WO2018214680A1 - 一种玄武岩纤维复合材料及其制备方法 - Google Patents
一种玄武岩纤维复合材料及其制备方法 Download PDFInfo
- Publication number
- WO2018214680A1 WO2018214680A1 PCT/CN2018/083676 CN2018083676W WO2018214680A1 WO 2018214680 A1 WO2018214680 A1 WO 2018214680A1 CN 2018083676 W CN2018083676 W CN 2018083676W WO 2018214680 A1 WO2018214680 A1 WO 2018214680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- cyanate resin
- epoxy resin
- basalt fiber
- cyanate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/10—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2479/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
- C08J2479/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/05—Polymer mixtures characterised by other features containing polymer components which can react with one another
Definitions
- the reinforcements in the existing composite materials are mainly carbon fiber and glass fiber.
- the carbon fiber has high specific strength, but the cost is high, and it is mainly used in the military industry; the fiberglass cost is low, and it is in the military industry and civil fields. Wide range of applications, but glass fiber is not resistant to high temperatures, when the temperature is higher than 400 ° C, the strength loss is severe, almost no strength retention.
- the invention adopts an epoxy resin toughening modified cyanate resin with a functionality of more than 3, and effectively maintains the heat resistance of the resin system; in addition, the reinforcement adopts high-performance basalt fiber, which is an environmentally friendly fiber, mechanical strength High, abundant source, excellent chemical stability, good heat resistance, temperature up to 650 ° C, composite materials with high performance resin further improve the mechanical properties and heat resistance of the composite, and preparation
- the prepreg is prepared by hot melt method in the process, and has high production efficiency, stable quality and low cost.
- the mass ratio of the epoxy resin to the cyanate resin is 7:3.
- the epoxy resin is diaminodiphenylmethanetetraglycidylamine, tetraepoxypropylmethyldiphenylamine or epoxidized metaxylylenediamine.
- the epoxy resin and the cyanate resin are stirred and mixed at a temperature of 80 to 100 ° C until they are uniformly mixed.
- the toughening agent is one or more of polyethersulfone, polyetherimide, polysulfone, and polyetherketone.
- the mass of the toughening agent is 25 to 35% of the total mass of the epoxy resin and the cyanate resin.
- the mass of the curing catalyst is 0.8 to 1.2% of the total mass of the epoxy resin and the cyanate resin.
- the epoxy resin toughened modified cyanate resin and basalt fiber are made into a prepreg by a hot melt method.
- the basalt fiber is a basalt unidirectional fabric.
- the curing pressure is 1 to 2 MPa; the curing temperature is 100 to 150 ° C; and the curing time is 1 to 3 hours.
- the basalt fiber composite material of the modified cyanate resin modified by the epoxy resin prepared by the method provided by the invention, and the toughness of the epoxy resin type and the epoxy resin and the cyanate resin are selected and toughened
- the addition of the agent and the curing catalyst enables the -OCN functional group in the cyanate resin to fully react with more functional groups in the epoxy resin, and then is mixed by high temperature stirring, thereby effectively improving the heat resistance of the composite material and obtaining excellent performance.
- Epoxy resin toughened modified cyanate resin, and composited with basalt fiber with high mechanical properties and good heat resistance, further obtaining composite materials with excellent mechanical properties and high heat resistance, and at the same time, preparation process Simple, rich in materials, can effectively reduce costs.
- Figure 1 is a schematic diagram showing the preparation process of basalt fiber composite material.
- the invention selects an epoxy resin toughening modified cyanate resin with a functionality of more than 3, and selects a high-performance basalt fiber as a reinforcement, and obtains a basalt composite material with high mechanical properties and heat resistance by a hot melt method.
- Specific steps are as follows:
- the epoxy resin and the cyanate resin having a mass ratio of 6 to 8:2 to 4 are stirred and mixed at a temperature of 80 to 100 ° C until uniformly mixed, and 25 to 35% are added (total of epoxy resin and cyanate resin) The percentage of mass of the toughening agent, stirred and mixed until homogeneously mixed, vacuum degassed to no bubbles; wherein the epoxy resin is diaminodiphenylmethanetetraglycidylamine, tetraepoxypropylmethyldiphenylamine or epoxy M-xylylenediamine; cyanate resin is bisphenol A type cyanate resin, bisphenol M type cyanate resin, bisphenol E type cyanate resin or bisphenol F type cyanate resin; toughening
- the agent is one or more of polyethersulfone, polyetherimide, polysulfone, and polyetherketone.
