WO2018214419A1 - 像素电路、像素驱动方法和显示装置 - Google Patents

像素电路、像素驱动方法和显示装置 Download PDF

Info

Publication number
WO2018214419A1
WO2018214419A1 PCT/CN2017/111134 CN2017111134W WO2018214419A1 WO 2018214419 A1 WO2018214419 A1 WO 2018214419A1 CN 2017111134 W CN2017111134 W CN 2017111134W WO 2018214419 A1 WO2018214419 A1 WO 2018214419A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
pole
control
control signal
signal input
Prior art date
Application number
PCT/CN2017/111134
Other languages
English (en)
French (fr)
Inventor
玄明花
杨盛际
王磊
肖丽
付杰
陈小川
卢鹏程
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/775,889 priority Critical patent/US10818225B2/en
Publication of WO2018214419A1 publication Critical patent/WO2018214419A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals

Definitions

  • the present disclosure relates to a pixel circuit, a pixel driving method, and a display device.
  • a data voltage is input to the driving transistor so that the driving transistor generates a corresponding driving current, thereby driving the display device to emit light.
  • the present disclosure provides a pixel circuit including: a driving transistor, a capacitor, a data writing module, a current control module, and a light emitting device:
  • the data writing module is connected to the first end of the capacitor, the second end of the capacitor is connected to the control electrode of the driving transistor, and the first pole of the driving transistor is connected to the first power terminal, a second pole of the driving transistor is connected to the first pole of the light emitting device, the current control module is connected to the first pole and the second power terminal of the light emitting device, and the second pole of the light emitting device is opposite to the first Two power terminals are connected;
  • the data writing module is configured to write the data voltage provided by the data line to the first end of the capacitor under the control of the first control signal input by the first control signal input line in the data writing phase;
  • the driving transistor is configured to generate a driving current under the control of a voltage of the second end of the capacitor in an illuminating phase
  • the current control module is configured to control a total time and a flow of the driving current into the current control module under the control of a second control signal input by the second control signal input line during the lighting phase The ratio of the total time that the drive current flows into the light emitting device.
  • the illuminating phase comprises: a plurality of alternately arranged illuminating sub-phases and non-illuminating sub-phases;
  • the current control module is configured to write a second voltage provided by the second power terminal to the first pole of the light emitting device in the non-lighting sub-phase, so that the driving current flows into the current Control module.
  • the pixel circuit further includes a reset module, wherein the reset module is connected to both the first end of the capacitor and the second end of the capacitor;
  • the reset module is configured to reset the first end of the capacitor and the second end of the capacitor under the control of a reset control signal input by a reset control signal input line in a reset phase.
  • the reset module includes: a first transistor and a second transistor;
  • a control electrode of the first transistor is connected to a reset control signal input line, a first pole of the first transistor is connected to a third power terminal, and a second pole of the first transistor is connected to a second end of the capacitor ;
  • a control electrode of the second transistor is connected to the reset control signal input line, a first pole of the second transistor is connected to a fourth power terminal, and a second pole of the second transistor is first with the capacitor End connection.
  • the pixel circuit further includes a threshold compensation module, and the threshold compensation module is connected to the second end of the capacitor and the second pole of the driving transistor;
  • the threshold compensation module is configured to, in a threshold compensation phase, control a threshold voltage of the driving transistor and the first power supply terminal under control of a first control signal input by the first control signal input line The sum of the first voltages is written to the second end of the capacitor.
  • the threshold compensation module includes: a third transistor
  • a control electrode of the third transistor is connected to the first control signal input line, a first pole of the third transistor is connected to a second end of the capacitor, and a second pole of the third transistor is The second pole of the drive transistor is connected.
  • the pixel circuit further includes an illumination control module, the illumination control module being disposed between the second pole of the driving transistor and the first pole of the light emitting device;
  • the illuminating control module is configured to, in the illuminating phase, control the first pole of the driving transistor to be electrically connected to the first pole of the illuminating device under the control of the illuminating control signal input by the illuminating control signal input line.
  • the illumination control module includes: a fourth transistor
  • a control electrode of the fourth transistor is connected to the light emission control signal input line, a first electrode of the fourth transistor is connected to a first electrode of the driving transistor, and a second electrode of the fourth transistor is The first pole of the light emitting device is turned on.
  • the pixel circuit further includes a voltage stabilizing module, and the voltage stabilizing module is connected to the first end of the capacitor;
  • the voltage stabilizing module is configured to write a fifth voltage provided by the fifth power terminal to the capacitor under the control of a third control signal input by the third control signal input line in the light emitting phase One end.
  • the voltage stabilizing module includes: a fifth transistor
  • a control electrode of the fifth transistor is connected to the third control signal input line, a first pole of the fifth transistor is connected to the fifth power terminal, and a second pole of the fifth transistor is opposite to the capacitor The first end of the connection.
  • the data writing module includes: a sixth transistor
  • a control electrode of the sixth transistor is connected to the first control signal input line, a first pole of the sixth transistor is connected to the data line, and a second pole of the sixth transistor is opposite to the capacitor Connected at one end.
  • the current control module includes: a seventh transistor
  • a control electrode of the seventh transistor is connected to the second control signal line, a first pole of the seventh transistor is connected to the second power terminal, and a second pole of the seventh transistor and the light emitting device The first pole is connected.
  • the driving transistor is a P-type transistor, a source of the first extreme P-type transistor of the driving transistor, and a drain of the second extreme P-type transistor of the driving transistor.
  • the driving transistor is an N-type transistor, a drain of a first substantially N-type transistor of the driving transistor, and a source of a second substantially N-type transistor of the driving transistor.
  • the light emitting device is an organic light emitting diode (OLED)
  • the first of the light emitting device is an anode of the organic light emitting diode
  • the second of the light emitting device is substantially the cathode of the organic light emitting diode.
  • the pixel circuit includes a driving transistor, a capacitor, a data writing module, a current control module, a light emitting device, a reset module, a threshold compensation module, an illumination control module, and a voltage stabilization module;
  • the reset module includes a first transistor and a second transistor
  • a control electrode of the first transistor is connected to a reset control signal input line, a first pole of the first transistor is connected to a third power terminal, and a second pole of the first transistor is connected to a second end of the capacitor ;
  • a control electrode of the second transistor is connected to the reset control signal input line, the second crystal a first pole of the tube is connected to the fourth power terminal, and a second pole of the second transistor is connected to the first end of the capacitor;
  • the threshold compensation module includes a third transistor, a control electrode of the third transistor is connected to the first control signal input line, and a first pole of the third transistor is connected to a second end of the capacitor, a second pole of the third transistor is coupled to the second pole of the driving transistor;
  • the illuminating control module includes a fourth transistor, a control electrode of the fourth transistor is connected to the illuminating control signal input line, and a first pole of the fourth transistor is connected to a first pole of the driving transistor, a second pole of the fourth transistor is electrically connected to the first pole of the light emitting device;
  • the voltage stabilizing module includes a fifth transistor, a control electrode of the fifth transistor is connected to the third control signal input line, and a first pole of the fifth transistor is connected to the fifth power terminal, a second pole of the five transistor is coupled to the first end of the capacitor;
  • the data writing module includes a sixth transistor, a control electrode of the sixth transistor is connected to the first control signal input line, and a first pole of the sixth transistor is connected to the data line, the sixth a second pole of the transistor is coupled to the first end of the capacitor;
  • the current control module includes a seventh transistor, a control electrode of the seventh transistor is connected to the second control signal line, and a first pole of the seventh transistor is connected to the second power terminal, the seventh A second pole of the transistor is coupled to the first pole of the light emitting device.
  • the present disclosure also provides a pixel driving method, which is based on the above pixel circuit
  • the pixel driving method includes:
  • the data writing module writes the data voltage provided by the data line to the first end of the capacitor under the control of the first control signal input by the first control signal input line;
  • the driving transistor In the light emitting phase, the driving transistor generates a driving current under the control of the voltage of the second end of the capacitor; the current control module controls the control under the control of the second control signal input by the second control signal input line The ratio of the total time that the drive current flows into the current control module to the total time that the drive current flows into the light emitting device.
  • the illumination phase comprises a plurality of alternately arranged illumination sub-phases and non-illumination sub-phases:
  • the current control module controls the second power provided by the second power terminal under the control of the second control signal input by the second control signal input line Pressing is applied to the first pole of the light emitting device such that the driving current flows into the current control module to control the light emitting device not to emit light.
  • the present disclosure also provides a display device comprising: the pixel circuit as described above.
  • FIG. 1 is a schematic diagram of a circuit structure of a pixel circuit according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic circuit diagram of a pixel circuit provided by an exemplary embodiment of the present disclosure
  • FIG. 3 is a timing chart showing the operation of the pixel circuit shown in FIG. 2;
  • FIG. 4 is a flowchart of a pixel driving method provided by an exemplary embodiment of the present disclosure.
  • the conventional pixel driving circuit in order to generate different data voltages, a large number of sets of Gamma data are required, the data processing amount is large, the area occupied by the driving chip is large, and the Gamma adjustment time at the time of display panel shipment is also long.
  • the existing pixel driving circuit when in the non-light emitting phase, there is a leakage current flowing through the light emitting device, and the light emitting device emits weak light, that is, a certain brightness still exists when the display panel is in a black state, thereby causing display.
