WO2018207950A1 - クラスa gpcr結合性化合物改変体 - Google Patents

クラスa gpcr結合性化合物改変体 Download PDF

Info

Publication number
WO2018207950A1
WO2018207950A1 PCT/JP2018/018621 JP2018018621W WO2018207950A1 WO 2018207950 A1 WO2018207950 A1 WO 2018207950A1 JP 2018018621 W JP2018018621 W JP 2018018621W WO 2018207950 A1 WO2018207950 A1 WO 2018207950A1
Authority
WO
WIPO (PCT)
Prior art keywords
gpcr
class
compound
binding
group
Prior art date
Application number
PCT/JP2018/018621
Other languages
English (en)
French (fr)
Inventor
横山 茂之
哲哉 堀
Original Assignee
横山 茂之
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横山 茂之 filed Critical 横山 茂之
Priority to AU2018266393A priority Critical patent/AU2018266393A1/en
Priority to JP2019517741A priority patent/JP7373191B2/ja
Priority to EP18798677.3A priority patent/EP3623368A4/en
Priority to US16/613,049 priority patent/US12275687B2/en
Priority to CN201880031551.0A priority patent/CN110869362A/zh
Priority to CA3063334A priority patent/CA3063334A1/en
Publication of WO2018207950A1 publication Critical patent/WO2018207950A1/ja
Priority to AU2022268323A priority patent/AU2022268323A1/en
Priority to JP2023017433A priority patent/JP2023062015A/ja
Priority to AU2024204680A priority patent/AU2024204680A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C257/00Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
    • C07C257/10Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
    • C07C257/18Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/39Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/57Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C257/00Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
    • C07C257/10Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
    • C07C257/16Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/12Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. N-hydroxyamidines
    • C07C259/16Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. N-hydroxyamidines having carbon atoms of hydroxamidine groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/12Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. N-hydroxyamidines
    • C07C259/18Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. N-hydroxyamidines having carbon atoms of hydroxamidine groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/16Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/18Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/20Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylguanidines
    • C07C279/24Y being a hetero atom
    • C07C279/26X and Y being nitrogen atoms, i.e. biguanides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers

Definitions

  • the present invention relates to a method for designing or producing a class A GPCR antagonist or a class A GPCR antagonist.
  • G protein-coupled receptors conform to the structure of extracellular and intracellular molecules (eg, agonists, inverse agonists, allosteric regulators, G Protein, lipid, and sodium ion) (Non-patent Documents 1 and 2).
  • agonists, inverse agonists, allosteric regulators, G Protein, lipid, and sodium ion eg., agonists, inverse agonists, allosteric regulators, G Protein, lipid, and sodium ion
  • Non-patent Documents 1 and 2 Non-patent Documents 1 and 2.
  • conjugation of a G protein to a GPCR changes the conformational equilibrium of the GPCR allosterically to a high affinity agonist binding state compared to the receptor being uncoupled.
  • the allosteric ligand binds to a site different from the orthosteric binding site of GPCR, and regulates the binding affinity and signaling efficiency between the orthosteric agonist and the GPCR system positively or negatively.
  • Non-Patent Documents 3 to 5 The allosteric regulatory action of sodium ions has been observed for various GPCRs.
  • Sodium ion slows the dissociation rate of antagonists (Non-Patent Documents 3 to 5) and improves its binding affinity (Non-Patent Documents 6 to 8), but reduces the binding affinity of agonists (Non-patent document 9).
  • sodium ions decreased G protein signaling efficiency.
  • Sodium ion decreased GTP ⁇ S binding activity of G protein by GPCR with or without agonist stimulation (Non-Patent Documents 10 and 11) (Non-Patent Documents 10 and 12-14).
  • the overall action of sodium ions is a negative regulation of agonist-GPCR activity, which decreases the affinity for the agonist and decreases the potency of the G protein, which is a basic signal independent of the agonist It also includes diminished activity.
  • antagonist-GPCR activity is positively regulated by sodium ions.
