WO2016187990A1 - 像素电路以及像素电路的驱动方法 - Google Patents

像素电路以及像素电路的驱动方法 Download PDF

Info

Publication number
WO2016187990A1
WO2016187990A1 PCT/CN2015/089913 CN2015089913W WO2016187990A1 WO 2016187990 A1 WO2016187990 A1 WO 2016187990A1 CN 2015089913 W CN2015089913 W CN 2015089913W WO 2016187990 A1 WO2016187990 A1 WO 2016187990A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving transistor
gate
transistor
module
control
Prior art date
Application number
PCT/CN2015/089913
Other languages
English (en)
French (fr)
Inventor
董甜
李云飞
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/037,627 priority Critical patent/US20170116918A1/en
Publication of WO2016187990A1 publication Critical patent/WO2016187990A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation

Definitions

  • the present invention relates to the field of organic electroluminescence technology, and in particular, to a pixel circuit and a driving method thereof.
  • OLED Organic Light Emitting Diode
  • LCD Liquid Crystal Display
  • OLED displays have the advantages of low energy consumption, low production cost, self-illumination, wide viewing angle and fast response.
  • OLED displays have begun to replace traditional LCD displays.
  • Pixel circuit design is the core technical content of OLED display.
  • OLEDs are current driven and require a constant current to control illumination.
  • the threshold voltage V th of the driving transistor in the pixel circuit of the OLED display has non-uniformity due to process fabrication and device aging, etc., thereby causing a change in current of the OLED flowing through each pixel, resulting in uneven display brightness. Affects the display of the entire image.
  • FIG. 1 shows an example of a conventional pixel circuit for an OLED display.
  • the pixel circuit includes a driving transistor M2, a P-type switching transistor M1, and a storage capacitor Cs.
  • the scanning line Scan is input with a low level signal, the P-type switching transistor M1 is turned on, and the voltage of the data line Data is stored on the storage capacitor Cs.
  • the signal input by the scan line Scan becomes a high level, the P-type switching transistor M1 is turned off, and the voltage stored by the storage capacitor Cs is applied to the gate of the driving transistor M2, so that the driving transistor M2 generates a current to drive the OLED, thereby ensuring The OLED continues to emit light within one frame.
  • V SG represents a gate-source voltage
  • V th represents a threshold voltage.
  • the threshold voltage Vth of the driving transistor M2 drifts due to process fabrication, device aging, and the like.
  • the current is related to the supply voltage, and the source voltage Vs will be different due to the voltage drop (IR Drop).
  • the current flowing through each of the OLEDs will vary with the threshold voltage Vth of the driving transistor and the source voltage VDD of the driving transistor, resulting in uneven image brightness.
  • embodiments of the present invention provide a pixel circuit, a driving method of a pixel circuit, and related devices to improve uniformity of image brightness of a display area of the display device.
  • a pixel circuit includes: a driving transistor, a reset module, a compensation module, a data writing module, an illumination control module, and a light emitting device;
  • the reset module includes: a control terminal for receiving a reset control signal, an input terminal for receiving a reference signal, and an output terminal connected to a gate of the driving transistor, wherein the reset module is configured to Providing the reference signal to a gate of the driving transistor under control of a reset control signal;
  • the compensation module is connected between a gate and a source of the driving transistor, and is configured to store a threshold voltage of the driving transistor after the reset module supplies the reference signal to a gate of the driving transistor ;
  • the data writing module includes: a control terminal for receiving a write control signal, an input terminal for receiving a data signal, and an output terminal connected to a gate of the driving transistor, the data writing module being used for Writing the data signal to the gate of the driving transistor under the control of the write control signal;
  • the illuminating control module includes a first input end, a second input end, a first control end, a second control end, a first output end, and a second output end, wherein the first input end is connected to the first power source, The second input end is connected to the drain of the driving transistor, the first control end is configured to receive a first lighting control signal, and the second control end is configured to receive a second lighting control signal, the first Output and location
  • the source of the driving transistor is connected, the second output is connected to one end of the light emitting device, and the other end of the light emitting device is connected to a second power source; the light emitting control module is used in the reset module When the reference signal is supplied to the gate of the driving transistor, the driving transistor and the light emitting device are turned on under the control of the first light emitting control signal, and the data is written in the data writing module After the signal is written to the gate of the driving transistor, the driving transistor is controlled to drive the light emitting device to emit light under the control of the first lighting control signal and the
  • the reset module includes: a first switching transistor; wherein a gate of the first switching transistor is configured to receive the reset control signal, and a drain is configured to receive the reference signal, a source and a The gates of the drive transistors are connected.
  • the data writing module includes: a second switching transistor; wherein a gate of the second switching transistor is configured to receive the write control signal, and a source is configured to receive the data signal, A drain is connected to a gate of the driving transistor.
  • the compensation module includes a first capacitor connected between a gate and a source of the driving transistor.
  • the illumination control module includes: a third switching transistor, a fourth switching transistor, and a second capacitor; wherein a gate of the third switching transistor is configured to receive the first illumination control signal, the source a pole connected to the drain of the driving transistor, a drain connected to the light emitting device, a gate of the fourth switching transistor for receiving the second light emitting control signal, and a source connected to the first power source A drain is connected to a source of the driving transistor; and a second capacitor is connected between a source and a drain of the fourth switching transistor.
  • the drive transistor is a P-type transistor.
  • the first, second, third, and fourth switching transistors are P-type transistors.
  • a driving method of the above pixel circuit including:
  • the reset module supplies the reference signal to the gate of the driving transistor under the control of the reset control signal
  • the compensation module stores a threshold voltage of the driving transistor
  • the illuminating control module turns on the driving transistor and the illuminating device under the control of the first illuminating control signal
  • the data writing module writes the data signal to the gate of the driving transistor under the control of the write control signal
  • the illumination control module controls the driving transistor to drive the illumination device to emit light under the control of the first illumination control signal and the second illumination control signal.
  • an organic electroluminescence display panel comprising the above pixel circuit.
  • a display device comprising the above-described organic electroluminescence display panel.
  • a pixel circuit includes a driving transistor, a reset module, a compensation module, a data writing module, an illumination control module, and a light emitting device, wherein the reset module supplies a reference signal to the driving transistor under the control of the reset control signal a gate, the compensation module stores a threshold voltage of the driving transistor after the reset module supplies the reference signal to the gate of the driving transistor, and the data writing module writes the data signal to the gate of the driving transistor under the control of the writing control signal
  • the illuminating control module turns on the driving transistor and the illuminating device under the control of the first illuminating control signal when the reset module supplies the reference signal to the gate of the driving transistor, and writes the data signal to the driving in the data writing module.
  • the drive transistor After being on the gate of the transistor, under the control of the first illumination control signal and the second illumination control signal, the drive transistor is controlled to drive the illumination device to emit light.
  • the pixel circuit according to the embodiment of the present invention works by the cooperation of the above modules, so that when the pixel circuit is illuminated, the driving current of the driving transistor to drive the light emitting device to emit light is only related to the voltage of the data signal and the voltage of the reference signal, and is driven.
  • the threshold voltage of the transistor is independent of the voltage of the first power source, thereby avoiding the influence of the threshold voltage of the driving transistor and the IR voltage drop of the first power source on the current flowing through the light emitting device, so that the operating current of the driving transistor is kept consistent, and the display device is improved.
  • the uniformity of the brightness of the image of the display area is independent of the voltage of the first power source, thereby avoiding the influence of the threshold voltage of the driving transistor and the IR voltage drop of the first power source on the current flowing through the light emitting device, so that
  • FIG. 1 is a schematic diagram of an example of a conventional pixel circuit
  • FIG. 2 is a schematic block diagram of a pixel circuit in accordance with an embodiment of the present invention.
  • Figure 3a is a circuit diagram of a pixel circuit in accordance with one embodiment of the present invention.
  • Figure 3b is a circuit diagram of a pixel circuit in accordance with another embodiment of the present invention.
  • Figure 4a is a schematic timing diagram of an input signal of the pixel circuit shown in Figure 3a;
  • Figure 4b is a schematic timing diagram of an input signal of the pixel circuit shown in Figure 3b;
  • FIG. 5 is a schematic flowchart of a driving method of a pixel circuit according to an embodiment of the present invention.
  • FIG. 2 shows a pixel circuit in accordance with an embodiment of the present invention.