  • the contrast of the panel is low.
  • the present disclosure is intended to solve at least one of the technical problems existing in the prior art, and proposes a pixel circuit, a pixel driving method, and a display device.
  • the present disclosure provides a pixel circuit, a pixel driving method, and a display device, which can adjust a total time during which a driving current flows into a current control module in an illuminating phase by a current control module without changing a data voltage input by a data line.
  • the ratio of the total time that the drive current flows into the light emitting device thereby achieving adjustment of the visual brightness of the light emitting device.
  • the technical solution of the present disclosure can effectively reduce the number of Gamma data in the driving chip and improve the data processing speed of the driving chip.
  • the transistors employed in the embodiments of the present disclosure may be thin film transistors or field effect transistors or other
  • the source and drain of the transistor used are symmetrical, the source and drain are indistinguishable.
  • one of the poles is referred to as a first pole
  • the other pole is referred to as a second pole
  • the gate is referred to as a gate.
  • the transistor can be divided into an N-type transistor and a P-type transistor. In the following embodiment, the P-type transistor is used. When a P-type transistor is used, the source of the first P-type transistor is the first.
  • N-type transistors The drain of the two P-type transistors is turned on when the gate input is low. Contrary to the case of N-type transistors, it is conceivable that implementation using N-type transistors is readily conceivable by those skilled in the art without any inventive effort and is therefore within the scope of the embodiments of the present disclosure.
  • the light-emitting device in the present disclosure is a current-driven light-emitting device.
  • the present disclosure is described by taking an example of an organic light-emitting diode (OLED), which does not limit the technical solutions of the present disclosure.
  • OLED organic light-emitting diode
  • the “light-emitting luminance” in the present disclosure refers to the true luminance of the light emitted by the light-emitting device after being illuminated;
  • the “visual luminance” refers to the luminance of the light emitted by the light-emitting device perceived by the user, for example, given a viewing distance such as The brightness of the light emitted by the light-emitting device perceived by the user in the case of environmental factors such as ambient light and observation angle.
  • FIG. 1 is a schematic diagram of a circuit structure of a pixel circuit provided by an exemplary embodiment of the present disclosure.
  • the pixel circuit includes a driving transistor DTFT, a capacitor C, a data writing module 1, a current control module 2, and a light emitting device OLED.
  • the data writing module 1 is connected to the first end of the capacitor C, the second end of the capacitor C is connected to the control electrode of the driving transistor DTFT, the first pole of the driving transistor DTFT is connected to the first power terminal, and the second pole of the driving transistor DTFT
  • the first pole and the second power terminal of the light emitting device OLED are connected to the first pole of the light emitting device OLED, and the second pole of the light emitting device OLED is connected to the second power source.
  • the data writing module 1 is configured to write the data voltage provided by the data line Data to the first end of the capacitor C under the control of the first control signal input by the first control signal input line SC_1 in the data writing phase. .
  • the driving transistor DTFT is used to generate a driving current under the control of the voltage of the second end of the capacitor C in the light emitting phase.
  • the current control module 2 is configured to control the total time that the driving current flows into the current control module 2 and the driving current flows into the light emitting device under the control of the second control signal input by the second control signal input line SC_2 during the lighting phase.
  • the data writing module 1 inputs a data voltage to the first terminal of the capacitor C, and at this time, the second terminal of the capacitor C raises its voltage to a certain value by the bootstrap effect.
  • the driving transistor DTFT In the light-emitting phase, the driving transistor DTFT generates a driving current, which is obtained according to the saturation driving current formula I of the driving transistor DTFT:
  • K is a constant
  • Vgs is the gate-source voltage of the driving transistor DTFT
  • Vth is the threshold voltage of the driving transistor DTFT
  • Vdd is the operating voltage supplied by the first power terminal
  • Vdata' is the voltage of the second terminal of the capacitor C in the light-emitting phase.
  • the current control module 2 in the present disclosure can control the driving current to flow into the current control module 2 or flow into the light emitting device OLED under the control of the second control signal input by the second control signal input line SC_2.
  • the illuminating phase comprises: a plurality of alternately arranged illuminating sub-phases and non-emissive sub-phases; the current control module 2 is configured to provide the second voltage provided by the second power supply terminal in the non-emissive sub-phase Writing to the first pole of the light emitting device OLED, at which time the voltages of the first pole and the second pole of the light emitting device OLED (both of which are the second voltage) are equal (there is no current between the first pole and the second pole of the light emitting device OLED) The drive current flows into the current control module 2.
  • the driving current flows into the current control module 2, and no current flows through the light emitting device OLED, the light emitting device OLED does not emit light; in the light emitting sub-phase, the driving current flows into the light emitting device OLED, and the light emitting device OLED illumination.
  • the visual brightness of the light-emitting device OLED can be adjusted by controlling the ratio of the total time that the drive current flows into the current control module 2 to the total time that the drive current flows into the light-emitting device OLED during the entire illumination phase.
  • the light-emitting luminance generated by the light-emitting device OLED when the driving current flows into the light-emitting device OLED is L, and the total time during which the driving current flows into the current control module 2 and the total time during which the driving current flows into the light-emitting device OLED in the light-emitting phase
  • the ratio of a:b, the visual brightness of the OLED of the light-emitting device is It can be seen that the adjustment of the visual brightness of the illumination device OLED can be achieved by adjusting the ratio of the total time that the drive current flows into the current control module 2 during the illumination phase and the total time that the drive current flows into the illumination device OLED.
  • the technical solution of the present disclosure can effectively reduce the amount of Gamma data in the driving chip and improve the data processing speed of the driving chip.
  • the pixel circuit further includes: a reset module 3, a threshold compensation module 4, and an illumination control module 6.
  • the reset module 3 is connected to the first end of the capacitor C and the second end of the capacitor C
  • the threshold compensation module 4 is connected to the second end of the capacitor C and the second pole of the driving transistor DTFT; the illuminating control module 6 and the driving transistor DTFT
  • the second pole is connected to the first pole of the light emitting device OLED.
  • the reset module 3 is configured to reset the first end of the capacitor C and the second end of the capacitor C under the control of the reset control signal input by the reset control signal input line Reset in the reset phase.
  • the threshold compensation module 4 is configured to, in the threshold compensation phase, the sum of the threshold voltage of the driving transistor DTFT and the first voltage provided by the first power terminal under the control of the first control signal input by the first control signal input line SC_1 It is written to the second end of the capacitor C, thereby eliminating the influence of the drift of the threshold voltage of the driving transistor DTFT on the driving current.
  • the illuminating control module 6 is configured to enable the first pole of the driving transistor DTFT to be electrically connected to the first pole of the light emitting device OLED under the control of the illuminating control signal input by the illuminating control signal input line EM in the illuminating phase;
  • the write phase, the threshold compensation phase, and the reset phase cause an open circuit between the second electrode of the driving transistor DTFT and the first electrode of the light emitting device OLED, thereby preventing driving current from flowing into the light emitting device OLED, resulting in false illumination of the light emitting device OLED.
  • the pixel circuit further includes: a voltage stabilizing module 5, the voltage stabilizing module 5 is connected to the first end of the capacitor C; and the voltage stabilizing module 5 is used to input the third control signal input line SC_3 in the illuminating phase.
  • the fifth voltage provided by the fifth power terminal is written to the first end of the capacitor C to maintain the stability of the voltage of the first end of the capacitor C, thereby ensuring the voltage of the second end of the capacitor C. Stabilization, and thus effectively ensuring the stability of the drive current output by the driving transistor DTFT in the light-emitting phase (driving current) The size remains the same).
  • the total time during which the driving current flows into the current control module and the driving current inflow in the lighting phase can be adjusted by the current control module without changing the data voltage of the data line input.
  • the ratio of the total time to the illuminating device thereby achieving an adjustment of the visual brightness of the illuminating device.
  • the technical solution of the present disclosure can effectively reduce the number of Gamma data in the driving chip and improve the data processing speed of the driving chip.
  • FIG. 2 is a schematic diagram showing the circuit structure of a pixel circuit provided by an exemplary embodiment of the present disclosure.
  • the pixel circuit is an example of a pixel circuit provided by the above exemplary embodiment.
  • the reset module 3 includes: a first transistor T1 and a second transistor T2.
  • the control electrode of the first transistor T1 is connected to the reset control signal input line Reset, and the first pole of the first transistor T1 is connected to the third power terminal.
  • the second pole of the first transistor T1 is connected to the second end of the capacitor C
  • the control pole of the second transistor T2 is connected to the reset control signal input line Reset
  • the first pole of the second transistor T2 is connected to the fourth power terminal
  • the second The second pole of transistor T2 is coupled to the first end of capacitor C.
  • the threshold compensation module 4 includes: a third transistor T3, the control electrode of the third transistor T3 is connected to the first control signal input line SC_1, and the first electrode of the third transistor T3 is connected to the second end of the capacitor C, The second electrode of the three transistor T3 is connected to the second electrode of the driving transistor DTFT.
  • the illuminating control module 6 includes: a fourth transistor T4, a control electrode of the fourth transistor T4 is connected to the illuminating control signal input line EM, and a first pole of the fourth transistor T4 is connected to the first pole of the driving transistor DTFT, The second pole of the four transistor T4 is electrically connected to the first pole of the light emitting device OLED.
  • the voltage stabilizing module 5 includes: a fifth transistor T5, the control electrode of the fifth transistor T5 is connected to the third control signal input line SC_3, the first pole of the fifth transistor T5 is connected to the fifth power terminal, and the fifth transistor The second pole of T5 is coupled to the first end of capacitor C.