  • Non-Patent Documents 4 and 5 Based on mutant studies, interaction of sodium ion with highly conserved Asp 2.50 (Ballesteros-Weinstein residue number (Non-patent Document 15)) was thought to contribute to the mechanism of sodium ion regulation. (Non-Patent Documents 4 and 5). In addition, the high-resolution crystal structures of active and inactive GPCRs bound by agonists and G-proteins have recently been elucidated, and the regulatory mechanism of sodium ions has been elucidated.
  • Inactive GPCRs A 2A adenosine receptor (A 2A AR) (Non-patent document 16), ⁇ 1 adrenergic receptor ( ⁇ 1 AR) (Non-patent document 17), protease-activated receptor 1 (PAR1) ( Non-patent document 18), and ⁇ -opioid receptor ( ⁇ -OR) (non-patent document 19)
  • sodium ions were found to bind to a highly conserved residue in the middle of the transmembrane helix bundle. .
  • Sodium ions bind to Asp 2.50 and Ser 3.39 in common, and further bind to Asn 3.35 in ⁇ -OR and Asn 7.49 in PAR1.
  • Bound sodium ions organize water molecule clusters and interact with several residues including Trp 6.48 , Asn 7.45 , Ser 7.46 , and Asn 7.49 to stabilize the inactive GPCR structure.
  • Trp 6.48 Asn 7.45
  • Ser 7.46 Asn 7.49
  • the residues involved in the water molecule cluster centered on sodium ions are well conserved (Table 2), and the cluster is common to most inactive class A GPCRs. Presumed to exist.
  • GPCR of agonist or G protein (or G protein mimetic nanobody) binding type it is expected that the water molecule cluster centering on sodium ion will collapse.
  • Non-Patent Documents 20 to 23 a GPCR structure stabilized in an inactive state by a water molecule cluster centered on sodium ions is useful for antagonist binding, but is not suitable for G protein coupling or agonist binding.
  • the results of these structures indicate why the bound sodium ion is a positive regulator of GPCR in the bound state of the antagonist and functions as a negative regulator of GPCR in the bound state of the agonist / G protein. explained.
  • the class A GPCR Na + -water molecule cluster binding site has a well-conserved amino acid sequence, forms a similar structure (Non-Patent Documents 16 to 19), and has an orthosteric binding site (wherein , Amino acid residues are diverse and their structures are different in each GPCR).
  • Class A GPCR antagonist novel method for producing class A GPCR antagonist, class A GPCR novel antagonist, or class A GPCR
  • An object of the present invention is to provide a novel compound that interacts with the Na + -water molecule cluster binding site.
  • the inventor of the present application revealed for the first time the crystal structure of BLT1 (leukotriene B4 (LTB4) receptor, class A GPCR) (non-patent document 25) bound by the antagonist BIIL260 (non-patent document 24) by crystal structure analysis. (See Example 1).
  • the benzamidine (hereinafter also referred to as “amidinylphenyl”) group of BIIL260 binds to the Na + -water molecule cluster binding site of BLT1 to form a water molecule cluster centered on sodium ions. It was reproduced.
  • a benzamidine group having a hydrophobic benzene ring was contained in the water molecule cluster binding site.
  • the inventor of the present application bound the benzamidine group to a known compound (such as carazolol) that binds to a class A GPCR (such as an adrenergic receptor) other than BLT1, and investigated the function of the resulting compound.
  • a class A GPCR such as an adrenergic receptor
  • the produced compound specifically bound to class A GPCR and exhibited antagonist activity or inverse agonist activity see Example 2.
  • each class A GPCR has a structure in which the Na + -water molecule cluster binding site is conserved (for example, Table 2, Non-Patent Documents 16 to 19), so that the benzamidine group is BLT1. This is probably because the benzamidine group exhibited an antagonistic action or an inverse agonistic action in place of the Na + -water molecule cluster.
  • each class A GPCR has a structure in which the Na + -water molecule cluster binding site is conserved (for example, Table 2, Non-Patent Documents 16 to 19). This is considered to be due to the binding to class A GPCR and (ii) the benzamidine derivative exhibited an inverse agonistic action instead of the Na + -water molecule cluster.
