes through the i-th rolling stand.
- the i-th differential load fluctuation amount calculation unit 34 calculates an i-th differential load fluctuation amount that is a difference between the differential load at the tail end dropout timing calculated by the i-th differential load calculation unit 31 and the current differential load.
- the i-th differential load fluctuation amount ⁇ P i is calculated using the following equation (4) for each sampling period.
- ⁇ P i i-th differential load fluctuation amount
- ⁇ P i current differential load calculated by the i-th differential load calculation unit 31 (calculated from Expression (3) in the current sampling period)
- ⁇ P LK, i Differential load at the tail end removal timing of the i-2th rolling stand stored in the i-th differential load storage unit 33
- the i-th leveling operation amount calculator 35 calculates the leveling operation amount of the i-th rolling stand based on the i-th differential load fluctuation amount obtained from the equation (4) for each sampling period. Similar to the (i-1) -th leveling operation amount calculation unit 25 described in the first embodiment, the i-th leveling operation amount calculation unit 35 multiplies the i-th differential load fluctuation amount by a preset influence coefficient to perform rolling. The leveling operation amount for closing the roll gap with the larger load is calculated.
- the leveling operation amount output unit 28 reduces the final leveling operation amount based on the leveling operation amount read by the leveling operation amount management unit 27 and the leveling operation amount calculated by the i-th leveling operation amount calculation unit 35 by the i-th reduction. Output to the device 14a. Specifically, the final leveling operation amount is calculated using the following equation (5) via a PID controller or a phase lead / lag compensator.
- S L, i FF Leveling operation amount of the i-th rolling stand calculated from the differential load of the i-1th rolling stand (leveling operation amount by feedforward control)
- S L, i FB Leveling operation amount of the i-th rolling stand calculated from the differential load of the i-th rolling stand (leveling operation amount by feedback control)
- W FF Weighting factor for leveling operation amount by feedforward control
