WO2016188012A1 - 像素电路、其驱动方法及显示装置 - Google Patents

像素电路、其驱动方法及显示装置 Download PDF

Info

Publication number
WO2016188012A1
WO2016188012A1 PCT/CN2015/091727 CN2015091727W WO2016188012A1 WO 2016188012 A1 WO2016188012 A1 WO 2016188012A1 CN 2015091727 W CN2015091727 W CN 2015091727W WO 2016188012 A1 WO2016188012 A1 WO 2016188012A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching transistor
transistor
source
module
driving
Prior art date
Application number
PCT/CN2015/091727
Other languages
English (en)
French (fr)
Inventor
马占洁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/122,375 priority Critical patent/US9881550B2/en
Publication of WO2016188012A1 publication Critical patent/WO2016188012A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Definitions

  • the present invention relates to the field of organic electroluminescence technology, and in particular, to a pixel circuit, a driving method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • LCD liquid crystal display
  • OLEDs are current driven and require a constant current to control illumination. Due to the process process and device aging, etc., the threshold voltage Vth of the driving transistor of the pixel circuit may be non-uniform, which causes the current flowing through each pixel point OLED to change, so that the display brightness is uneven, thereby affecting the whole The display of the image. And because the current is related to the source of the drive tube, that is, the power supply voltage, IR Drop also causes current differences in different regions, which in turn causes uneven brightness of OLED devices in different regions.
  • FIG. 1 is a schematic structural view of a conventional pixel circuit.
  • the pixel circuit of 2M1C is composed of one driving transistor M2, one switching transistor M1 and one storage capacitor Cs.
  • the scanning line Scan selects a certain row, the scanning line Scan inputs a low level signal, and the P-type switching transistor M1 is turned on, the voltage of the data line Data is written into the storage capacitor Cs; when the line scanning is finished, the signal input by the scan line Scan becomes a high level, the P-type switching transistor M1 is turned off, and the gate voltage of the storage capacitor Cs is stored.
  • the driving transistor M2 is caused to generate a current to drive the OLED, ensuring that the OLED continues to emit light within one frame.
  • the threshold voltage Vth of the driving transistor M2 drifts due to process processes and device aging, etc.; and since the current is related to the power supply voltage, Vs is different due to IR Drop. This causes the current flowing through each of the OLEDs to vary with the threshold voltage Vth of the driving transistor and the source voltage VDD of the driving transistor, resulting in uneven brightness of the image.
  • embodiments of the present invention provide a pixel circuit, a driving method thereof, and a display device, which can effectively compensate for threshold voltage non-uniformity, drift, and current difference caused by OLED non-uniformity of a driving transistor, thereby improving display device display effect.
  • a pixel circuit provided by an embodiment of the present invention includes: a driving transistor, a capacitor connected between a source and a gate of the driving transistor, a light emitting device, a light emitting control module, a data writing module, and a compensation module,
  • the data writing module is configured to provide a data signal to a source of the driving transistor under control of the write control signal, and configured to add a reference voltage to the preset under the control of the compensation control signal a threshold voltage is supplied to a gate of the driving transistor; wherein an absolute value of a difference between the preset threshold voltage and a threshold voltage of the driving transistor is smaller than a preset range; and the light emission control module is configured to emit light Under the control of the control signal, the voltage of the first reference voltage source is supplied to the source of the driving transistor, and the driving current outputted by the drain of the driving transistor is output to the light emitting device to drive the light emitting device to emit light.
  • the first input end of the data writing module is configured to receive a write control signal
  • the second input end is configured to receive a data signal
  • the output end is connected to a source of the driving transistor
  • the data writing module And for providing the data signal to a source of the driving transistor under the control of the write control signal.
  • the first input end of the compensation module is configured to receive a reference voltage
  • the second input end is configured to receive a compensation control signal
  • the output end is connected to a gate of the driving transistor; And controlling, by the compensation control signal, the reference voltage plus a preset threshold voltage to the gate of the driving transistor; wherein an absolute value of a difference between the preset threshold voltage and a threshold voltage of the driving transistor is less than Preset range.
  • the first input end of the illuminating control module is connected to the first reference voltage source, the second input end is configured to receive the illuminating control signal, and the third input end is connected to the drain of the driving transistor, the first An output end is connected to a source of the driving transistor, a second output end is connected to one end of the light emitting device, and the other end of the light emitting device is connected to a second reference voltage source; a voltage of the first reference voltage source is supplied to a source of the driving transistor, and a driving current outputted from a drain of the driving transistor is output to the light emitting device to drive the light emitting device under control of an emission control signal Glowing.
  • the data writing module includes: a first switching transistor; wherein a gate of the first switching transistor is the data writing A first input of the module, the source is substantially the second input of the data write module, and the drain is the output of the data write module.
  • the compensation module includes: a second switching transistor and a third switching transistor; wherein a gate of the second switching transistor is the a second input end of the compensation module, a source is connected to a gate of the third switching transistor and a drain of the third switching transistor, and a drain is an output end of the compensation module; a source of the third switching transistor The first input end of the compensation module is extremely, and the threshold voltage of the third switching transistor is the preset threshold voltage.
  • the size and shape of the third switching transistor are the same as that of the driving transistor, and the position of the third switching transistor is close to the driving transistor. position.
  • the illuminating control module specifically includes: a fourth switching transistor and a fifth switching transistor; wherein, the gate of the fourth switching transistor a second input end of the illumination control module, the source is the first input end of the illumination control module, the drain is the first output end of the illumination control module; the gate of the fifth switching transistor is The gate of the fourth switching transistor is connected, the source is the third input end of the illumination control module, and the drain is the second output end of the illumination control module.
  • an absolute value of a difference between the preset threshold voltage and a threshold voltage of the driving transistor is less than 0.04V.
  • the compensation control signal is the write control signal.
  • the embodiment of the present invention further provides a driving method for any of the above pixel circuits, including a writing stage: the data writing module supplies the data signal to a source of the driving transistor under the control of the write control signal; under the control of the compensation control signal, Providing a reference voltage plus a preset threshold voltage to a gate of the driving transistor; wherein an absolute value of a difference between the preset threshold voltage and a threshold voltage of the driving transistor is less than a preset range; and an illuminating phase: The illuminating control module supplies the voltage of the first reference voltage source to the source of the driving transistor under the control of the illuminating control signal, and outputs a driving current outputted by the drain of the driving transistor to the illuminating The device drives the light emitting device to emit light.
  • a writing stage the data writing module supplies the data signal to a source of the driving transistor under the control of the write control signal; under the control of the compensation control signal, Providing a reference voltage plus a preset threshold voltage to a gate of the driving
  • the data writing module specifically includes: a first switching transistor; wherein the first switching transistor has a gate of the data writing module a first input end, the source is substantially the second input end of the data writing module, and the drain is an output end of the data writing module;
  • the first switching transistor is in an on state under the control of the illumination control signal, and the data signal is supplied to a source of the driving transistor.
  • the compensation module includes: a second switching transistor and a third switching transistor; wherein a gate of the second switching transistor is a second of the compensation module An input end, a source is connected to a gate of the third switching transistor and a drain of the third switching transistor, and a drain is an output end of the compensation module; a source of the third switching transistor is an excitation module a first input end, and a threshold voltage of the third switching transistor is the predetermined threshold voltage;
  • the second switching transistor is in an on state under the control of the compensation control signal, and the third switching transistor constitutes a conducting diode structure, and the reference voltage passes through the conducting The diode structure and the second switching transistor are input to the gate of the driving transistor.
  • the illuminating control module includes: a fourth switching transistor and a fifth switching transistor; wherein a gate of the fourth switching transistor is the illuminating control module a second input end, the source is the first input end of the illumination control module, the drain is the first output end of the illumination control module; the gate of the fifth switching transistor and the gate of the fourth switching transistor Connected, the source is the third input end of the illumination control module, and the drain is the second output end of the illumination control module;
  • the fourth switching transistor and the fifth switching transistor are both in an on state under the control of the illuminating control signal, and the voltage of the first reference voltage source is output to the fourth switching transistor a source of the driving transistor, and a driving current outputted from a drain of the driving transistor is output to the light emitting device via the fifth switching transistor.
  • an embodiment of the present invention further provides an organic electroluminescent display panel comprising a plurality of pixel units arranged in a matrix, each of the pixel units comprising any of the above pixel circuits provided by the embodiments of the present invention.
  • the compensation module of the pixel circuit includes: a second switching transistor and a third switching transistor; wherein a gate of the second switching transistor a second input end of the compensation module, a source is connected to a gate of the third switching transistor and a drain of the third switching transistor, and a drain is an output end of the compensation module; the third switch a source of the transistor is a first input end of the compensation module, and a threshold voltage of the third switching transistor is the predetermined threshold voltage; and two pixel units adjacent in a row direction are a pixel unit group, The two switching circuits in the same pixel unit group share the third switching transistor.
  • an embodiment of the present invention further provides a display device, including any of the above-mentioned organic electroluminescent display panels provided by the embodiments of the present invention.
  • the pixel circuit, the driving method thereof and the display device provided by the embodiment of the invention include a driving transistor, a capacitor connected between a source and a gate of the driving transistor, a light emitting device, a light emitting control module, and a data writing module. And compensation module.
  • the pixel circuit can compensate for the drift of the threshold voltage of the driving transistor by the cooperation of the above modules.
  • the driving current for driving the driving transistor to drive the light emitting device can be related only to the voltage of the data signal and the reference voltage, and
  • the threshold voltage of the driving transistor is independent of the first reference voltage source, and the influence of the threshold voltage and the IR drop on the current flowing through the light emitting device can be avoided, thereby keeping the operating current for driving the light emitting device to be uniform, and improving the brightness of the image of the display area of the display device. Uniformity.