  • a novel class A GPCR can be obtained by binding a known class A GPCR ligand to a class A GPCR Na + -water molecule cluster binding site binding functional group such as a benzamidine group or a derivative thereof. It was revealed that antagonists of
  • a compound having a structure in which a class A GPCR-binding compound and a Na + -water molecule cluster binding site-binding functional group of class A GPCR are combined or a salt thereof is provided. If this compound or a salt thereof is used, the function of class A GPCR can be inhibited.
  • a class A ⁇ ⁇ ⁇ GPCR binding compound, a benzamidine group or a derivative thereof, a protonated amine group having a phenyl group, and an unprotonated amine group having a phenyl group are selected from the group consisting of 1
  • a compound or a salt thereof having a structure in which at least one kind of functional group is bonded is bonded. If this compound or a salt thereof is used, the function of class A GPCR can be inhibited.
  • composition for an antagonist of the class A GPCR which comprises a compound having a Na + -water molecule cluster binding site binding functional group of class A GPCR or a salt thereof. If this composition is used, the function of class A GPCR can be inhibited by antagonistic action.
  • a method for producing an antagonist of the class A GPCR comprising the step of binding a compound binding to the Na + -water molecule cluster binding site of the class A GPCR with another compound. .
  • an antagonist of class A GPCR can be produced.
  • a material for preparing an antagonist of class A GPCR which comprises a compound that binds to a Na + -water molecule cluster binding site.
  • Class A GPCR antagonists can be made by using this material to bind class A GPCR binding compounds and Na + -water molecule cluster binding site binding compounds.
  • the binding specifically binds to an inactivated leukotriene receptor, an inactivated adrenergic receptor, an inactivated opioid receptor, or an inactivated histamine receptor.
  • a molecule is provided. By using this binding molecule, inactivated leukotriene receptor, inactivated adrenergic receptor, inactivated opioid receptor, or inactivated histamine receptor can be detected.
  • the present invention specifically binds to a complex comprising class A GPCR and a compound having a Na + -water molecule cluster binding site-binding functional group of class A GPCR or a salt thereof.
  • a binding molecule is provided. By using this binding molecule, inactivated class A GPCR can be detected.
  • FIG. 1 is a diagram showing the results of the crystal structure of BLT1 bound with antagonist BIIL260.
  • A BIIL260 bond simulation mF o -DF c Omit map displayed at ⁇ level 2.0 (BIIL260 viewed from two directions).
  • B Binding simulation mF o -DF c omit map displayed at ⁇ level 2.0 for residues specifically involved in BIIL260 binding. The corresponding residue was replaced with glycine and the mit map was calculated.
  • C Overall structure of BLT1-BIIL260 complex.
  • BIIL260 and D66 2.50 side chains are shown in a sphere model and are shown in salmon (BIIL260 carbon atoms), magenta (carbon atoms in D66 2.50 ), red, and (nitrogen atoms) in blue.
  • D Comparison of position of bound GPCR ligand. All GPCR crystal structures were superimposed on BLT1-BIIL260 and all of the bound ligands were shown in a stick model.
  • E Comparison of the structure of BLT1 (cyan; ECL2 is blue) and CXCR4 (pale yellow; ECL2 is orange) as shown in the cartoon model, viewed from the outside of the cell.
  • F Surface view of the extracellular region of BLT1.
  • FIG. 2 is a diagram showing the binding mode of BIIL260 to BLT1.
  • A BIIL260 binding site structure. The BLT1 side chain within 4 km of BIIL260 and BIIL260 is shown as a stick model, and the transmembrane helix is shown as a thin ribbon. Sulfur atoms are gold.
  • B Schematic diagram of BLT1-BIIL260. Intermolecular forces (eg, salt bridges, hydrogen bonds, ⁇ -to-edge interactions, CH-to- ⁇ interactions, and hydrophobic interactions) are shown in red, blue, orange, violet, and green, respectively .
  • FIG. 3 is a diagram showing the effect of benzamidine on BLT1-LTB4 binding and signal transduction by LTB4.
  • A Competition binding assay of benzamidine and NaCl with 0.5 nm 3 H-LTB 4 using membrane fraction of HEK293 cells expressing wild type BLT1. Each point ( ⁇ standard error of the mean (sem)) is the average of three independent experiments in which each experiment performed 3 times.
