WO2016065789A1 - 阵列基板及其驱动方法、显示装置 - Google Patents

阵列基板及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2016065789A1
WO2016065789A1 PCT/CN2015/074179 CN2015074179W WO2016065789A1 WO 2016065789 A1 WO2016065789 A1 WO 2016065789A1 CN 2015074179 W CN2015074179 W CN 2015074179W WO 2016065789 A1 WO2016065789 A1 WO 2016065789A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
compensation voltage
array substrate
control line
enable signal
Prior art date
Application number
PCT/CN2015/074179
Other languages
English (en)
French (fr)
Inventor
盖翠丽
吴仲远
徐锐
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/787,392 priority Critical patent/US20160260381A1/en
Publication of WO2016065789A1 publication Critical patent/WO2016065789A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • the present disclosure relates to an array substrate, a driving method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • PMOLEDs passive matrix driving organic light-emitting diodes
  • AMOLEDs active matrix driving organic light-emitting diodes
  • At least one embodiment of the present invention provides an array substrate, a driving method thereof, and a display device capable of solving a mura defect caused by a resistance drop (IR Drop).
  • IR Drop resistance drop
  • an array substrate including a scan driving unit located in a peripheral area, for inputting an enable signal to one end of at least one driving control line in the display area, the array substrate further Included at least one compensation control unit and a compensation voltage source for providing a compensation voltage; one end of the compensation control unit is connected to the compensation voltage source, and the other end is connected to the other end of at least one of the drive control lines for control
  • the compensation voltage source inputs the compensation voltage to the other end of the drive control line; wherein the compensation voltage is less than or equal to the voltage of the enable signal.
  • a display device including the above array substrate is provided.
  • a method for driving an array substrate comprising: inputting an enable signal to one end of at least one driving control line in a display area by a scan driving unit; and controlling compensation by a compensation control unit
  • the voltage source inputs a compensation voltage to the other end of the drive control line; wherein the compensation voltage is less than or equal to the voltage of the enable signal.
  • At least one embodiment of the present invention provides an array substrate, a driving method thereof, and a display device.
  • the array substrate includes a scan driving unit located in a peripheral area for inputting an enable signal to one end of at least one driving control line in the display area to drive the OLED device to emit light.
  • the array substrate further comprises at least one compensation control unit and a compensation voltage source for providing a compensation voltage.
  • One end of the compensation control unit is connected to the compensation voltage source, and the other end is connected to the other end of the at least one driving control line for controlling the compensation voltage source to input the compensation voltage to the other end of the driving control line.
  • the compensation control unit can control the compensation voltage source to input a compensation voltage to the other end of the drive control line, so that the enable signal received from the pixel unit remote from the scan driving unit can be compensated. Since the compensation voltage is less than or equal to the enable signal, it is possible to avoid mura failure caused by the continuous decrease (ie, IR Drop) of the voltage of the enable signal during transmission. Thereby improving the quality of the display screen and the quality of the display.
  • FIG. 1 is a schematic structural view of an array substrate provided by a known technical solution
  • FIG. 2a is a schematic structural diagram of an array substrate according to an embodiment of the present invention.
  • 2b is a schematic structural diagram of another array substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic partial structural diagram of a pixel circuit provided by a known technical solution
  • FIG. 4 is a schematic structural diagram of another array substrate according to an embodiment of the present invention.
  • 5a is a schematic structural diagram of another array substrate according to an embodiment of the present invention.
  • FIG. 5b is a schematic structural diagram of still another array substrate according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a driving method of an array substrate according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of an array substrate provided by a known technical solution.
  • Known Technical Solution For a large-sized AMOLED display, since the backplane power supply line has a certain resistance, when the OLED device emits light, the driving current of all the pixels is controlled by the scan driving unit 10 as shown in FIG. A line Vdd is supplied to each of the pixel units 20. Therefore, in the above-described light emitting phase, the voltage input to the pixel unit 20 at the position close to the scan driving unit 10 is higher than the voltage of the pixel unit (for example, the last column of the pixel unit 20') at the farther position of the scan driving unit 10 than the input distance. . This phenomenon is called IR Drop.
  • the IR Drop may cause the magnitude of the current flowing through the pixel unit 20 at different positions to differ.
  • the AMOLED display is caused to produce a difference in brightness when displayed. For example, when the first line of pixels is fully illuminated, the brightness of the display will be darkened from left to right.
  • the phenomenon of the above difference in brightness is the moire phenomenon (mura). This causes the quality of the display to be degraded, which adversely affects the quality and display of the display.
  • FIG. 2 is a schematic structural diagram of an array substrate according to an embodiment of the present invention.
  • the array substrate can include a scan drive unit 10 located in a peripheral region.
  • the scan driving unit 10 is configured to input an enable signal to one end of at least one of the driving control lines Vdd in the display area to cause the OLED device to emit light.
  • the size of the enable signal is VDD.
  • the array substrate may further comprise at least one compensation control unit 100 and a compensation voltage source 101 for providing a compensation voltage Vc.
  • One end of the compensation control unit 100 is connected to the compensation voltage source 101, and the other end is connected to the other end of the at least one driving control line Vdd; and is used for controlling the compensation voltage source 101 to input the compensation voltage Vc to the driving control line Vdd. One end.
  • the compensation voltage Vc is equal to or less than the voltage (VDD) of the enable signal.
  • An embodiment of the present invention provides an array substrate including a scan driving unit located in a peripheral area for inputting an enable signal to one end of at least one driving control line in the display area to drive the OLED device to emit light. Furthermore, the array substrate further comprises at least one compensation control unit and a compensation voltage source for providing a compensation voltage. One end of the compensation control unit is connected to the compensation voltage source, and the other end is connected to the other end of the at least one driving control line; and the control compensation voltage source is used to input the compensation voltage to the other end of the driving control line. In this way, when the scan drive unit is driven to the drive control line When an enable signal is input to one end, the OLED device of the AMOLED display emits light.