- W FB Weighting factor for leveling operation amount by feedback control
- the weighting factor of the feedforward control is made larger than the weighting factor of the feedback control (W FF > W FB ).
- the weighting factor of feedback control is made larger than the weighting factor of feedforward control (W FB > W FF ).
- the weighting factor for feedforward control is 1.0 and the weighting factor for feedback control is 0.
- the weighting coefficient of feedback control is set to a value larger than zero.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
第i(iは3以上n以下の自然数)圧延スタンドは、被圧延材を圧延する第i圧延ロールと、第i圧延ロールのワークサイドとドライブサイドそれぞれのロールギャップを制御する第i圧下装置とを有する。
第i-1圧延スタンドは、第i圧延スタンドの上流に設けられ、被圧延材を圧延する第i-1圧延ロールと、第i-1圧延ロールのワークサイドとドライブサイドそれぞれの圧延荷重を検出する第i-1荷重検出装置とを有する。
第i-2圧延スタンドは、第i-1圧延スタンドの上流に設けられ、被圧延材を圧延する第i-2圧延ロールと、第i-2圧延ロールの圧延荷重を検出する第i-2荷重検出装置とを有する。
第i-1差荷重演算部は、第i-1荷重検出装置が検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する。
尾端抜けタイミング演算部は、第i-2荷重検出装置が検出した圧延荷重の時間的変化から被圧延材の尾端が第i-2圧延ロールを通過した尾端抜けタイミングを演算する。
第i-1差荷重変動量演算部は、第i-1差荷重演算部が演算した尾端抜けタイミングの差荷重と現在の差荷重との差である第i-1差荷重変動量を演算する。
第i-1レベリング操作量演算部は、第i-1差荷重変動量に基づいて第i圧延スタンドのレベリング操作量を演算する。
搬送距離演算部は、尾端抜けタイミング以降に第i-1圧延ロールを通過した被圧延材の搬送距離を演算する。
レベリング操作量管理部は、尾端抜けタイミング以降に第i-1レベリング操作量演算部により演算されたレベリング操作量を記憶領域に蓄積する。加えて、レベリング操作量管理部は、搬送距離が第i-1圧延ロールから前記第i圧延ロールまでのロール間距離に達した後、搬送距離の増加に連動して記憶領域からレベリング操作量を蓄積順に読み出す。
レベリング操作量出力部は、レベリング操作量管理部により読み出されたレベリング操作量を第i圧下装置へ出力する。
第i圧延スタンドは、第i圧延ロールのワークサイドとドライブサイドそれぞれの圧延荷重を検出する第i荷重検出装置をさらに備える。
尾端蛇行制御装置は、第i差荷重演算部、第i差荷重変動量演算部、第iレベリング操作量演算部をさらに備える。
第i差荷重演算部は、第i荷重検出装置が検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する。
第i差荷重変動量演算部は、第i差荷重演算部が演算した尾端抜けタイミングの差荷重と現在の差荷重との差である第i差荷重変動量を演算する。
第iレベリング操作量演算部は、第i差荷重変動量に基づいて第i圧延スタンドのレベリング操作量を演算する。
上記レベリング操作量出力部は、レベリング操作量管理部により読み出されたレベリング操作量と、第iレベリング操作量演算部により演算されたレベリング操作量とに基づく最終レベリング操作量を第i圧下装置へ出力する。
図1は、本発明の実施の形態1に係るシステム構成を説明するための図である。図1に示すシステムは、タンデム圧延機1と尾端蛇行制御装置2を備える。尾端蛇行制御装置2は、タンデム圧延機1の出側で被圧延材3が所望の板厚になるようにタンデム圧延機1のロールギャップやロール周速度を制御する制御装置(図示省略)の一部である。
タンデム圧延機1は、熱間圧延設備または冷間圧延設備において、圧延スタンドを数台近接して直列に配列し、1本の被圧延材を連続して圧延するストリップミルと呼ばれるタンデム形式の連続圧延機である。
尾端蛇行制御装置2は、第i-1差荷重演算部21と、尾端抜けタイミング演算部22と、第i-1差荷重記憶部23と、第i-1差荷重変動量演算部24と、第i-1レベリング操作量演算部25と、搬送距離演算部26と、レベリング操作量管理部27と、レベリング操作量出力部28とを備える。
δPi-1:第i-1圧延スタンドにおける差荷重
PWS,i-1:第i-1荷重検出装置13bが検出したワークサイド(WS)の圧延荷重
PDS,i-1:第i-1荷重検出装置13bが検出したドライブサイド(DS)の圧延荷重
ΔPi-1:第i-1差荷重変動量
δPi-1:第i-1差荷重演算部21が演算した現在の差荷重(現サンプリング周期において式(1)から算出される)