  • B Saturation assay of 3 H-LTB 4 and BLT1 using various concentrations of benzamidine. Each point ( ⁇ standard error of the mean (sem)) is the average of three independent experiments in which each experiment performed 3 times.
  • FIG. 4 is a diagram showing the structure of the benzamidine group binding site of BLT1 and a comparison with the inactive A 2A adenosine receptor.
  • A BLT1 interaction around the benzamidine group at the BIIL260 binding site. Residues involved in the salt bridge are indicated, and hydrogen bonds are indicated by a cyan dotted line.
  • BLT1 (cyan carbon) was superimposed on an inactive A 2A adenosine receptor (A 2A R: light yellow carbon; PDB code: 4EIY).
  • a 2A R interactions with similar interactions present or absent in BLT1-BIIL260 are indicated by black or white dotted lines, respectively.
  • the receptors were overlaid using pair fitting with reference to C ⁇ atoms at residues 2.49-2.51, 3.38-3.40, and 7.45-7.47.
  • the sodium ion and water molecules w1 and w4 of A 2A R are within the van der Waals distance from the benzamidine group of BIIL260.
  • C The benzamidine group, bound sodium ion and water molecule of (B) are illustrated as spheres and dots, respectively.
  • FIG. 5 shows the effect of bound benzamidine groups on agonist-induced BLT1 activation.
  • A, B Comparison of the structures of agonist-bound GPCR (left) or corresponding inactive GPCR (right) and BLT1 transmembrane helices 2, 3, and 7 around the benzamidine binding site.
  • BLT1 beta 2 adrenergic receptor (2RH1)
  • CXCR4 (3OUU ) CXCR4
  • CCR2 5T1A
  • CCR5 CCR5
  • CCR9 5LWE
  • All receptors were superimposed with BLT1 using pair fitting with reference to C ⁇ atoms at residues 2.49-2.51, 3.38-3.40, and 7.45-7.47.
  • the molecules were viewed from the membrane side as viewed from the side (A) and from the cytoplasm side as viewed from the bottom (B).
  • FIG. 6 is a diagram relating to amino acid conservation of a benzamidine group binding site and an orthosteric binding site of GPCR.
  • A, B Class A GPCR amino acid conservation illustrated using the BLT1 structure.
  • A Each side chain constituting the orthosteric binding site and the benzamidine binding site is shown and colored according to the standard deviation of the conservation of each residue in 273 GPCRs.
  • each side chain is colored as in (A), but each residue is classified according to the following four characteristics: negatively charged residues (D and E), positively charged residues (K And R), hydrophilic residues (C, H, N, Q, S, T, and Y), and hydrophobic residues (A, F, G, I, L, M, P, V, and W) .
  • D and E negatively charged residues
  • K And R positively charged residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C hydrophilic residues
  • C Overlay of representative binding GPCR ligands.
  • ⁇ 2 adrenergic receptors ⁇ 2 AR: PDBcode: 2RH1
  • a 2A adenosine receptors A 2A R, 2YDO
  • ⁇ -opioid receptors ⁇ -OR, 4N6H
  • cannabinoid receptors CB1, 3PQR
  • Each receptor was superimposed based on C ⁇ at residues 2.49-2.51, 3.38-3.40, and 7.45-7.47, and only the bound ligand was displayed.
  • BLT1 only the benzamidine group is shown. The molecules are displayed from the same perspective as in (A and B).
  • FIG. 7 is a diagram showing an expression construct, LTB 4 binding and thermal stability.
  • A Expression construct displayed in snake model. The expression region contains residues 15 to 348 of gpBLT1, the N-terminal contains the Saccharomyces cerevisiae ⁇ -factor prepro signal sequence followed by the FLAG tag, the C-terminal contains the PreScission site and His 6 tag, and ICL3 Includes fused T4 lysozyme (T4L).
  • N-terminal FLAG tag, C-terminal residues 288-348 (including the PreScission site), and residues T254 and L255 (gray) are not included in the improved structure. Because their electron density was unclear. 12 residues (green) of BLT1 and 8 residues of T4L were substituted with alanine in this crystal structure due to unclear electron density. (B) The fusion part T4L of BLT1-T4L was introduced into ICL3 of BLT1, N-terminal, or both N-terminal and ICL3.