  • the pixel circuit includes a driving transistor DTFT, a reset module 1, a compensation module 2, a data writing module 3, an emission control module 4, and a light emitting device D.
  • the reset module 1 has a control terminal 1a, an input terminal 1b, and an output terminal 1c.
  • the control terminal 1a is for receiving the reset control signal Scan1
  • the input terminal 1b is for receiving the reference signal Vref
  • the output terminal 1c is connected to the gate of the driving transistor DTFT.
  • the reference signal Vref is supplied to the gate of the driving transistor DTFT under the control of the reset module 1 reset control signal Scan1.
  • the compensation module 2 is connected between the gate and the source of the driving transistor DTFT. After the reset module 1 supplies the reference signal Vref to the gate of the driving transistor DTFT, the compensation module 2 can store the threshold voltage Vth of the driving transistor DTFT.
  • the data writing module 3 has a control terminal 3a, an input terminal 3b, and an output terminal 3c.
  • the control terminal 3a is used for connection
  • the write control signal Scan2 is received, the input terminal 3b receives the data signal Data, and the output terminal 3c is connected to the gate of the drive transistor DTFT.
  • the data writing module 3 writes the data signal Data to the gate of the driving transistor DTFT under the control of the write control signal Scan2.
  • the illumination control module 4 has a first input terminal 4a, a second input terminal 4b, a first control terminal 4c, a second control terminal 4d, a first output terminal 4e and a second output terminal 4f.
  • the first input terminal 4a is connected to the first power source VDD
  • the second input terminal 4b is connected to the drain of the driving transistor DTFT.
  • the first control terminal 4c is for receiving the first illumination control signal EM1
  • the second control terminal 4d is for receiving the second illumination control signal EM2.
  • the first output terminal 4e is connected to the source of the driving transistor DTFT
  • the second output terminal 4f is connected to one end of the light emitting device D.
  • the other end of the light emitting device D is connected to the second power source VSS.
  • the light emission control module 4 turns on the driving transistor DTFT and the light emitting device D under the control of the first light emission control signal EM1.
  • the lighting control module 4 controls the driving transistor DTFT to drive the light under the control of the first lighting control signal EM1 and the second lighting control signal EM2.
  • Device D illuminates.
  • a pixel circuit supplies a reference signal to a gate of a driving transistor through a reset module, a compensation module stores a threshold voltage of the driving transistor, and a data writing module writes a data signal to a gate of the driving transistor, and the light emission control module is Controlling the first light-emitting control signal, turning on the driving transistor and the light-emitting device, and controlling the driving transistor to drive the light-emitting device to emit light under the control of the first light-emitting control signal and the second light-emitting control signal, and capable of performing light-emitting display in the pixel circuit
  • the driving current for causing the driving transistor to drive the light emitting device to emit light is only related to the voltage of the data signal and the voltage of the reference signal, and is independent of the threshold voltage of the driving transistor and the voltage of the first power source, thereby avoiding the threshold voltage of the driving transistor and the first
  • the influence of the IR drop of the power source on the current flowing through the light emitting device keeps the operating current
  • 3a, 3b show specific circuit diagrams of pixel circuits in accordance with various embodiments of the present invention, the only difference being the type of transistors used.
  • the driving transistor DTFT may be a P-type transistor.
  • the P-type transistor includes an enhancement type P type transistor and a consumption type P type transistor.
  • a pixel circuit using any type of P-type transistor as a driving transistor can have a function of compensating for a threshold voltage and an IR voltage drop.
  • the threshold voltage of the P-type transistor is generally a negative value
  • the voltage of the first power source VDD is generally a positive voltage
  • the second The voltage of the power supply VSS is generally grounded or negative.
  • the voltage Vr of the reset signal Vref and the voltage Vdd of the first power source VDD should satisfy the following condition: Vdd>Vr ⁇ V th , where V th is the driving transistor DTFT Threshold voltage.
  • the compensation range for the threshold voltage V th can be adjusted by adjusting the voltage Vdd of the first power source VDD and the voltage Vr of the reset signal Vref.
  • the operating range of the voltage Vdata of the data signal Data is related to the voltage Vr of the reset signal Vref, and the higher the Vr, the larger the minimum value of Vdata.
  • the light emitting device D may employ an organic light emitting diode OLED.
  • the anode of the organic light emitting diode OLED is connected to the light emission control module 4, and the cathode is connected to the second power source VSS.
  • the organic light emitting diode OLED realizes light emission display under the action of the saturation current of the driving transistor DTFT.
  • the reset module 1 can include a first switching transistor T1.
  • the gate 1a of the first switching transistor T1 is for receiving the reset control signal Scan1
  • the drain 1b is for receiving the reference signal Vref
  • the source 1c is connected to the gate of the driving transistor DTFT.
  • the first switching transistor T1 is a P-type transistor. In this case, when the reset control signal Scan1 is at a low level, the first switching transistor T1 is in an on state. When the reset control signal Scan1 is at a high level, the first switching transistor T1 is in an off state.
  • the first switching transistor T1 is an N-type transistor. In this case, when the reset control signal Scan1 is at a high level, the first switching transistor T1 is in an on state. When the reset control signal Scan1 is low, the first switch The transistor T1 is in an off state.
  • the reference signal Vref is supplied to the gate of the driving transistor DTFT through the turned-on first switching transistor T1, thereby gate the driving transistor DTFT Reset.
  • reset module 1 in the pixel circuit, and those skilled in the art will appreciate that the reset module 1 is not limited to this example, and other configurations may be employed.
  • the data write module 3 can include a second switching transistor T2.
  • the gate 3a of the second switching transistor T2 is for receiving the write control signal Scan2, the source 3b is for receiving the data signal Data, and the drain 3c is connected to the gate of the driving transistor DTFT.
  • the second switching transistor T2 is a P-type transistor. In this case, when the write control signal Scan2 is at a low level, the second switching transistor T2 is in an on state. When the write control signal Scan2 is at a high level, the second switching transistor T2 is in an off state.
  • the second switching transistor T2 is an N-type transistor. In this case, when the write control signal Scan2 is at a high level, the second switching transistor T2 is in an on state. When the write control signal Scan2 is at a low level, the second switching transistor T2 is in an off state.
  • the data signal Data is transmitted to the gate of the driving transistor DTFT through the turned-on second switching transistor T2.
  • the compensation module 2 can include a first capacitance C1 coupled between the gate and source of the drive transistor DTFT.
  • the reset signal Vref is supplied to the gate of the driving transistor DTFT through the turned-on first switching transistor T1, and the driving transistor DTFT is turned on.
  • the light emission control module 4 turns on the driving transistor and the light emitting device under the control of the first light emission control signal EM1.
  • the first capacitor C1 starts charging until the voltage difference across the first capacitor C1 is equal to the threshold voltage of the driving transistor DTFT.
  • the threshold voltage of the driving transistor DTFT is stored on the first capacitor C1 so as to drive the crystal
  • the threshold voltage of the tube DTFT is compensated.
  • the compensation module 2 in the pixel circuit.
  • the compensation module 2 is not limited to this example, and other configurations may be employed.
  • the illumination control module 4 may include a third switching transistor T3, a fourth switching transistor T4, and a second capacitor C2.
  • the gate 4c of the third switching transistor T3 is for receiving the first light emission control signal EM1
  • the source 4b is connected to the drain of the driving transistor DTFT
  • the drain 4f is connected to the light emitting device D.
  • the gate 4d of the fourth switching transistor T4 is for receiving the second light emission control signal EM2
  • the source 4a is connected to the first power source VDD
  • the drain 4e is connected to the source of the driving transistor DTFT.
  • the second capacitor C2 is connected between the source 4a and the drain 4e of the fourth switching transistor T4.
  • the third switching transistor T3 is a P-type transistor. In this case, when the first light emission control signal EM1 is at a low level, the third switching transistor T3 is in an on state. When the first light emission control signal EM1 is at a high level, the third switching transistor T3 is in an off state.
  • the third switching transistor T3 is an N-type transistor. In this case, when the first light emission control signal EM1 is at a high level, the third switching transistor T3 is in an on state. When the first light emission control signal EM1 is at a low level, the third switching transistor T3 is in an off state.
  • the fourth switching transistor T4 is a P-type transistor. In this case, when the second light emission control signal EM2 is at a low level, the fourth switching transistor T4 is in an on state. When the second light emission control signal EM2 is at a high level, the fourth switching transistor T4 is in an off state.
  • the fourth switching transistor T4 is an N-type transistor. In this case, when the second light emission control signal EM2 is at a high level, the fourth switching transistor T4 is in an on state. When the second light emission control signal EM2 is at a low level, the fourth switching transistor T4 is in an off state.
  • the third switching transistor T3 is in an on state under the control of the first lighting control signal EM1.
  • the driving transistor DTFT is turned on.