δPLK,i-1:第i-1差荷重記憶部23に記憶された第i-2圧延スタンドの尾端抜けタイミングにおける差荷重
図4は、本システムの制御装置(尾端蛇行制御装置2を含む)が有する処理回路のハードウェア構成例を示す概念図である。図1(および後述する図3)の破線内の各部は機能の一部を示し、各機能は処理回路により実現される。一態様として、処理回路は、少なくとも1つのプロセッサ91と少なくとも1つのメモリ92とを備える。他の態様として、処理回路は、少なくとも1つの専用のハードウェア93を備える。上述したレベリング操作量管理部27の記憶領域や第i-1差荷重記憶部23(および後述する第i差荷重記憶部33)はメモリ92または専用のハードウェア93により実現される。
(システム構成)
次に、図3を参照して本発明の実施の形態2について説明する。図3は、本発明の実施の形態2に係るシステム構成を説明するための図である。図3に示すシステム構成は、第i差荷重演算部31、尾端抜けタイミング演算部32、第i差荷重記憶部33、第i差荷重変動量演算部34、第iレベリング操作量演算部35が追加されている点、レベリング操作量出力部28の処理が変更されている点を除いて、図1と同様である。
δPi:第i圧延スタンドにおける差荷重
PWS,i:第i荷重検出装置13aが検出したワークサイド(WS)の圧延荷重
PDS,i:第i荷重検出装置13aが検出したドライブサイド(DS)の圧延荷重
ΔPi:第i差荷重変動量
δPi:第i差荷重演算部31が演算した現在の差荷重(現サンプリング周期において式(3)から算出される)
δPLK,i:第i差荷重記憶部33に記憶された第i-2圧延スタンドの尾端抜けタイミングにおける差荷重
SL,i FF:第i-1圧延スタンドの差荷重より演算した第i圧延スタンドのレベリング操作量(フィードフォワード制御によるレベリング操作量)
SL,i FB:第i圧延スタンドの差荷重より演算した第i圧延スタンドのレベリング操作量(フィードバック制御によるレベリング操作量)
WFF:フィードフォワード制御によるレベリング操作量に対する重み係数
WFB:フィードバック制御によるレベリング操作量に対する重み係数
以上説明したように、本発明の実施の形態2に係る尾端蛇行制御装置2によれば、実施の形態1で述べたフィードフォワードによる蛇行抑制制御のみならず、フィードバックによる蛇行抑制制御も加わることで、第i圧延スタンドの蛇行に対する追従性が上がり、さらなる蛇行抑制効果が見込める。
2 尾端蛇行制御装置
3 被圧延材
4 圧延方向
11a 第iワークロール
11b 第i-1ワークロール
11c 第i-2ワークロール
12a 第iバックアップロール
12b 第i-1バックアップロール
12c 第i-2バックアップロール
13a 第i荷重検出装置
13b 第i-1荷重検出装置
13c 第i-2荷重検出装置
14a 第i圧下装置
14b 第i-1圧下装置
14c 第i-2圧下装置
21 第i-1差荷重演算部
22、32 尾端抜けタイミング演算部
23 第i-1差荷重記憶部
24 第i-1差荷重変動量演算部
25 第i-1レベリング操作量演算部
26 搬送距離演算部
27 レベリング操作量管理部
28 レベリング操作量出力部
31 第i差荷重演算部
33 第i差荷重記憶部
34 第i差荷重変動量演算部
35 第iレベリング操作量演算部
91 プロセッサ
92 メモリ
93 ハードウェア
Claims (4)
- n(nは3以上の自然数)基の圧延スタンドを有するタンデム圧延機の尾端蛇行制御装置であって、
前記タンデム圧延機は、
被圧延材を圧延する第i圧延ロールと、前記第i圧延ロールのワークサイドとドライブサイドそれぞれのロールギャップを制御する第i圧下装置とを有する第i(iは3以上n以下の自然数)圧延スタンドと、
前記第i圧延スタンドの上流に設けられ、前記被圧延材を圧延する第i-1圧延ロールと、前記第i-1圧延ロールのワークサイドとドライブサイドそれぞれの圧延荷重を検出する第i-1荷重検出装置とを有する第i-1圧延スタンドと、
前記第i-1圧延スタンドの上流に設けられ、前記被圧延材を圧延する第i-2圧延ロールと、前記第i-2圧延ロールの圧延荷重を検出する第i-2荷重検出装置とを有する第i-2圧延スタンドと、を備え、
前記尾端蛇行制御装置は、
前記第i-1荷重検出装置が検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する第i-1差荷重演算部と、
前記第i-2荷重検出装置が検出した圧延荷重の時間的変化から前記被圧延材の尾端が前記第i-2圧延ロールを通過した尾端抜けタイミングを演算する尾端抜けタイミング演算部と、
前記第i-1差荷重演算部が演算した前記尾端抜けタイミングの差荷重と現在の差荷重との差である第i-1差荷重変動量を演算する第i-1差荷重変動量演算部と、
前記第i-1差荷重変動量に基づいて前記第i圧延スタンドのレベリング操作量を演算する第i-1レベリング操作量演算部と、
前記尾端抜けタイミング以降に前記第i-1圧延ロールを通過した前記被圧延材の搬送距離を演算する搬送距離演算部と、
前記尾端抜けタイミング以降に前記第i-1レベリング操作量演算部により演算されたレベリング操作量を記憶領域に蓄積し、前記搬送距離が前記第i-1圧延ロールから前記第i圧延ロールまでのロール間距離に達した後、前記搬送距離の増加に連動して前記記憶領域からレベリング操作量を蓄積順に読み出すレベリング操作量管理部と、