  • FIG. 1 is a schematic structural view of a conventional pixel circuit
  • FIG. 2 is a schematic structural diagram of a pixel circuit according to an embodiment of the present invention.
  • 3a to 3d are respectively a schematic structural diagram of a pixel circuit according to an embodiment of the present invention.
  • FIG. 4a is a circuit timing diagram of the pixel circuit shown in FIG. 3c;
  • 4b is a circuit timing diagram of the pixel circuit shown in FIG. 3d;
  • FIG. 5 is a schematic flowchart diagram of a driving method of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a pixel unit group in an organic electroluminescence display panel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of another pixel unit group in an organic electroluminescence display panel according to an embodiment of the present invention.
  • the pixel circuit provided by the embodiment of the present invention includes: a driving transistor DT, a capacitor C connected between the source and the gate of the driving transistor DT, a light emitting device D1, an emission control module 1, and a data writing module 2 And compensation module 3.
  • the first input terminal 2a of the data writing module 2 is for receiving the write control signal G1
  • the second input terminal 2b is for receiving the data signal Data
  • the output terminal 2c is connected to the source of the driving transistor DT
  • the data writing module 2 is used for the data writing module 2
  • the data signal Data is supplied to the source of the driving transistor DT under the control of the write control signal G1.
  • the first input terminal 3a of the compensation module 3 is for receiving the reference voltage Vref
  • the second input terminal 3b is for receiving the compensation control signal G2
  • the output terminal 3c is connected to the gate of the driving transistor DT
  • the compensation module 3 is for compensating the control signal Under the control of G2, the reference voltage Vref plus a preset threshold voltage is supplied to the gate of the driving transistor DT; wherein the absolute value of the difference between the preset threshold voltage and the threshold voltage of the driving transistor DT is smaller than a preset range.
  • the first input end 1a of the illumination control module 1 is connected to the first reference voltage source VDD, the second input end 1b is for receiving the illumination control signal EM, and the third input end 1c is connected to the drain of the drive transistor DT, the first output end 1d is connected to the source of the driving transistor DT, the second output terminal 1e is connected to one end of the light emitting device D1, and the other end of the light emitting device D1 is connected to the second reference voltage source VSS; the light emission control module 1 is used for the light emission control signal EM Under control, the voltage of the first reference voltage source VDD is supplied to the source of the driving transistor DT, and the driving current of the drain output of the driving transistor DT is output to The light emitting device D1 emits light by driving the light emitting device D1.
  • the pixel circuit provided by the embodiment of the invention includes: a driving transistor, a capacitor connected between the source and the gate of the driving transistor, a light emitting device, a light emitting control module, a data writing module and a compensation module.
  • the pixel circuit can compensate for the drift of the threshold voltage of the driving transistor by the cooperation of the above modules. Therefore, when the light emitting display is performed, the driving current for driving the driving transistor to drive the light emitting device can be related only to the voltage of the data signal and the reference voltage, and is independent of the threshold voltage of the driving transistor and the first reference voltage source, and can avoid the threshold voltage and the IR Drop convection.
  • the influence of the current of the light-emitting device is such that the operating current for driving the light-emitting device to be kept consistent, and the uniformity of the image brightness of the display area of the display device is improved.
  • the light emitting device D1 in the above pixel circuit provided by the embodiment of the present invention is generally an organic light emitting diode OLED.
  • the anode of the organic light emitting diode OLED is a first end of the light emitting device D1 connected to the second output end 1e of the light emission control module 1, and the cathode is connected to the second reference voltage source VSS of the light emitting device D1.
  • the organic light emitting diode OLED realizes the light emission display under the action of the saturation current of the driving transistor DT.
  • the driving transistor DT for driving the light emitting device to emit light is generally a P-type transistor. Since the threshold voltage Vth of the P-type transistor is a negative value, in order to ensure that the driving transistor DT can work normally, the voltage of the corresponding first reference voltage source VDD is generally a positive voltage, and the voltage of the second reference voltage source VSS is generally grounded or negative. value.
  • 3a to 3d are respectively a schematic structural diagram of a pixel circuit according to an embodiment of the present invention.
  • the data writing module 2 may include: a first switching transistor T1;
  • the gate of the first switching transistor T1 is the first input terminal 2a of the data writing module 2, the source is the second input terminal 2b of the data writing module 2, and the drain is the output terminal 2c of the data writing module 2.
  • the first switching transistor T1 may be a P-type transistor: at this time, when the write control signal G1 is at a low level, the first switching transistor T1 is in an on state, when writing When the control signal G1 is at a high level, the first switching transistor T1 is in an off state; or as shown in FIG. 3b, the first switching transistor T1 may also be an N-type transistor: at this time, when writing When the control signal G1 is at a high level, the first switching transistor T1 is in an on state, and when the write control signal G1 is at a low level, the first switching transistor T1 is in an off state; it is not limited herein.
  • the above is only a specific structure of the data writing module in the pixel circuit.
  • the specific structure of the data writing module is not limited to the above structure provided by the embodiment of the present invention, and may be other structures known to those skilled in the art. , not limited here.
  • the compensation module 3 may include: a second switching transistor T2 and a third switching transistor T3;
  • the gate of the second switching transistor T2 is the second input terminal 3b of the compensation module 3, the source is connected to the gate of the third switching transistor T3 and the drain of the third switching transistor T3, and the drain is the output terminal 3c of the compensation module 3;
  • the third switching transistor T3 has a source that fully compensates for the first input terminal 3a of the module 3, and the threshold voltage of the third switching transistor T3 is a preset threshold voltage.
  • the third switching transistor T3 is of the same type as the driving transistor DT, and is generally a P-type transistor.
  • the size and shape of the third switching transistor are the same as those of the driving transistor, and The position of the three switching transistor is close to the position of the driving transistor.
  • the difference between the preset threshold voltage and the threshold voltage of the driving transistor is zero, and the function of completely compensating for the threshold voltage drift of the driving transistor can be achieved.
  • the absolute value of the difference between the preset threshold voltage and the threshold voltage of the driving transistor should be less than 0.04V.
  • the second switching transistor T2 may be a P-type transistor: at this time, when the compensation control signal G2 is at a low level, the second switching transistor T2 is in an on state, when the compensation control When the signal G2 is at a high level, the second switching transistor T2 is in an off state; or as shown in FIG. 3b, the second switching transistor T2 may also be an N-type transistor: at this time, when the compensation control signal G2 is at a high level, the second switching transistor T2 is in an on state, and when the compensation control signal G2 is at a low level, the second switching transistor T2 is in an off state; it is not limited herein.
  • the above is only an example to illustrate the specific structure of the compensation module in the pixel circuit.
  • the compensation The specific structure of the module is not limited to the above-described structure provided by the embodiment of the present invention, and may be other structures known to those skilled in the art, which are not limited herein.
  • the compensation control signal G2 is the write control signal G1, that is, the compensation control signal G2 and the write control signal G1 are the same signal.
  • the first switching transistor T1 and the second switching transistor T2 are required to be P-type.
  • the transistors are either N-type transistors.
  • the illumination control module 1 may include: a fourth switching transistor T4 and a fifth switching transistor T5; wherein the fourth switching transistor The gate of T4 is the second input end 1b of the illumination control module 1, the source is the first input end 1a of the illumination control module 1, the drain is the first output end 1d of the illumination control module 1, and the gate of the fifth switching transistor T5 is The gate of the fourth switching transistor is connected, the source is the third input end 1c of the illumination control module A, and the drain is the second output end 1e of the illumination control module 1.
  • the fourth switching transistor T4 and the fifth switching transistor T5 may be P-type transistors. At this time, the fourth switching transistor T4 and the fifth switching transistor T5 are in an on state when the lighting control signal EM is at a low level, and the fourth switching transistor T4 and the fifth switching transistor T5 are in an off state when the lighting control signal EM is at a high level. State.
  • the fourth switching transistor T4 and the fifth switching transistor T5 are in an on state when the lighting control signal EM is at a low level, and the fourth switching transistor T4 and the fifth switching transistor T5 are in an off state when the lighting control signal EM is at a high level. State.
  • FIG. 3a the fourth switching transistor T4 and the fifth switching transistor T5 may be P-type transistors. At this time, the fourth switching transistor T4 and the fifth switching transistor T5 are in an on state when the lighting control signal EM is at a low level, and the fourth switching transistor T4 and the fifth switching transistor T5 are in an off state when the lighting control signal EM is at a
  • the fourth switching transistor T4 and the fifth switching transistor T5 may also be N-type transistors, and at this time, the fourth switching transistor T4 and the fifth switching transistor when the emission control signal EM is at a high level
  • the fourth switching transistor T4 and the fifth switching transistor T5 are in an off state when the illuminating control signal EM is at a low level; it is not limited herein.
  • the above is only a specific structure of the illuminating control module in the pixel circuit.
  • the specific structure of the illuminating control module is not limited to the above structure provided by the embodiment of the present invention, and may be other structures known to those skilled in the art. This is not limited.
  • the driving transistor and the switching transistor mentioned in the above embodiments of the present invention may be a thin film transistor (TFT) or a metal oxide semiconductor field effect transistor (MOS, Metal Oxide Scmiconductor). Not limited.
  • TFT thin film transistor
  • MOS metal oxide semiconductor field effect transistor
  • the sources and drains of these transistors can be interchanged without specific distinction.
  • the case where the driving transistor and the transistor are both thin film transistors will be described as an example.
  • the driving transistor and the switching transistor mentioned in the above pixel circuit provided by the embodiment of the present invention can all adopt a P-type transistor design, which can simplify the manufacturing process of the pixel circuit.
  • the working process of the pixel circuit provided by the embodiment of the present invention is described below by taking the pixel circuit shown in FIG. 3c and FIG. 3d as an example.
  • the gate of the driving transistor DT is the first node A
  • the source of the driving transistor DT is the second node B.
  • a high level signal is indicated by 1 and a low level signal is indicated by 0.
  • FIG. 4a is a circuit timing diagram of the pixel circuit shown in FIG. 3c.
  • the driving transistor is a P-type transistor, and all switching transistors are P-type transistors, and each P-type The transistor is turned off under the action of the high level and turned on under the action of the low level; the corresponding input timing diagram is shown in Figure 4a. Specifically, two stages of T1 and T2 in the input timing diagram shown in FIG. 4a are selected.