- the epoxy resin toughened modified cyanate resin and basalt fiber are made into a prepreg by a hot melt method commonly used in the art; wherein the curing catalyst is one of manganese octoate, copper octoate, zinc octylate and chromium octoate or A variety.
- the laminate is cured at 100 to 150 ° C for 1 to 3 hours under a pressure of 1 to 2 MPa to obtain a basalt fiber composite material.
- the laminate was cured at 150 ° C for 3 h under a pressure of 1 MPa to obtain a basalt fiber composite.
- the laminate was cured at 125 ° C for 2 h under a pressure of 1.5 MPa to obtain a basalt fiber composite.
- the layer was cured at 100 ° C for 1.5 h under a pressure of 2 MPa to obtain a basalt fiber composite.
- the laminate was cured at 150 ° C for 3 h under a pressure of 1 MPa to obtain a basalt fiber composite.
- the laminate was cured at 130 ° C for 2 h under a pressure of 1.5 MPa to obtain a basalt fiber composite.
- the above mixing and mixing adopts SHR-10 high-speed mixer, and the rotation speed is 800-900r/min.
- the impact strength and compressive strength were measured by a method commonly used in the art using a CMT 5105 electronic universal tensile tester; the glass transition temperature was measured by differential scanning calorimetry (DSC) commonly used in the art.
- the present invention uses an epoxy resin having a functionality of greater than 3 to toughen the modified cyanate resin by selecting the type of epoxy resin and the mass ratio of the epoxy resin and the cyanate resin, and the toughening agent.
- the addition of the curing catalyst allows the -OCN functional group in the cyanate resin to react with more functional groups in the epoxy resin, and then is mixed by high temperature stirring to improve the heat resistance of the epoxy resin toughened modified cyanate resin.
- the glass transition temperature Tg of the composite is up to 650 ° C
- the impact resistance of the composite material is made due to the use of basalt fibers having good mechanical properties and the infiltration of the resin film by the hot melt method to enhance the basalt fiber of the material.