  • the threshold voltage of the driving transistor DTFT can be stored in the first capacitor C1.
  • the third switching transistor T3 is at the first lighting control signal EM1
  • the control is turned on while the fourth switching transistor T4 is turned on under the control of the second light emission control signal EM2.
  • the first power source VDD and the second power source VSS are turned on by the third switching transistor T3, the driving transistor DTFT, and the fourth switching transistor T4, and the light emitting device, so that the driving transistor DTFT can drive the light emitting device D to emit light.
  • the driving current is independent of the threshold voltage of the driving transistor DTFT due to the action of the first capacitor C1. Further, due to the cooperation of the first capacitor C1 and the second capacitor C2, the driving current and the voltage of the first power source VDD It doesn't matter.
  • the illumination control module 4 is not limited to this example, and other configurations may be employed.
  • a pixel circuit according to an embodiment of the present invention between the first capacitor C1, the second capacitor C2, the first switching transistor T1, the second switching transistor T2, the third switching transistor T3, the fourth switching transistor T4, and the driving transistor DTFT
  • the mutual cooperation can compensate the drift of the threshold voltage of the driving transistor DTFT and the IR voltage drop. Therefore, when the light emitting display is performed, the operating current of the driving transistor DTFT for driving the light emitting device D to emit light can be only the voltage Vdata of the data signal Data and the reference signal Vref.
  • the voltage Vr is related, and is independent of the threshold voltage of the driving transistor DTFT and the first power supply VDD, thereby avoiding the influence of the threshold voltage and the IR voltage drop on the current flowing through the light emitting device D, so that the operating current for driving the light emitting device D to emit light remains the same.
  • the uniformity of the image brightness of the display area of the display device is improved.
  • the driving transistor and the switching transistor mentioned in the embodiments of the present invention may be a thin film transistor TFT or a metal oxide semiconductor field effect transistor MOS.
  • the first, second, third, and fourth switching transistors may all be P-type transistors or N-type transistors.
  • the driving transistor DTFT is a P-type transistor
  • the first, second, third, and fourth switching transistors also employ a P-type transistor to simplify the fabrication process of the pixel circuit.
  • a high level signal is indicated by 1 and a low level signal is indicated by 0.
  • Example 1 The working process of the pixel circuit shown in Figure 3a
  • the driving transistor DTFT and all of the switching transistors T1, T2, T3, and T4 are P-type transistors.
  • the P-type transistor is turned off under a high level signal and turned on under a low level signal.
  • Figure 4 shows a timing diagram of the input signal of the pixel circuit. The operation of the pixel circuit in three stages of T1, T2 and T3 will be specifically described below.
  • the first switching transistor T1 and the third switching transistor T3 are turned on, and the gate voltage of the driving transistor DTFT is the voltage Vr of the reference signal Vref.
  • the first capacitor C1 starts charging until the voltage difference across the first capacitor C1 is equal to the threshold voltage Vth of the driving transistor DTFT.
  • the gate voltage of the driving transistor DTFT is Vr, and the source voltage is (Vr - V th ).
  • the second switching transistor T2 is turned on, and the gate voltage of the driving transistor DTFT becomes the voltage Vdata of the data signal Data.
  • the source voltage of the driving transistor DTFT becomes (Vr-V th +(c1/(c1+c2) ⁇ (Vdata-Vr)) ), where c1 and c2 are capacitance values of the first capacitor C1 and the second capacitor C2, respectively.
  • the third switching transistor T3 and the fourth switching transistor T4 are turned on, and the source voltage of the driving transistor DTFT becomes the voltage Vdd of the first power source VDD.
  • the gate voltage of the driving transistor DTFT is changed from (V2/(c1+c2))*(Vdata-Vr)+Vdd+ Vth ) from the previous stage of Vdata.
  • the driving transistor DTFT is in a saturated state. According to the current characteristics of the saturated state, the operating current I OLED flowing through the driving transistor DTFT and driving the organic light emitting diode OLED to emit light is calculated as:
  • I OLED K ⁇ (V gs – V th ) 2
  • K represents a structural parameter
  • the value of K is relatively stable and can be considered as a constant. Therefore, it can be seen that the operating current I OLED of the organic light emitting diode OLED is not affected by the threshold voltage V th of the driving transistor DTFT, and is independent of the voltage Vdd of the first power supply VDD, and only with the voltage Vdata of the data signal Data.
  • the voltage Vr of the reference signal Vref is related, thereby eliminating the influence of the threshold voltage drift of the driving transistor and the IR voltage drop of the first power source on the operating current of the light-emitting device D due to process fabrication and long-time operation, improving the display.
  • the display of the area is not uniform.
  • Example 2 The working process of the pixel circuit shown in Figure 3b
  • the driving transistor DTFT is a P-type transistor, and all of the switching transistors T1, T2, T3, and T4 are N-type transistors.
  • the P-type transistor is turned off under a high level signal and turned on under a low level signal.
  • the N-type transistor is turned off at a low level signal and turned on at a high level signal.
  • Figure 4b shows a timing diagram of the input signal of the pixel circuit. The operation of the pixel circuit in three stages of T1, T2 and T3 will be specifically described below.
  • the first switching transistor T1 and the third switching transistor T3 are turned on, and the gate voltage of the driving transistor DTFT is the voltage Vr of the reference signal Vref.
  • the first capacitor C1 starts charging until the voltage difference across the first capacitor C1 is equal to the threshold voltage Vth of the driving transistor DTFT.
  • the gate voltage of the driving transistor DTFT is Vr, and the source voltage is Vr-V th .
  • the second switching transistor T2 is turned on, and the gate voltage of the driving transistor DTFT becomes the voltage Vdata of the data signal Data.
  • the source voltage of the driving transistor DTFT becomes (Vr-V th +(c1/(c1+c2) ⁇ (Vdata-Vr)) ), where c1 and c2 are capacitance values of the first capacitor C1 and the second capacitor C2, respectively.
  • the third switching transistor T3 and the fourth switching transistor T4 are turned on, and the source voltage of the driving transistor DTFT becomes the voltage Vdd of the first power source VDD.
  • the gate voltage of the driving transistor DTFT is changed from (V2/(c1+c2))*(Vdata-Vr)+Vdd+ Vth ) from the previous stage of Vdata.
  • the driving transistor DTFT is in a saturated state. According to the current characteristic of the saturated state, the operating current I OLED flowing through the driving transistor DTFT and driving the organic light emitting diode OLED to emit light is calculated as:
  • I OLED K ⁇ (V gs – V th ) 2
  • K represents a structural parameter
  • the value of K is relatively stable and can be considered as a constant. Therefore, it can be seen that the operating current I OLED of the organic light emitting diode OLED is not affected by the threshold voltage V th of the driving transistor DTFT, and is independent of the voltage Vdd of the first power supply VDD, and only the voltage Vdata and the reference of the data signal Data.
  • the voltage Vr of the signal Vref is related, thereby eliminating the threshold voltage drift of the driving transistor due to process fabrication and long-time operation, and the influence of the IR voltage drop of the first power source on the operating current of the light-emitting device D, improving the display area.
  • the display is uneven.
  • FIG. 5 illustrates a driving method of a pixel circuit according to an embodiment of the present invention.
  • step S501 the reset module 1 supplies the reference signal Vref to the gate of the driving transistor DTFT under the control of the reset control signal Scan1. Then, the compensation module 2 stores the threshold voltage of the driving transistor DTFT, and the light emission control module 4 turns on the driving transistor DTFT and the light emitting device D under the control of the first light emission control signal EM1. Step S501 represents a reset compensation phase.
  • step S502 the data writing module 3 writes the data signal Data onto the gate of the driving transistor DTFT under the control of the write control signal Scan2. At this time, the compensation module 2 still stores the threshold voltage of the driving transistor DTFT. Step S502 represents a data writing phase.
  • step S503 the compensation module 2 still stores the threshold voltage of the driving transistor DTFT, and the light emission control module 4 controls the driving transistor DTFT to drive the light emitting device D to emit light under the control of the first lighting control signal EM1 and the second lighting control signal EM2.
  • Step S503 represents a lighting phase.
  • an organic electroluminescence display is also provided according to an embodiment of the present invention.
  • a panel comprising a pixel circuit in accordance with an embodiment of the present invention. Since the working principle of the organic electroluminescent display panel is similar to that of the pixel circuit, the implementation of the pixel circuit in the organic electroluminescent display panel can be referred to the implementation of the pixel circuit described in the previous embodiment, and details are not described herein again.
  • a display device including an organic electroluminescence display panel according to an embodiment of the present invention.
  • the display device may be a display, a mobile phone, a television, a notebook computer, a computer integrated machine, or the like.
  • the other components of the display device are known to those skilled in the art and will not be described again, and the components should not be construed as limiting the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素电路、像素电路的驱动方法及相关装置。该像素电路包括驱动晶体管(DTFT)、复位模块(1)、补偿模块(2)、数据写入模块(3)、发光控制模块(4)和发光器件(D)。复位模块(1)用于将参考信号(Vref)提供给驱动晶体管(DTFT)的栅极,补偿模块(2)用于存储驱动晶体管(DTFT)的阈值电压,数据写入模块(3)用于将数据信号(Data)写到驱动晶体管(DTFT)的栅极上,发光控制模块(4)用于控制驱动晶体管(DTFT)以驱动发光器件(D)发光。该像素电路使发光器件(D)在发光时的驱动电流仅与数据信号(Data)的电压和参考信号(Vref)的电压有关,而与驱动晶体管(DTFT)的阈值电压和第一电源(VDD)的电压无关,从而能够避免驱动晶体管(DTFT)的阈值电压和第一电源(VDD)的IR压降对于流过发光器件(D)的电流的影响,提高了显示装置的显示区域的图像亮度的均匀性。