  • the first switching transistor T1 and the second switching transistor T2 are in an on state
  • the third switching transistor T3 constitutes a diode structure
  • the fourth switching transistor T4 and the fifth switching transistor T5 are in an off state. Since the first switching transistor T1 is turned on, the voltage of the first node A is the voltage V Data of the data signal Data, and since the second switching transistor T2 is turned on, the diode structure formed by the third switching transistor T3 is also in an on state.
  • Vref+V th3 (where V th3 is the threshold voltage of the third switching transistor T3, and since the third switching transistor T3 is a P-type transistor, V th3 is a negative value) Vref+V th3 is output to the second node B through the turned-on second switching transistor T2, so the voltage of the second node B is Vref+V th3 . Therefore, the voltage difference across the capacitor C at this stage is V Data - (Vref + V th3 ), and the organic light emitting diode OLED is in an off state and does not emit light.
  • the first switching transistor T1 and the second switching transistor T2 are in an off state
  • the third switching transistor T3 constitutes a diode structure
  • the fourth switching transistor T4 and the fifth switching transistor T5 are in an on state. Since the fourth switching transistor T4 is turned on, the voltage of the first node A becomes the voltage V DD of the first reference voltage source VDD at this time, and according to the principle of conservation of capacitance, the voltage of the second node B becomes V DD -[V Data - (Vref + V th3 )].
  • the voltage of the gate of the driving transistor DT is maintained at V DD -[V Data -(Vref+V th3 )], and the driving transistor DT operates in a saturated state. According to the saturation state current characteristic, the flow is driven.
  • K is a structural parameter, this value is relatively stable in the same structure, can be counted as a constant
  • V th0 is the driving transistor DT Threshold voltage.
  • the operating current I OLED of the organic light emitting diode OLED is not affected by the threshold voltage V th0 of the driving transistor DT, and is independent of the voltage of the first reference voltage source VDD, and only the voltage V Data and the reference of the data signal Data.
  • the voltage Vref is related to completely solve the influence of the threshold voltage V th0 of the driving transistor DT and the operating current I OLED of the light emitting device D1 due to the process process and long-time operation, thereby improving the unevenness of the panel display. Sex.
  • FIG. 4b is a circuit timing diagram of the pixel circuit shown in FIG. 3d.
  • the operation of the pixel circuit shown in FIG. 3d is taken as an example.
  • the driving transistor and the third switching transistor are P-type transistors, and the remaining switching crystals are all N-type.
  • the transistor, each N-type transistor is turned on under the action of a high level, and is turned off under the action of a low level; the corresponding input timing diagram is as shown in FIG. 4b. Specifically, two stages of T1 and T2 in the input timing diagram shown in FIG. 4b are selected.
  • the first switching transistor T1 and the second switching transistor T2 are in an on state
  • the third switching transistor T3 constitutes a diode structure
  • the fourth switching transistor T4 and the fifth switching transistor T5 are in an off state. Since the first switching transistor T1 is turned on, the voltage of the first node A is the voltage V Data of the data signal Data, and since the second switching transistor T2 is turned on, the diode structure formed by the third switching transistor T3 is also in an on state.
  • Vref+V th3 (where V th3 is the threshold voltage of the third switching transistor T3, and since the third switching transistor T3 is a P-type transistor, V th3 is a negative value) Vref+V th3 is output to the second node B through the turned-on second switching transistor T2, so the voltage of the second node B is Vref+V th3 . Therefore, the voltage difference across the capacitor C at this stage is V Data - (Vref + V th3 ), and the organic light emitting diode OLED is in an off state and does not emit light.
  • the first switching transistor T1 and the second switching transistor T2 are in an off state
  • the third switching transistor T3 constitutes a diode structure
  • the fourth switching transistor T4 and the fifth switching transistor T5 are in an on state. Since the fourth switching transistor T4 is turned on, the voltage of the first node A becomes the voltage V DD of the first reference voltage source VDD at this time, and according to the principle of conservation of capacitance, the voltage of the second node B becomes V DD -[V Data - (Vref + V th3 )].
  • the voltage of the gate of the driving transistor DT is maintained at V DD -[V Data -(Vref+V th3 )], and the driving transistor DT operates in a saturated state. According to the saturation state current characteristic, the flow is driven.
  • K is a structural parameter, this value is relatively stable in the same structure, can be counted as a constant
  • V th0 is the driving transistor DT Threshold voltage.
  • the operating current I OLED of the organic light emitting diode OLED is not affected by the threshold voltage V th0 of the driving transistor DT, and is independent of the voltage of the first reference voltage source VDD, and only the voltage V Data and the reference of the data signal Data.
  • the voltage Vref is related to completely solve the influence of the threshold voltage V th0 of the driving transistor DT and the operating current I OLED of the light emitting device D1 due to the process process and long-time operation, thereby improving the unevenness of the panel display. Sex.
  • FIG. 5 is a schematic flowchart diagram of a driving method of a pixel circuit according to an embodiment of the present invention. As shown in the figure, the driving method of any one of the above pixel circuits according to the embodiment of the present invention includes:
  • the data writing module supplies the data signal to the source of the driving transistor under the control of the write control signal; and provides the reference voltage plus the preset threshold voltage to the driving under the control of the compensation control signal a gate of the transistor; wherein an absolute value of a difference between the preset threshold voltage and a threshold voltage of the driving transistor is less than a preset range;
  • an illumination stage the illumination control module controls the first reference power under the control of the illumination control signal
  • the voltage of the voltage source supplies the source of the driving transistor, and the driving current outputted from the drain of the driving transistor is output to the light emitting device to drive the light emitting device to emit light.
  • the driving current that can drive the driving transistor to drive the light-emitting device to emit light is only related to the voltage of the data signal and the reference voltage, and is independent of the threshold voltage of the driving transistor and the first reference voltage source, and can avoid the threshold voltage and the IR Drop.
  • the influence of the current flowing through the light-emitting device is such that the operating current for driving the light-emitting device to be kept consistent, and the uniformity of the image brightness of the display region of the display device is improved.
  • the gate of the first switching transistor is the first input end of the data writing module, and the source is extremely data-written.
  • the second input end of the module, the drain is the output end of the data writing module; in the writing phase, the first switching transistor is in an on state under the control of the illumination control signal, and supplies the data signal to the source of the driving transistor.
  • the compensation module specifically includes the second switching transistor and the third switching transistor
  • the gate of the second switching transistor is the second input end of the compensation module
  • the source is a gate of the third switching transistor and a drain of the third switching transistor are connected, and a drain is an output end of the compensation module
  • a source of the third switching transistor is a first input terminal of the compensation module
  • a threshold voltage of the third switching transistor is a pre- Setting a threshold voltage
  • the gate of the fourth switching transistor is the second input end of the illuminating control module, the source a first input end of the illuminating control module, the drain is a first output end of the illuminating control module; a gate of the fifth switching transistor is a second input end of the illuminating control module, the source is a third input end of the illuminating control module, and the drain is a second output end of the illumination control module; in the illumination phase, the fourth switching transistor and the fifth switching transistor are both in an on state under the control of the illumination control signal, The voltage of the first reference voltage source is output to the source of the driving transistor through the fourth switching transistor, and the driving current outputted from the drain of the driving transistor is output to the light emitting device via the fifth switching transistor.
  • an embodiment of the present invention further provides an organic electroluminescent display panel comprising a plurality of pixel units arranged in a matrix, each of the pixel units comprising a plurality of the above-mentioned pixel circuits provided by the embodiments of the present invention. Since the principle of solving the problem of the organic electroluminescent display panel is similar to that of the foregoing pixel circuit, the implementation of the pixel circuit in the organic electroluminescent display panel can be implemented by referring to the implementation of the pixel circuit in the foregoing example, and the details are not repeated here. .
  • FIG. 6 is a schematic structural diagram of a pixel unit group in an organic electroluminescence display panel according to an embodiment of the present invention.
  • the compensation module of the pixel circuit includes: a second switching transistor T2 and a third switching transistor T3, the second switching transistor
  • the gate of T2 is the second input terminal 3b of the compensation module 3
  • the source is connected to the gate of the third switching transistor T3 and the drain of the third switching transistor T3, the drain is the output terminal 3c of the compensation module 3, and the third switching transistor
  • the source of T3 is the first input terminal 3a of the compensation module 3
  • the threshold voltage of the third switching transistor is a preset threshold voltage
  • the two pixel units adjacent in the row direction are a pixel unit group 10, in the same pixel unit.
  • the two pixel circuits in group 10 share a third switching transistor T3.
  • FIG. 7 is a schematic structural diagram of another pixel unit group in an organic electroluminescence display panel according to an embodiment of the present invention.
  • the data writing module 2 in each pixel circuit may specifically include a first switching transistor T1
  • the lighting control module 1 may specifically include a fourth switching transistor T4 and a fifth switching transistor T5, a first switching transistor T1, a fourth switching transistor T4, and
  • an embodiment of the present invention further provides a display device including the above-described organic electroluminescent display panel provided by the embodiment of the present invention.
  • the display device may be a display, a mobile phone, a television, a notebook, an all-in-one, etc., and other essential components of the display device are understood by those of ordinary skill in the art, and will not be described herein. As a limitation of the invention.
  • a pixel circuit, a driving method thereof and related device are provided in an embodiment of the present invention.
  • the pixel circuit includes: a driving transistor, a capacitor connected between a source and a gate of the driving transistor, a light emitting device, and a transmitting Light control module, data writing module and compensation module.
  • the pixel circuit can compensate for the drift of the threshold voltage of the driving transistor by the cooperation of the above modules.
  • the driving current for driving the driving transistor to drive the light emitting device can be related only to the voltage of the data signal and the reference voltage, and
  • the threshold voltage of the driving transistor is independent of the first reference voltage source, and the influence of the threshold voltage and the IR drop on the current flowing through the light emitting device can be avoided, thereby keeping the operating current for driving the light emitting device to be uniform, and improving the brightness of the image of the display area of the display device. Uniformity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素电路、其驱动方法及显示装置。像素电路包括:驱动晶体管(DT)、连接在驱动晶体管(DT)的源极与栅极之间的电容(C)、发光器件(D1)、发光控制模块(1)、数据写入模块(2)和补偿模块(3)。通过各模块的配合工作,可以补偿驱动晶体管(DT)的阈值电压的漂移。因此,在发光显示时,驱动晶体管(DT)驱动发光器件(D1)发光的驱动电流仅与数据信号(Data)的电压和参考电压(Vref)有关,与驱动晶体管(DT)的阈值电压和第一参考电压源(VDD)无关,从而避免了阈值电压和IR Drop对发光器件(D1)的电流的影响,使得驱动发光器件(D1)发光的工作电流保持一致,提高了显示装置显示区域图像亮度的均匀性。