  • the compensation control unit can control the compensation voltage source to input a compensation voltage to the other end of the drive control line, so that the enable signal received from the pixel unit remote from the scan driving unit can be compensated. Since the compensation voltage is less than or equal to the voltage of the enable signal. Therefore, it is possible to avoid the mura defect caused by the continuous decrease (i.e., IR Drop) of the voltage of the enable signal during the transmission. Thereby improving the quality of the display screen and the quality of the display.
  • the first display area generally refers to an effective display area (Active Area, abbreviated as AA area). As shown in FIG. 1 , the display area is provided with a plurality of horizontally intersecting gate lines 30 and data lines 31. . The gate line 30 and the data line 31 intersect to define a plurality of pixel units 20 arranged in a matrix.
  • the above peripheral area refers to an area on the array substrate other than the AA area.
  • the peripheral area includes a binding area and a wiring area.
  • the scan driving unit 10 and the data driving unit 11 are disposed in the binding area, and the scanning signal for turning on the thin film transistor (TFT) can be input to the gate line 30 through the signal leads in the wiring area (G1). (G2, ..., Gn), the data signals (D1, D2, ..., Gm) for displaying the screen are input to the data line 31.
  • one end of the drive control line Vdd refers to one end of the drive control line Vdd in contact with the scan driving unit 10 in the array substrate; and the other end of the drive control line Vdd refers to the drive control line Vdd and the scan drive unit
  • the compensation control unit 100 connected to the other end of the drive control line Vdd can be located in the peripheral region away from the scanning drive unit 10 as shown in FIG. 2a; or as shown in FIG. 5b, in the display region. It is also possible to be located in a portion of the peripheral area close to the scan driving unit 10 (not shown); or, in order to enhance the compensation effect, as shown in FIG.
  • the portions of the peripheral area that are close to and away from the scan driving unit 10 may be provided.
  • the compensation voltage source 101 can be disposed in the scan driving unit 10 as shown in FIG. Thereby, the space in the peripheral area can be saved.
  • the power consumption is small when the same current is passed.
  • the above TFT is generally formed using polysilicon.
  • TFT switches fabricated on large-area glass substrates In the circuit fluctuations occur in electrical parameters such as threshold voltage Vth, mobility, etc., so that the current flowing through the OLED device not only changes with the on-voltage stress generated by the TFT being turned on for a long time, but also It also varies depending on the threshold voltage Vth of the TFT. As a result, the brightness uniformity and brightness constancy of the display will be affected.
  • a threshold voltage compensation loop is generally designed in the pixel circuit to compensate the threshold voltage Vth of the TFT, thereby reducing the influence of the threshold voltage on the uniformity of display brightness.
  • the sum of the data voltage Vdata and the threshold voltage Vth ie, Vdata+Vth
  • FIG. 3 is a partial schematic structural diagram of a pixel circuit provided by a known technical solution.
  • the illuminating control line Em turns on the transistors M1 and M2, and the scan driving unit 10 inputs an enable signal to one end of the driving control line Vdd to drive the OLED device to emit light, since the gate-source voltage Vgs of the driving transistor DTFT is approximated at this time.
  • the enable signal (the voltage of the enable signal is at a high level) can be input only to the drive control line Vdd during the light-emitting phase, and the input to the drive control line Vdd is low during the remaining stages, such as the compensation phase described above. Level.
  • the compensation control unit 100 only needs to input the compensation voltage Vc to the other end of the drive control line Vdd when the drive control line Vdd receives the enable signal.
  • FIG. 4 is a schematic structural diagram of another array substrate according to an embodiment of the present invention.
  • the above compensation control unit 100 may include at least one control switch 110.
  • One end of the control switch 110 is connected to the compensation voltage source 101, and the other end is connected to the other end of one drive control line Vdd.
  • the control switch 110 can be turned on, so that the compensation voltage source 110 and the other end of the drive control line Vdd are turned on, and the compensation voltage is input to the other end of the drive control line.
  • the enable signal received from the pixel unit remote from the scan driving unit can be compensated to avoid the mura defect caused by the continuous decrease (ie, IR Drop) of the voltage of the enable signal during the transmission.
  • the compensation control unit 100 on the array substrate may be a compensation voltage source 101 and the driving control line Vdd. a metal wire connected at the other end.
  • the control compensation voltage source 101 can automatically input the compensation voltage Vc to the other end of the drive control line Vdd.
  • 5a and 5b are schematic structural diagrams of two other array substrates according to an embodiment of the present invention.
  • the above control switch 110 may include a thin film transistor 120.
  • the gate of the thin film transistor 120 and the first pole are connected to the other end of a driving control line Vdd, and the second pole thereof is connected to the compensation voltage source 101.
  • the enable signal is input to the gate of the thin film transistor 120 to turn on the thin film transistor 120.
  • the compensation voltage Vc input from the compensation voltage source 101 is input to the other end of the drive control line Vdd through the thin film transistor 120, so that the enable signal received from the pixel unit remote from the scan driving unit can be compensated to avoid the voltage due to the enable signal
  • the continual decrease in the transmission process ie IR Drop
  • the description may be made by taking the case where the first electrode of the thin film transistor 120 may be the source and the second electrode may be the drain.
  • control switch 110 is the thin film transistor 120
  • the structure of the array substrate will be described in detail.
  • the compensation control unit 100 in the case where the compensation control unit 100 is located in the peripheral region, the gate of the thin film transistor 120 and the first electrode are connected to the drive control line Vdd away from one end of the scan driving unit 10. In this case, the second pole of the thin film transistor 120 is still connected to the compensation voltage source 101.
  • the compensation voltage Vc input from the compensation voltage source 101 can be input from the last column of pixel units 20' by the compensation control unit 100, thereby compensating for the enable signal received by the pixel unit 20'. It can be avoided that the display screen is too large and the load resistance is excessive, so that the IR Drop causes the enable signal received from the pixel unit 20' at one end of the scan driving unit 10 to be reduced. Therefore, the above scheme can reduce the difference in luminance between pixels and avoid the generation of mura.
  • the compensation control unit 100 in the case where the compensation control unit 100 is located in the display area (AA area), one pixel list of the display area A thin film transistor 120 is provided in the element 20.