- the toughness is greatly enhanced, and the impact strength is up to 475.41 kJ/m 2 and the compressive strength is up to 331 MPa. Therefore, the basalt fiber composite material prepared by the method provided by the invention has high mechanical properties and heat resistance, and has low cost, and can be widely applied in the fields of industry, construction, automobile, aviation and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
一种玄武岩纤维复合材料及其制备方法,该方法包括:按配比将环氧树脂与氰酸酯树脂搅拌混合,加入增韧剂,再加入固化催化剂,搅拌混合,形成环氧树脂增韧改性氰酸酯树脂;将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;以及铺层、固化,得到玄武岩纤维复合材料。所述环氧树脂为二氨基二苯甲烷四缩水甘油胺、四环氧丙基甲撑二苯胺或环氧化间苯二甲胺。 <b>所述</b>氰酸酯树脂为双酚A型氰酸酯树脂、双酚M型氰酸酯树脂、双酚E型氰酸酯树脂或双酚F型氰酸酯树脂。
Description
本发明涉及材料领域,更具体地,涉及一种玄武岩纤维复合材料及其制备方法。
氰酸酯树脂(CE)是含有两个或两个以上氰酸酯官能团(-OCN)的新型高性能树脂,其具有高的耐热性、低的介电常数和介电损耗等优异性能,能够满足航空航天领域结构/功能复合材料的要求,是一种高性能的基体树脂。
但是,目前存在的环氧树脂/氰酸酯复合材料体系中主要用普通双酚A型环氧树脂与氰酸酯树脂反应,而双酚A型环氧树脂的耐热性明显低于氰酸酯树脂的耐热性,因此会牺牲氰酸酯树脂的耐热性。
同时,现有的复合材料中的增强体主要是碳纤维和玻璃纤维,碳纤维具有很高的比强度,但成本高,主要应用于军事工业领域;玻璃纤维成本低,在军事工业及民用领域均有广泛的应用,但玻璃纤维不耐高温,当温度高于400℃,强度损失严重,几乎无强度保留。
发明内容
本发明采用官能度大于3的环氧树脂增韧改性氰酸酯树脂,有效保持了树脂体系耐热性;此外,增强体采用高性能的玄武岩纤维,该纤维是一种环保纤维,力学强度高,来源丰富,具有优异的化学稳定性,并且耐热性好,使用温度可达650℃,与高性能树脂复合而成的复合材料进一步提高了该复合材料力学性能和耐热性,并且制备过程中采用热熔法制备预浸料,生产效率高、质量稳定且成本低。
本发明提供了一种玄武岩纤维复合材料的制备方法,包括以下步骤:
按配比将环氧树脂与氰酸酯树脂搅拌混合,加入增韧剂,再加入固化催化剂,搅拌混合,真空脱气,形成环氧树脂增韧改性氰酸酯树脂;将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;以及铺层、固化,得到玄武岩纤维复合材料。
在上述制备方法中,环氧树脂与氰酸酯树脂的质量比为6~8:2~4。
在上述制备方法中,环氧树脂与氰酸酯树脂的质量比为7:3。
在上述制备方法中,环氧树脂为二氨基二苯甲烷四缩水甘油胺、四环氧丙基甲撑二苯胺或环氧化间苯二甲胺。
在上述制备方法中,氰酸酯树脂为双酚A型氰酸酯树脂、双酚M型氰酸酯树脂、双酚E型氰酸酯树脂或双酚F型氰酸酯树脂。
在上述制备方法中,环氧树脂与氰酸酯树脂在80~100℃的温度下搅拌混合至混合均匀。
在上述制备方法中,增韧剂为聚醚砜、聚醚酰亚胺、聚砜和聚醚酮的一种或多种。
在上述制备方法中,增韧剂的质量为环氧树脂和氰酸酯树脂总质量的25~35%。
在上述制备方法中,固化催化剂为辛酸锰、辛酸铜、辛酸锌、辛酸铬的一种或多种。
在上述制备方法中,固化催化剂的质量为环氧树脂和氰酸酯树脂总质量的0.8~1.2%。
在上述制备方法中,通过热熔法将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料。
在上述制备方法中,玄武岩纤维为玄武岩单向织物。
在上述制备方法中,固化的压力为1~2MPa;固化的温度为100~150℃;固化的时间为1~3h。
本发明还提供了一种根据以上制备方法制备的玄武岩纤维复合材料。
通过本发明提供的方法制备的环氧树脂增韧改性氰酸酯树脂的玄武岩纤维复合材料,通过对环氧树脂种类以及该环氧树脂和氰酸酯树脂质量配比的选择,并且增韧剂、固化催化剂的加入,使得氰酸酯树脂中的-OCN官能团与 环氧树脂中更多的官能团充分反应,再通过高温搅拌混合,有效提高了复合材料的耐热性,得到了性能优良的环氧树脂增韧改性的氰酸酯树脂,并且通过与力学性能高和耐热性好的玄武岩纤维复合,进一步得到具有优异的力学性能和高的耐热性的复合材料,同时,制备工艺简单,材料来源丰富,可有效降低成本。