  • the data writing module 1 includes: a sixth transistor T6, a control electrode of the sixth transistor T6 is connected to the first control signal input line SC_1, and a first electrode of the sixth transistor T6 is connected to the data line Data, the sixth transistor The second pole of T6 is coupled to the first end of capacitor C.
  • the current control module 2 includes: a seventh transistor T7, the control electrode of the seventh transistor T7 is connected to the second control signal line, the first pole of the seventh transistor T7 is connected to the second power terminal, and the seventh transistor T7 is The second pole is connected to the first pole of the light emitting device OLED.
  • the first power supply terminal provides an operating voltage, and the size is Vdd; the second power supply terminal provides a ground voltage, and the size thereof is Vss; the third power supply terminal provides a reset voltage, and the size thereof is Vint; and the fourth power supply terminal provides a reference voltage, the size thereof.
  • the Vref; the fifth power supply terminal provides a stable voltage whose magnitude is Vref'; the threshold voltage of the driving transistor DTFT is Vth (when the driving transistor DTFT is a P-type transistor, Vth is generally a negative value); and the data voltage is Vdata.
  • FIG. 3 is an operation timing diagram of the pixel circuit shown in FIG. 2.
  • the working process of the pixel circuit includes the following three phases: a reset phase t1, a data writing phase t2 (a threshold compensation phase, and data writing).
  • the phase is simultaneous), the illumination phase t3.
  • the reset control signal in the reset control signal input line Reset is at a low level
  • the light emission control signal in the light emission control signal input line EM is at a high level
  • the first control in the first control signal input line SC_1 The signal is at a high level
  • the second control signal in the second control signal input line SC_2 is at a low level
  • the third control signal in the third control signal input line SC_3 is at a high level.
  • both the first transistor T1 and the second transistor T2 are turned on. At this time, the reset voltage is written to the second end of the capacitor C through the first transistor T1, and the voltage of the N1 node is Vint; the reference voltage is written to the first end of the capacitor C through the second transistor T2, and the voltage of the N2 node is Vref .
  • the fourth transistor T4 is in an off state, there is a leakage current in the fourth transistor T4, which may drive the light emitting device OLED to generate weak light, that is, the light emitting device OLED is misfired. problem.
  • the present disclosure controls the second control signal to be at a low level to turn on the seventh transistor T7, so that the ground voltage is written to the first pole of the light emitting device OLED, at which time the first of the light emitting device OLED
  • the voltage of the pole and the second pole is equal, and the leakage current generated in the fourth transistor T4 can only flow out through the seventh transistor T7, and cannot flow to the light emitting device OLED, so that the light emitting device OLED can be effectively prevented from being erroneously emitted.
  • the reset control signal in the reset control signal input line Reset is at a high level
  • the light emission control signal in the light emission control signal input line EM is at a high level
  • the first control signal in SC_1 is at a low level
  • the second control signal in the second control signal input line SC_2 is at a low level
  • the third control signal in the third control signal input line SC_3 The number is at a high level.
  • both the first transistor T1 and the second transistor T2 are in an off state.
  • the third transistor T3 and the sixth transistor T6 are both turned on, and at this time, the data voltage is written to the capacitor through the sixth transistor T6.
  • the first end of C the potential of the N2 node is Vdata; and because the third transistor T3 is turned on, the operating voltage starts to charge the N1 node through the driving transistor DTFT and the third transistor T3, and the voltage of the N1 node is charged to Vdd+ At Vth, the driving transistor DTFT is turned off.
  • the capacitor C has a voltage difference Vdata-Vdd-Vth at both ends.
  • the reset control signal in the reset control signal input line Reset is at a high level
  • the light emission control signal in the light emission control signal input line EM is at a low level
  • the first control signal in the first control signal input line SC_1 At a high level, the third control signal in the third control signal input line SC_3 is at a low level.
  • the illuminating phase t3 includes: a plurality of illuminating sub-phases t31 and a non-illuminating sub-phase t32 that are alternately arranged.
  • the second control signal in the second control signal input line SC_2 is at a high level
  • the second control signal in the second control signal input line SC_2 is at a low level Level.
  • the fifth transistor T5 is turned on, and the stable voltage Vref' is written to the capacitor C through the fifth transistor T5.
  • the voltage at one end, the N2 node, is Vref'.
  • the reset control signal in the reset control signal input line Reset is at a high level
  • the first control signal in the first control signal input line SC_1 is at a high level
  • the first transistor T1 and the third transistor T3 are both The cutoff, that is, the second end of the capacitor C is in a floating state.
  • the capacitor C generates a bootstrap effect to maintain the voltage difference between the two ends of the capacitor C, and the voltage at the second end of the capacitor C jumps to Vdd+Vth+Vref'-Vdata.
  • the driving current of the driving transistor DTFT is related to the stable voltage Vref' and the data voltage Vdata provided by the fifth power supply terminal, and the driving current flowing through the light emitting device OLED can be prevented from being subjected to the threshold value irrespective of the threshold voltage Vth of the driving transistor DTFT.
  • the seventh transistor T7 is turned off, the driving current output from the driving transistor DTFT flows into the light emitting device OLED, and the light emitting device OLED starts to emit light.
  • the driving current outputted by the driving transistor DTFT is also a fixed value. At this time, the luminance of the light emitting device OLED under the driving current can be measured by a prior experiment. .
  • the seventh transistor T7 is turned on, and the driving current outputted by the driving transistor DTFT flows out through the seventh transistor T7, and emits light.
  • the device OLED does not emit light.
  • the visual brightness of the light-emitting device OLED can be adjusted by controlling the ratio of the total time that the drive current flows into the current control module 2 to the total time that the drive current flows into the light-emitting device OLED during the entire illumination phase. For example, by controlling the duty ratio of the second control signal, control of the ratio of the total time that the drive current flows into the current control module 2 to the total time that the drive current flows into the light emitting device OLED can be achieved.
  • defining one illuminating sub-phase and one non-illuminating sub-phase constitute one illuminating period.
  • the second control signal is at a high level in the illuminating sub-phase, and the second control signal is at a low level in the non-emissive sub-phase, if it is desired to achieve a total time and drive of the driving current flowing into the current control module 2 throughout the illuminating phase
  • the ratio of the total time that the current flows into the light emitting device OLED is a:b
  • the ratio of the time when the second control signal is at the low level to the time at the high level in one lighting period is adjusted to a:b
  • the duty cycle of the two control signals is
  • the OLED of the OLED is switched between the illuminating state and the non-illuminating state. Because the switching frequency is fast, the human eye will feel the illuminating under the temporary persistence of the human eye. The device OLED is continuously illuminated, ie the flicker of the OLED of the light-emitting device is not felt.
  • the current control module 2 can not only adjust the visual brightness of the display device, but also effectively avoid the non-lighting phase (reset phase, data writing phase, threshold compensation phase). The problem of false illumination of the display device due to leakage current.
  • the voltage stabilizing module 5 continues to write a stable voltage to the first end of the capacitor C, The voltage value of the first end of the capacitor C is stabilized, so that the voltage value of the second end of the capacitor C is in a stable state, so that the driving transistor DTFT can output a stable current, which is favorable for subsequent precise control of the visual brightness of the display device. .
  • the third control signal input line SC_3 and the illumination control signal input line EM are the same signal input line, and the number of arrangement of the signal traces in the pixel circuit can be reduced.
  • the fifth power input end and the fourth power input end are the same power input end, and the number of power ports in the pixel circuit can be reduced.
  • the input line SC_2 may be a signal independent of and different from other signal input lines (reset control signal input line Reset, illumination control signal input line EM, first control signal input line SC_1, third control signal input line SC_3) in the display circuit. Traces.
  • the total time during which the driving current flows into the current control module and the driving current inflow in the lighting phase can be adjusted by the current control module without changing the data voltage of the data line input.
  • the ratio of the total time to the illuminating device thereby achieving an adjustment of the visual brightness of the illuminating device.
  • the technical solution of the present disclosure can effectively reduce the number of Gamma data in the driving chip and improve the data processing speed of the driving chip.
  • FIG. 4 is a flowchart of a pixel driving method according to an exemplary embodiment of the present disclosure. As shown in FIG. 4 , the pixel driving method is based on the pixel circuit in the above exemplary embodiment. For the specific circuit structure, reference may be made to the above exemplary embodiment. The description in the embodiments is not described herein again.
  • the pixel driving method includes:
  • Step S1 In the data writing phase, the data writing module writes the data voltage provided by the data line to the first end of the capacitor under the control of the first control signal input by the first control signal input line.
  • Step S2 In the light emitting phase, the driving transistor generates a driving current under the control of the voltage of the second end of the capacitor; and the current control module controls the driving current to flow into the current under the control of the second control signal input by the second control signal input line.
  • the illumination phase comprises a plurality of alternately arranged illumination sub-phases and non-illumination sub-phases.
  • Step S2 may include, for example:
  • Step S201 in the illuminating sub-phase in the illuminating phase, the current control module is in the second control signal Under the control of the second control signal input by the input line, the second power supply terminal is disconnected from the first pole of the light emitting device, the driving current flows into the light emitting device, and the light emitting device emits light.
  • Step S202 in the non-lighting sub-phase in the light-emitting phase, the current control module writes the second voltage provided by the second power terminal to the light-emitting device under the control of the second control signal input by the second control signal input line.
  • the first pole is such that a drive current flows into the current control module to control the illumination device not to emit light.
  • Embodiment 4 of the present disclosure provides a display device including the pixel circuit in the above exemplary embodiment, and the details can be referred to the description in the above exemplary embodiment.
  • the display device may include, for example, a display panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, or any product or component having a display function.