  • the gate and the first electrode of the thin film transistor are connected to the driving control line Vdd, and the second electrode is connected to the compensation voltage source 101.
  • the second embodiment can not only input the compensation voltage Vc input from the compensation voltage source 101 from the last column of pixel units 20' through the compensation control unit 100 in the illumination stage, thereby receiving the pixel unit 20'.
  • the enabled signal is compensated.
  • the second embodiment is better than the first embodiment in solving the problem of mura failure, since the thin film transistor 120 is located in the display region, it affects the aperture ratio of the display panel. Therefore, those skilled in the art can select the setting position of the compensation control unit 100 as needed.
  • FIG. 5b is an illustration in which each column of pixel units 20 is provided with a compensation control unit 100, and each pixel unit 20 corresponds to one thin film transistor 120.
  • each pixel unit 20 corresponds to one thin film transistor 120.
  • the compensation control unit 100 it is also possible to provide the compensation control unit 100 only in a partial column, for example, every two columns, or four columns, or eight columns, to provide a compensation control unit 100.
  • the thin film transistor 120 described above may be provided only in the partial pixel unit 20 in the same column. The invention is not limited thereto.
  • the first embodiment and the second embodiment are respectively described as an example in which the compensation control unit 100 is disposed in the peripheral area and the compensation control unit 100 is disposed in the display area.
  • Other setting manners are not described herein again, but All should fall within the scope of protection of the present invention.
  • Embodiments of the present invention provide a display device including any of the array substrates described above, which has the same structure and advantageous effects as the array substrate in the foregoing embodiments. Since the structure and advantageous effects of the array substrate have been described in detail in the foregoing embodiments, they are not described herein again.
  • the display device may include an organic light emitting diode display device, for example, the display device may be any product or component having a display function such as a digital photo frame, a mobile phone, or a tablet computer.
  • FIG. 6 is a flowchart of a driving method of an array substrate according to an embodiment of the present invention. As shown in FIG. 6, the method may include the following steps:
  • S101 An enable signal is input from the scan driving unit 10 to one end of at least one driving control line Vdd in the display area (AA area), and the enable signal is used to drive the OLED device to emit light.
  • the compensation voltage source 101 is controlled by the compensation control unit 100 to input the compensation voltage Vc to the other end of the drive control line Vdd.
  • the compensation voltage Vc is less than or equal to the voltage (VDD) of the enable signal.
  • An embodiment of the present invention provides a method for driving an array substrate, including: the scan driving unit 10 inputs an enable signal to one end of at least one driving control line in the display area, and the enable signal is used to drive the device to emit light; The control unit controls the compensation voltage source to input the compensation voltage to the other end of the drive control line. In this way, in the light emitting phase, the compensation control unit can control the compensation voltage source to input the compensation voltage to the other end of the drive control line, so that the enable signal received from the pixel unit away from the scan driving unit can be compensated. Since the compensation voltage is less than or equal to the voltage of the enable signal, it is possible to avoid the mura defect caused by the continuous decrease (ie, IR Drop) of the voltage of the enable signal during the transmission. Thereby improving the quality of the display screen and the quality of the display.
  • the compensation voltage is less than or equal to the voltage of the enable signal, it is possible to avoid the mura defect caused by the continuous decrease (ie, IR Drop) of the voltage of the enable signal during the transmission
  • a compensation loop is generally provided in the pixel circuit to compensate for the threshold voltage Vth.
  • the enable signal can be input to the drive control line Vdd only during the light-emitting phase (the voltage of the enable signal is high), and in the remaining stages, for example, the compensation phase described above
  • the drive control line Vdd is input low. Therefore, the voltage input to the drive control line is an AC voltage.
  • the compensation control unit 100 only needs to input the compensation voltage Vc to the other end of the drive control line Vdd when the drive control line Vdd receives the enable signal (ie, when the drive control line Vdd is input with a high level). .
  • the driving method may further include:
  • the control switch 110 is turned on to turn on the other end of the compensation voltage source 101 and the drive control line Vdd. Thereby inputting the compensation voltage to the other end of the driving control line, so that the enabling signal received by the pixel unit remote from the scanning driving unit can be compensated to avoid the continuous decrease of the voltage of the enabling signal during the transmission (ie, The mura caused by IR Drop) is bad.
  • the driving method may further include:
  • An enable signal is input to the gate of the thin film transistor 120 to turn on the thin film transistor 120.
  • the compensation voltage Vc input from the compensation voltage source 101 is input to the other end of the drive control line Vdd through the thin film transistor 120.