Description

像素电路以及像素电路的驱动方法
本申请要求2015年5月22日递交的中国专利申请第201510268476.8号的优先权,在此全文引用上述中国专利申请所公开的内容以作为本申请的一部分。
技术领域
本发明涉及有机电致发光技术领域,尤其涉及像素电路及其驱动方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)显示器是当今平板显示器的热点之一。与液晶显示器(Liquid Crystal Display,简称LCD)相比,OLED显示器具有能耗低、生产成本低、自发光、视角宽及响应速度快等优点。目前,在移动电话、个人数字助理PDA、数码相机等电子设备中,OLED显示器已经开始取代传统的LCD显示屏。像素电路设计是OLED显示器的核心技术内容。
与LCD利用稳定的电压来控制亮度不同,OLED是电流驱动的,需要稳定的电流来控制发光。由于工艺制作和器件老化等原因,OLED显示器的像素电路中的驱动晶体管的阈值电压Vth存在不均匀性,从而导致流过每个像素点的OLED的电流发生变化,使得显示亮度不均,从而影响整个图像的显示效果。
图1示出了现有的用于OLED显示器的像素电路的一个例子。如图1所示,该像素电路包括一个驱动晶体管M2、一个P型开关晶体管M1和一个存储电容Cs。当选择某一行扫描线Scan时,该扫描线Scan被输入低电平信号,P型开关晶体管M1导通,数据线Data的电压被存储在存储电容Cs上。当扫描线Scan被输入的信号变为高电平时,P型开关晶体管M1截止,存储电容Cs所存储的电压施加在驱动晶体管M2的栅极上,使得驱动晶体管M2产生电流以驱动OLED,从而保证OLED在一帧内持续发光。驱动晶体管M2的饱和电流公式为 IOLED=K(VSG-Vth)2,其中,VSG表示栅源电压,Vth表示阈值电压。如前所述,由于工艺制作和器件老化等原因,驱动晶体管M2的阈值电压Vth会漂移。而且,电流与电源电压相关,由于压降(IR Drop)的原因,源极电压Vs也会不同。这样,流过每个OLED的电流将随着驱动晶体管的阈值电压Vth和驱动晶体管的源极电压VDD的变化而变化,从而导致图像亮度不均匀。
发明内容
有鉴于此,本发明的实施例提供了一种像素电路、像素电路的驱动方法及相关装置,以提高显示装置的显示区域的图像亮度的均匀性。
根据本发明的一个实施例,提供了一种像素电路,包括:驱动晶体管、复位模块、补偿模块、数据写入模块、发光控制模块和发光器件;
其中,所述复位模块包括:用于接收复位控制信号的控制端、用于接收参考信号的输入端、以及与所述驱动晶体管的栅极相连的输出端,所述复位模块用于在所述复位控制信号的控制下,将所述参考信号提供给所述驱动晶体管的栅极;
所述补偿模块连接在所述驱动晶体管的栅极与源极之间,用于在所述复位模块将所述参考信号提供给所述驱动晶体管的栅极后,存储所述驱动晶体管的阈值电压;
所述数据写入模块包括:用于接收写入控制信号的控制端、用于接收数据信号的输入端以及与所述驱动晶体管的栅极相连的输出端,所述数据写入模块用于在所述写入控制信号的控制下,将所述数据信号写到所述驱动晶体管的栅极上;
所述发光控制模块包括第一输入端、第二输入端、第一控制端、第二控制端、第一输出端和第二输出端,其中,所述第一输入端与第一电源相连,所述第二输入端与所述驱动晶体管的漏极相连,所述第一控制端用于接收第一发光控制信号,所述第二控制端用于接收第二发光控制信号,所述第一输出端与所 述驱动晶体管的源极相连,所述第二输出端与所述发光器件的一端相连,所述发光器件的另一端与第二电源相连;所述发光控制模块用于在所述复位模块将所述参考信号提供给所述驱动晶体管的栅极时,在所述第一发光控制信号的控制下,导通所述驱动晶体管和所述发光器件,并在所述数据写入模块将所述数据信号写到所述驱动晶体管的栅极上之后,在所述第一发光控制信号和所述第二发光控制信号的控制下,控制所述驱动晶体管来驱动所述发光器件发光。
在一个实施方式中,所述复位模块包括:第一开关晶体管;其中,所述第一开关晶体管的栅极用于接收所述复位控制信号,漏极用于接收所述参考信号,源极与所述驱动晶体管的栅极相连。
在一个实施方式中,所述数据写入模块包括:第二开关晶体管;其中,所述第二开关晶体管的栅极用于接收所述写入控制信号,源极用于接收所述数据信号,漏极与所述驱动晶体管的栅极相连。
在一个实施方式中,所述补偿模块包括:连接在所述驱动晶体管的栅极与源极之间的第一电容。
在一个实施方式中,所述发光控制模块包括:第三开关晶体管、第四开关晶体管和第二电容;其中,所述第三开关晶体管的栅极用于接收所述第一发光控制信号,源极与所述驱动晶体管的漏极相连,漏极与所述发光器件连接;所述第四开关晶体管的栅极用于接收所述第二发光控制信号,源极与所述第一电源相连,漏极与所述驱动晶体管的源极相连;所述第二电容连接在所述第四开关晶体管的源极与漏极之间。
在一个实施方式中,所述驱动晶体管是P型晶体管。
在一个实施方式中,第一、第二、第三、第四开关晶体管是P型晶体管。
根据本发明的另一个实施例,提供了一种上述像素电路的驱动方法,包括:
复位模块在复位控制信号的控制下,将参考信号提供给驱动晶体管的栅极;
补偿模块存储驱动晶体管的阈值电压;
发光控制模块在第一发光控制信号的控制下,导通驱动晶体管和发光器件;
数据写入模块在写入控制信号的控制下,将数据信号写到驱动晶体管的栅极上;
发光控制模块在第一发光控制信号和第二发光控制信号的控制下,控制驱动晶体管以驱动发光器件发光。
根据本发明的再一个实施例,提供了一种有机电致发光显示面板,包括上述的像素电路。
根据本发明的再一个实施例,提供了一种显示装置,包括上述的有机电致发光显示面板。
根据本发明的实施例的像素电路包括驱动晶体管、复位模块、补偿模块、数据写入模块、发光控制模块和发光器件,其中,复位模块在复位控制信号的控制下,将参考信号提供给驱动晶体管的栅极,补偿模块在复位模块将参考信号提供给驱动晶体管的栅极后,存储驱动晶体管的阈值电压,数据写入模块在写入控制信号的控制下,将数据信号写到驱动晶体管的栅极,发光控制模块在复位模块将参考信号提供给驱动晶体管的栅极时,在第一发光控制信号的控制下,导通驱动晶体管和发光器件,并在数据写入模块将数据信号写到驱动晶体管的栅极上之后,在第一发光控制信号和第二发光控制信号的控制下,控制驱动晶体管以驱动发光器件发光。根据本发明的实施例的像素电路通过上述各模块的配合工作,使得像素电路在发光显示时,驱动晶体管驱动发光器件发光的驱动电流仅与数据信号的电压和参考信号的电压有关,而与驱动晶体管的阈值电压以及第一电源的电压无关,从而避免驱动晶体管的阈值电压和第一电源的IR压降对流过发光器件的电流的影响,使得驱动晶体管的工作电流保持一致,提高了显示装置的显示区域的图像亮度的均匀性。
附图说明
为了更清楚地说明本发明的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本发明的一些实施例,而非 对本发明的限制,其中:
图1是现有的像素电路的一个示例的示意图;
图2是根据本发明的实施例的像素电路的示意性方框图;
图3a是根据本发明的一个实施例的像素电路的电路图;
图3b是根据本发明的另一个实施例的像素电路的电路图;
图4a是图3a所示的像素电路的输入信号的示意性时序图;
图4b是图3b所示的像素电路的输入信号的示意性时序图;
图5是根据本发明的实施例的像素电路的驱动方法的示意性流程图。
具体实施方式
为了使本发明的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其他实施例,也都属于本发明保护的范围。
图2示出了根据本发明的实施例的像素电路。如图2所示,像素电路包括驱动晶体管DTFT、复位模块1、补偿模块2、数据写入模块3、发光控制模块4和发光器件D。
复位模块1具有控制端1a、输入端1b和输出端1c。控制端1a用于接收复位控制信号Scan1,输入端1b用于接收参考信号Vref,输出端1c与驱动晶体管DTFT的栅极相连。复位模块1根复位控制信号Scan1的控制下,将参考信号Vref提供给驱动晶体管DTFT的栅极。
补偿模块2连接在驱动晶体管DTFT的栅极与源极之间。在复位模块1将参考信号Vref提供给驱动晶体管DTFT的栅极后,补偿模块2可存储驱动晶体管DTFT的阈值电压Vth