Abstract

一种像素电路、像素驱动方法和显示装置,其中像素电路包括:驱动晶体管(DTFT)、电容(C)、数据写入模块(1)和电流控制模块(2),其中,电流控制模块(2)用于在发光阶段过程中,在第二控制信号输入线(SC_2)所输入的第二控制信号的控制下,控制驱动电流流入至电流控制模块(2)的总时间与驱动电流流入至发光器件(OLED)的总时间的比例;由此,可在数据线(Data)输入的数据电压不变的情况下,通过电流控制模块(2)调整在发光阶段中驱动电流流入至电流控制模块(2)的总时间与驱动电流流入至发光器件(OLED)的总时间的比例,从而实现对发光器件(OLED)的视觉亮度的调整;从而可有效减少驱动芯片中Gamma数据的数量,提升驱动芯片的数据处理速度。

Description

像素电路、像素驱动方法和显示装置
相关申请的交叉引用
本申请要求于2017年5月26日提交的中国专利申请第201710384767.2号的优先权,该申请的公开通过引用被全部合并于此。
技术领域
本公开涉及像素电路、像素驱动方法和显示装置。
背景技术
在现有的像素驱动电路中,一般是通过向驱动晶体管输入数据电压,以使得驱动晶体管产生对应的驱动电流,从而驱动显示器件进行发光。
发明内容
本公开提供了一种像素电路,包括:驱动晶体管、电容、数据写入模块、电流控制模块和发光器件:
所述数据写入模块与所述电容的第一端连接,所述电容的第二端与所述驱动晶体管的控制极连接,所述驱动晶体管的第一极与第一电源端连接,所述驱动晶体管的第二极与所述发光器件的第一极连接,所述电流控制模块与所述发光器件的第一极和第二电源端连接,所述发光器件的第二极与所述第二电源端连接;
所述数据写入模块用于在数据写入阶段中,在第一控制信号输入线所输入的第一控制信号的控制下,将数据线提供的数据电压写入至电容的第一端;
所述驱动晶体管用于在发光阶段中,在所述电容的第二端的电压的控制下产生驱动电流;
所述电流控制模块用于在所述发光阶段过程中,在第二控制信号输入线所输入的第二控制信号的控制下,控制所述驱动电流流入至所述电流控制模块的总时间与所述驱动电流流入至所述发光器件的总时间的比例。
可选地,所述发光阶段包括:若干个交替设置的发光子阶段和不发光子阶段;
所述电流控制模块用于在所述不发光子阶段中将所述第二电源端提供的第二电压写入至所述发光器件的第一极,以使得所述驱动电流流入至所述电流控制模块。
可选地,所述像素电路还包括复位模块,所述复位模块与所述电容的第一端和所述电容的第二端均连接;
所述复位模块用于在复位阶段中,在复位控制信号输入线所输入的复位控制信号的控制下,对所述电容的第一端和所述电容的第二端进行复位。
可选地,所述复位模块包括:第一晶体管和第二晶体管;
所述第一晶体管的控制极与复位控制信号输入线连接,所述第一晶体管的第一极与第三电源端连接,所述第一晶体管的第二极与所述电容的第二端连接;
所述第二晶体管的控制极与所述复位控制信号输入线连接,所述第二晶体管的第一极与第四电源端连接,所述第二晶体管的第二极与所述电容的第一端连接。
可选地,所述像素电路还包括阈值补偿模块,所述阈值补偿模块与所述电容的第二端和所述驱动晶体管的第二极连接;
所述阈值补偿模块用于在阈值补偿阶段中,在所述第一控制信号输入线所输入的第一控制信号的控制下,将所述驱动晶体管的阈值电压与所述第一电源端提供的第一电压之和写入至所述电容的第二端。
可选地,所述阈值补偿模块包括:第三晶体管;
所述第三晶体管的控制极与所述第一控制信号输入线连接,所述第三晶体管的第一极与所述电容的第二端连接,所述第三晶体管的第二极与所述驱动晶体管的第二极连接。
可选地,所述像素电路还包括发光控制模块,所述发光控制模块设置于所述驱动晶体管的第二极和所述发光器件的第一极之间;
所述发光控制模块用于在发光阶段中,在发光控制信号输入线所输入的发光控制信号的控制下,使得所述驱动晶体管的第一极与所述发光器件的第一极导通。
可选地,所述发光控制模块包括:第四晶体管;
所述第四晶体管的控制极与所述发光控制信号输入线连接,所述第四晶体管的第一极与所述驱动晶体管的第一极连接,所述第四晶体管的第二极与所述 发光器件的第一极导通。
可选地,所述像素电路还包括稳压模块,所述稳压模块与所述电容的第一端连接;
所述稳压模块用于在所述发光阶段中,在第三控制信号输入线所输入的第三控制信号的控制下,将第五电源端提供的第五电压写入至所述电容的第一端。
可选地,所述稳压模块包括:第五晶体管;
所述第五晶体管的控制极与所述第三控制信号输入线连接,所述第五晶体管的第一极与所述第五电源端连接,所述第五晶体管的第二极与所述电容的第一端连接。
可选地,所述数据写入模块包括:第六晶体管;
所述第六晶体管的控制极与所述第一控制信号输入线连接,所述第六晶体管的第一极与所述数据线连接,所述第六晶体管的第二极与所述电容的第一端连接。
可选地,所述电流控制模块包括:第七晶体管;
所述第七晶体管的控制极与所述第二控制信号线连接,所述第七晶体管的第一极与所述第二电源端连接,所述第七晶体管的第二极与所述发光器件的第一极连接。
可选地,所述驱动晶体管为P型晶体管,所述驱动晶体管的第一极为P型晶体管的源极,以及所述驱动晶体管的第二极为P型晶体管的漏极。
可选地,所述驱动晶体管为N型晶体管,所述驱动晶体管的第一极为N型晶体管的漏极,以及所述驱动晶体管的第二极为N型晶体管的源极。
可选地,所述发光器件为有机发光二极管(OLED),所述发光器件的第一极为所述有机发光二极管的阳极,以及所述发光器件的第二极为所述有机发光二极管的阴极。
可选地,所述的像素电路包括驱动晶体管、电容、数据写入模块、电流控制模块、发光器件、复位模块、阈值补偿模块、发光控制模块和稳压模块;
所述复位模块包括第一晶体管和第二晶体管;
所述第一晶体管的控制极与复位控制信号输入线连接,所述第一晶体管的第一极与第三电源端连接,所述第一晶体管的第二极与所述电容的第二端连接;
所述第二晶体管的控制极与所述复位控制信号输入线连接,所述第二晶体 管的第一极与第四电源端连接,所述第二晶体管的第二极与所述电容的第一端连接;
所述阈值补偿模块包括第三晶体管,所述第三晶体管的控制极与所述第一控制信号输入线连接,所述第三晶体管的第一极与所述电容的第二端连接,所述第三晶体管的第二极与所述驱动晶体管的第二极连接;
所述发光控制模块包括第四晶体管,所述第四晶体管的控制极与所述发光控制信号输入线连接,所述第四晶体管的第一极与所述驱动晶体管的第一极连接,所述第四晶体管的第二极与所述发光器件的第一极导通;
所述稳压模块包括第五晶体管,所述第五晶体管的控制极与所述第三控制信号输入线连接,所述第五晶体管的第一极与所述第五电源端连接,所述第五晶体管的第二极与所述电容的第一端连接;
所述数据写入模块包括第六晶体管,所述第六晶体管的控制极与所述第一控制信号输入线连接,所述第六晶体管的第一极与所述数据线连接,所述第六晶体管的第二极与所述电容的第一端连接;
所述电流控制模块包括第七晶体管,所述第七晶体管的控制极与所述第二控制信号线连接,所述第七晶体管的第一极与所述第二电源端连接,所述第七晶体管的第二极与所述发光器件的第一极连接。
另外,本公开还提供了一种像素驱动方法,所述像素驱动方法是基于上述的像素电路的;
该像素驱动方法包括:
在数据写入阶段,所述数据写入模块在第一控制信号输入线所输入的第一控制信号的控制下,将数据线提供的数据电压写入至所述电容的第一端;
在发光阶段,所述驱动晶体管在所述电容的第二端的电压的控制下产生驱动电流;所述电流控制模块在第二控制信号输入线所输入的第二控制信号的控制下,控制所述驱动电流流入至所述电流控制模块的总时间与所述驱动电流流入至所述发光器件的总时间的比例。
可选地,当所述发光阶段包括若干个交替设置的发光子阶段和不发光子阶段时:
在所述发光阶段中的所述不发光子阶段中,所述电流控制模块在第二控制信号输入线所输入的第二控制信号的控制下,将所述第二电源端提供的第二电 压写入至所述发光器件的第一极,以使得所述驱动电流流入至所述电流控制模块,以控制所述发光器件不发光。
此外,本公开还提供了一种显示装置,包括:如上述的像素电路。
附图说明
图1为本公开的示例性实施例提供的像素电路的电路结构示意图;
图2为本公开的示例性实施例提供的像素电路的电路结构示意图;
图3为图2所示的像素电路的工作时序图;
图4为本公开的示例性实施例提供的像素驱动方法的流程图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的像素电路、像素驱动方法和显示装置进行详细描述。
在现有的像素驱动电路中,为产生不同的数据电压,需要很多套的Gamma数据,数据处理量大,占用驱动芯片的面积大,且显示面板出货时的Gamma调节时间也很长。
此外,在现有的像素驱动电路中,在处于非发光阶段时,会存在漏电流流过发光器件,发光器件会发出微弱的光,即显示面板处于黑态时仍存在一定亮度,从而导致显示面板的对比度较低。
本公开旨在至少解决现有技术中存在的技术问题之一,提出了像素电路、像素驱动方法和显示装置。
本公开具有以下有益效果:
本公开提供了像素电路、像素驱动方法和显示装置,该像素电路可在数据线输入的数据电压不变的情况下,通过电流控制模块调整在发光阶段中驱动电流流入至电流控制模块的总时间与驱动电流流入至发光器件的总时间的比例,从而实现对发光器件的视觉亮度的调整。本公开的技术方案可有效减少驱动芯片中Gamma数据的数量,提升驱动芯片的数据处理速度。
此外,通过电流控制模块还可有效避免在非发光阶段中出现发光器件误发光的问题。
在本公开的实施例中所采用的晶体管可以为薄膜晶体管或场效应管或其他 具有相同、类似特性的器件,由于采用的晶体管的源极和漏极是对称的,所以其源极、漏极是没有区别的。在本公开的实施例中,为区分晶体管的源极和漏极,将其中一极称为第一极,另一极称为第二极,栅极称为控制极。此外按照晶体管的特性区分可以将晶体管分为N型晶体管和P型晶体管,以下实施例中是以P型晶体管进行说明的,当采用P型晶体管时,第一极为P型晶体管的源极,第二极为P型晶体管的漏极,栅极输入低电平时,源极与漏极导通。N型晶体管的情况相反,可以想到的是,采用N型晶体管实现是本领域技术人员可以在没有付出创造性劳动前提下轻易想到的,因此也是在本公开的实施例的保护范围内的。
本公开中的发光器件为电流型驱动的发光器件,本公开以发光器件为有机发光二极管(Organic Light-Emitting Diode,简称OLED)为例进行描述,其不会对本公开的技术方案产生限制。
此外,本公开中的“发光亮度”是指发光器件被点亮后所发出光的真实亮度;“视觉亮度”是指用户感知的发光器件发出光的亮度,例如是指在给定诸如观测距离、环境光、观测视角等环境因素的情况下由用户感知的发光器件发出光的亮度。
实施例一
图1为本公开的示例性实施例提供的像素电路的电路结构示意图。如图1所示,该像素电路包括:驱动晶体管DTFT、电容C、数据写入模块1、电流控制模块2和发光器件OLED。数据写入模块1与电容C的第一端连接,电容C的第二端与驱动晶体管DTFT的控制极连接,驱动晶体管DTFT的第一极与第一电源端连接,驱动晶体管DTFT的第二极与发光器件OLED的第一极连接,电流控制模块2与发光器件OLED的第一极和第二电源端连接,发光器件OLED的第二极与第二电源端连接。
数据写入模块1用于在数据写入阶段中,在第一控制信号输入线SC_1所输入的第一控制信号的控制下,将数据线Data提供的数据电压写入至电容C的第一端。
驱动晶体管DTFT用于在发光阶段中,在电容C的第二端的电压的控制下产生驱动电流。
电流控制模块2用于在发光阶段过程中,在第二控制信号输入线SC_2所输入的第二控制信号的控制下,控制驱动电流流入至电流控制模块2的总时间与驱动电流流入至发光器件OLED的总时间的比例,以控制发光器件OLED的视觉亮度。
下面将对本实施例提供的像素电路的工作过程进行详细描述。
在数据写入阶段中,数据写入模块1向电容C的第一端输入数据电压,此时电容C的第二端通过自举效应将其电压上升至某一值。
在发光阶段中,驱动晶体管DTFT产生驱动电流,根据驱动晶体管DTFT的饱和驱动电流公式I可得:
I=K*(Vgs-Vth)2
=K*(Vdata′-Vdd-Vth)2
其中,K为常量,Vgs为驱动晶体管DTFT的栅源电压,Vth为驱动晶体管DTFT的阈值电压,Vdd为第一电源端提供的工作电压,Vdata’为在发光阶段中电容C的第二端的电压。
在整个发光阶段过程中,驱动晶体管DTFT会持续输出该驱动电流,且驱动电流的大小保持不变。本公开中的电流控制模块2可在第二控制信号输入线SC_2所输入的第二控制信号的控制下,控制驱动电流流入至电流控制模块2或者流入至发光器件OLED。
在本实施例中,可选地,发光阶段包括:若干个交替设置的发光子阶段和不发光子阶段;电流控制模块2用于在不发光子阶段中将第二电源端提供的第二电压写入至发光器件OLED的第一极,此时发光器件OLED的第一极和第二极的电压(均为第二电压)相等(发光器件OLED的第一极与第二极之间没有电流),驱动电流流入至电流控制模块2。
例如,在不发光子阶段中,驱动电流流入至电流控制模块2,没有电流流过发光器件OLED,则发光器件OLED不发光;在发光子阶段中,驱动电流流入至发光器件OLED,则发光器件OLED发光。在整个发光阶段过程中,通过控制驱动电流流入至电流控制模块2的总时间与驱动电流流入至发光器件OLED的总时间的比例,从而可实现调整发光器件OLED的视觉亮度。
本实施例中,假定驱动电流流入发光器件OLED时发光器件OLED产生的发光亮度为L,在发光阶段中驱动电流流入至电流控制模块2的总时间与驱动电流 流入至发光器件OLED的总时间的比例为a∶b,则发光器件OLED的视觉亮度为
Figure PCTCN2017111134-appb-000001
由此可见,通过调整在发光阶段中驱动电流流入至电流控制模块2的总时间与驱动电流流入至发光器件OLED的总时间的比例,即可实现对发光器件OLED的视觉亮度的调整。
通过上述内容可见,在本公开中可在数据电压不变的情况下,通过调整在发光阶段中驱动电流流入至电流控制模块2的总时间与驱动电流流入至发光器件OLED的总时间的比例,从而实现对发光器件OLED的视觉亮度的调整。因此,本公开的技术方案可有效减少驱动芯片中Gamma数据的数量,提升驱动芯片的数据处理速度。
在本实施例中,可选地,该像素电路还包括:复位模块3、阈值补偿模块4和发光控制模块6。复位模块3与电容C的第一端和电容C的第二端均连接,阈值补偿模块4与电容C的第二端和驱动晶体管DTFT的第二极连接;发光控制模块6与驱动晶体管DTFT的第二极和发光器件OLED的第一极连接。
复位模块3用于在复位阶段中,在复位控制信号输入线Reset所输入的复位控制信号的控制下,对电容C的第一端和电容C的第二端进行复位。
阈值补偿模块4用于在阈值补偿阶段中,在第一控制信号输入线SC_1所输入的第一控制信号的控制下,将驱动晶体管DTFT的阈值电压与第一电源端提供的第一电压之和写入至电容C的第二端,从而消除因驱动晶体管DTFT的阈值电压发生漂移对驱动电流造成的影响。
发光控制模块6用于在发光阶段中,在发光控制信号输入线EM所输入的发光控制信号的控制下,使得驱动晶体管DTFT的第一极与发光器件OLED的第一极导通;以及在数据写入阶段、阈值补偿阶段和复位阶段中使得驱动晶体管DTFT的第二极与发光器件OLED的第一极之间断路,从而防止驱动电流流入至发光器件OLED中导致发光器件OLED误发光。
可选地,该像素电路还包括:稳压模块5,稳压模块5与电容C的第一端连接;稳压模块5用于在发光阶段中,在第三控制信号输入线SC_3所输入的第三控制信号的控制下,将第五电源端提供的第五电压写入至电容C的第一端,以维持电容C的第一端的电压的稳定,从而保证电容C的第二端的电压的稳定,进而有效保证驱动晶体管DTFT在发光阶段中输出的驱动电流的稳定(驱动电流 的大小维持不变)。
根据本公开的示例性实施例提供的像素电路,可在数据线输入的数据电压不变的情况下,通过电流控制模块调整在发光阶段中驱动电流流入至电流控制模块的总时间与驱动电流流入至发光器件的总时间的比例,从而实现对发光器件的视觉亮度的调整。本公开的技术方案可有效减少驱动芯片中Gamma数据的数量,提升驱动芯片的数据处理速度。
实施例二
图2为本公开的示例性实施例提供的像素电路的电路结构示意图,如图2所示,该像素电路为上述示例性实施例提供的像素电路的示例。可选地,复位模块3包括:第一晶体管T1和第二晶体管T2,第一晶体管T1的控制极与复位控制信号输入线Reset连接,第一晶体管T1的第一极与第三电源端连接,第一晶体管T1的第二极与电容C的第二端连接,第二晶体管T2的控制极与复位控制信号输入线Reset连接,第二晶体管T2的第一极与第四电源端连接,第二晶体管T2的第二极与电容C的第一端连接。
可选地,阈值补偿模块4包括:第三晶体管T3,第三晶体管T3的控制极与第一控制信号输入线SC_1连接,第三晶体管T3的第一极与电容C的第二端连接,第三晶体管T3的第二极与驱动晶体管DTFT的第二极连接。
可选地,发光控制模块6包括:第四晶体管T4,第四晶体管T4的控制极与发光控制信号输入线EM连接,第四晶体管T4的第一极与驱动晶体管DTFT的第一极连接,第四晶体管T4的第二极与发光器件OLED的第一极导通。
可选地,稳压模块5包括:第五晶体管T5,第五晶体管T5的控制极与第三控制信号输入线SC_3连接,第五晶体管T5的第一极与第五电源端连接,第五晶体管T5的第二极与电容C的第一端连接。
可选地,数据写入模块1包括:第六晶体管T6,第六晶体管T6的控制极与第一控制信号输入线SC_1连接,第六晶体管T6的第一极与数据线Data连接,第六晶体管T6的第二极与电容C的第一端连接。
可选地,电流控制模块2包括:第七晶体管T7,第七晶体管T7的控制极与第二控制信号线连接,第七晶体管T7的第一极与第二电源端连接,第七晶体管T7的第二极与发光器件OLED的第一极连接。
下面将结合附图来对本实施例提供的像素电路的工作过程进行详细描述。 第一电源端提供工作电压,其大小为Vdd;第二电源端提供接地电压,其大小为Vss;第三电源端提供重置电压,其大小为Vint;第四电源端提供参考电压,其大小为Vref;第五电源端提供稳定电压,其大小为Vref’;驱动晶体管DTFT的阈值电压为Vth(驱动晶体管DTFT为P型晶体管时,Vth一般为负值);数据电压为Vdata。