图1是玄武岩纤维复合材料的制备流程示意图。
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
本发明选用官能度大于3的环氧树脂增韧改性氰酸酯树脂,同时选用高性能的玄武岩纤维为增强体,通过热熔法得到了具有高的力学性能和耐热性的玄武岩复合材料,具体步骤如下:
将质量比为6~8:2~4的环氧树脂与氰酸酯树脂在80~100℃的温度下搅拌混合至混合均匀,加入25~35%(占环氧树脂与氰酸酯树脂总质量的百分比)的增韧剂,搅拌混合至混合均匀,真空脱气至无气泡;其中,环氧树脂为二氨基二苯甲烷四缩水甘油胺、四环氧丙基甲撑二苯胺或环氧化间苯二甲胺;氰酸酯树脂为双酚A型氰酸酯树脂、双酚M型氰酸酯树脂、双酚E型氰酸酯树脂或双酚F型氰酸酯树脂;增韧剂为聚醚砜、聚醚酰亚胺、聚砜和聚醚酮的一种或多种。
加入0.8~1.2%(占环氧树脂与氰酸酯树脂总质量的百分比)的固化催化剂,搅拌混合至混合均匀,真空脱气至无气泡,形成环氧树脂增韧改性氰酸酯树脂;通过本领域中常用的热熔法将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;其中,固化催化剂为辛酸锰、辛酸铜、辛酸锌、辛酸铬的一种或多种。
铺层、在1~2MPa的压力下,100~150℃固化1~3h,得到玄武岩纤维复合材料。
实施例一
将质量比为6:2的二氨基二苯甲烷四缩水甘油胺与双酚A型氰酸酯树脂在90℃的温度下搅拌混合至混合均匀,加入30%(占环氧树脂与氰酸酯树脂总质量的百分比)的聚醚砜,搅拌混合至混合均匀,真空脱气至无气泡;
加入1%(占环氧树脂与氰酸酯树脂总质量的百分比)的辛酸锰,搅拌混合至混合均匀,真空脱气至无气泡,形成环氧树脂增韧改性氰酸酯树脂;通过热熔法将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;
铺层、在1MPa的压力下,150℃固化3h,得到玄武岩纤维复合材料。
实施例二
将质量比为8:3的四环氧丙基甲撑二苯胺与双酚M型氰酸酯树脂在80℃的温度下搅拌混合至混合均匀,加入25%(占环氧树脂与氰酸酯树脂总质量的百分比)的聚醚酰亚胺,搅拌混合至混合均匀,真空脱气至无气泡;
加入0.8%(占环氧树脂与氰酸酯树脂总质量的百分比)的辛酸铜,搅拌混合至混合均匀,真空脱气至无气泡,形成环氧树脂增韧改性氰酸酯树脂;通过热熔法将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;
铺层、在2MPa的压力下,100℃固化1h,得到玄武岩纤维复合材料。
实施例三
将质量比为7:4的二氨基二苯甲烷四缩水甘油胺与双酚E型氰酸酯树脂在100℃的温度下搅拌混合至混合均匀,加入35%(占环氧树脂与氰酸酯树脂总质量的百分比)的聚砜,搅拌混合至混合均匀,真空脱气至无气泡;
加入0.9%(占环氧树脂与氰酸酯树脂总质量的百分比)的辛酸锌,搅拌混合至混合均匀,真空脱气至无气泡,形成环氧树脂增韧改性氰酸酯树脂;通过热熔法将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;
铺层、在1.5MPa的压力下,125℃固化2h,得到玄武岩纤维复合材料。
实施例四
将质量比为7:3的二氨基二苯甲烷四缩水甘油胺与双酚F型氰酸酯树脂在95℃的温度下搅拌混合至混合均匀,加入29%(占环氧树脂与氰酸酯树脂总质量的百分比)的聚醚酮,搅拌混合至混合均匀,真空脱气至无气泡;
加入1.2%(占环氧树脂与氰酸酯树脂总质量的百分比)的辛酸铬,搅拌 混合至混合均匀,真空脱气至无气泡,形成环氧树脂增韧改性氰酸酯树脂;通过热熔法将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;
铺层、在2MPa的压力下,100℃固化1.5h,得到玄武岩纤维复合材料。
实施例五
将质量比为7:3的环氧化间苯二甲胺与双酚A型氰酸酯树脂在90℃的温度下搅拌混合至混合均匀,加入30%(占环氧树脂与氰酸酯树脂总质量的百分比)的聚醚砜,搅拌混合至混合均匀,真空脱气至无气泡;
加入1.1%(占环氧树脂与氰酸酯树脂总质量的百分比)的辛酸锰,搅拌混合至混合均匀,真空脱气至无气泡,形成环氧树脂增韧改性氰酸酯树脂;通过热熔法将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;
铺层、在1MPa的压力下,150℃固化3h,得到玄武岩纤维复合材料。
实施例六
将质量比为7:3的二氨基二苯甲烷四缩水甘油胺与双酚A型氰酸酯树脂在85℃的温度下搅拌混合至混合均匀,加入30%(占环氧树脂与氰酸酯树脂总质量的百分比)的聚醚砜,搅拌混合至混合均匀,真空脱气至无气泡;