  • the fourth embodiment can control the compensation voltage source 101 to automatically input the compensation voltage Vc to the other end of the drive control line Vdd when the drive control line Vdd receives the enable signal.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

公开了一种阵列基板及其驱动方法、显示装置。阵列基板包括位于外围区域的扫描驱动单元(10),用于向显示区域内的至少一条驱动控制线(Vdd)的一端输入使能信号,以驱动OLED器件进行发光。所述阵列基板还包括至少一个补偿控制单元(100)以及用于提供补偿电压(Vc)的补偿电压源(101)。所述补偿控制单元(100)的一端连接补偿电压源(101),另一端与至少一条驱动控制线(Vdd)的另一端相连接,用于控制补偿电压源(101)将补偿电压(Vc)输入至驱动控制线(Vdd)的另一端。补偿电压(Vc)小于等于使能信号的电压(VDD)。能够解决IR Drop引起的mura不良。

Description

阵列基板及其驱动方法、显示装置 技术领域
本公开涉及一种阵列基板及其驱动方法、显示装置。
背景技术
随着显示技术的急速进步,作为显示装置核心的半导体元件技术也随之得到了飞跃性的进步。对于已知的显示装置而言,有机发光二极管(Organic Light Emitting Diode,简称OLED)作为一种电流型发光器件,因其所具有的自发光、快速响应、宽视角和可制作在柔性衬底上等特点而越来越多地被应用于高性能显示领域当中。OLED按驱动方式可分为无源矩阵驱动有机发光二极管(Passive Matrix Driving OLED,简称PMOLED)和有源矩阵驱动有机发光二极管(Active Matrix Driving OLED,简称AMOLED)两种,由于AMOLED显示器具有低制造成本、高应答速度、省电、可用于便携式设备的直流驱动、工作温度范围大等等优点而可望成为取代液晶显示器(liquid crystal display,简称LCD)的下一代新型平面显示器。
发明内容
本发明的至少一个实施例提供一种阵列基板及其驱动方法、显示装置,能够解决电阻压降(IR Drop)引起的云纹现象(mura)不良。
根据本发明至少一个实施例的一方面,提供一种阵列基板,包括位于外围区域的扫描驱动单元,用于向显示区域内的至少一条驱动控制线的一端输入使能信号,所述阵列基板还包括至少一个补偿控制单元以及用于提供补偿电压的补偿电压源;所述补偿控制单元的一端连接所述补偿电压源,另一端与至少一条所述驱动控制线的另一端相连接,用于控制所述补偿电压源将所述补偿电压输入至所述驱动控制线的另一端;其中,所述补偿电压的小于等于所述使能信号的电压。
根据本发明至少一个实施例的另一方面,提供一种显示装置,包括上述阵列基板。
根据本发明至少一个实施例的又一方面,提供一种阵列基板的驱动方法,包括:由扫描驱动单元向显示区域内的至少一条驱动控制线的一端输入使能信号;由补偿控制单元控制补偿电压源将补偿电压输入至所述驱动控制线的另一端;其中,所述补偿电压小于等于所述使能信号的电压。
本发明的至少一个实施例提供一种阵列基板及其驱动方法、显示装置。所述阵列基板包括位于外围区域的扫描驱动单元,用于向显示区域内的至少一条驱动控制线的一端输入使能信号,以驱动OLED器件进行发光。此外,所述阵列基板还包括至少一个补偿控制单元以及用于提供补偿电压的补偿电压源。所述补偿控制单元的一端连接补偿电压源,另一端与至少一条驱动控制线的另一端相连接,用于控制补偿电压源将补偿电压输入至驱动控制线的另一端。这样一来,当扫描驱动单元向驱动控制线的一端输入使能信号时,AMOLED显示器的OLED器件发光。在此情况下,补偿控制单元能够控制补偿电压源向驱动控制线的另一端输入补偿电压,从而可以对远离扫描驱动单元的像素单元接收到的使能信号进行补偿。由于补偿电压小于等于所述使能信号,因此,能够避免由于使能信号的电压在传输过程中的不断减小(即IR Drop)而引起的mura不良。从而提高了显示画面的品质和显示器的质量。
附图说明
图1为一种已知技术方案提供的阵列基板的结构示意图;
图2a为本发明实施例提供的一种阵列基板的结构示意图;
图2b为本发明实施例提供的另一种阵列基板的结构示意图;
图3为一种已知技术方案提供的像素电路的局部结构示意图;
图4为本发明实施例提供的另一种阵列基板的结构示意图;
图5a为本发明实施例提供的另一种阵列基板的结构示意图;
图5b为本发明实施例提供的又一种阵列基板的结构示意图;
图6为本发明实施例提供的一种阵列基板的驱动方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而 不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为一种已知技术方案提供的阵列基板的结构示意图。已知技术方案对于大尺寸的AMOLED显示器而言,由于背板电源线存在一定的电阻,在OLED器件发光时,所有像素的驱动电流均是由如图1所示的扫描驱动单元10通过驱动控制线Vdd提供至各个像素单元20的。因此,在上述发光阶段,输入靠近所述扫描驱动单元10位置处的像素单元20的电压相对于输入距离扫描驱动单元10较远位置处的像素单元(例如最后一列像素单元20’)的电压高。这种现象被称作电阻压降(IR Drop)。
由于扫描驱动单元10输入像素单元20(或像素单元20’)的电压与流过每个像素单元的电流相关,因此,IR Drop会导致不同位置的像素单元20流经的电流大小有所差异,使得AMOLED显示器在显示时产生亮度差异,例如,第一行像素全亮时,其显示的亮度会从左到右依次变暗。上述亮度差异的现象即为云纹现象(mura)。这样会导致显示画面的品质降低,从而对显示器的质量和显示效果造成不利的影响。
图2a为本发明实施例提供的一种阵列基板的结构示意图。如图2a所示,该阵列基板可以包括位于外围区域的扫描驱动单元10。该扫描驱动单元10用于向显示区域内的至少一条驱动控制线Vdd的一端输入使能信号,以使OLED器件发光。该使能信号的大小为VDD。此外,所述阵列基板还可以包括至少一个补偿控制单元100以及用于提供补偿电压Vc的补偿电压源101。
所述补偿控制单元100的一端连接补偿电压源101,另一端与至少一条驱动控制线Vdd的另一端相连接;用于控制补偿电压源101将所述补偿电压Vc输入至驱动控制线Vdd的另一端。
其中,上述补偿电压Vc小于等于所述使能信号的电压(VDD)。
本发明实施例提供一种阵列基板,包括位于外围区域的扫描驱动单元,用于向显示区域内的至少一条驱动控制线的一端输入使能信号,以驱动OLED器件进行发光。此外所述阵列基板还包括至少一个补偿控制单元以及用于提供补偿电压的补偿电压源。所述补偿控制单元的一端连接补偿电压源,另一端与至少一条驱动控制线的另一端相连接;用于控制补偿电压源将补偿电压输入至驱动控制线的另一端。这样一来,当扫描驱动单元向驱动控制线 的一端输入使能信号时,AMOLED显示器的OLED器件发光。在此情况下,补偿控制单元能够控制补偿电压源向驱动控制线的另一端输入补偿电压,从而可以对远离扫描驱动单元的像素单元接收到的使能信号进行补偿。由于补偿电压小于等于所述使能信号的电压。因此,能够避免由于使能信号的电压在传输过程中的不断减小(即IR Drop),而引起的mura不良。从而提高了显示画面的品质和显示器的质量。