图3为图2所示的像素电路的工作时序图,如图3所示,该像素电路的工作过程包括如下三个阶段:复位阶段t1、数据写入阶段t2(阈值补偿阶段与数据写入阶段同时进行)、发光阶段t3。
在复位阶段t1中,复位控制信号输入线Reset中的复位控制信号处于低电平,发光控制信号输入线EM中的发光控制信号处于高电平,第一控制信号输入线SC_1中的第一控制信号处于高电平,第二控制信号输入线SC_2中的第二控制信号处于低电平,第三控制信号输入线SC_3中的第三控制信号处于高电平。
由于复位控制信号处于低电平,则第一晶体管T1和第二晶体管T2均导通。此时,复位电压通过第一晶体管T1写入至电容C的第二端,N1节点的电压为Vint;参考电压通过第二晶体管T2写入至电容C的第一端,N2节点的电压为Vref。
需要说明的是,虽然此时驱动晶体管DTFT中会有电流输出,但是由于发光控制信号处于高电平,则第四晶体管T4截止,驱动晶体管DTFT输出的电流无法穿过第四晶体管T4。
此外,在实际应用中发现,虽然第四晶体管T4处于截止状态,但是在第四晶体管T4中会存在漏电流,该漏电流会驱动发光器件OLED产生微弱的光,即发光器件OLED出现误发光的问题。为解决该问题,本公开通过控制第二控制信号处于低电平,以使得第七晶体管T7导通,从而使得接地电压写入至发光器件OLED的第一极,此时发光器件OLED的第一极与第二极的电压相等,第四晶体管T4中产生的漏电流只能通过第七晶体管T7流出,而无法流向发光器件OLED,从而能有效避免发光器件OLED误发光。
在数据写入阶段和阈值补偿阶段t2中,复位控制信号输入线Reset中的复位控制信号处于高电平,发光控制信号输入线EM中的发光控制信号处于高电平,第一控制信号输入线SC_1中的第一控制信号处于低电平,第二控制信号输入线SC_2中的第二控制信号处于低电平,第三控制信号输入线SC_3中的第三控制信 号处于高电平。
由于复位控制信号处于高电平,则第一晶体管T1和第二晶体管T2均处于截止状态。与此同时,由于第一控制信号输入线SC_1中的第一控制信号处于低电平,则第三晶体管T3和第六晶体管T6均导通,此时数据电压通过第六晶体管T6写入至电容C的第一端,N2节点的电位为Vdata;又由于第三晶体管T3导通,则工作电压通过驱动晶体管DTFT、第三晶体管T3开始对N1节点进行充电,当N1节点的电压充电至Vdd+Vth时,驱动晶体管DTFT截止。此时,电容C两端具有电压差Vdata-Vdd-Vth。
需要说明的是,在对N1节点进行充电的过程中,虽然在第四晶体管T4中会产生漏电流,但是由于第七晶体管T7维持导通状态,则该漏电流不会流入发光器件OLED,因此在本阶段中发光器件OLED也不会出现误发光的问题。
在发光阶t3,复位控制信号输入线Reset中的复位控制信号处于高电平,发光控制信号输入线EM中的发光控制信号处于低电平,第一控制信号输入线SC_1中的第一控制信号处于高电平,第三控制信号输入线SC_3中的第三控制信号处于低电平。
需要说明的是,在本实施例中,发光阶段t3包括:若干个交替设置的发光子阶段t31和不发光子阶段t32。其中,在发光子阶段t31中,第二控制信号输入线SC_2中的第二控制信号处于高电平;在非发光子阶段t32中,第二控制信号输入线SC_2中的第二控制信号处于低电平。
在发光子阶段t31中,由于第三控制信号输入线SC_3中的第三控制信号处于低电平,则第五晶体管T5导通,稳定电压Vref’通过第五晶体管T5写入至电容C的第一端,即N2节点的电压为Vref’。与此同时,由于复位控制信号输入线Reset中的复位控制信号处于高电平,第一控制信号输入线SC_1中的第一控制信号处于高电平,则第一晶体管T1和第三晶体管T3均截止,即电容C的第二端处于浮接(Floating)状态。此时,电容C会产生自举效应以维持电容C的两端电压差不变,电容C的第二端的电压跳变为Vdd+Vth+Vref’-Vdata。
根据驱动晶体管DTFT的饱和驱动电流公式I可得:
I=K*(Vgs-Vth)2
=K*(Vdd+Vth+Vref′-Vdata-Vdd-Vth)2
=K*(Vref′-Vdata)2
由此可见,驱动晶体管DTFT的驱动电流与第五电源端提供的稳定电压Vref’和数据电压Vdata相关,而与驱动晶体管DTFT的阈值电压Vth无关,可避免流过发光器件OLED的驱动电流受到阈值电压不均匀和漂移的影响。
另外,因为第二控制信号输入线SC_2中的第二控制信号处于高电平,则第七晶体管T7截止,驱动晶体管DTFT输出的驱动电流流入至发光器件OLED,发光器件OLED开始发光。需要说明的是,在数据电压为定值的情况下,驱动晶体管DTFT输出的驱动电流大小也为定值,此时可通过预先实验来测得发光器件OLED在该驱动电流的作用下的发光亮度。
在非发光子阶段t32中,由于第二控制信号输入线SC_2中的第二控制信号处于低电平,则第七晶体管T7导通,驱动晶体管DTFT输出的驱动电流通过第七晶体管T7流出,发光器件OLED不发光。
在整个发光阶段过程中,通过控制驱动电流流入至电流控制模块2的总时间与驱动电流流入至发光器件OLED的总时间的比例,从而可实现调整发光器件OLED的视觉亮度。例如,通过控制第二控制信号的占空比,即可实现对驱动电流流入至电流控制模块2的总时间与驱动电流流入至发光器件OLED的总时间的比例的控制。
为方便描述,定义一个发光子阶段和一个非发光子阶段构成一个发光周期。在发光子阶段中第二控制信号处于高电平,在非发光子阶段中第二控制信号处于低电平,若希望实现在整个发光阶段中驱动电流流入至电流控制模块2的总时间与驱动电流流入至发光器件OLED的总时间的比例为a∶b,则可在一个发光周期内将第二控制信号处于低电平的时间与处于高电平的时间的比例调整为a∶b,第二控制信号的占空比为
Figure PCTCN2017111134-appb-000002
需要说明的是,在整个发光阶段过程中,发光器件OLED在发光状态和不发光状态之间多次切换,由于切换频率较快,在人眼的视觉暂留作用下,人眼会感受到发光器件OLED在持续发光,即不会感受到发光器件OLED的闪烁。
通过上述内容可见,在本公开提供的像素电路中,该电流控制模块2不仅能对显示器件的视觉亮度进行调整,而且可有效避免在非发光阶段(复位阶段、数据写入阶段、阈值补偿阶段)中由于漏电流造成显示器件误发光的问题。
在发光阶段t3中,稳压模块5通过持续将稳定电压写入至电容C的第一端, 以稳定电容C的第一端的电压值,从而可使得电容C的第二端的电压值处于稳定状态,进而使得驱动晶体管DTFT能输出稳定的电流,有利于后续对显示器件的视觉亮度进行精准控制。
在本实施例中,优选地,第三控制信号输入线SC_3与发光控制信号输入线EM为同一根信号输入线,此时可减少像素电路中信号走线的布置数量。第五电源输入端与第四电源输入端为同一电源输入端,此时可减少像素电路中电源端口的数量。
需要说明的是,考虑到用于控制电流控制模块2工作的第二控制信号要具备较宽泛的占空比调节范围以控制显示器件呈现不同的视角亮度,因此本实施例中的第二控制信号输入线SC_2可为独立且不同于显示电路中的其他信号输入线(复位控制信号输入线Reset、发光控制信号输入线EM、第一控制信号输入线SC_1、第三控制信号输入线SC_3)的信号走线。
根据本公开的示例性实施例提供的像素电路,可在数据线输入的数据电压不变的情况下,通过电流控制模块调整在发光阶段中驱动电流流入至电流控制模块的总时间与驱动电流流入至发光器件的总时间的比例,从而实现对发光器件的视觉亮度的调整。本公开的技术方案可有效减少驱动芯片中Gamma数据的数量,提升驱动芯片的数据处理速度。
实施例三
图4为本公开的示例性实施例提供的像素驱动方法的流程图,如图4所示,该像素驱动方法是基于上述示例性实施例中的像素电路的,具体电路结构可参见上述示例性实施例中的描述,此处不再赘述。该像素驱动方法包括:
步骤S1、在数据写入阶段,数据写入模块在第一控制信号输入线所输入的第一控制信号的控制下,将数据线提供的数据电压写入至电容的第一端。
步骤S2、在发光阶段,驱动晶体管在电容的第二端的电压的控制下产生驱动电流;电流控制模块在第二控制信号输入线所输入的第二控制信号的控制下,控制驱动电流流入至电流控制模块的总时间与驱动电流流入至发光器件的总时间的比例。
可选地,发光阶段包括若干个交替设置的发光子阶段和不发光子阶段。步骤S2例如可包括:
步骤S201、在发光阶段中的发光子阶段中,电流控制模块在第二控制信号 输入线所输入的第二控制信号的控制下,使得第二电源端与发光器件的第一极之间断路,驱动电流流入发光器件,发光器件发光。
步骤S202、在发光阶段中的不发光子阶段中,电流控制模块在第二控制信号输入线所输入的第二控制信号的控制下,将第二电源端提供的第二电压写入至发光器件的第一极,以使得驱动电流流入至电流控制模块,以控制发光器件不发光。
对于上述各步骤的具体描述,可参见上述示例性实施例中的相应内容,此处不再赘述。
实施例四
本公开的实施例四提供了显示装置,该显示装置包括上述示例性实施例中的像素电路,具体内容可参见上述示例性实施例中的描述。
本实施例提供的显示装置例如可以包括:显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (19)