前記レベリング操作量管理部により読み出されたレベリング操作量を前記第i圧下装置へ出力するレベリング操作量出力部と、
を備えることを特徴とするタンデム圧延機の尾端蛇行制御装置。 - 前記搬送距離演算部は、前記第i圧延ロールのロール周速度および予め設定された後進率予測値を用いて、前記尾端抜けタイミング以降に前記第i-1圧延ロールを通過した前記被圧延材の搬送距離を演算すること、
を特徴とする請求項1記載のタンデム圧延機の尾端蛇行制御装置。 - 前記レベリング操作量管理部は、
前記尾端抜けタイミング以降にサンプリング周期毎に、前記第i-1レベリング操作量演算部により演算されたレベリング操作量を前記記憶領域に蓄積し、
前記搬送距離が前記第i-1圧延ロールから前記第i圧延ロールまでのロール間距離に達した後、サンプリング周期毎に前記記憶領域内を1区分ずつ蓄積順にシフトすることにより、前記記憶領域に記憶されたレベリング操作量を読み出すこと、
を特徴とする請求項1又は2記載のタンデム圧延機の尾端蛇行制御装置。 - 前記第i圧延スタンドは、前記第i圧延ロールのワークサイドとドライブサイドそれぞれの圧延荷重を検出する第i荷重検出装置をさらに備え、
前記尾端蛇行制御装置は、
前記第i荷重検出装置が検出したワークサイドとドライブサイドそれぞれの圧延荷重から差荷重を演算する第i差荷重演算部と、
前記第i差荷重演算部が演算した前記尾端抜けタイミングの差荷重と現在の差荷重との差である第i差荷重変動量を演算する第i差荷重変動量演算部と、
前記第i差荷重変動量に基づいて前記第i圧延スタンドのレベリング操作量を演算する第iレベリング操作量演算部と、をさらに備え、
前記レベリング操作量出力部は、前記レベリング操作量管理部により読み出されたレベリング操作量と、前記第iレベリング操作量演算部により演算されたレベリング操作量とに基づく最終レベリング操作量を前記第i圧下装置へ出力すること、
を特徴とする請求項1乃至3のいずれか1項記載のタンデム圧延機の尾端蛇行制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197021554A KR102232334B1 (ko) | 2017-05-26 | 2017-05-26 | 탠덤 압연기의 후미 단부 사행 제어 장치 |
JP2019519938A JP6717430B2 (ja) | 2017-05-26 | 2017-05-26 | タンデム圧延機の尾端蛇行制御装置 |
PCT/JP2017/019781 WO2018216215A1 (ja) | 2017-05-26 | 2017-05-26 | タンデム圧延機の尾端蛇行制御装置 |
CN201780084304.2A CN110621422B (zh) | 2017-05-26 | 2017-05-26 | 串列轧机的尾端蛇行控制装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/019781 WO2018216215A1 (ja) | 2017-05-26 | 2017-05-26 | タンデム圧延機の尾端蛇行制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018216215A1 true WO2018216215A1 (ja) | 2018-11-29 |
Family
ID=64395498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019781 WO2018216215A1 (ja) | 2017-05-26 | 2017-05-26 | タンデム圧延機の尾端蛇行制御装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6717430B2 (ja) |
KR (1) | KR102232334B1 (ja) |
CN (1) | CN110621422B (ja) |
WO (1) | WO2018216215A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020255863A1 (ja) * | 2019-06-20 | 2020-12-24 | Jfeスチール株式会社 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
JP2021023970A (ja) * | 2019-08-06 | 2021-02-22 | 日本製鉄株式会社 | 制御方法および圧延装置 |
EP3919196A1 (en) * | 2019-08-28 | 2021-12-08 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Roll state monitor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03165913A (ja) * | 1989-11-22 | 1991-07-17 | Nippon Steel Corp | 熱間連続仕上圧延機における蛇行制御方法および制御装置 |
JP2002137011A (ja) * | 2000-08-24 | 2002-05-14 | Nippon Steel Corp | タンデム圧延機の蛇行制御方法 |