加入1%(占环氧树脂与氰酸酯树脂总质量的百分比)的辛酸锰,搅拌混合至混合均匀,真空脱气至无气泡,形成环氧树脂增韧改性氰酸酯树脂;通过热熔法将环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;
铺层、在1.5MPa的压力下,130℃固化2h,得到玄武岩纤维复合材料。
以上搅拌混合采用SHR-10高速混合机,转速为800~900r/min。
冲击强度、压缩强度采用本领域中常用的方法,使用CMT5105电子万能拉伸试验机测定;玻璃化转变温度采用本领域中常用的差示扫描量热法(DSC)测定。
将实施例一至六的玄武岩复合材料冷却至室温后切割成30mm*30mm*4mm的样条,测试其冲击强度、压缩强度及玻璃化转变温度,测试结果见下表1:
表1、测试结果
由表1可见,本发明使用官能度大于3的环氧树脂增韧改性氰酸酯树脂,通过选择环氧树脂种类以及该环氧树脂和氰酸酯树脂的质量配比,并且增韧剂、固化催化剂的加入,使得氰酸酯树脂中的-OCN官能团与环氧树脂中更多的官能团反应,再通过高温搅拌混合,提高了环氧树脂增韧改性的氰酸酯树脂的耐热性,使得该复合材料的玻璃化转变温度Tg最高达650℃,并且由于使用了力学性能好的玄武岩纤维,并且使用热熔法将树脂膜浸润增强材料玄武岩纤维,使得复合材料的抗冲击性和韧性大大增强,其冲击强度最高达475.41kJ/m
2,压缩强度最高达331MPa。因此,通过本发明提供的方法制备的玄武岩纤维复合材料具有高的力学性能和耐热性,并且成本低,可以广泛应用于工业、建筑、汽车、航空等领域。
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本发明的精神和范围的情况下,可以进行多种变化、替换以及改变。
Claims (14)
- 一种玄武岩纤维复合材料的制备方法,其特征在于,包括以下步骤:按配比将环氧树脂与氰酸酯树脂搅拌混合,加入增韧剂,再加入固化催化剂,搅拌混合,形成环氧树脂增韧改性氰酸酯树脂;将所述环氧树脂增韧改性氰酸酯树脂与玄武岩纤维制成预浸料;以及铺层、固化,得到所述玄武岩纤维复合材料。
- 根据权利要求1所述的制备方法,其特征在于,所述环氧树脂与所述氰酸酯树脂的质量比为6~8:2~4。
- 根据权利要求2所述的制备方法,其特征在于,所述环氧树脂与所述氰酸酯树脂的质量比为7:3。
- 根据权利要求1所述的制备方法,其特征在于,所述环氧树脂为二氨基二苯甲烷四缩水甘油胺、四环氧丙基甲撑二苯胺或环氧化间苯二甲胺。
- 根据权利要求1所述的制备方法,其特征在于,所述氰酸酯树脂为双酚A型氰酸酯树脂、双酚M型氰酸酯树脂、双酚E型氰酸酯树脂或双酚F型氰酸酯树脂。
- 根据权利要求1所述的制备方法,其特征在于,所述环氧树脂与所述氰酸酯树脂在80~100℃的温度下搅拌混合至混合均匀。
- 根据权利要求1所述的制备方法,其特征在于,所述增韧剂为聚醚砜、聚醚酰亚胺、聚砜和聚醚酮的一种或多种。
- 根据权利要求7所述的制备方法,其特征在于,所述增韧剂的质量为所述环氧树脂和所述氰酸酯树脂总质量的25~35%。
- 根据权利要求1所述的制备方法,其特征在于,所述固化催化剂为辛酸锰、辛酸铜、辛酸锌、辛酸铬的一种或多种。
- 根据权利要求9所述的制备方法,其特征在于,所述固化催化剂的质量为所述环氧树脂和所述氰酸酯树脂总质量的0.8~1.2%。
- 根据权利要求1所述的制备方法,其特征在于,通过热熔法将所述环氧树脂增韧改性氰酸酯树脂与所述玄武岩纤维制成所述预浸料。
- 根据权利要求11所述的制备方法,其特征在于,所述玄武岩纤维 为玄武岩单向织物。
- 根据权利要求1所述的制备方法,其特征在于,所述固化的压力为1~2MPa;所述固化的温度为100~150℃;所述固化的时间为1~3h。
- 一种根据权利要求1-13中任一项所述的制备方法制备的玄武岩纤维复合材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710388822.5A CN108929519A (zh) | 2017-05-24 | 2017-05-24 | 一种玄武岩纤维复合材料及其制备方法 |
CN201710388822.5 | 2017-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018214680A1 true WO2018214680A1 (zh) | 2018-11-29 |
Family
ID=64395276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/083676 WO2018214680A1 (zh) | 2017-05-24 | 2018-04-19 | 一种玄武岩纤维复合材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108929519A (zh) |