  1. 一种像素电路,包括:驱动晶体管、电容、数据写入模块、电流控制模块和发光器件;
    所述数据写入模块与所述电容的第一端连接,所述电容的第二端与所述驱动晶体管的控制极连接,所述驱动晶体管的第一极与第一电源端连接,所述驱动晶体管的第二极与所述发光器件的第一极连接,所述电流控制模块与所述发光器件的第一极和第二电源端连接,所述发光器件的第二极与所述第二电源端连接;
    所述数据写入模块用于在数据写入阶段中,在第一控制信号输入线所输入的第一控制信号的控制下,将数据线提供的数据电压写入至电容的第一端;
    所述驱动晶体管用于在发光阶段中,在所述电容的第二端的电压的控制下产生驱动电流;
    所述电流控制模块用于在所述发光阶段过程中,在第二控制信号输入线所输入的第二控制信号的控制下,控制所述驱动电流流入至所述电流控制模块的总时间与所述驱动电流流入至所述发光器件的总时间的比例。
  2. 根据权利要求1所述的像素电路,其中,所述发光阶段包括:若干个交替设置的发光子阶段和不发光子阶段;
    所述电流控制模块用于在所述不发光子阶段中将所述第二电源端提供的第二电压写入至所述发光器件的第一极,以使得所述驱动电流流入至所述电流控制模块。
  3. 根据权利要求1所述的像素电路,还包括:复位模块,所述复位模块与所述电容的第一端和所述电容的第二端均连接;
    所述复位模块用于在复位阶段中,在复位控制信号输入线所输入的复位控制信号的控制下,对所述电容的第一端和所述电容的第二端进行复位。
  4. 根据权利要求3所述的像素电路,其中,所述复位模块包括:第一晶体管和第二晶体管;
    所述第一晶体管的控制极与复位控制信号输入线连接,所述第一晶体管的第一极与第三电源端连接,所述第一晶体管的第二极与所述电容的第二端连接;
    所述第二晶体管的控制极与所述复位控制信号输入线连接,所述第二晶体管的第一极与第四电源端连接,所述第二晶体管的第二极与所述电容的第一端连接。
  5. 根据权利要求1所述的像素电路,还包括:阈值补偿模块,所述阈值补偿模块与所述电容的第二端和所述驱动晶体管的第二极连接;
    所述阈值补偿模块用于在阈值补偿阶段中,在所述第一控制信号输入线所输入的第一控制信号的控制下,将所述驱动晶体管的阈值电压与所述第一电源端提供的第一电压之和写入至所述电容的第二端。
  6. 根据权利要求5所述的像素电路,其中,所述阈值补偿模块包括:第三晶体管;
    所述第三晶体管的控制极与所述第一控制信号输入线连接,所述第三晶体管的第一极与所述电容的第二端连接,所述第三晶体管的第二极与所述驱动晶体管的第二极连接。
  7. 根据权利要求1所述的像素电路,还包括:发光控制模块,所述发光控制模块设置于所述驱动晶体管的第二极和所述发光器件的第一极之间;
    所述发光控制模块用于在发光阶段中,在发光控制信号输入线所输入的发光控制信号的控制下,使得所述驱动晶体管的第一极与所述发光器件的第一极导通。
  8. 根据权利要求7所述的像素电路,其中,所述发光控制模块包括:第四晶体管;
    所述第四晶体管的控制极与所述发光控制信号输入线连接,所述第四晶体管的第一极与所述驱动晶体管的第一极连接,所述第四晶体管的第二极与所述发光器件的第一极导通。
  9. 根据权利要求1所述的像素电路,还包括:稳压模块,所述稳压模块与所述电容的第一端连接;
    所述稳压模块用于在所述发光阶段中,在第三控制信号输入线所输入的第三控制信号的控制下,将第五电源端提供的第五电压写入至所述电容的第一端。
  10. 根据权利要求9所述的像素电路,其中,所述稳压模块包括:第五晶体管;
    所述第五晶体管的控制极与所述第三控制信号输入线连接,所述第五晶体管的第一极与所述第五电源端连接,所述第五晶体管的第二极与所述电容的第一端连接。
  11. 根据权利要求1所述的像素电路,其中,所述数据写入模块包括:第六晶体管;
    所述第六晶体管的控制极与所述第一控制信号输入线连接,所述第六晶体管的第一极与所述数据线连接,所述第六晶体管的第二极与所述电容的第一端连接。
  12. 根据权利要求1所述的像素电路,其中,所述电流控制模块包括:第七晶体管;
    所述第七晶体管的控制极与所述第二控制信号线连接,所述第七晶体管的第一极与所述第二电源端连接,所述第七晶体管的第二极与所述发光器件的第一极连接。
  13. 根据权利要求1-12中任一项所述的像素电路,其中,所述驱动晶体管为P型晶体管,所述驱动晶体管的第一极为P型晶体管的源极,以及所述驱动晶体管的第二极为P型晶体管的漏极。
  14. 根据权利要求1-12中任一项所述的像素电路,其中,所述驱动晶体管为N型晶体管,所述驱动晶体管的第一极为N型晶体管的漏极,以及所述驱动晶体管的第二极为N型晶体管的源极。
  15. 根据权利要求1-12中任一项所述的像素电路,其中,所述发光器件为有机发光二极管(OLED),所述发光器件的第一极为所述有机发光二极管的阳极,以及所述发光器件的第二极为所述有机发光二极管的阴极。
  16. 根据权利要求1-15任一项所述的像素电路,包括:驱动晶体管、电容、数据写入模块、电流控制模块、发光器件、复位模块、阈值补偿模块、发光控制模块和稳压模块;
    所述复位模块包括第一晶体管和第二晶体管;
    所述第一晶体管的控制极与复位控制信号输入线连接,所述第一晶体管的第一极与第三电源端连接,所述第一晶体管的第二极与所述电容的第二端连接;
    所述第二晶体管的控制极与所述复位控制信号输入线连接,所述第二晶体管的第一极与第四电源端连接,所述第二晶体管的第二极与所述电容的第一端连接;
    所述阈值补偿模块包括第三晶体管,所述第三晶体管的控制极与所述第一控制信号输入线连接,所述第三晶体管的第一极与所述电容的第二端连接,所述第三晶体管的第二极与所述驱动晶体管的第二极连接;
    所述发光控制模块包括第四晶体管,所述第四晶体管的控制极与所述发光控制信号输入线连接,所述第四晶体管的第一极与所述驱动晶体管的第一极连接,所述第四晶体管的第二极与所述发光器件的第一极导通;
    所述稳压模块包括第五晶体管,所述第五晶体管的控制极与所述第三控制信号输入线连接,所述第五晶体管的第一极与所述第五电源端连接,所述第五晶体管的第二极与所述电容的第一端连接;
    所述数据写入模块包括第六晶体管,所述第六晶体管的控制极与所述第一控制信号输入线连接,所述第六晶体管的第一极与所述数据线连接,所述第六晶体管的第二极与所述电容的第一端连接;
    所述电流控制模块包括第七晶体管,所述第七晶体管的控制极与所述第二控制信号线连接,所述第七晶体管的第一极与所述第二电源端连接,所述第七晶体管的第二极与所述发光器件的第一极连接。
  17. 一种像素驱动方法,其中,所述像素驱动方法是基于上述权利要求1-16中任一项所述的像素电路的;
    该像素驱动方法包括:
    在数据写入阶段,所述数据写入模块在第一控制信号输入线所输入的第一控制信号的控制下,将数据线提供的数据电压写入至所述电容的第一端;
    在发光阶段,所述驱动晶体管在所述电容的第二端的电压的控制下产生驱动电流;所述电流控制模块在第二控制信号输入线所输入的第二控制信号的控制下,控制所述驱动电流流入至所述电流控制模块的总时间与所述驱动电流流入至所述发光器件的总时间的比例。
  18. 根据权利要求17所述的像素驱动方法,其中,当所述发光阶段包括若干个交替设置的发光子阶段和不发光子阶段时:
    在所述发光阶段中的所述不发光子阶段中,所述电流控制模块在第二控制信号输入线所输入的第二控制信号的控制下,将所述第二电源端提供的第二电压写入至所述发光器件的第一极,以使得所述驱动电流流入至所述电流控制模块,以控制所述发光器件不发光。
  19. 一种显示装置,包括:如上述权利要求1-16中任一项所述的像素电路。
PCT/CN2017/111134 2017-05-26 2017-11-15 像素电路、像素驱动方法和显示装置 WO2018214419A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/775,889 US10818225B2 (en) 2017-05-26 2017-11-15 Pixel circuit, pixel driving method and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710384767.2A CN107038997A (zh) 2017-05-26 2017-05-26 像素电路、像素驱动方法和显示装置
CN201710384767.2 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018214419A1 true WO2018214419A1 (zh) 2018-11-29