需要说明的是,第一、上述显示区域一般指有效显示区域(Active Area,简称AA区),该显示区域内如图1所示,设置有多条横纵交叉的栅线30和数据线31。该栅线30和数据线31交叉界定出多个呈矩阵形式排列的像素单元20。
上述外围区域是指阵列基板上除了AA区以外的区域。该外围区域包括绑定区域和布线区域。其中绑定区域内设置有扫描驱动单元10和数据驱动单元11,可以通过布线区域中的信号引线,分别向栅线30输入用于开启薄膜晶体管(Thin Film Transistor,简称TFT)的扫描信号(G1、G2……Gn),向数据线31输入用于显示画面的数据信号(D1、D2……Gm)。
第二、驱动控制线Vdd的一端是指在阵列基板中驱动控制线Vdd与扫描驱动单元10相接触的一端;而该驱动控制线Vdd的另一端是指除了上述驱动控制线Vdd与扫描驱动单元10的接触端以外,驱动控制线Vdd上与补偿控制单元100相接处的一端。因此,与驱动控制线Vdd的另一端相连接的补偿控制单元100可以如图2a所示,位于外围区域中远离扫描驱动单元10的部分;或者如图5b所示,所示位于显示区域内。还可以位于外围区域中靠近扫描驱动单元10的部分(图中未示出);或者,为了提升补偿效果,可以如图2b所示,在外围区域的靠近和远离扫描驱动单元10的部分均设置有上述补偿控制单元100。还可以在显示区域和外围区域中均设置上述补偿控制单元100。本发明对此不做限制。
第三、为了使得外围区域的布线及绑定区域结构紧凑,可以如图4所示,将补偿电压源101设置于扫描驱动单元10中。从而能够节约外围区域的空间。
第四、在AMOLED显示器中为了提高TFT的载流子迁移率,并降低电阻率,使得通过相同电流时,功耗较小。一般采用多晶硅构成上述TFT。然而由于生产工艺和多晶硅的特性,导致在大面积玻璃基板上制作的TFT开关 电路时,常常在诸如阈值电压Vth、迁移率等电学参数上出现波动,从而使得流经OLED器件的电流不仅会随着TFT长时间导通所产生的导通电压应力的变化而改变,而且其还会随着TFT的阈值电压Vth漂移而有所不同。如此一来,将会影响到显示器的亮度均匀性与亮度恒定性。
为了解决上述问题,一般会采用在像素电路中设计阈值电压补偿回路,以对TFT的阈值电压Vth进行补偿,从而减小阈值电压对显示亮度均匀性的影响。例如,在对阈值电压Vth进行补偿的过程中,会向驱动晶体管DTFT的栅极写入数据电压Vdata与阈值电压Vth的和(即Vdata+Vth)。图3为一种已知技术方案提供的像素电路的局部结构示意图。在发光阶段,发光控制线Em将晶体管M1和M2导通,扫描驱动单元10会向驱动控制线Vdd的一端输入使能信号以驱动OLED器件发光,由于此时驱动晶体管DTFT的栅源电压Vgs近似为Vdata+Vth-VDD。这样一来,流过OLED器件的驱动电流I=K/2(Vdata+Vth-VDD-Vth)2=K/2(Vdata–VDD)2;其中K为晶体管的增益因子。因此,驱动晶体管DTFT的驱动电流与阈值电压Vth无关,从而不会受到阈值电压Vth的影响。
在上述像素电路的工作过程中,可以只在发光阶段向驱动控制线Vdd输入使能信号(使能信号的电压为高电平),而在其余阶段例如上述补偿阶段向驱动控制线Vdd输入低电平。这样一来,补偿控制单元100只需要在驱动控制线Vdd接收使能信号时,控制补偿电压源101向驱动控制线Vdd的另一端输入补偿电压Vc。
图4为本发明实施例提供的另一种阵列基板的结构示意图。为了对补偿电压源101的输出进行控制,如图4所示,上述补偿控制单元100可以包括至少一个控制开关110。
所述控制开关110的一端连接补偿电压源101,另一端与一条驱动控制线Vdd的另一端相连接。这样一来,可以在驱动控制线Vdd接收使能信号时,将控制开关110打开,使得补偿电压源110与驱动控制线Vdd的另一端导通,将补偿电压输入至驱动控制线的另一端,从而可以对远离扫描驱动单元的像素单元接收到的使能信号进行补偿,以避免由于使能信号的电压在传输过程中的不断减小(即IR Drop),而引起的mura不良。
第五、当扫描驱动单元10向驱动控制线Vdd的一端输入使能信号的电 压一直为高电平(即一直流信号)时(例如像素电路中未设置补偿回路的阵列基板),该阵列基板上的补偿控制单元100可以为一条将补偿电压源101与驱动控制线Vdd的另一端相连接的金属导线。
进一步地,为了在驱动控制线Vdd接收使能信号时,控制补偿电压源101能够自动向驱动控制线Vdd的另一端输入补偿电压Vc。图5a和5b为本发明实施例提供的另两种阵列基板的结构示意图。如图5a或图5b所示,上述控制开关110可以包括薄膜晶体管120。
每一个薄膜晶体管120的栅极和第一极连接一条驱动控制线Vdd的另一端,其第二极与补偿电压源101相连接。这样一来,可以在驱动控制线Vdd接收使能信号时,该使能信号输入至薄膜晶体管120的栅极,以导通该薄膜晶体管120。补偿电压源101输入的补偿电压Vc通过薄膜晶体管120输入至驱动控制线Vdd的另一端,从而可以对远离扫描驱动单元的像素单元接收到的使能信号进行补偿,以避免由于使能信号的电压在传输过程中的不断减小(即IR Drop),而引起的mura不良。
需要说明的是,本发明的实施例中,是以薄膜晶体管120的第一极可以是源极,第二极可以是漏极为例进行的说明。
以下,在控制开关110为薄膜晶体管120的情况下,对阵列基板的结构进行详细的说明。
第一实施例
如图5a所示,在补偿控制单元100位于外围区域的情况下,所述薄膜晶体管120的栅极和第一极连接驱动控制线Vdd远离扫描驱动单元10的一端。在此情况下,薄膜晶体管120的第二极仍然与补偿电压源101相连接。这样一来,在发光阶段,通过补偿控制单元100能够将补偿电压源101输入的补偿电压Vc从最后一列像素单元20’进行输入,从而对像素单元20’接收到的使能信号进行补偿。可以避免由于显示屏幕过大,负载电阻过多,使得IR Drop导致远离扫描驱动单元10一端的像素单元20’接收到的使能信号有所减小的现象。因此上述方案能够减小像素之间的亮度差异,避免mura的产生。
第二实施例
如图5b所示(省略了像素单元中的TFT和像素电极等结构),在补偿控制单元100位于显示区域(AA区域)的情况下,显示区域的一个像素单 元20中设置有一个薄膜晶体管120。薄膜晶体管的栅极和第一极连接驱动控制线Vdd,第二极与补偿电压源101相连接。
对比第一实施例可知,第二实施例不仅能够在发光阶段,通过补偿控制单元100能够将补偿电压源101输入的补偿电压Vc从最后一列像素单元20’进行输入,从而对像素单元20’接收到的使能信号进行补偿。而且,还可以对任意位置处设置有薄膜晶体管120的像素单元20进行补偿,以避免mura不良。虽然第二实施例解决mura不良的效果比第一实施例较佳,但是由于薄膜晶体管120位于显示区域,因此会对显示面板的开口率造成影响。所以,本领域技术人员可以根据需要对补偿控制单元100的设置位置进行选择。
此外,图5b是以每一列像素单元20都设置有补偿控制单元100,并且每个像素单元20对应一个薄膜晶体管120为例进行的说明。为了提高开口率,还可以仅在部分列设置补偿控制单元100,例如每隔2列,或4列,或8列设置一补偿控制单元100。并且可以只在同一列中的部分像素单元20中设置上述薄膜晶体管120。本发明对此不作限制。