Description

像素电路、其驱动方法及显示装置
本申请要求了2015年5月28日提交的、申请号为201510284605.2、发明名称为“一种像素电路、其驱动方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有机电致发光技术领域,尤其涉及一种像素电路、其驱动方法及显示装置。
背景技术
有机发光显示器(Organic Light Emitting Diode,OLED)是当今平板显示器研究领域的热点之一。与液晶显示器相比,OLED具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点。目前,在手机、PDA、数码相机等平板显示领域,OLED已经开始取代传统的液晶显示屏(Liquid Crystal Display,LCD)。像素电路设计是OLED显示器核心技术内容,具有重要的研究意义。
与LCD利用稳定的电压控制亮度不同,OLED属于电流驱动,需要稳定的电流来控制发光。由于工艺制程和器件老化等原因,会使像素电路的驱动晶体管的阈值电压Vth存在不均匀性,这样就导致了流过每个像素点OLED的电流发生变化使得显示亮度不均,从而影响整个图像的显示效果。并且由于电流与驱动管源极即电源电压相关,IR Drop也会造成不同区域的电流差异,进而造成不同区域的OLED器件出现亮度不均匀现象。
图1为现有的像素电路的结构示意图。如图1所示,2M1C的像素电路由1个驱动晶体管M2、一个开关晶体管M1和一个存储电容Cs组成.当扫描线Scan选择某一行时,扫描线Scan输入低电平信号,P型开关晶体管M1导通,数据线Data的电压写入存储电容Cs;当该行扫描结束后,扫描线Scan输入的信号变为高电平,P型开关晶体管M1关断,存储电容Cs存储的栅极电压使驱动晶体管M2产生电流来驱动OLED,保证OLED在一帧内持续发光。驱动晶体管M2的饱和电流公式为IOLED=K(Vgs-Vth)2。正如前述,由于工艺制程 和器件老化等原因,驱动晶体管M2的阈值电压Vth会漂移;并且由于电流与电源电压相关,由于IR Drop原因,Vs也会不同。这样就导致了流过每个OLED的电流随驱动晶体管的阈值电压Vth和驱动晶体管的源极电压VDD的变化而变化,从而导致图像亮度不均匀。
发明内容
有鉴于此,本发明实施例提供一种像素电路、其驱动方法及显示装置,可以有效地补偿驱动晶体管的阈值电压非均匀性、漂移以及OLED非均匀性导致的电流差异,从而提升显示装置的显示效果。
本发明实施例提供的一种像素电路,包括:驱动晶体管、连接在所述驱动晶体管的源极与栅极之间的电容、发光器件、发光控制模块、数据写入模块和补偿模块,所述数据写入模块配置为在所述写入控制信号的控制下,将数据信号提供给所述驱动晶体管的源极,并且配置为在所述补偿控制信号的控制下,将参考电压加上预设阈值电压提供给所述驱动晶体管的栅极;其中所述预设阈值电压与所述驱动晶体管的阈值电压的差值的绝对值小于预设范围;以及所述发光控制模块配置为在所述发光控制信号的控制下,将第一参考电压源的电压提供所述驱动晶体管的源极,将所述驱动晶体管的漏极输出的驱动电流输出给所述发光器件驱动所述发光器件发光。
具体地,所述数据写入模块的第一输入端用于接收写入控制信号,第二输入端用于接收数据信号,输出端与所述驱动晶体管的源极相连;所述数据写入模块用于在所述写入控制信号的控制下,将所述数据信号提供给所述驱动晶体管的源极。
具体地,所述补偿模块的第一输入端用于接收参考电压,第二输入端用于接收补偿控制信号,输出端与所述驱动晶体管的栅极相连;所述补偿模块用于在所述补偿控制信号的控制下,将所述参考电压加上预设阈值电压提供给所述驱动晶体管的栅极;其中所述预设阈值电压与所述驱动晶体管的阈值电压的差值的绝对值小于预设范围。
具体地,所述发光控制模块的第一输入端与第一参考电压源相连,第二输入端用于接收发光控制信号,第三输入端与所述驱动晶体管的漏极相连,第一 输出端与所述驱动晶体管的源极相连,第二输出端与所述发光器件的一端相连,所述发光器件的另一端与第二参考电压源相连;所述发光控制模块用于在所述发光控制信号的控制下,将所述第一参考电压源的电压提供所述驱动晶体管的源极,将所述驱动晶体管的漏极输出的驱动电流输出给所述发光器件以驱动所述发光器件发光。
在一种可能的实施方式中,在本发明实施例提供的上述像素电路中,所述数据写入模块包括:第一开关晶体管;其中,所述第一开关晶体管的栅极为所述数据写入模块的第一输入端,源极为所述数据写入模块的第二输入端,漏极为所述数据写入模块的输出端。
在一种可能的实施方式中,在本发明实施例提供的上述像素电路中,所述补偿模块包括:第二开关晶体管和第三开关晶体管;其中,所述第二开关晶体管的栅极为所述补偿模块的第二输入端,源极与所述第三开关晶体管的栅极以及所述第三开关晶体管的漏极相连,漏极为所述补偿模块的输出端;所述第三开关晶体管的源极为所述补偿模块的第一输入端,且所述第三开关晶体管的阈值电压为所述预设阈值电压。
较佳地,在本发明实施例提供的上述像素电路中,所述第三开关晶体管的尺寸和形状均与所述驱动晶体管的相同,且所述第三开关晶体管的位置接近所述驱动晶体管的位置。
在一种可能的实施方式中,在本发明实施例提供的上述像素电路中,所述发光控制模块,具体包括:第四开关晶体管和第五开关晶体管;其中,所述第四开关晶体管的栅极为所述发光控制模块的第二输入端,源极为所述发光控制模块的第一输入端,漏极为所述发光控制模块的第一输出端;所述第五开关晶体管的栅极与所述第四开关晶体管的栅极相连,源极为所述发光控制模块的第三输入端,漏极为所述发光控制模块的第二输出端。
在一种可能的实施方式中,在本发明实施例提供的上述像素电路中,所述预设阈值电压与所述驱动晶体管的阈值电压的差值的绝对值小于0.04V。
较佳地,在本发明实施例提供的上述像素电路中,所述补偿控制信号为所述写入控制信号。
相应地,本发明实施例还提供了一种上述任一种像素电路的驱动方法,包 括:写入阶段:所述数据写入模块在所述写入控制信号的控制下,将所述数据信号提供给所述驱动晶体管的源极;在所述补偿控制信号的控制下,将所述参考电压加上预设阈值电压提供给所述驱动晶体管的栅极;其中所述预设阈值电压与所述驱动晶体管的阈值电压的差值的绝对值小于预设范围;以及发光阶段:所述发光控制模块在所述发光控制信号的控制下,将所述第一参考电压源的电压提供所述驱动晶体管的源极,将所述驱动晶体管的漏极输出的驱动电流输出给所述发光器件驱动所述发光器件发光。
较佳地,在本发明实施例提供的上述驱动方法中,所述数据写入模块,具体包括:第一开关晶体管;其中,所述第一开关晶体管,其栅极为所述数据写入模块的第一输入端,源极为所述数据写入模块的第二输入端,漏极为所述数据写入模块的输出端;
在写入阶段,所述第一开关晶体管在所述发光控制信号的控制下处于导通状态,将所述数据信号提供给所述驱动晶体管的源极。
较佳地,在本发明实施例提供的上述驱动方法中,所述补偿模块包括:第二开关晶体管和第三开关晶体管;其中,所述第二开关晶体管的栅极为所述补偿模块的第二输入端,源极与所述第三开关晶体管的栅极以及所述第三开关晶体管的漏极相连,漏极为所述补偿模块的输出端;所述第三开关晶体管的源极为所述补偿模块的第一输入端,且所述第三开关晶体管的阈值电压为所述预设阈值电压;
在写入阶段,所述第二开关晶体管在在所述补偿控制信号的控制下处于导通状态,且所述第三开关晶体管构成导通的二极管结构,所述参考电压经过所述导通的二极管结构和所述第二开关晶体管后,输入到所述驱动晶体管的栅极。
较佳地,在本发明实施例提供的上述驱动方法中,所述发光控制模块包括:第四开关晶体管和第五开关晶体管;其中,所述第四开关晶体管的栅极为所述发光控制模块的第二输入端,源极为所述发光控制模块的第一输入端,漏极为所述发光控制模块的第一输出端;所述第五开关晶体管的栅极与所述第四开关晶体管的栅极相连,源极为所述发光控制模块的第三输入端,漏极为所述发光控制模块的第二输出端;
在发光阶段,所述第四开关晶体管和所述第五开关晶体管在所述发光控制信号的控制下均处于导通状态,所述第一参考电压源的电压经过所述第四开关晶体管输出给所述驱动晶体管的源极,所述驱动晶体管的漏极输出的驱动电流经所述第五开关晶体管输出给所述发光器件。
相应地,本发明实施例还提供了一种有机电致发光显示面板,包括若干呈矩阵排列的像素单元,所述像素单元均包括本发明实施例提供的上述任一种像素电路。
较佳地,在本发明实施例提供的上述有机电致发光显示面板中,所述像素电路的所述补偿模块包括:第二开关晶体管和第三开关晶体管;其中所述第二开关晶体管的栅极为所述补偿模块的第二输入端,源极与所述第三开关晶体管的栅极以及所述第三开关晶体管的漏极相连,漏极为所述补偿模块的输出端;所述第三开关晶体管的源极为所述补偿模块的第一输入端,且所述第三开关晶体管的阈值电压为所述预设阈值电压;以及以沿行方向相邻的两个像素单元为一像素单元组,在同一像素单元组中的两个像素电路共用第三开关晶体管。
相应地,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述任一种有机电致发光显示面板。
本发明实施例提供的上述像素电路、其驱动方法及显示装置,像素电路包括:驱动晶体管、连接在驱动晶体管的源极与栅极之间的电容、发光器件、发光控制模块、数据写入模块和补偿模块。通过上述各模块的配合工作该像素电路可以补偿驱动晶体管的阈值电压的漂移,因此,在发光显示时,可以使驱动晶体管驱动发光器件发光的驱动电流仅与数据信号的电压和参考电压有关,与驱动晶体管的阈值电压和第一参考电压源无关,能避免阈值电压和IR Drop对流过发光器件的电流的影响,从而使驱动发光器件发光的工作电流保持一致,提高了显示装置显示区域图像亮度的均匀性。
附图说明
图1为现有的像素电路的结构示意图;
图2为本发明实施例提供的像素电路的结构示意图;
图3a至图3d分别为本发明实施例提供的像素电路的具体结构示意图;
图4a为图3c所示的像素电路的电路时序示意图;
图4b为图3d所示的像素电路的电路时序示意图;
图5为本发明实施例提供的像素电路的驱动方法的流程示意图;
图6为本发明实施例提供的有机电致发光显示面板中一个像素单元组的结构示意图;