JP2002292416A (ja) * | 2001-03-30 | 2002-10-08 | Kobe Steel Ltd | 通板材の尾端部における蛇行制御方法 |
JP2006150415A (ja) * | 2004-11-30 | 2006-06-15 | Jfe Steel Kk | 連続熱間圧延における鋼帯の蛇行制御方法 |
JP2013212523A (ja) * | 2012-04-02 | 2013-10-17 | Nippon Steel & Sumitomo Metal Corp | 被圧延材の蛇行制御方法および被圧延材の蛇行制御システム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1105296A (zh) * | 1993-10-05 | 1995-07-19 | 日立有限公司 | 辊轧机控制方法及装置 |
JP3273117B2 (ja) * | 1996-03-29 | 2002-04-08 | 新日本製鐵株式会社 | 熱間タンデム圧延機の蛇行制御方法 |
JP3526554B2 (ja) * | 2001-02-13 | 2004-05-17 | 株式会社日立製作所 | タンデム圧延設備及びその圧延方法 |
JP4128813B2 (ja) * | 2002-07-05 | 2008-07-30 | 株式会社日立製作所 | タンデム圧延機の通板制御方法および圧延制御システム |
JP4437753B2 (ja) * | 2005-02-18 | 2010-03-24 | 東芝三菱電機産業システム株式会社 | タンデム圧延機の板厚制御方法 |
JP2010247177A (ja) | 2009-04-15 | 2010-11-04 | Jfe Steel Corp | 熱間圧延における尾端蛇行制御方法 |
CN102120224B (zh) * | 2010-01-08 | 2012-10-10 | 宝山钢铁股份有限公司 | 热连轧机轧制时自动纠偏的控制方法 |
JP6315818B2 (ja) * | 2014-10-07 | 2018-04-25 | 株式会社日立製作所 | タンデム圧延ミルの制御装置および制御方法 |
-
2017
- 2017-05-26 WO PCT/JP2017/019781 patent/WO2018216215A1/ja active Application Filing
- 2017-05-26 CN CN201780084304.2A patent/CN110621422B/zh active Active
- 2017-05-26 JP JP2019519938A patent/JP6717430B2/ja active Active
- 2017-05-26 KR KR1020197021554A patent/KR102232334B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03165913A (ja) * | 1989-11-22 | 1991-07-17 | Nippon Steel Corp | 熱間連続仕上圧延機における蛇行制御方法および制御装置 |
JP2002137011A (ja) * | 2000-08-24 | 2002-05-14 | Nippon Steel Corp | タンデム圧延機の蛇行制御方法 |
JP2002292416A (ja) * | 2001-03-30 | 2002-10-08 | Kobe Steel Ltd | 通板材の尾端部における蛇行制御方法 |
JP2006150415A (ja) * | 2004-11-30 | 2006-06-15 | Jfe Steel Kk | 連続熱間圧延における鋼帯の蛇行制御方法 |
JP2013212523A (ja) * | 2012-04-02 | 2013-10-17 | Nippon Steel & Sumitomo Metal Corp | 被圧延材の蛇行制御方法および被圧延材の蛇行制御システム |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020255863A1 (ja) * | 2019-06-20 | 2020-12-24 | Jfeスチール株式会社 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
JP6863532B1 (ja) * | 2019-06-20 | 2021-04-21 | Jfeスチール株式会社 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
JP2021181114A (ja) * | 2019-06-20 | 2021-11-25 | Jfeスチール株式会社 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
JP7036241B2 (ja) | 2019-06-20 | 2022-03-15 | Jfeスチール株式会社 | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 |