WO (1) | WO2018214680A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110357785B (zh) * | 2019-07-26 | 2020-03-24 | 东莞市领创环保材料科技有限公司 | 一种氰酸酯树脂增塑剂的制备方法 |
CN112111150A (zh) * | 2020-08-20 | 2020-12-22 | 陕西省建筑科学研究院有限公司 | 一种La-BF/BADCy复合材料及其制备方法 |
CN113320239A (zh) * | 2021-06-15 | 2021-08-31 | 武汉中科先进技术研究院有限公司 | 一种玄武岩纤维增强耐磨复合材料及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102037076A (zh) * | 2008-06-27 | 2011-04-27 | Adeka株式会社 | 一液型氰酸酯-环氧复合树脂组合物 |
CN102702482A (zh) * | 2012-05-29 | 2012-10-03 | 同济大学 | 高强度和高模量的热固性树脂组合物 |
CN103038284A (zh) * | 2010-06-02 | 2013-04-10 | 三菱瓦斯化学株式会社 | 树脂组合物和使用其的预浸料以及层压板 |
WO2016129655A1 (ja) * | 2015-02-10 | 2016-08-18 | インテル コーポレーション | 層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板 |
CN106046694A (zh) * | 2016-08-08 | 2016-10-26 | 山西晋投玄武岩开发有限公司 | 一种玄武岩纤维复合材料光伏支架型材及用其制作的光伏板支架 |
CN106340722A (zh) * | 2015-07-10 | 2017-01-18 | 深圳光启尖端技术有限责任公司 | 天线壳组及其制作方法 |
WO2017038603A1 (ja) * | 2015-09-04 | 2017-03-09 | 株式会社Adeka | 繊維強化プラスチック用樹脂組成物、その硬化物、該硬化物を含有する繊維強化プラスチック、及び該繊維強化プラスチックの製造方法 |
CN107446152A (zh) * | 2016-05-30 | 2017-12-08 | 洛阳尖端技术研究院 | 预浸料的制备方法以及预浸料 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103665326A (zh) * | 2013-09-26 | 2014-03-26 | 同济大学 | 热固性的氰酸酯/双马来酰亚胺树脂组合物 |
CN103497310A (zh) * | 2013-09-26 | 2014-01-08 | 同济大学 | 高强度和高模量的改性氰酸酯树脂组合物 |
CN104497273B (zh) * | 2014-11-26 | 2017-06-23 | 国家电网公司 | 一种高模量环氧树脂组合物及其制备方法 |
CN105238314B (zh) * | 2015-11-13 | 2017-11-07 | 深圳先进技术研究院 | 一种耐湿热高可靠性环氧导电银胶及其制备方法与应用 |
CN105462530B (zh) * | 2015-12-07 | 2019-05-07 | 深圳先进技术研究院 | 导电银胶及其制备方法和微电子功率器件 |
CN105885358A (zh) * | 2016-06-29 | 2016-08-24 | 西安超码复合材料有限公司 | 一种无卤耐高温树脂 |
-
2017
- 2017-05-24 CN CN201710388822.5A patent/CN108929519A/zh active Pending
-
2018
- 2018-04-19 WO PCT/CN2018/083676 patent/WO2018214680A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102037076A (zh) * | 2008-06-27 | 2011-04-27 | Adeka株式会社 | 一液型氰酸酯-环氧复合树脂组合物 |
CN103038284A (zh) * | 2010-06-02 | 2013-04-10 | 三菱瓦斯化学株式会社 | 树脂组合物和使用其的预浸料以及层压板 |
CN102702482A (zh) * | 2012-05-29 | 2012-10-03 | 同济大学 | 高强度和高模量的热固性树脂组合物 |