数据写入模块3具有控制端3a、输入端3b和输出端3c。控制端3a用于接 收写入控制信号Scan2,输入端3b接收数据信号Data,输出端3c与驱动晶体管DTFT的栅极相连。数据写入模块3在写入控制信号Scan2的控制下,将数据信号Data写到驱动晶体管DTFT的栅极上。
发光控制模块4具有第一输入端4a、第二输入端4b、第一控制端4c、第二控制端4d、第一输出端4e和第二输出端4f。第一输入端4a与第一电源VDD相连,第二输入端4b与驱动晶体管DTFT的漏极相连。第一控制端4c用于接收第一发光控制信号EM1,第二控制端4d用于接收第二发光控制信号EM2。第一输出端4e与驱动晶体管DTFT的源极相连,第二输出端4f与发光器件D的一端相连。发光器件D的另一端与第二电源VSS相连。当复位模块1将参考信号Vref提供给驱动晶体管DTFT的栅极时,发光控制模块4在第一发光控制信号EM1的控制下,导通驱动晶体管DTFT和发光器件D。在数据写入模块3将数据信号Data写入到驱动晶体管DTFT的栅极之后,发光控制模块4在第一发光控制信号EM1和第二发光控制信号EM2的控制下,控制驱动晶体管DTFT以驱动发光器件D发光。
根据本发明的实施例的像素电路通过复位模块向驱动晶体管的栅极提供参考信号,补偿模块存储驱动晶体管的阈值电压,数据写入模块向驱动晶体管的栅极写入数据信号,发光控制模块在第一发光控制信号的控制下,导通驱动晶体管和发光器件,并在第一发光控制信号和第二发光控制信号的控制下,控制驱动晶体管以驱动发光器件发光,能够在像素电路进行发光显示时,使驱动晶体管驱动发光器件发光的驱动电流仅与数据信号的电压和参考信号的电压有关,而与驱动晶体管的阈值电压和第一电源的电压无关,从而避免驱动晶体管的阈值电压和第一电源的IR压降对流过发光器件的电流的影响,使驱动晶体管的工作电流保持一致,提高显示装置的显示区域的图像亮度的均匀性。
下面将详细说明根据本发明的实施例的像素电路的具体实现。需要说明的是,这些具体实现是为了更好地说明本发明的实施例,而不应当被认为是对本发明的限制。
图3a、图3b示出了根据本发明的不同实施例的像素电路的具体电路图,其区别仅在于所使用的晶体管的类型不同。
在根据本发明的实施例的像素电路中,驱动晶体管DTFT可以是P型晶体管。P型晶体管包括增强型P型晶体管和消耗型P型晶体管。采用任意类型的P型晶体管作为驱动晶体管的像素电路都可具有补偿阈值电压和IR压降的功能。
另外,在根据本发明的实施例的像素电路中,由于P型晶体管的阈值电压一般为负值,因此,为了保证驱动晶体管DTFT能正常工作,第一电源VDD的电压一般为正电压,第二电源VSS的电压一般接地或为负值。
需要说明的是,在根据本发明的实施例的像素电路中,复位信号Vref的电压Vr和第一电源VDD的电压Vdd应当满足以下条件:Vdd>Vr-Vth,其中Vth是驱动晶体管DTFT的阈值电压。在具体实施时,可以通过调节第一电源VDD的电压Vdd和复位信号Vref的电压Vr来调整对阈值电压Vth的补偿范围。另外,数据信号Data的电压Vdata的工作范围与复位信号Vref的电压Vr相关,Vr越高,则Vdata的最小值越大。
进一步地,在根据本发明的实施例的像素电路中,发光器件D可采用有机发光二极管OLED。如图3a和3b所示,有机发光二极管OLED的阳极与发光控制模块4相连,阴极与第二电源VSS相连。有机发光二极管OLED在驱动晶体管DTFT的饱和电流的作用下实现发光显示。
参见图3a和图3b,复位模块1可包括第一开关晶体管T1。第一开关晶体管T1的栅极1a用于接收复位控制信号Scan1,漏极1b用于接收参考信号Vref,源极1c与驱动晶体管DTFT的栅极相连。
在图3a中,第一开关晶体管T1是P型晶体管。在这种情况下,当复位控制信号Scan1为低电平时,第一开关晶体管T1处于导通状态。当复位控制信号Scan1为高电平时,第一开关晶体管T1处于截止状态。在图3b中,第一开关晶体管T1是N型晶体管。在这种情况下,当复位控制信号Scan1为高电平时,第一开关晶体管T1处于导通状态。当复位控制信号Scan1为低电平时,第一开关 晶体管T1处于截止状态。
当第一开关晶体管T1在复位控制信号Scan1的控制下处于导通状态时,参考信号Vref通过导通的第一开关晶体管T1被提供给驱动晶体管DTFT的栅极,从而对驱动晶体管DTFT的栅极进行复位。
以上仅仅给出了像素电路中的复位模块1的具体实现的一个例子,本领域技术人员应当知道,复位模块1并不限于该例子,也可以采用其它结构。
参见图3a和图3b,数据写入模块3可包括第二开关晶体管T2。第二开关晶体管T2的栅极3a用于接收写入控制信号Scan2,源极3b用于接收数据信号Data,漏极3c与驱动晶体管DTFT的栅极相连。
在图3a中,第二开关晶体管T2是P型晶体管。在这种情况下,当写入控制信号Scan2为低电平时,第二开关晶体管T2处于导通状态。当写入控制信号Scan2为高电平时,第二开关晶体管T2处于截止状态。在图3b中,第二开关晶体管T2是N型晶体管。在这种情况下,当写入控制信号Scan2为高电平时,第二开关晶体管T2处于导通状态。当写入控制信号Scan2为低电平时,第二开关晶体管T2处于截止状态。
当第二开关晶体管T2在写入控制信号Scan2的控制下处于导通状态时,数据信号Data通过导通的第二开关晶体管T2传输到驱动晶体管DTFT的栅极。
以上仅给出了像素电路中的数据写入模块3的具体实现的一个例子,本领域技术人员应当知道,数据写入模块3并不限于该例子,也可以采用其它结构。
再次参见图3a和图3b,补偿模块2可包括连接在驱动晶体管DTFT的栅极与源极之间的第一电容C1。当第一开关晶体管T1在复位控制信号Scan1的控制下处于导通状态时,复位信号Vref通过导通的第一开关晶体管T1提供给驱动晶体管DTFT的栅极,驱动晶体管DTFT导通。发光控制模块4在第一发光控制信号EM1的控制下,导通驱动晶体管和发光器件。第一电容C1开始充电,直至第一电容C1两端的电压差等于驱动晶体管DTFT的阈值电压时停止充电。这样,驱动晶体管DTFT的阈值电压被存储在第一电容C1上,以便对驱动晶体 管DTFT的阈值电压进行补偿。
以上仅仅给出了像素电路中的补偿模块2的具体实现的一个例子,本领域技术人员应当知道,补偿模块2并不限于该例子,也可以采用其它结构。
另外,参见图3a和图3b,发光控制模块4可包括第三开关晶体管T3、第四开关晶体管T4和第二电容C2。第三开关晶体管T3的栅极4c用于接收第一发光控制信号EM1,源极4b与驱动晶体管DTFT的漏极相连,漏极4f与发光器件D连接。第四开关晶体管T4的栅极4d用于接收第二发光控制信号EM2,源极4a与第一电源VDD相连,漏极4e与驱动晶体管DTFT的源极相连。第二电容C2连接在第四开关晶体管T4的源极4a与漏极4e之间。
在图3a中,第三开关晶体管T3是P型晶体管。在这种情况下,当第一发光控制信号EM1为低电平时,第三开关晶体管T3处于导通状态。当第一发光控制信号EM1为高电平时,第三开关晶体管T3处于截止状态。在图3b中,第三开关晶体管T3是N型晶体管。在这种情况下,当第一发光控制信号EM1为高电平时,第三开关晶体管T3处于导通状态。当第一发光控制信号EM1为低电平时,第三开关晶体管T3处于截止状态。
进一步地,在图3a中,第四开关晶体管T4是P型晶体管。在这种情况下,当第二发光控制信号EM2为低电平时,第四开关晶体管T4处于导通状态。当第二发光控制信号EM2为高电平时,第四开关晶体管T4处于截止状态。在图3b中,第四开关晶体管T4是N型晶体管。在这种情况下,当第二发光控制信号EM2为高电平时,第四开关晶体管T4处于导通状态。当第二发光控制信号EM2为低电平时,第四开关晶体管T4处于截止状态。
在图3a或图3b所示的像素电路中,当复位模块1将参考信号Vref提供给驱动晶体管DTFT的栅极时,第三开关晶体管T3在第一发光控制信号EM1的控制下处于导通状态,驱动晶体管DTFT导通。这样,驱动晶体管DTFT的阈值电压可被存储在第一电容C1中。当数据写入模块3将数据信号Data提供给驱动晶体管DTFT的栅极后,第三开关晶体管T3在第一发光控制信号EM1的 控制下导通,同时第四开关晶体管T4在第二发光控制信号EM2的控制下导通。第一电源VDD与第二电源VSS通过第三开关晶体管T3、驱动晶体管DTFT和第四开关晶体管T4和发光器件导通,从而驱动晶体管DTFT能够驱动发光器件D发光。在发光过程中,由于第一电容C1的作用,驱动电流与驱动晶体管DTFT的阈值电压无关,进一步地,由于第一电容C1和第二电容C2的共同作用,驱动电流与第一电源VDD的电压也无关。这样,避免了驱动晶体管DTFT的阈值电压和第一电源VDD的IR压降对流过发光器件D的驱动电流的影响,从而使驱动晶体管DTFT的工作电流保持一致,提高了显示装置的显示区域的图像亮度的均匀性。