图7为本发明实施例提供的有机电致发光显示面板中另一个像素单元组的结构示意图。
具体实施方式
下面结合附图,对本发明实施例提供的像素电路、其驱动方法及相关装置的具体实施方式进行详细地说明。
图2为本发明实施例提供的像素电路的结构示意图。如图所示,本发明实施例提供的像素电路包括:驱动晶体管DT、连接在驱动晶体管DT的源极与栅极之间的电容C、发光器件D1、发光控制模块1、数据写入模块2和补偿模块3。
数据写入模块2的第一输入端2a用于接收写入控制信号G1,第二输入端2b用于接收数据信号Data,输出端2c与驱动晶体管DT的源极相连;数据写入模块2用于在写入控制信号G1的控制下,将数据信号Data提供给驱动晶体管DT的源极。补偿模块3的第一输入端3a用于接收参考电压Vref,第二输入端3b用于接收补偿控制信号G2,输出端3c与驱动晶体管DT的栅极相连;补偿模块3用于在补偿控制信号G2的控制下,将参考电压Vref加上预设阈值电压提供给驱动晶体管DT的栅极;其中该预设阈值电压与驱动晶体管DT的阈值电压的差值的绝对值小于预设范围。
发光控制模块1的第一输入端1a与第一参考电压源VDD相连,第二输入端1b用于接收发光控制信号EM,第三输入端1c与驱动晶体管DT的漏极相连,第一输出端1d与驱动晶体管DT的源极相连,第二输出端1e与发光器件D1的一端相连,发光器件D1的另一端与第二参考电压源VSS相连;发光控制模块1用于在发光控制信号EM的控制下,将第一参考电压源VDD的电压提供驱动晶体管DT的源极,将驱动晶体管DT的漏极输出的驱动电流输出给 发光器件D1以驱动发光器件D1发光。
本发明实施例提供的上述像素电路包括:驱动晶体管、连接在驱动晶体管的源极与栅极之间的电容、发光器件、发光控制模块、数据写入模块和补偿模块。通过上述各模块的配合工作该像素电路可以补偿驱动晶体管的阈值电压的漂移。因此在发光显示时,可以使驱动晶体管驱动发光器件发光的驱动电流仅与数据信号的电压和参考电压有关,与驱动晶体管的阈值电压和第一参考电压源无关,能避免阈值电压和IR Drop对流过发光器件的电流的影响,从而使驱动发光器件发光的工作电流保持一致,提高了显示装置显示区域图像亮度的均匀性。
下面结合具体实施例,对本发明进行详细说明。需要说明的是,本实施例中是为了更好的解释本发明,但不限制本发明。
在具体实施时,本发明实施例提供的上述像素电路中的发光器件D1一般为有机发光二极管OLED。如图3a和3b所示,有机发光二极管OLED的阳极为发光器件D1的与发光控制模块1的第二输出端1e相连的第一端,阴极为发光器件D1的与第二参考电压源VSS相连的一端,有机发光二极管OLED在驱动晶体管DT的饱和电流的作用下实现发光显示。
在具体实施时,本发明实施例提供的上述像素电路中,驱动发光器件发光的驱动晶体管DT一般为P型晶体管。由于P型晶体管的阈值电压Vth为负值,为了保证驱动晶体管DT能正常工作,对应的第一参考电压源VDD的电压一般为正电压,第二参考电压源VSS的电压一般接地或为负值。
图3a至图3d分别为本发明实施例提供的像素电路的具体结构示意图
较佳地,在本发明实施例提供的上述像素电路中,如图3a和图3b所示,数据写入模块2可以包括:第一开关晶体管T1;其中
第一开关晶体管T1的栅极为数据写入模块2的第一输入端2a,源极为数据写入模块2的第二输入端2b,漏极为数据写入模块2的输出端2c。
进一步地,在具体实施时,如图3a所示,第一开关晶体管T1可以为P型晶体管:此时,当写入控制信号G1为低电平时第一开关晶体管T1处于导通状态,当写入控制信号G1为高电平时第一开关晶体管T1处于截止状态;或者如图3b所示,第一开关晶体管T1也可以为N型晶体管:此时,当写入 控制信号G1为高电平时第一开关晶体管T1处于导通状态,当写入控制信号G1为低电平时第一开关晶体管T1处于截止状态;在此不作限定。
以上仅是举例说明像素电路中数据写入模块的具体结构,在具体实施时,数据写入模块的具体结构不限于本发明实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
较佳地,在本发明实施例提供的上述像素电路中,如图3a和图3b所示,补偿模块3可以包括:第二开关晶体管T2和第三开关晶体管T3;其中
第二开关晶体管T2的栅极为补偿模块3的第二输入端3b,源极与第三开关晶体管T3的栅极以及第三开关晶体管T3的漏极相连,漏极为补偿模块3的输出端3c;
第三开关晶体管T3,其源极为补偿模块3的第一输入端3a,且第三开关晶体管T3的阈值电压为预设阈值电压。
具体地,在具体实施,第三开关晶体管T3的类型与驱动晶体管DT的类型相同,一般均为P型晶体管。
较佳地,在本发明实施例提供的上述像素电路中,为了使第三开关晶体管的阈值电压能够接近驱动晶体管的阈值电压,第三开关晶体管的尺寸和形状均与驱动晶体管的相同,且第三开关晶体管的位置接近驱动晶体管的位置。
较佳地,在本发明实施例提供的上述像素电路中,预设阈值电压与驱动晶体管的阈值电压的差值为零,可以达到完全补偿驱动晶体管阈值电压漂移的作用。但是在具体实施时,以目前的制作工艺上不可能使预设阈值电压完全等于驱动晶体管的阈值电压。因此为了达到一定的补偿作用,预设阈值电压与驱动晶体管的阈值电压的差值的绝对值应该小于0.04V。
进一步地,在具体实施时,如图3a所示,第二开关晶体管T2可以为P型晶体管:此时,当补偿控制信号G2为低电平时第二开关晶体管T2处于导通状态,当补偿控制信号G2为高电平时第二开关晶体管T2处于截止状态;或者如图3b所示,第二开关晶体管T2也可以为N型晶体管:此时,当补偿控制信号G2为高电平时第二开关晶体管T2处于导通状态,当补偿控制信号G2为低电平时第二开关晶体管T2处于截止状态;在此不作限定。
以上仅是举例说明像素电路中补偿模块的具体结构,在具体实施时,补偿 模块的具体结构不限于本发明实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
较佳地,在本发明实施例提供的上述像素电路中,如图3c和图3d所示,当数据写入模块1包括第一开关晶体管T1并且补偿模块3包括第二开关晶体管T2和第三开关晶体管T3时,其中补偿控制信号G2为写入控制信号G1,即补偿控制信号G2与写入控制信号G1为同一信号,这时需要第一开关晶体管T1和第二开关晶体管T2均为P型晶体管或均为N型晶体管。
较佳地,在本发明实施例提供的上述像素电路中,如图3a和图3b所示,发光控制模块1可以包括:第四开关晶体管T4和第五开关晶体管T5;其中,第四开关晶体管T4的栅极为发光控制模块1的第二输入端1b,源极为发光控制模块1的第一输入端1a,漏极为发光控制模块1的第一输出端1d;第五开关晶体管T5的栅极为与所述第四开关晶体管的栅极相连,源极为发光控制模块A的第三输入端1c,漏极为发光控制模块1的第二输出端1e。
进一步地,在具体实施时,如图3a所示,第四开关晶体管T4和第五开关晶体管T5可以为P型晶体管。此时,当发光控制信号EM为低电平时第四开关晶体管T4和第五开关晶体管T5处于导通状态,当发光控制信号EM为高电平时第四开关晶体管T4和第五开关晶体管T5处于截止状态.或者,如图3b所示,第四开关晶体管T4和第五开关晶体管T5也可以为N型晶体管,此时,当发光控制信号EM为高电平时第四开关晶体管T4和第五开关晶体管T5处于导通状态,当发光控制信号EM为低电平时第四开关晶体管T4和第五开关晶体管T5处于截止状态;在此不作限定。
以上仅是举例说明像素电路中发光控制模块的具体结构,在具体实施时,发光控制模块的具体结构不限于本发明实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
需要说明的是本发明上述实施例中提到的驱动晶体管和开关晶体管可以是薄膜晶体管(TFT,Thin Film Transistor),也可以是金属氧化物半导体场效应管(MOS,Metal Oxide Scmiconductor),在此不做限定。在具体实施中,这些晶体管的源极和漏极可以互换,不做具体区分。在描述具体实施例是以驱动晶体管和晶体管都为薄膜晶体管为例进行说明的。
较佳地,本发明实施例提供的上述像素电路中提到的驱动晶体管和开关晶体管可以全部采用P型晶体管设计,这样可以简化像素电路的制作工艺流程。
下面分别以图3c和图3d所示的像素电路为例对本发明实施例提供的像素电路的工作过程作以描述。为了便于描述,规定驱动晶体管DT的栅极为第一节点A,驱动晶体管DT的源极为第二节点B。且下述描述中以1表示高电平信号,0表示低电平信号。
图4a为图3c所示的像素电路的电路时序示意图。以图3c所示的像素电路的结构为例对其工作过程作以描述,其中在图3c所示的像素电路中,驱动晶体管为P型晶体管,所有开关晶体管均为P型晶体管,各P型晶体管在高电平作用下截止,在低电平作用下导通;对应的输入时序图如图4a所示。具体地,选取如图4a所示的输入时序图中的T1和T2两个阶段。
在T1阶段,G1=0,EM=1。第一开关晶体管T1和第二开关晶体管T2处于导通状态,第三开关晶体管T3构成二极管结构,第四开关晶体管T4和第五开关晶体管T5处于截止状态。由于第一开关晶体管T1导通,因此第一节点A的电压为数据信号Data的电压VData,由于第二开关晶体管T2导通,因此第三开关晶体管T3构成的二极管结构也处于导通状态,参考电压Vref经过导通的二极管结构后电压值变为Vref+Vth3(其中Vth3为第三开关晶体管T3的阈值电压,由于第三开关晶体管T3为P型晶体管,因此Vth3为负值),Vref+Vth3通过导通的第二开关晶体管T2输出到第二节点B,因此第二节点B的电压为Vref+Vth3。因此,此阶段电容C两端的电压差为VData-(Vref+Vth3),有机发光二极管OLED处于截止状态不发光。