上述第一实施例和第二实施例分别是对将补偿控制单元100设置于外围区域和将补偿控制单元100设置于显示区域为例进行的说明,其它设置方式在此不再一一赘述,但都应当属于本发明的保护范围。
本发明实施例提供一种显示装置,包括如上所述的任意一种阵列基板,具有与前述实施例中的阵列基板相同的结构和有益效果。由于阵列基板的结构和有益效果已经在前述实施例中进行了详细描述,在此不再赘述。
在本发明实施例中,显示装置可以包括有机发光二极管显示装置,例如该显示装置可以为数码相框、手机或平板电脑等任何具有显示功能的产品或者部件。
图6为本发明实施例提供的一种阵列基板的驱动方法的流程图。如图6所示,该方法可以包括以下步骤:
S101:由扫描驱动单元10向显示区域(AA区域)内的至少一条驱动控制线Vdd的一端输入使能信号,该使能信号用于驱动OLED器件进行发光。
S102:由补偿控制单元100控制补偿电压源101将补偿电压Vc输入至驱动控制线Vdd的另一端。所述补偿电压Vc小于等于使能信号的电压(VDD)。
本发明实施例提供一种阵列基板的驱动方法,包括:扫描驱动单元10向显示区域内的至少一条驱动控制线的一端输入使能信号,该使能信号用于驱动器件进行发光;然后,补偿控制单元控制补偿电压源将补偿电压输入至驱动控制线的另一端。这样一来,在发光阶段,补偿控制单元能够控制补偿电压源向驱动控制线的另一端输入补偿电压,从而可以对远离扫描驱动单元的像素单元接收到的使能信号进行补偿。由于补偿电压小于等于所述使能信号的电压,因此,能够避免由于使能信号的电压在传输过程中的不断减小(即IR Drop),而引起的mura不良。从而提高了显示画面的品质和显示器的质量。
为了减小或避免阈值电压Vth对流经OLED器件的电流产生影响,从而导致显示品质下降。一般会在像素电路中设置补偿回路,以对上述阈值电压Vth进行补偿。对于设置有补偿回路的像素电路,其在工作过程中,可以只在发光阶段向驱动控制线Vdd输入使能信号(使能信号的电压为高电平),而在其余阶段例如上述补偿阶段向驱动控制线Vdd输入低电平。因此输入至驱动控制线的电压为交流电压。这样一来,补偿控制单元100只需要在驱动控制线Vdd接收使能信号时(即向驱动控制线Vdd输入高电平时),控制补偿电压源101向驱动控制线Vdd的另一端输入补偿电压Vc。
以下,在向驱动控制线Vdd输入交流电压的情况下,对上述驱动方法进行举例说明。
第三实施例
例如,以图4为例进行说明。在补偿控制单元100包括至少一个控制开关110时,在上述步骤S101之后,所述驱动方法还可以包括:
打开控制开关110,将补偿电压源101与驱动控制线Vdd的另一端导通。从而将补偿电压输入至驱动控制线的另一端,从而可以对远离扫描驱动单元的像素单元接收到的使能信号进行补偿,以避免由于使能信号的电压在传输过程中的不断减小(即IR Drop)而引起的mura不良。
第四实施例
例如,以图5a或图5b为例进行说明。当控制开关110包括薄膜晶体管120时,在上述步骤S101之后,所述驱动方法,还可以包括:
将使能信号输入至薄膜晶体管120的栅极,以导通该薄膜晶体管120。 补偿电压源101输入的补偿电压Vc通过薄膜晶体管120输入至驱动控制线Vdd的另一端。从而可以对远离扫描驱动单元的像素单元接收到的使能信号进行补偿,以避免由于使能信号的电压在传输过程中的不断减小(即IR Drop)而引起的mura不良。
相对于第三实施例而言,第四实施例能够在驱动控制线Vdd接收使能信号时,控制补偿电压源101自动向驱动控制线Vdd的另一端输入补偿电压Vc。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所附权利要求的保护范围为准。
本申请要求于2014年10月30日递交的中国专利申请第201410597271.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (10)

  1. 一种阵列基板,包括位于外围区域的扫描驱动单元,用于向显示区域内的至少一条驱动控制线的一端输入使能信号,所述阵列基板还包括至少一个补偿控制单元以及用于提供补偿电压的补偿电压源;
    所述补偿控制单元的一端连接所述补偿电压源,另一端与至少一条所述驱动控制线的另一端相连接,用于控制所述补偿电压源将所述补偿电压输入至所述驱动控制线的另一端;
    其中,所述补偿电压小于等于所述使能信号的电压。
  2. 根据权利要求1所述的阵列基板,其中,所述补偿控制单元包括至少一个控制开关;
    所述控制开关的一端连接所述补偿电压源,另一端与一条所述驱动控制线的另一端相连接。
  3. 根据权利要求2所述的阵列基板,其中,所述控制开关包括薄膜晶体管;
    每一个所述薄膜晶体管的栅极和第一极连接一条所述驱动控制线的另一端,第二极与所述补偿电压源相连接。
  4. 根据权利要求3所述的阵列基板,其中,在所述补偿控制单元位于所述外围区域的情况下,所述薄膜晶体管的栅极和所述第一极连接所述驱动控制线远离所述扫描驱动单元的一端。
  5. 根据权利要求3所述的阵列基板,其中,在所述补偿控制单元位于所述显示区域的情况下,所述显示区域的一个像素单元中设置有一个所述薄膜晶体管。
  6. 根据权利要求1所述的阵列基板,其中,所述补偿电压源设置于所述扫描驱动单元中。
  7. 一种显示装置,包括如权利要求1-6任一项所述的阵列基板。
  8. 一种阵列基板的驱动方法,包括:
    由扫描驱动单元向显示区域内的至少一条驱动控制线的一端输入使能信号;
    由补偿控制单元控制补偿电压源将补偿电压输入至所述驱动控制线的另 一端;
    其中,所述补偿电压小于等于所述使能信号的电压。
  9. 根据权利要求8所述的阵列基板的驱动方法,其中,在所述补偿控制单元包括至少一个控制开关的情况下,在所述扫描驱动单元向显示区域内的至少一条驱动控制线的一端输入使能信号之后,所述方法还包括:
    打开所述控制开关,将所述补偿电压源与所述驱动控制线的另一端导通。
  10. 根据权利要求9所述的阵列基板的驱动方法,其中,在所述控制开关包括薄膜晶体管的情况下,在所述扫描驱动单元向显示区域内的至少一条驱动控制线的一端输入使能信号之后,所述方法还包括:
    将所述使能信号输入至所述薄膜晶体管的栅极,以导通所述薄膜晶体管;
    所述补偿电压源输入的补偿电压通过所述薄膜晶体管输入至所述驱动控制线的另一端。
PCT/CN2015/074179 2014-10-30 2015-03-13 阵列基板及其驱动方法、显示装置 WO2016065789A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/787,392 US20160260381A1 (en) 2014-10-30 2015-03-13 Array substrate, driving method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410597271.X 2014-10-30
CN201410597271.XA CN104299569B (zh) 2014-10-30 2014-10-30 一种阵列基板及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016065789A1 true WO2016065789A1 (zh) 2016-05-06

Family