Family

ID=59539494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111134 WO2018214419A1 (zh) 2017-05-26 2017-11-15 像素电路、像素驱动方法和显示装置

Country Status (3)

Country Link
US (1) US10818225B2 (zh)
CN (1) CN107038997A (zh)
WO (1) WO2018214419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930671A (zh) * 2023-09-19 2023-10-24 成都光创联科技有限公司 一种用于电流驱动光器件性能测试的电路和方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107038997A (zh) * 2017-05-26 2017-08-11 京东方科技集团股份有限公司 像素电路、像素驱动方法和显示装置
CN107393479B (zh) * 2017-08-29 2019-10-25 深圳市华星光电半导体显示技术有限公司 像素驱动电路及有机发光二极管显示器
CN108538241A (zh) 2018-06-29 2018-09-14 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN110021263B (zh) * 2018-07-05 2020-12-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN108831375B (zh) * 2018-07-26 2020-06-05 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN109003592A (zh) * 2018-08-01 2018-12-14 福建华佳彩有限公司 一种调整透明显示器透明感受度的方法
CN114758619A (zh) * 2018-08-30 2022-07-15 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示面板及显示装置
WO2020107420A1 (en) * 2018-11-30 2020-06-04 Boe Technology Group Co., Ltd. Pixel circuit, driving method, and display apparatus
JP7154122B2 (ja) * 2018-12-20 2022-10-17 エルジー ディスプレイ カンパニー リミテッド 発光表示装置
CN109859682B (zh) * 2019-03-28 2021-01-22 京东方科技集团股份有限公司 驱动电路及其驱动方法、显示装置
CN110767158B (zh) 2019-03-29 2020-10-27 昆山国显光电有限公司 显示装置及其显示面板、显示面板的像素驱动电路
CN112750392B (zh) * 2019-10-30 2022-04-15 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板、显示装置
CN110767163B (zh) * 2019-11-08 2021-01-26 京东方科技集团股份有限公司 一种像素电路及显示面板
CN111326101A (zh) * 2020-03-10 2020-06-23 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板
US11482170B2 (en) 2020-05-09 2022-10-25 Boe Technology Group Co., Ltd. Display panel and display device
CN111625133B (zh) * 2020-05-15 2022-11-25 武汉华星光电半导体显示技术有限公司 Oled显示面板
US20230351958A1 (en) * 2021-02-10 2023-11-02 Boe Technology Group Co., Ltd. Array substrate, display panel comprising the array substrate, and display device
CN113299235B (zh) * 2021-05-20 2022-10-25 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
KR20230067896A (ko) * 2021-11-10 2023-05-17 엘지디스플레이 주식회사 표시장치 및 데이터 구동 회로

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132053A1 (en) * 2004-12-16 2006-06-22 Korea Advanced Institute Of Science And Technology Pixel circuit and driving method for active matrix organic light-emitting diodes, and display using the same
CN102054428A (zh) * 2009-11-05 2011-05-11 宏碁股份有限公司 有机发光二极管显示器、其驱动方法、及其像素单元
CN102682704A (zh) * 2012-05-31 2012-09-19 广州新视界光电科技有限公司 有源有机电致发光显示器的像素驱动电路及其驱动方法
CN103594059A (zh) * 2013-11-29 2014-02-19 中国科学院上海高等研究院 有源矩阵有机发光二极管像素驱动电路及其驱动方法
CN106486041A (zh) * 2017-01-03 2017-03-08 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关显示装置
CN107038997A (zh) * 2017-05-26 2017-08-11 京东方科技集团股份有限公司 像素电路、像素驱动方法和显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428033C (zh) * 2005-04-22 2008-10-22 中国科学院长春光学精密机械与物理研究所 一种硅基液晶微显示器件帧存储像素电路
JP4300490B2 (ja) * 2007-02-21 2009-07-22 ソニー株式会社 表示装置及びその駆動方法と電子機器
CN101276542A (zh) * 2007-03-28 2008-10-01 中国科学院微电子研究所 一种有机发光二极管象素驱动电路
KR100969770B1 (ko) * 2008-07-17 2010-07-13 삼성모바일디스플레이주식회사 유기전계발광 표시장치와 그의 구동방법
CN101859791A (zh) * 2009-04-09 2010-10-13 友达光电股份有限公司 有源矩阵式显示装置的像素结构
KR101056297B1 (ko) * 2009-11-03 2011-08-11 삼성모바일디스플레이주식회사 화소 및 이를 구비한 유기전계발광 표시장치
KR101152580B1 (ko) * 2010-06-30 2012-06-01 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN102122490A (zh) * 2011-03-18 2011-07-13 华南理工大学 一种有源有机发光二极管显示器的交流驱动电路及其方法
CN104103239B (zh) * 2014-06-23 2016-05-04 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法
CN104464643B (zh) * 2014-12-29 2017-05-03 上海和辉光电有限公司 显示装置、像素驱动电路及其驱动方法
CN106097964B (zh) * 2016-08-22 2018-09-18 京东方科技集团股份有限公司 像素电路、显示面板、显示设备及驱动方法
CN106409233B (zh) * 2016-11-28 2019-08-06 上海天马有机发光显示技术有限公司 一种像素电路、其驱动方法及有机发光显示面板
JP2018155832A (ja) * 2017-03-16 2018-10-04 セイコーエプソン株式会社 電気光学装置、電子機器及び電気光学装置の駆動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132053A1 (en) * 2004-12-16 2006-06-22 Korea Advanced Institute Of Science And Technology Pixel circuit and driving method for active matrix organic light-emitting diodes, and display using the same
CN102054428A (zh) * 2009-11-05 2011-05-11 宏碁股份有限公司 有机发光二极管显示器、其驱动方法、及其像素单元
CN102682704A (zh) * 2012-05-31 2012-09-19 广州新视界光电科技有限公司 有源有机电致发光显示器的像素驱动电路及其驱动方法
CN103594059A (zh) * 2013-11-29 2014-02-19 中国科学院上海高等研究院 有源矩阵有机发光二极管像素驱动电路及其驱动方法
CN106486041A (zh) * 2017-01-03 2017-03-08 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关显示装置
CN107038997A (zh) * 2017-05-26 2017-08-11 京东方科技集团股份有限公司 像素电路、像素驱动方法和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930671A (zh) * 2023-09-19 2023-10-24 成都光创联科技有限公司 一种用于电流驱动光器件性能测试的电路和方法
CN116930671B (zh) * 2023-09-19 2023-11-21 成都光创联科技有限公司 一种用于电流驱动光器件性能测试的电路和方法

Also Published As

Publication number Publication date
US20200302863A1 (en) 2020-09-24
US10818225B2 (en) 2020-10-27
CN107038997A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2018214419A1 (zh) 像素电路、像素驱动方法和显示装置
CN108470539B (zh) 一种像素电路及其驱动方法、显示面板和显示装置
US10978002B2 (en) Pixel circuit and driving method thereof, and display panel
WO2023005621A1 (zh) 像素电路及其驱动方法、显示面板
WO2018188390A1 (zh) 像素电路及其驱动方法、显示装置
WO2018036169A1 (zh) 像素电路、显示面板、显示设备及驱动方法
WO2016161866A1 (zh) 像素电路及其驱动方法、显示装置
US9508287B2 (en) Pixel circuit and driving method thereof, display apparatus
WO2017041453A1 (zh) 像素电路、其驱动方法及相关装置
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
WO2017117940A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2016187990A1 (zh) 像素电路以及像素电路的驱动方法
WO2018196378A1 (zh) 显示面板、像素驱动电路及其驱动方法
WO2018149122A1 (zh) 像素电路及其驱动方法、显示装置
WO2018228202A1 (zh) 像素电路、像素驱动方法和显示装置
WO2017117938A1 (zh) 像素驱动电路、像素驱动方法和显示装置
WO2016155161A1 (zh) Oeld像素电路、显示装置及控制方法
WO2019174372A1 (zh) 像素补偿电路、驱动方法、电致发光显示面板及显示装置
CN113851082B (zh) 像素驱动电路及其驱动方法、显示面板
WO2020187158A1 (zh) 像素驱动电路和显示面板及其驱动方法、显示装置
WO2019184916A1 (zh) 像素电路及其驱动方法、显示装置
WO2019047701A1 (zh) 像素电路及其驱动方法、显示装置
WO2018049809A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2019037536A1 (zh) 像素电路及其驱动方法、显示装置
CN107945740B (zh) 像素电路的驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.04.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17910673

Country of ref document: EP

Kind code of ref document: A1