在T2阶段,G1=1,EM=0。第一开关晶体管T1和第二开关晶体管T2处于截止状态,第三开关晶体管T3构成二极管结构,第四开关晶体管T4和第五开关晶体管T5处于导通状态。由于第四开关晶体管T4导通,因此此时第一节点A的电压变为第一参考电压源VDD的电压VDD,根据电容电量守恒原理,第二节点B的电压变为VDD-[VData-(Vref+Vth3)]。因此,在此阶段中,驱动晶体管DT的栅极的电压保持在VDD-[VData-(Vref+Vth3)],驱动晶体管DT工作处于饱和状态,根据饱和状态电流特性可知,流过驱动晶体管DT且用于驱动有机发光二极管OLED发光的工作电流IOLED满足公式: IOLED=K(Vgs-Vth0)2=K{VDD-[VData-(Vref+Vth3)]-VDD-Vth0}2=K[(Vref-VData)+Vth3-Vth0]2,其中K为结构参数,相同结构中此数值相对稳定,可以算作常量,Vth0为驱动晶体管DT的阈值电压。由于第三开关晶体管T3的阈值电压Vth3与驱动晶体管DT的阈值电压Vth0之间的差值的绝对值为一个较小的电压值,可以看出Vth3-Vth0对IOLED的影响相对较小,因此可以通过第三开关晶体管来补偿驱动晶体管的阈值电压的漂移。进一步地,当第三开关晶体管T3的阈值电压Vth3与驱动晶体管DT的阈值电压Vth0之间的差值为零时,即第三开关晶体管T3的阈值电压Vth3等于驱动晶体管DT的阈值电压Vth0,IOLED=K(Vref-VData)2。从而可以看出有机发光二极管OLED的工作电流IOLED已经不受驱动晶体管DT的阈值电压Vth0的影响,且和第一参考电压源VDD的电压无关,仅与数据信号Data的电压VData和参考电压Vref有关,彻底解决了由于工艺制程以及长时间的操作造成的驱动晶体管DT的阈值电压Vth0漂移以及IR Drop对发光器件D1的工作电流IOLED造成的影响,从而改善了面板显示的不均匀性。
图4b为图3d所示的像素电路的电路时序示意图。以图3d所示的像素电路的结构为例对其工作过程作以描述,其中在图3d所示的像素电路中,驱动晶体管和第三开关晶体管为P型晶体管,其余开关晶均为N型晶体管,各N型晶体管在高电平作用下导通,在低电平作用下截止;对应的输入时序图如图4b所示。具体地,选取如图4b所示的输入时序图中的T1和T2两个阶段。
在T1阶段,G1=1,EM=0。第一开关晶体管T1和第二开关晶体管T2处于导通状态,第三开关晶体管T3构成二极管结构,第四开关晶体管T4和第五开关晶体管T5处于截止状态。由于第一开关晶体管T1导通,因此第一节点A的电压为数据信号Data的电压VData,由于第二开关晶体管T2导通,因此第三开关晶体管T3构成的二极管结构也处于导通状态,参考电压Vref经过导通的二极管结构后电压值变为Vref+Vth3(其中Vth3为第三开关晶体管T3的阈值电压,由于第三开关晶体管T3为P型晶体管,因此Vth3为负值),Vref+Vth3通过导通的第二开关晶体管T2输出到第二节点B,因此第二节点B的电压为Vref+Vth3。因此,此阶段电容C两端的电压差为VData-(Vref+Vth3),有机发光二极管OLED处于截止状态不发光。
在T2阶段,G1=0,EM=1。第一开关晶体管T1和第二开关晶体管T2处于截止状态,第三开关晶体管T3构成二极管结构,第四开关晶体管T4和第五开关晶体管T5处于导通状态。由于第四开关晶体管T4导通,因此此时第一节点A的电压变为第一参考电压源VDD的电压VDD,根据电容电量守恒原理,第二节点B的电压变为VDD-[VData-(Vref+Vth3)]。因此,在此阶段中,驱动晶体管DT的栅极的电压保持在VDD-[VData-(Vref+Vth3)],驱动晶体管DT工作处于饱和状态,根据饱和状态电流特性可知,流过驱动晶体管DT且用于驱动有机发光二极管OLED发光的工作电流IOLED满足公式:IOLED=K(Vgs-Vth0)2=K{VDD-[VData-(Vref+Vth3)]-VDD-Vth0}2=K[(Vref-VData)+Vth3-Vth0]2,其中K为结构参数,相同结构中此数值相对稳定,可以算作常量,Vth0为驱动晶体管DT的阈值电压。由于第三开关晶体管T3的阈值电压Vth3与驱动晶体管DT的阈值电压Vth0之间的差值的绝对值为一个较小的电压值,可以看出Vth3-Vth0对IOLED的影响相对较小,因此可以通过第三开关晶体管来补偿驱动晶体管的阈值电压的漂移。进一步地,假设第三开关晶体管T3的阈值电压Vth3与驱动晶体管DT的阈值电压Vth0之间的差值为零时,即第三开关晶体管T3的阈值电压Vth3等于驱动晶体管DT的阈值电压Vth0,IOLED=K(Vref-VData)2。从而可以看出有机发光二极管OLED的工作电流IOLED已经不受驱动晶体管DT的阈值电压Vth0的影响,且和第一参考电压源VDD的电压无关,仅与数据信号Data的电压VData和参考电压Vref有关,彻底解决了由于工艺制程以及长时间的操作造成的驱动晶体管DT的阈值电压Vth0漂移以及IR Drop对发光器件D1的工作电流IOLED造成的影响,从而改善了面板显示的不均匀性。
基于同一发明构思,图5为本发明实施例提供的像素电路的驱动方法的流程示意图。如图所示,本发明实施例的上述任一种像素电路的驱动方法包括:
S501、写入阶段:数据写入模块在写入控制信号的控制下,将数据信号提供给驱动晶体管的源极;在补偿控制信号的控制下,将参考电压加上预设阈值电压提供给驱动晶体管的栅极;其中预设阈值电压与驱动晶体管的阈值电压的差值的绝对值小于预设范围;
S502、发光阶段:发光控制模块在发光控制信号的控制下,将第一参考电 压源的电压提供驱动晶体管的源极,将驱动晶体管的漏极输出的驱动电流输出给发光器件驱动发光器件发光。
本发明实施例提供的上述驱动方法,由于在写入阶段,可以将数据信号提供给驱动晶体管的源极,将参考电压加上预设阈值电压提供给驱动晶体管的栅极,且该预设阈值电压与驱动晶体管的阈值电压的差值的绝对值小于预设范围。因此,在发光阶段时,可以使驱动晶体管驱动发光器件发光的驱动电流仅与数据信号的电压和参考电压有关,与驱动晶体管的阈值电压和第一参考电压源无关,能避免阈值电压和IR Drop对流过发光器件的电流的影响,从而使驱动发光器件发光的工作电流保持一致,提高了显示装置显示区域图像亮度的均匀性。
较佳地,在本发明实施例提供的上述驱动方法中,当数据写入模块包括第一开关晶体管时,第一开关晶体管的栅极为数据写入模块的第一输入端,源极为数据写入模块的第二输入端,漏极为数据写入模块的输出端;在写入阶段,第一开关晶体管在发光控制信号的控制下处于导通状态,将数据信号提供给驱动晶体管的源极。
较佳地,在本发明实施例提供的上述驱动方法中,当补偿模块具体包括第二开关晶体管和第三开关晶体管时,第二开关晶体管的栅极为补偿模块的第二输入端,源极与第三开关晶体管的栅极以及第三开关晶体管的漏极相连,漏极为补偿模块的输出端;第三开关晶体管的源极为补偿模块的第一输入端,且第三开关晶体管的阈值电压为预设阈值电压;在写入阶段,第二开关晶体管在在补偿控制信号的控制下处于导通状态,且第三开关晶体管构成导通的二极管结构,参考电压经过导通的二极管结构和第二开关晶体管后,输入到驱动晶体管的栅极。
较佳地,在本发明实施例提供的上述驱动方法中,当发光控制模块具体包括第四开关晶体管和第五开关晶体管时,第四开关晶体管的栅极为发光控制模块的第二输入端,源极为发光控制模块的第一输入端,漏极为发光控制模块的第一输出端;第五开关晶体管的栅极为发光控制模块的第二输入端,源极为发光控制模块的第三输入端,漏极为发光控制模块的第二输出端;在发光阶段,第四开关晶体管和第五开关晶体管在发光控制信号的控制下均处于导通状态, 第一参考电压源的电压经第四开关晶体管输出给驱动晶体管的源极,驱动晶体管的漏极输出的驱动电流经第五开关晶体管输出给发光器件。
基于同一发明构思,本发明实施例还提供了一种有机电致发光显示面板,包括若干呈矩阵排列的像素单元,各像素单元均包括多个本发明实施例提供的上述任一种像素电路。由于该有机电致发光显示面板解决问题的原理与前述一种像素电路相似,因此该有机电致发光显示面板中的像素电路的实施可以参见前述实例中像素电路的实施,重复之处不再赘述。
图6为本发明实施例提供的有机电致发光显示面板中一个像素单元组的结构示意图。较佳地,在本发明实施例提供的上述有机电致发光显示面板中,如图6所示,当像素电路的补偿模块包括:第二开关晶体管T2和第三开关晶体管T3,第二开关晶体管T2的栅极为补偿模块3的第二输入端3b,源极与第三开关晶体管T3的栅极以及第三开关晶体管T3的漏极相连,漏极为补偿模块3的输出端3c;第三开关晶体管T3的源极为补偿模块3的第一输入端3a,且第三开关晶体管的阈值电压为预设阈值电压;以沿行方向相邻的两个像素单元为一像素单元组10,在同一像素单元组10中的两个像素电路共用第三开关晶体管T3。
图7为本发明实施例提供的有机电致发光显示面板中另一个像素单元组的结构示意图。进一步地,在具体实施时,在本发明实施例提供的上述有机电致发光显示面板中,当同一像素单元组10中的两个像素电路共用第三开关晶体管T3时,如图7所示,各像素电路中的数据写入模块2具体可以包括第一开关晶体管T1,发光控制模块1具体可以包括第四开关晶体管T4和第五开关晶体管T5,第一开关晶体管T1、第四开关晶体管T4和第五开关晶体管T5的具体连接关系可以参见上述像素电路实施例,在此不作赘述。
基于同一发明构思,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述有机电致发光显示面板。该显示装置可以是显示器、手机、电视、笔记本、一体机等,对于显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
本发明实施例提供的一种像素电路、其驱动方法及相关装置,像素电路包括:驱动晶体管、连接在驱动晶体管的源极与栅极之间的电容、发光器件、发 光控制模块、数据写入模块和补偿模块。通过上述各模块的配合工作该像素电路可以补偿驱动晶体管的阈值电压的漂移,因此,在发光显示时,可以使驱动晶体管驱动发光器件发光的驱动电流仅与数据信号的电压和参考电压有关,与驱动晶体管的阈值电压和第一参考电压源无关,能避免阈值电压和IR Drop对流过发光器件的电流的影响,从而使驱动发光器件发光的工作电流保持一致,提高了显示装置显示区域图像亮度的均匀性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (15)