US12083569B2 (en) | 2019-06-20 | 2024-09-10 | Jfe Steel Corporation | Meandering control method for hot-rolled steel strip, meandering control device, and hot rolling equipment |
JP2021023970A (ja) * | 2019-08-06 | 2021-02-22 | 日本製鉄株式会社 | 制御方法および圧延装置 |
JP7252458B2 (ja) | 2019-08-06 | 2023-04-05 | 日本製鉄株式会社 | 制御方法 |
EP3919196A1 (en) * | 2019-08-28 | 2021-12-08 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Roll state monitor device |
US11786948B2 (en) | 2019-08-28 | 2023-10-17 | Toshiba Mitsubishi—Electric Industrial Systems Corporation | Roll state monitor device |
Also Published As
Publication number | Publication date |
---|---|
KR20190101407A (ko) | 2019-08-30 |
CN110621422A (zh) | 2019-12-27 |
JP6717430B2 (ja) | 2020-07-01 |
CN110621422B (zh) | 2021-03-23 |
KR102232334B1 (ko) | 2021-03-25 |
JPWO2018216215A1 (ja) | 2019-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5587825B2 (ja) | 熱間圧延機の張力制御装置および制御方法 | |
WO2018216215A1 (ja) | タンデム圧延機の尾端蛇行制御装置 | |
JP4437753B2 (ja) | タンデム圧延機の板厚制御方法 | |
JP4227497B2 (ja) | 圧延機のフィードフォワード板厚制御装置及びその制御方法 | |
JP6670261B2 (ja) | タンデム圧延ミル制御装置およびタンデム圧延ミル制御方法 | |
CN109070163B (zh) | 鲁棒的带张力控制 | |
US20160214153A1 (en) | Method for processing material to be rolled on a rolling line, and rolling line | |
EP0109235B1 (en) | Rolling mill control for tandem rolling | |
JP2011088172A (ja) | 冷間圧延機の板厚制御装置及び板厚制御方法 | |
JP6045420B2 (ja) | 熱間タンデム圧延ミル制御装置及び熱間タンデム圧延ミルの制御方法 | |
JP2010253501A (ja) | 多段圧延機の張力制御方法及び多段圧延機の張力制御装置 | |
JP2002210513A (ja) | 熱間圧延におけるキャンバおよびウエッジの防止方法 | |
KR101597591B1 (ko) | 장력 제어 장치 | |
JP5631233B2 (ja) | 圧延機の板厚制御方法 | |
JP3120007B2 (ja) | タンデム冷間圧延機の板厚制御装置 | |
JP5385643B2 (ja) | 多段圧延機における板厚制御方法及び板厚制御装置 | |
JP6562010B2 (ja) | 圧延機の制御装置および制御方法 | |
JP3541596B2 (ja) | 連続式タンデム圧延機における板材の板厚制御方法 | |
JP3588960B2 (ja) | 連続式タンデム圧延機における板材の走間板厚変更方法 | |
JP3617227B2 (ja) | 連続式タンデム圧延機における板材の板厚制御方法 | |
CN115397574A (zh) | 连续式轧机的蛇行控制装置 | |
KR20020047750A (ko) | 압연기의 임팩트 드롭 보상장치 및 그 보상방법 | |
JP2023177918A (ja) | 熱間圧延におけるレベリング制御方法、レベリング制御装置、熱間圧延設備、及び熱間圧延鋼帯の製造方法 | |
JP5907157B2 (ja) | 圧延機の制御装置および制御方法 | |
JP6091411B2 (ja) | 圧延機の板厚制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17910513 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019519938 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20197021554 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17910513 Country of ref document: EP Kind code of ref document: A1 |