ID=52319270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074179 WO2016065789A1 (zh) 2014-10-30 2015-03-13 阵列基板及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US20160260381A1 (zh)
CN (1) CN104299569B (zh)
WO (1) WO2016065789A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862891A (zh) * 2019-04-25 2020-10-30 上海和辉光电有限公司 一种有机发光显示器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299569B (zh) * 2014-10-30 2019-03-01 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示装置
CN104809988B (zh) 2015-05-18 2016-06-29 京东方科技集团股份有限公司 一种oled阵列基板及显示面板、显示装置
CN104809976B (zh) * 2015-05-21 2018-03-23 京东方科技集团股份有限公司 一种显示面板及显示装置
CN104821152B (zh) * 2015-05-28 2017-09-01 深圳市华星光电技术有限公司 补偿amoled电压降的方法及系统
CN104867455B (zh) * 2015-06-16 2017-05-03 深圳市华星光电技术有限公司 补偿amoled电压降的系统及方法
CN105096830B (zh) * 2015-08-20 2018-03-30 上海和辉光电有限公司 一种amoled面板及其制备方法、显示器件
CN105427823A (zh) 2016-01-04 2016-03-23 京东方科技集团股份有限公司 一种栅极驱动电压的调节方法、调节装置及显示装置
KR102483894B1 (ko) * 2016-04-05 2023-01-02 삼성디스플레이 주식회사 표시 장치
CN106128359A (zh) * 2016-09-06 2016-11-16 昆山国显光电有限公司 Oled 显示装置及其亮度补偿方法
CN107170418A (zh) * 2017-06-20 2017-09-15 惠科股份有限公司 驱动装置及其驱动方法和显示装置
CN107301843A (zh) 2017-08-28 2017-10-27 深圳市华星光电半导体显示技术有限公司 顶发射amoled面板的电源配置结构及配置方法
CN108510943A (zh) * 2018-03-30 2018-09-07 成都奕斯伟芯片设计有限公司 显示面板的电压补偿电路及显示器
CN108682391B (zh) * 2018-05-03 2020-10-20 昆山国显光电有限公司 显示面板、显示装置及制备方法
CN110473895B (zh) * 2018-05-09 2022-01-18 京东方科技集团股份有限公司 一种oled显示基板及其制作方法、显示装置
CN109686312B (zh) * 2019-03-04 2021-01-22 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
WO2020258147A1 (zh) * 2019-06-27 2020-12-30 深圳市柔宇科技有限公司 显示装置及显示驱动方法
CN112908256B (zh) * 2021-02-24 2022-02-22 Tcl华星光电技术有限公司 一种显示面板驱动方法、显示装置及驱动装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363919A (zh) * 2001-01-04 2002-08-14 三星电子株式会社 栅信号延迟补偿型液晶显示器及其驱动方法
US20030025655A1 (en) * 2001-08-03 2003-02-06 Pioneer Corporation Driving apparatus for capacitive light emitting element display panel
CN101963724A (zh) * 2009-07-22 2011-02-02 北京京东方光电科技有限公司 液晶显示驱动装置
CN102214440A (zh) * 2011-05-24 2011-10-12 昆山工研院新型平板显示技术中心有限公司 一种减小有源矩阵发光显示器的电源纹波的方法
CN104077999A (zh) * 2013-03-28 2014-10-01 群创光电股份有限公司 像素电路及其驱动方法与显示面板
CN104299569A (zh) * 2014-10-30 2015-01-21 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177680A (ja) * 2001-12-12 2003-06-27 Sanyo Electric Co Ltd 表示装置
KR100828513B1 (ko) * 2002-07-05 2008-05-13 삼성전자주식회사 유기전계발광 패널과 이를 갖는 유기전계발광 장치
KR100583139B1 (ko) * 2004-10-08 2006-05-23 삼성에스디아이 주식회사 발광 표시장치
KR100592644B1 (ko) * 2004-11-08 2006-06-26 삼성에스디아이 주식회사 발광 표시장치 및 그의 구동방법
TW200823840A (en) * 2006-11-27 2008-06-01 Innolux Display Corp Liquid crystal display, driving circuit and driving method thereof
JP2008152096A (ja) * 2006-12-19 2008-07-03 Sony Corp 表示装置、表示装置の駆動方法および電子機器
KR100833758B1 (ko) * 2007-01-15 2008-05-29 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 영상 보정 방법
JP2009204978A (ja) * 2008-02-28 2009-09-10 Sony Corp El表示パネルモジュール、el表示パネル及び電子機器
CN102044212B (zh) * 2009-10-21 2013-03-20 京东方科技集团股份有限公司 电压驱动像素电路及其驱动方法、有机发光显示器件
KR101082300B1 (ko) * 2009-11-04 2011-11-09 삼성모바일디스플레이주식회사 유기전계발광표시장치 및 그의 제조방법
US8354983B2 (en) * 2010-02-19 2013-01-15 National Cheng Kung University Display and compensation circuit therefor