  1. 一种像素电路,其特征在于,包括:驱动晶体管、连接在所述驱动晶体管的源极与栅极之间的电容、发光器件、发光控制模块、数据写入模块和补偿模块;其中,
    所述数据写入模块配置为在所述写入控制信号的控制下,将数据信号提供给所述驱动晶体管的源极,并且配置为在所述补偿控制信号的控制下,将参考电压加上预设阈值电压提供给所述驱动晶体管的栅极;其中所述预设阈值电压与所述驱动晶体管的阈值电压的差值的绝对值小于预设范围;以及
    所述发光控制模块配置为在所述发光控制信号的控制下,将第一参考电压源的电压提供所述驱动晶体管的源极,将所述驱动晶体管的漏极输出的驱动电流输出给所述发光器件驱动所述发光器件发光。
  2. 根据权利要求1所述的像素电路,其特征在于,
    所述数据写入模块的第一输入端用于接收写入控制信号,第二输入端用于接收数据信号,输出端与所述驱动晶体管的源极相连;所述数据写入模块用于在所述写入控制信号的控制下,将所述数据信号提供给所述驱动晶体管的源极;
    所述补偿模块的第一输入端用于接收参考电压,第二输入端用于接收补偿控制信号,输出端与所述驱动晶体管的栅极相连;所述补偿模块用于在所述补偿控制信号的控制下,将所述参考电压加上预设阈值电压提供给所述驱动晶体管的栅极;其中所述预设阈值电压与所述驱动晶体管的阈值电压的差值的绝对值小于预设范围;
    所述发光控制模块的第一输入端与第一参考电压源相连,第二输入端用于接收发光控制信号,第三输入端与所述驱动晶体管的漏极相连,第一输出端与所述驱动晶体管的源极相连,第二输出端与所述发光器件的一端相连,所述发光器件的另一端与第二参考电压源相连;所述发光控制模块用于在所述发光控制信号的控制下,将所述第一参考电压源的电压提供所述驱动晶体管的源极,将所述驱动晶体管的漏极输出的驱动电流输出给所述发光器件以驱动所述发光器件发光。
  3. 如权利要求2所述的像素电路,其特征在于,所述数据写入模块包括第一开关晶体管;其中,所述第一开关晶体管的栅极为所述数据写入模块的第一输入端,源极为所述数据写入模块的第二输入端,漏极为所述数据写入模块的输出端。
  4. 如权利要求2所述的像素电路,其特征在于,所述补偿模块包括第二开关晶体管和第三开关晶体管;其中,
    所述第二开关晶体管的栅极为所述补偿模块的第二输入端,源极与所述第三开关晶体管的栅极以及所述第三开关晶体管的漏极相连,漏极为所述补偿模块的输出端;
    所述第三开关晶体管的源极为所述补偿模块的第一输入端,且所述第三开关晶体管的阈值电压为所述预设阈值电压。
  5. 如权利要求4所述的像素电路,其特征在于,所述第三开关晶体管的尺寸和形状均与所述驱动晶体管的相同,且所述第三开关晶体管的位置接近所述驱动晶体管的位置。
  6. 如权利要求2所述的像素电路,其特征在于,所述发光控制模块,具体包括:第四开关晶体管和第五开关晶体管;其中,
    所述第四开关晶体管的栅极为所述发光控制模块的第二输入端,源极为所述发光控制模块的第一输入端,漏极为所述发光控制模块的第一输出端;
    所述第五开关晶体管的栅极与所述第四开关晶体管的栅极相连,源极为所述发光控制模块的第三输入端,漏极为所述发光控制模块的第二输出端。
  7. 如权利要求1-6任一项所述的像素电路,其特征在于,所述预设阈值电压与所述驱动晶体管的阈值电压的差值的绝对值小于0.04V。
  8. 如权利要求2-6任一项所述的像素电路,其特征在于,所述补偿控制信号为所述写入控制信号。
  9. 一种如权利要求1-8任一项所述的像素电路的驱动方法,其特征在于,包括:
    写入阶段:所述数据写入模块在所述写入控制信号的控制下,将所述数据信号提供给所述驱动晶体管的源极;在所述补偿控制信号的控制下,将所述参考电压加上预设阈值电压提供给所述驱动晶体管的栅极;其中所述预设阈值电 压与所述驱动晶体管的阈值电压的差值的绝对值小于预设范围;
    发光阶段:所述发光控制模块在所述发光控制信号的控制下,将所述第一参考电压源的电压提供所述驱动晶体管的源极,将所述驱动晶体管的漏极输出的驱动电流输出给所述发光器件驱动所述发光器件发光。
  10. 如权利要求9项所述的驱动方法,其特征在于,所述数据写入模块包括:第一开关晶体管;其中,所述第一开关晶体管的栅极为所述数据写入模块的第一输入端,源极为所述数据写入模块的第二输入端,漏极为所述数据写入模块的输出端;
    在写入阶段,所述第一开关晶体管在所述发光控制信号的控制下处于导通状态,将所述数据信号提供给所述驱动晶体管的源极。
  11. 如权利要求9项所述的驱动方法,其特征在于,所述补偿模块包括:第二开关晶体管和第三开关晶体管;其中,所述第二开关晶体管的栅极为所述补偿模块的第二输入端,源极与所述第三开关晶体管的栅极以及所述第三开关晶体管的漏极相连,漏极为所述补偿模块的输出端;所述第三开关晶体管的源极为所述补偿模块的第一输入端,且所述第三开关晶体管的阈值电压为所述预设阈值电压;
    在写入阶段,所述第二开关晶体管在在所述补偿控制信号的控制下处于导通状态,且所述第三开关晶体管构成导通的二极管结构,所述参考电压经过所述导通的二极管结构和所述第二开关晶体管后,输入到所述驱动晶体管的栅极。
  12. 如权利要求9项所述的驱动方法,其特征在于,所述发光控制模块包括:第四开关晶体管和第五开关晶体管;其中,所述第四开关晶体管的栅极为所述发光控制模块的第二输入端,源极为所述发光控制模块的第一输入端,漏极为所述发光控制模块的第一输出端;所述第五开关晶体管的栅极与所述第四开关晶体管的栅极相连,源极为所述发光控制模块的第三输入端,漏极为所述发光控制模块的第二输出端;
    在发光阶段,所述第四开关晶体管和所述第五开关晶体管在所述发光控制信号的控制下均处于导通状态,所述第一参考电压源的电压经所述第四开关晶体管输出给所述驱动晶体管的源极,所述驱动晶体管的漏极输出的驱动电流经 所述第五开关晶体管输出给所述发光器件。
  13. 一种有机电致发光显示面板,包括多个按照矩阵排列的像素单元,其特征在于,所述像素单元均包括如权利1-8任一项所述的像素电路。
  14. 如权利要求13所述的有机电致发光显示面板,其特征在于,所述像素电路的所述补偿模块包括:第二开关晶体管和第三开关晶体管;其中,所述第二开关晶体管的栅极为所述补偿模块的第二输入端,源极与所述第三开关晶体管的栅极以及所述第三开关晶体管的漏极相连,漏极为所述补偿模块的输出端;所述第三开关晶体管的源极为所述补偿模块的第一输入端,且所述第三开关晶体管的阈值电压为所述预设阈值电压;
    以沿行方向相邻的两个像素单元为一像素单元组,在同一像素单元组中的两个像素电路共用第三开关晶体管。
  15. 一种显示装置,其特征在于,包括如权利要求13或14所述的有机电致发光显示面板。
PCT/CN2015/091727 2015-05-28 2015-10-12 像素电路、其驱动方法及显示装置 WO2016188012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,375 US9881550B2 (en) 2015-05-28 2015-10-12 Pixel circuit, driving method thereof, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510284605.2A CN104835452B (zh) 2015-05-28 2015-05-28 一种像素电路、其驱动方法及相关装置
CN201510284605.2 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016188012A1 true WO2016188012A1 (zh) 2016-12-01