以上仅仅给出了像素电路中的发光控制模块4的具体实现的一个例子,本领域技术人员应当知道,发光控制模块4并不限于该例子,也可以采用其它结构。
根据本发明的实施例的像素电路,由于第一电容C1、第二电容C2、第一开关晶体管T1、第二开关晶体管T2、第三开关晶体管T3、第四开关晶体管T4以及驱动晶体管DTFT之间的相互配合可以补偿驱动晶体管DTFT的阈值电压的漂移以及IR压降,因此,在发光显示时,可以使驱动晶体管DTFT驱动发光器件D发光的工作电流仅与数据信号Data的电压Vdata和参考信号Vref的电压Vr有关,而与驱动晶体管DTFT的阈值电压和第一电源VDD无关,从而避免阈值电压和IR压降对于流过发光器件D的电流的影响,使驱动发光器件D发光的工作电流保持一致,提高了显示装置的显示区域的图像亮度的均匀性。
本领域技术人员应当知道,在本发明的实施例中提到的驱动晶体管和开关晶体管可以是薄膜晶体管TFT,也可以是金属氧化物半导体场效应管MOS。
为了简化制作工艺,在根据本发明的实施例的像素电路中,第一、第二、第三和第四开关晶体管可以都是P型晶体管或者N型晶体管。
进一步地,由于驱动晶体管DTFT是P型晶体管,因此,第一、第二、第三和第四开关晶体管也采用P型晶体管,以简化像素电路的制作工艺流程。
下面分别以图3a和图3b所示的像素电路为例,对根据本发明的实施例的像素电路的工作过程进行描述。在以下的描述中,以1表示高电平信号,0表示低电平信号。
实例一:图3a所示的像素电路的工作过程
在图3a所示的像素电路中,驱动晶体管DTFT和所有的开关晶体管T1、T2、T3、T4均为P型晶体管。P型晶体管在高电平信号下截止,在低电平信号下导通。图4示出了该像素电路的输入信号的时序图。下面具体描述像素电路在T1、T2和T3三个阶段的工作过程。
在T1阶段,Scan1=0,Scan2=1,EM1=0,EM2=1。第一开关晶体管T1和第三开关晶体管T3导通,驱动晶体管DTFT的栅极电压为参考信号Vref的电压Vr。第一电容C1开始充电,直到第一电容C1两端的电压差等于驱动晶体管DTFT的阈值电压Vth为止。此时,驱动晶体管DTFT的栅极电压为Vr,源极电压为(Vr-Vth)。
在T2阶段,Scan1=1,Scan2=0,EM1=1,EM2=1。第二开关晶体管T2导通,驱动晶体管DTFT的栅极电压变为数据信号Data的电压Vdata。根据电容电量守恒原理以及第一电容C1和第二电容C2的分压作用,驱动晶体管DTFT的源极电压变为(Vr-Vth+(c1/(c1+c2)×(Vdata-Vr))),其中c1和c2分别为第一电容C1和第二电容C2的电容值。
在T3阶段,Scan1=1,Scan2=1,EM1=0,EM2=0。第三开关晶体管T3和第四开关晶体管T4导通,驱动晶体管DTFT的源极电压变为第一电源VDD的电压Vdd。根据电容电量守恒原理,驱动晶体管DTFT的栅极电压由上一阶段的Vdata变为((c2/(c1+c2))×(Vdata-Vr)+Vdd+Vth)。在此阶段,驱动晶体管DTFT处于饱和状态。根据饱和状态的电流特性可知,流过驱动晶体管DTFT且用于驱动有机发光二极管OLED发光的工作电流IOLED被计算为:
IOLED=K×(Vgs–Vth)2
=K×(c2/(c1+c2))×(Vdata-Vr)+Vdd+Vth-Vdd–Vth)2
=K×(c2×(Vdata-Vr)/(c1+c2))2
其中K表示结构参数,在相同结构中,K的值相对稳定,可被认为是常量。因此,可以看出,有机发光二极管OLED的工作电流IOLED不会受到驱动晶体管DTFT的阈值电压Vth的影响,并且与第一电源VDD的电压Vdd无关,而仅与数据信号Data的电压Vdata和参考信号Vref的电压Vr有关,从而消除了由于工艺制作和长时间的操作而造成的驱动晶体管的阈值电压漂移以及第一电源的IR压降对发光器件D的工作电流造成的影响,改善了显示区域的显示不均匀性。
实例二:图3b所示的像素电路的工作过程
在图3b所示的像素电路中,驱动晶体管DTFT是P型晶体管,而所有的开关晶体管T1、T2、T3、T4是N型晶体管。P型晶体管在高电平信号下截止,在低电平信号下导通。N型晶体管在低电平信号下截止,在高电平信号下导通。图4b示出了该像素电路的输入信号的时序图。下面具体描述像素电路在T1、T2和T3三个阶段的工作过程。
在T1阶段,Scan1=1,Scan2=0,EM1=1,EM2=0。第一开关晶体管T1和第三开关晶体管T3导通,驱动晶体管DTFT的栅极电压为参考信号Vref的电压Vr。第一电容C1开始充电,直至第一电容C1两端的电压差等于驱动晶体管DTFT的阈值电压Vth为止。此时,驱动晶体管DTFT的栅极电压为Vr,源极电压为Vr-Vth
在T2阶段,Scan1=0,Scan2=1,EM1=0,EM2=0。第二开关晶体管T2导通,驱动晶体管DTFT的栅极电压变为数据信号Data的电压Vdata。根据电容电量守恒原理以及第一电容C1和第二电容C2的分压作用,驱动晶体管DTFT的源极电压变为(Vr-Vth+(c1/(c1+c2)×(Vdata-Vr))),其中c1和c2分别为第一电容C1和第二电容C2的电容值。
在T3阶段,Scan1=0,Scan2=0,EM1=1,EM2=1。第三开关晶体管T3和第四开关晶体管T4导通,驱动晶体管DTFT的源极电压变为第一电源VDD的电压Vdd。根据电容电量守恒原理,驱动晶体管DTFT的栅极电压由上一阶段 的Vdata变为((c2/(c1+c2))×(Vdata-Vr)+Vdd+Vth)。在此阶段,驱动晶体管DTFT处于饱和状态,根据饱和状态的电流特性可知,流过驱动晶体管DTFT且用于驱动有机发光二极管OLED发光的工作电流IOLED被计算为:
IOLED=K×(Vgs–Vth)2
=K×((c2/(c1+c2))×(Vdata-Vr)+Vdd+Vth-Vdd–Vth)2
=K×(c2×(Vdata-Vr)/(c1+c2))2
其中,K表示结构参数,在相同的结构中,K的值相对稳定,可被认为是常量。因此可以看出,有机发光二极管OLED的工作电流IOLED不会受到驱动晶体管DTFT的阈值电压Vth的影响,并且与第一电源VDD的电压Vdd无关,而仅仅与数据信号Data的电压Vdata和参考信号Vref的电压Vr有关,从而消除了由于工艺制作和长时间的操作而造成的驱动晶体管的阈值电压漂移以及第一电源的IR压降对发光器件D的工作电流造成的影响,改善了显示区域的显示不均匀性。
基于同一发明构思,图5示出了根据本发明的实施例的像素电路的驱动方法。
如图5所示,在步骤S501,复位模块1在复位控制信号Scan1的控制下,将参考信号Vref提供给驱动晶体管DTFT的栅极。然后,补偿模块2存储驱动晶体管DTFT的阈值电压,发光控制模块4在第一发光控制信号EM1的控制下,导通驱动晶体管DTFT和发光器件D。步骤S501表示复位补偿阶段。
在步骤S502,数据写入模块3在写入控制信号Scan2的控制下,将数据信号Data写到驱动晶体管DTFT的栅极上。此时,补偿模块2仍然存储驱动晶体管DTFT的阈值电压。步骤S502表示数据写入阶段。
在步骤S503,补偿模块2仍然存储驱动晶体管DTFT的阈值电压,发光控制模块4在第一发光控制信号EM1和第二发光控制信号EM2的控制下,控制驱动晶体管DTFT以驱动发光器件D发光。步骤S503表示发光阶段。
基于同一发明构思,根据本发明的实施例,还提供了一种有机电致发光显 示面板,其包括根据本发明的实施例的像素电路。由于有机电致发光显示面板的工作原理与像素电路类似,因此,有机电致发光显示面板中的像素电路的实现可以参见在前面实施例中描述的像素电路的实现,在此不再赘述。
基于同一发明构思,根据本发明的实施例,还提供了一种显示装置,其包括根据本发明的实施例的有机电致发光显示面板。显示装置可以是显示器、移动电话、电视机、笔记本电脑、电脑一体机等。显示装置的其它组成部分对于本领域技术人员来说是已知的,在此不再赘述,并且这些组成部分也不应当被认为是对本发明的限制。
以上对本发明的若干实施例进行了详细描述,但显然,本领域技术人员可以在不脱离本发明的精神和范围的情况下对本发明的实施例进行各种修改和变型。本发明的保护范围由所附的权利要求限定。