KR101142644B1 (ko) * 2010-03-17 2012-05-03 삼성모바일디스플레이주식회사 유기전계발광 표시장치
KR101894768B1 (ko) * 2011-03-14 2018-09-06 삼성디스플레이 주식회사 액티브 매트릭스 디스플레이 장치 및 그 구동 방법
KR20120111675A (ko) * 2011-04-01 2012-10-10 삼성디스플레이 주식회사 유기발광 표시 장치, 유기발광 표시 장치를 위한 데이터 구동 장치 및 그 구동 방법
KR20130046006A (ko) * 2011-10-27 2013-05-07 삼성디스플레이 주식회사 화소 회로, 이를 포함하는 유기 발광 표시 장치 및 유기 발광 표시 장치의 구동 방법
KR20130092776A (ko) * 2012-02-13 2013-08-21 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
TWI600000B (zh) * 2013-05-23 2017-09-21 Joled Inc Image signal processing circuit, image signal processing method and display device
US9675176B2 (en) * 2014-07-11 2017-06-13 Adams Mfg. Corp. Lightweight Adirondack chair

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363919A (zh) * 2001-01-04 2002-08-14 三星电子株式会社 栅信号延迟补偿型液晶显示器及其驱动方法
US20030025655A1 (en) * 2001-08-03 2003-02-06 Pioneer Corporation Driving apparatus for capacitive light emitting element display panel
CN101963724A (zh) * 2009-07-22 2011-02-02 北京京东方光电科技有限公司 液晶显示驱动装置
CN102214440A (zh) * 2011-05-24 2011-10-12 昆山工研院新型平板显示技术中心有限公司 一种减小有源矩阵发光显示器的电源纹波的方法
CN104077999A (zh) * 2013-03-28 2014-10-01 群创光电股份有限公司 像素电路及其驱动方法与显示面板
CN104299569A (zh) * 2014-10-30 2015-01-21 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862891A (zh) * 2019-04-25 2020-10-30 上海和辉光电有限公司 一种有机发光显示器
CN111862891B (zh) * 2019-04-25 2021-10-01 上海和辉光电股份有限公司 一种有机发光显示器

Also Published As

Publication number Publication date
CN104299569A (zh) 2015-01-21
US20160260381A1 (en) 2016-09-08
CN104299569B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2016065789A1 (zh) 阵列基板及其驱动方法、显示装置
CN108206008B (zh) 像素电路、驱动方法、电致发光显示面板及显示装置
JP6474911B2 (ja) 画素回路、有機エレクトロルミネセンス表示パネル、表示装置及びその駆動方法
CN108711398B (zh) 像素电路及其驱动方法、阵列基板、显示面板
WO2016188012A1 (zh) 像素电路、其驱动方法及显示装置
US10733933B2 (en) Pixel driving circuit and driving method thereof, display panel and display device
KR102082779B1 (ko) 플렉서블 디스플레이 장치 및 그 제어 방법
US10192485B2 (en) Pixel compensation circuit and AMOLED display device
US7274345B2 (en) Electro-optical device and driving device thereof
WO2018095031A1 (zh) 像素电路及其驱动方法、以及显示面板
US20170069264A1 (en) Pixel circuit, organic electroluminescent display panel and display apparatus
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
US20160372049A1 (en) Pixel Driving Circuit, Driving Method, Array Substrate and Display Apparatus
WO2019071724A1 (zh) Amoled显示装置及其驱动方法
WO2017117983A1 (zh) 像素补偿电路及amoled显示装置
US20190066580A1 (en) Pixel circuit, driving method thereof, and display device
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
JP2017535815A (ja) Amoled電源電圧降下の補償方法
WO2015180278A1 (zh) 像素电路及其驱动方法、显示装置
US11562692B2 (en) Display device and a driving method thereof
US10049621B2 (en) Organic light emitting display device with increased luminance uniformity
US10140922B2 (en) Pixel driving circuit and driving method thereof and display device
JP2017120399A (ja) ディスプレイ装置、ゲート駆動回路及びディスプレイ装置の駆動方法
JP2006091923A (ja) 電気光学装置および電子機器
JPWO2019159651A1 (ja) 画素回路、表示装置、画素回路の駆動方法および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14787392

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855514

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15855514

Country of ref document: EP

Kind code of ref document: A1