Family

ID=53813300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091727 WO2016188012A1 (zh) 2015-05-28 2015-10-12 像素电路、其驱动方法及显示装置

Country Status (3)

Country Link
US (1) US9881550B2 (zh)
CN (1) CN104835452B (zh)
WO (1) WO2016188012A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333698A (zh) * 2021-12-30 2022-04-12 武汉天马微电子有限公司 显示面板和显示装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318897B (zh) * 2014-11-13 2017-06-06 合肥鑫晟光电科技有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN104835452B (zh) * 2015-05-28 2017-04-19 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN106920518A (zh) * 2015-12-25 2017-07-04 昆山工研院新型平板显示技术中心有限公司 像素电路及其驱动方法和有源矩阵有机发光显示器
CN106935201B (zh) * 2015-12-31 2019-01-18 昆山国显光电有限公司 像素电路及其驱动方法和有源矩阵有机发光显示器
CN105427809B (zh) 2016-01-04 2020-11-03 京东方科技集团股份有限公司 像素补偿电路及amoled显示装置
CN105845081A (zh) * 2016-06-12 2016-08-10 京东方科技集团股份有限公司 像素电路、显示面板及驱动方法
CN106935197A (zh) * 2017-04-07 2017-07-07 京东方科技集团股份有限公司 像素补偿电路、驱动方法、有机发光显示面板及显示装置
CN106960656B (zh) * 2017-05-11 2019-03-19 京东方科技集团股份有限公司 一种有机发光显示面板及其显示方法
CN107331351B (zh) 2017-08-24 2023-08-29 京东方科技集团股份有限公司 一种像素补偿电路、其驱动方法、显示面板及显示装置
CN107863072A (zh) 2017-12-14 2018-03-30 京东方科技集团股份有限公司 显示装置、阵列基板、像素电路及其驱动方法
TWI662533B (zh) * 2018-05-04 2019-06-11 友達光電股份有限公司 顯示面板
CN109166522B (zh) * 2018-09-28 2022-10-18 昆山国显光电有限公司 像素电路、其驱动方法及显示装置
WO2020073231A1 (zh) * 2018-10-10 2020-04-16 深圳市柔宇科技有限公司 一种goa电路及显示装置
US10685604B2 (en) * 2018-10-29 2020-06-16 Wuhan China Star Optoelectronics Technology Co., Ltd. Pixel driving circuit and display device
CN109817159B (zh) * 2019-03-29 2021-07-20 昆山国显光电有限公司 一种像素驱动电路以及显示装置
CN110060638B (zh) * 2019-06-04 2021-09-07 南华大学 Amoled电压编程像素电路及其驱动方法
CN110349538B (zh) * 2019-06-20 2022-04-05 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板
KR102629520B1 (ko) * 2019-07-25 2024-01-25 엘지디스플레이 주식회사 표시 장치
CN113077753B (zh) * 2020-06-10 2022-09-13 友达光电股份有限公司 像素驱动电路
CN113270067B (zh) * 2021-06-28 2022-05-03 深圳市华星光电半导体显示技术有限公司 像素电路及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225251A1 (en) * 2004-04-09 2005-10-13 Toppoly Optoelectronics Corp. Active matrix OLED pixel structure and a driving method thereof
CN1735293A (zh) * 2004-08-13 2006-02-15 Lg.菲利浦Lcd株式会社 有机发光显示屏
US20100127955A1 (en) * 2008-11-26 2010-05-27 Sang-Moo Choi Pixel and organic light emitting display device using the same
CN103000127A (zh) * 2011-09-13 2013-03-27 胜华科技股份有限公司 发光元件驱动电路及其相关的像素电路与应用
CN104835452A (zh) * 2015-05-28 2015-08-12 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873074B1 (ko) * 2007-03-02 2008-12-09 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치 및 그의구동방법
KR20090101578A (ko) * 2008-03-24 2009-09-29 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
KR100986896B1 (ko) * 2008-12-05 2010-10-08 삼성모바일디스플레이주식회사 유기전계발광 표시장치 및 그의 구동방법
KR101073353B1 (ko) * 2009-10-19 2011-10-14 삼성모바일디스플레이주식회사 화소 및 그를 이용한 유기전계발광표시장치
CN102646386B (zh) * 2011-05-13 2014-08-06 京东方科技集团股份有限公司 一种像素单元电路、像素阵列、面板及面板驱动方法
CN102651197A (zh) * 2011-11-01 2012-08-29 京东方科技集团股份有限公司 有机发光二极管驱动电路、显示面板、显示器及驱动方法
CN103474027B (zh) * 2013-09-06 2015-09-09 京东方科技集团股份有限公司 一种像素电路及显示器
CN104409042B (zh) * 2014-12-04 2017-06-06 上海天马有机发光显示技术有限公司 像素电路及其驱动方法、显示面板、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225251A1 (en) * 2004-04-09 2005-10-13 Toppoly Optoelectronics Corp. Active matrix OLED pixel structure and a driving method thereof
CN1735293A (zh) * 2004-08-13 2006-02-15 Lg.菲利浦Lcd株式会社 有机发光显示屏
US20100127955A1 (en) * 2008-11-26 2010-05-27 Sang-Moo Choi Pixel and organic light emitting display device using the same
CN103000127A (zh) * 2011-09-13 2013-03-27 胜华科技股份有限公司 发光元件驱动电路及其相关的像素电路与应用
CN104835452A (zh) * 2015-05-28 2015-08-12 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333698A (zh) * 2021-12-30 2022-04-12 武汉天马微电子有限公司 显示面板和显示装置
CN114333698B (zh) * 2021-12-30 2023-02-28 武汉天马微电子有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN104835452B (zh) 2017-04-19
CN104835452A (zh) 2015-08-12
US20170169761A1 (en) 2017-06-15
US9881550B2 (en) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2016188012A1 (zh) 像素电路、其驱动方法及显示装置
US10083658B2 (en) Pixel circuits with a compensation module and drive methods thereof, and related devices
US9601057B2 (en) Pixel circuit, organic electroluminesce display panel and display device
CN108711398B (zh) 像素电路及其驱动方法、阵列基板、显示面板
WO2016173124A1 (zh) 像素电路、其驱动方法及相关装置
WO2016187990A1 (zh) 像素电路以及像素电路的驱动方法
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
JP6474911B2 (ja) 画素回路、有機エレクトロルミネセンス表示パネル、表示装置及びその駆動方法
WO2016026218A1 (zh) 像素电路、有机电致发光显示面板及显示装置
WO2017024754A1 (zh) 像素电路及其驱动方法、阵列基板、显示装置
WO2015169043A1 (zh) 补偿像素电路及显示装置
WO2016045261A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
US9905166B2 (en) Pixel driving circuit, pixel driving method and display apparatus
WO2016165529A1 (zh) 像素电路及其驱动方法、显示装置
WO2016065789A1 (zh) 阵列基板及其驱动方法、显示装置
WO2018014251A1 (en) Emission-control circuit, display apparatus having the same, and driving method thereof
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2016187991A1 (zh) 像素电路、驱动方法、有机电致发光显示面板及显示装置
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2022226951A1 (zh) 像素电路及其驱动方法、显示装置
WO2015085699A1 (zh) Oled像素电路及驱动方法、显示装置
WO2016155161A1 (zh) Oeld像素电路、显示装置及控制方法
WO2015176474A1 (zh) 像素电路及驱动方法、有机电致发光显示面板及显示装置
WO2018219066A1 (zh) 像素电路、驱动方法、显示面板及显示装置
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15122375

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893089

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15893089

Country of ref document: EP

Kind code of ref document: A1