Claims (10)

  1. 一种像素电路,包括:驱动晶体管、复位模块、补偿模块、数据写入模块、发光控制模块和发光器件;
    其中,所述复位模块包括:用于接收复位控制信号的控制端、用于接收参考信号的输入端、与所述驱动晶体管的栅极相连的输出端,所述复位模块用于在所述复位控制信号的控制下,将所述参考信号提供给所述驱动晶体管的栅极;
    所述补偿模块连接在所述驱动晶体管的栅极与源极之间,用于在所述复位模块将所述参考信号提供给所述驱动晶体管的栅极后,存储所述驱动晶体管的阈值电压;
    所述数据写入模块包括:用于接收写入控制信号的控制端、用于接收数据信号的输入端、与所述驱动晶体管的栅极相连的输出端,所述数据写入模块用于在所述写入控制信号的控制下,将所述数据信号写到所述驱动晶体管的栅极上;
    所述发光控制模块包括:第一输入端、第二输入端、第一控制端、第二控制端、第一输出端和第二输出端,其中,所述第一输入端与第一电源相连,所述第二输入端与所述驱动晶体管的漏极相连,所述第一控制端用于接收第一发光控制信号,所述第二控制端用于接收第二发光控制信号,所述第一输出端与所述驱动晶体管的源极相连,所述第二输出端与所述发光器件的一端相连,所述发光器件的另一端与第二电源相连,
    所述发光控制模块用于在所述复位模块将所述参考信号提供给所述驱动晶体管的栅极时,在所述第一发光控制信号的控制下,导通所述驱动晶体管和所述发光器件,并在所述数据写入模块将所述数据信号写到所述驱动晶体管的栅极之后,在所述第一发光控制信号和所述第二发光控制信号的控制下,控制所述驱动晶体管以驱动所述发光器件发光。
  2. 如权利要求1所述的像素电路,其中,所述复位模块包括:第一开关晶体管,其中,所述第一开关晶体管的栅极用于接收所述复位控制信号,漏极用 于接收所述参考信号,源极与所述驱动晶体管的栅极相连。
  3. 如权利要求1所述的像素电路,其中,所述数据写入模块包括:第二开关晶体管,其中,所述第二开关晶体管的栅极用于接收所述写入控制信号,源极用于接收所述数据信号,漏极与所述驱动晶体管的栅极相连。
  4. 如权利要求1所述的像素电路,其中,所述补偿模块包括:连接在所述驱动晶体管的栅极与源极之间的第一电容。
  5. 如权利要求1所述的像素电路,其中,所述发光控制模块包括:第三开关晶体管、第四开关晶体管和第二电容;
    其中,所述第三开关晶体管的栅极用于接收所述第一发光控制信号,源极与所述驱动晶体管的漏极相连,漏极与所述发光器件连接;
    所述第四开关晶体管的栅极用于接收所述第二发光控制信号,源极与所述第一电源相连,漏极与所述驱动晶体管的源极相连;
    所述第二电容连接在所述第四开关晶体管的源极与漏极之间。
  6. 如权利要求1-5任一项所述的像素电路,其中,所述驱动晶体管是P型晶体管。
  7. 如权利要求6所述的像素电路,其中,所有开关晶体管均为P型晶体管。
  8. 一种如权利要求1-7任一项所述的像素电路的驱动方法,包括:
    所述复位模块在所述复位控制信号的控制下,将所述参考信号提供给所述驱动晶体管的栅极;
    所述补偿模块存储所述驱动晶体管的阈值电压;
    所述发光控制模块在所述第一发光控制信号的控制下,导通所述驱动晶体管和所述发光器件;
    所述数据写入模块在所述写入控制信号的控制下,将所述数据信号写到所述驱动晶体管的栅极上;
    所述发光控制模块在所述第一发光控制信号和所述第二发光控制信号的控制下,控制所述驱动晶体管以驱动所述发光器件发光。
  9. 一种有机电致发光显示面板,包括:如权利要求1-7任一项所述的像素电路。
  10. 一种显示装置,包括:如权利要求9所述的有机电致发光显示面板。
PCT/CN2015/089913 2015-05-22 2015-09-18 像素电路以及像素电路的驱动方法 WO2016187990A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/037,627 US20170116918A1 (en) 2015-05-22 2015-09-18 Pixel circuit and driving method for the pixel circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510268476.8A CN104809989A (zh) 2015-05-22 2015-05-22 一种像素电路、其驱动方法及相关装置
CN201510268476.8 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016187990A1 true WO2016187990A1 (zh) 2016-12-01

Family

ID=53694778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089913 WO2016187990A1 (zh) 2015-05-22 2015-09-18 像素电路以及像素电路的驱动方法

Country Status (3)