WO2016129655A1 (ja) * | 2015-02-10 | 2016-08-18 | インテル コーポレーション | 層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板 |
CN106340722A (zh) * | 2015-07-10 | 2017-01-18 | 深圳光启尖端技术有限责任公司 | 天线壳组及其制作方法 |
WO2017038603A1 (ja) * | 2015-09-04 | 2017-03-09 | 株式会社Adeka | 繊維強化プラスチック用樹脂組成物、その硬化物、該硬化物を含有する繊維強化プラスチック、及び該繊維強化プラスチックの製造方法 |
CN107446152A (zh) * | 2016-05-30 | 2017-12-08 | 洛阳尖端技术研究院 | 预浸料的制备方法以及预浸料 |
CN106046694A (zh) * | 2016-08-08 | 2016-10-26 | 山西晋投玄武岩开发有限公司 | 一种玄武岩纤维复合材料光伏支架型材及用其制作的光伏板支架 |
Also Published As
Publication number | Publication date |
---|---|
CN108929519A (zh) | 2018-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5403184B1 (ja) | 繊維強化複合材料 | |
WO2018214680A1 (zh) | 一种玄武岩纤维复合材料及其制备方法 | |
CN102746621B (zh) | 一种快速修补、增强用低粘环氧树脂体系及其制备方法 | |
CN104277418A (zh) | 一种碳纤维增强韧性环氧树脂复合材料及其制备方法 | |
CN110746625B (zh) | 一种改性氰基树脂热熔预浸料的制备方法 | |
CN102964780A (zh) | 一种用于纤维增强复合材料真空导入成型的环氧树脂组合物及其制备方法 | |
CN103113716A (zh) | 一种二聚酸改性环氧树脂增韧碳纤维预浸料的制备方法 | |
CN105482368A (zh) | 高性能复合材料用双酚a型环氧树脂组合物的制备方法 | |
WO2014007288A1 (ja) | プリフォーム用バインダー樹脂組成物、バインダー粒子、プリフォームおよび繊維強化複合材料 | |
CN104449508A (zh) | 一种柔韧性环氧结构胶及其制备方法 | |
WO2020008847A1 (ja) | 繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料ならびにその製造方法 | |
CN116694030A (zh) | 一种超轻质高强复合材料及其制备方法和应用 | |
CN103881307A (zh) | 超低密度复合材料、树脂组合物预浸料及其制备方法和用途 | |
CN110951432B (zh) | 一种环氧树脂建筑结构胶及其制备方法 | |
CN111748205B (zh) | 一种适合于湿法缠绕的耐高温透波杂化树脂体系及其制备方法 | |
CN108929520A (zh) | 一种快速固化自粘性预浸料及其制备方法 | |
CN105968715A (zh) | 一种增韧改性的碳纤维预浸料用环氧树脂体系、制备方法及由其制得的预浸料 | |
CN103275669A (zh) | 一种耐高温低介电玻璃布蜂窝夹芯胶粘剂及其制备方法 | |
CN103496245B (zh) | 聚苯并恶嗪-亚胺玻璃纤维布层压板的制备方法 | |
JP2012153746A (ja) | 繊維強化複合材料用エポキシ樹脂組成物 | |
CN107868400A (zh) | 中温固化预浸料树脂基体及其制备方法 | |
US20040039120A1 (en) | Process for producing a prepreg resin composition | |
KR102562027B1 (ko) | 섬유강화 복합재료용 에폭시 수지 조성물 및 이를 이용한 프리프레그 | |
CN112778696A (zh) | 一种马来酰亚胺基团封端型苯并噁嗪齐聚物预浸料组合物及制备方法 | |
CN110271238A (zh) | 一种环氧树脂基层状复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18806756 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18806756 Country of ref document: EP Kind code of ref document: A1 |