Country Link
US (1) US20170116918A1 (zh)
CN (1) CN104809989A (zh)
WO (1) WO2016187990A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749278A (zh) * 2017-11-01 2018-03-02 京东方科技集团股份有限公司 显示面板、像素补偿电路及其控制方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809989A (zh) * 2015-05-22 2015-07-29 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN105096831B (zh) * 2015-08-21 2018-03-27 京东方科技集团股份有限公司 像素驱动电路、方法、显示面板和显示装置
CN105139807B (zh) * 2015-10-22 2019-01-04 京东方科技集团股份有限公司 一种像素驱动电路、显示装置及其驱动方法
CN105243986A (zh) * 2015-11-12 2016-01-13 京东方科技集团股份有限公司 像素补偿电路及其驱动方法、阵列基板以及显示装置
KR20170074618A (ko) * 2015-12-22 2017-06-30 엘지디스플레이 주식회사 유기 발광 표시 장치의 서브-화소 및 이를 포함하는 유기 발광 표시 장치
CN105405399B (zh) 2016-01-05 2019-07-05 京东方科技集团股份有限公司 一种像素电路、其驱动方法、显示面板及显示装置
CN105702214B (zh) * 2016-04-12 2018-03-06 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN105741743B (zh) * 2016-05-11 2019-01-04 京东方科技集团股份有限公司 像素驱动电路、像素结构及像素驱动方法
CN105845081A (zh) * 2016-06-12 2016-08-10 京东方科技集团股份有限公司 像素电路、显示面板及驱动方法
US10748486B2 (en) * 2016-06-20 2020-08-18 Sony Corporation Display apparatus and electronic apparatus
CN106205491B (zh) * 2016-07-11 2018-09-11 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN106297663B (zh) 2016-09-22 2017-08-11 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN106409227A (zh) * 2016-12-02 2017-02-15 武汉华星光电技术有限公司 像素电路及其驱动方法和有机发光显示器
CN106558287B (zh) * 2017-01-25 2019-05-07 上海天马有机发光显示技术有限公司 有机发光像素驱动电路、驱动方法及有机发光显示面板
CN108630141B (zh) * 2017-03-17 2019-11-22 京东方科技集团股份有限公司 像素电路、显示面板及其驱动方法
CN107170410B (zh) * 2017-06-28 2018-10-19 武汉华星光电半导体显示技术有限公司 像素补偿电路及显示装置
US10210799B2 (en) 2017-06-28 2019-02-19 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Pixel compensation circuit and display device
CN107103882A (zh) * 2017-06-29 2017-08-29 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示面板
WO2019014935A1 (en) * 2017-07-21 2019-01-24 Huawei Technologies Co., Ltd. ADVANCED PIXEL CIRCUIT FOR DISPLAY
CN107680530A (zh) * 2017-09-28 2018-02-09 深圳市华星光电半导体显示技术有限公司 像素补偿电路、扫描驱动电路及显示面板
CN109599062A (zh) * 2017-09-30 2019-04-09 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
US11348524B2 (en) 2017-09-30 2022-05-31 Boe Technology Group Co., Ltd. Display substrate and display device
CN109935207B (zh) 2017-12-15 2021-04-13 京东方科技集团股份有限公司 像素驱动电路、像素电路和显示装置及其驱动方法
CN107993612A (zh) * 2017-12-21 2018-05-04 信利(惠州)智能显示有限公司 一种amoled像素驱动电路及像素驱动方法
CN108154845A (zh) * 2018-03-15 2018-06-12 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法、显示装置
CN108766360B (zh) * 2018-05-23 2020-04-10 京东方科技集团股份有限公司 显示面板的驱动方法和显示装置
CN110164376B (zh) * 2018-08-22 2020-11-03 合肥视涯技术有限公司 一种有机发光显示装置的像素电路及其驱动方法
CN109473063B (zh) * 2018-12-06 2020-08-11 武汉华星光电半导体显示技术有限公司 像素补偿电路及像素补偿方法
WO2020148958A1 (ja) * 2019-01-16 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 電気光学装置及び電子機器
CN109493794B (zh) 2019-01-24 2020-05-29 鄂尔多斯市源盛光电有限责任公司 像素电路、像素驱动方法和显示装置
US10777124B1 (en) * 2019-03-12 2020-09-15 Mikro Mesa Technology Co., Ltd. Light-emitting device driving circuit
CN109754757B (zh) * 2019-03-28 2020-11-06 京东方科技集团股份有限公司 像素驱动电路、显示装置及像素驱动方法
CN110111742B (zh) * 2019-04-22 2020-09-01 武汉华星光电半导体显示技术有限公司 有机发光器件的像素电路及有机发光显示面板
CN110459169A (zh) * 2019-08-23 2019-11-15 云谷(固安)科技有限公司 一种数字驱动像素电路及其驱动方法和显示面板
CN110517641B (zh) * 2019-08-30 2021-05-14 京东方科技集团股份有限公司 像素电路、参数检测方法、显示面板和显示装置
CN111223447A (zh) * 2020-03-12 2020-06-02 武汉华星光电半导体显示技术有限公司 一种像素电路和显示面板
CN111179820A (zh) * 2020-03-12 2020-05-19 武汉华星光电半导体显示技术有限公司 一种像素电路及显示面板
CN111445858B (zh) * 2020-04-20 2024-09-03 昆山国显光电有限公司 像素电路及其驱动方法、显示装置
CN111489696A (zh) * 2020-06-12 2020-08-04 中国科学院微电子研究所 可应用于同时发光的像素电路及其驱动方法、显示装置
CN114822412B (zh) * 2020-06-29 2024-03-15 京东方科技集团股份有限公司 显示基板及显示装置
CN111724743A (zh) * 2020-07-21 2020-09-29 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN112133253A (zh) * 2020-09-22 2020-12-25 Oppo广东移动通信有限公司 像素驱动电路及显示设备、驱动方法
CN114360440B (zh) * 2020-09-30 2023-06-30 京东方科技集团股份有限公司 像素电路及其驱动方法、发光装置
CN112435624B (zh) * 2020-11-12 2022-09-02 合肥维信诺科技有限公司 像素驱动电路、像素驱动电路的驱动方法和显示面板
CN112509517B (zh) * 2020-11-26 2022-07-12 合肥维信诺科技有限公司 像素电路的驱动方法、显示面板
CN112669748B (zh) * 2020-12-23 2024-05-07 厦门天马微电子有限公司 像素驱动电路及其驱动方法、显示装置
CN112562595A (zh) * 2020-12-29 2021-03-26 福建华佳彩有限公司 一种高解析度补偿电路及其驱动方法
CN112735339A (zh) * 2020-12-31 2021-04-30 合肥视涯技术有限公司 一种数据电流产生电路、驱动方法、驱动芯片和显示面板
CN112908267B (zh) * 2021-02-02 2022-05-20 成都京东方光电科技有限公司 像素电路及驱动方法、显示装置
US11776476B2 (en) * 2021-07-08 2023-10-03 Lg Display Co., Ltd. Pixel circuit and display device including the same
CN113889041B (zh) * 2021-09-30 2022-09-27 晟合微电子(肇庆)有限公司 像素电路及显示装置
CN114882838A (zh) 2022-04-29 2022-08-09 天宜微电子(北京)有限公司 像素电路、显示装置及其驱动方法
CN114913802B (zh) * 2022-05-31 2024-06-21 Tcl华星光电技术有限公司 像素驱动电路和显示面板
US20240304153A1 (en) * 2022-06-24 2024-09-12 Yunnan Invensight Optoelectronics Technology Co., Ltd. Pixel circuit, driving method, and display device
CN115440167B (zh) * 2022-08-30 2023-11-07 惠科股份有限公司 像素电路、显示面板和显示装置
CN118679514A (zh) * 2023-01-03 2024-09-20 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145579A (ja) * 2008-12-17 2010-07-01 Sony Corp 表示装置、表示装置の駆動方法および電子機器
CN102956192A (zh) * 2011-08-17 2013-03-06 乐金显示有限公司 有机发光二极管显示装置
CN102982766A (zh) * 2012-12-10 2013-03-20 友达光电股份有限公司 一种像素补偿电路
CN103903556A (zh) * 2012-12-24 2014-07-02 乐金显示有限公司 有机发光二极管显示设备及其驱动方法
CN104809989A (zh) * 2015-05-22 2015-07-29 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962961B1 (ko) * 2008-06-17 2010-06-10 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
KR101142729B1 (ko) * 2010-03-17 2012-05-03 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
KR101692367B1 (ko) * 2010-07-22 2017-01-04 삼성디스플레이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN103035202A (zh) * 2012-12-25 2013-04-10 友达光电股份有限公司 一种像素补偿电路
CN104282263A (zh) * 2014-09-25 2015-01-14 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145579A (ja) * 2008-12-17 2010-07-01 Sony Corp 表示装置、表示装置の駆動方法および電子機器
CN102956192A (zh) * 2011-08-17 2013-03-06 乐金显示有限公司 有机发光二极管显示装置
CN102982766A (zh) * 2012-12-10 2013-03-20 友达光电股份有限公司 一种像素补偿电路
CN103903556A (zh) * 2012-12-24 2014-07-02 乐金显示有限公司 有机发光二极管显示设备及其驱动方法
CN104809989A (zh) * 2015-05-22 2015-07-29 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749278A (zh) * 2017-11-01 2018-03-02 京东方科技集团股份有限公司 显示面板、像素补偿电路及其控制方法

Also Published As

Publication number Publication date
CN104809989A (zh) 2015-07-29
US20170116918A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016187990A1 (zh) 像素电路以及像素电路的驱动方法
WO2017041453A1 (zh) 像素电路、其驱动方法及相关装置
CN107358915B (zh) 一种像素电路、其驱动方法、显示面板及显示装置
WO2016095477A1 (zh) 像素驱动电路、像素驱动方法和显示装置
WO2016173124A1 (zh) 像素电路、其驱动方法及相关装置
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
WO2016074359A1 (zh) 像素电路、有机电致发光显示面板、显示装置及其驱动方法
WO2018076719A1 (zh) 像素驱动电路及其驱动方法、显示面板和显示装置
WO2016188012A1 (zh) 像素电路、其驱动方法及显示装置
WO2017117940A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2017118055A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
CN104021754B (zh) 一种像素电路、有机电致发光显示面板及显示装置
WO2016161866A1 (zh) 像素电路及其驱动方法、显示装置
US10504436B2 (en) Pixel driving circuits, pixel driving methods and display devices
CN105575327B (zh) 一种像素电路、其驱动方法及有机电致发光显示面板
WO2016187991A1 (zh) 像素电路、驱动方法、有机电致发光显示面板及显示装置
WO2018149167A1 (zh) 像素驱动电路、其驱动方法及显示面板
WO2017024754A1 (zh) 像素电路及其驱动方法、阵列基板、显示装置
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2016045256A1 (zh) 像素电路及其发光器件驱动方法和有机电致发光显示面板
WO2016086626A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2016155161A1 (zh) Oeld像素电路、显示装置及控制方法
CN104217682A (zh) 一种像素电路、有机电致发光显示面板及显示装置
WO2019041823A1 (zh) 像素电路及其驱动方法、显示基板和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15037627

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893071

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15893071

Country of ref document: EP

Kind code of ref document: A1