  • T4L is a cyan linker residue between the C-terminus (R211, A212, or R213) of transmembrane helix 5 (TM5) and the N-terminus (R214, F215, or H216) of TM6.
  • V212 was substituted with alanine based on the result shown in FIG. 8A.
  • the number of residues in ICL3 of BLT1 is the same as that of CXCR4, and the ICL3-1 construct has T4L in the same position in the linker of the same length as that of CXCR4-T4L (PDB code: 3ODU) Yes. Crystals of ICL3-1 and ICL3-10 constructs appeared under similar crystal conditions.
  • FIG. 8 is a diagram showing the results of characteristic analysis of various heat-stabilized mutants of BLT1 and each T4 lysozyme chimera.
  • A (Left) LTB 4 binding assay and thermal stability assay of various BLT1 variants expressed in COS7 cells. In order to stabilize BLT1, point mutations were introduced according to the consensus method.
  • the parent construct (Parent 1) was a BLT1 mutant with the two heat-stabilizing mutations H83G and K88G identified in the past with the N-terminal residues 1-14 removed and the phosphorylation site mutation S309A.
  • FIG. 9 shows the results of purification, crystallization, electron density map, and crystal packing of BLT1-T4L.
  • FIG. 10 is a diagram showing the structural features of BLT1.
  • FIG. 1F Cartoon display BLT1 is displayed with a rainbow-colored cartoon model, and BIIL260 is displayed with light pink (carbon), red (oxygen), and blue (nitrogen) spheres. Transmembrane helices 3, 4, and 5 near the extracellular region have a relatively open structure (shown by an ellipse).
  • B Surface view seen from the same direction as (A). The surface without BIIL260 was calculated. Other than the viewpoint from the extracellular surface, as shown in FIG. 1F, the BIIL260 molecule is not visible from any direction in this surface model.
  • FIG. 11 shows a structural comparison of GPCRs in which BLT1 and sodium ions are bound.
  • A, C, E BLT1 with sodium ions and multiple GPCRs are superimposed as shown in Fig. 4B.
  • ⁇ 1 acetylcholine receptor ( ⁇ 1 AR; PDB code: 4BVN), (C) ⁇ -opioid receptor ( ⁇ -OR; PDB code: 4N6H), and (E) protease-activated receptor 1 (PAR1; PDB Code: 3VW7).
  • Each receptor was overlaid by pair fitting with reference to C ⁇ atoms at residues 2.49-2.51, 3.38-3.40, and 7.45-7.47.
  • the carbon atom of BLT1, the benzamidine group of bound BIIL260, and other GPCRs are cyan, salmon, and light yellow, respectively.
  • the salt bridge interaction and hydrogen bond interaction in the BLT1-BIIL260 complex are shown by the cyan dotted line.
  • FIGS. 12A and 12B are diagrams showing candidate structures of modified class A GPCR-binding compounds.
  • Class A GPCR binding compound variant candidates for the four selected A 2A AR, ⁇ 1 AR, ⁇ -OR, and histamine receptors were experimentally prepared with various linker types, lengths, and compositions.
  • FIGS. 13A to 13D are diagrams showing the results of a modeling test between a GPCR and a class A GPCR-binding compound variant.
  • A shows modeling of A 2A adenosine receptor (A 2A AR) and adenosine-linker-benzamidine.
  • B shows modeling of ⁇ 1 adrenergic receptor ( ⁇ 1 AR) and carazolol-linker-benzamidine.
  • C shows modeling of the ⁇ opioid receptor ( ⁇ -OR) and TIPP-linker-benzamidine.
  • D shows modeling of H 1 histamine receptor (H 1 HR) and histamine-linker-benzamidine.
  • Panel (a) shows the structure of GPCR and benzamidine-ligand modified by the program CNS.
  • Panel (b) shows a schematic diagram of the ligand-linker-benzamidine. Ligand and benzamidine molecule are linked using click chemistry.
  • Panel (c) shows the structure before the energy minimization process by the program CNS. After overlapping the BLT1-BIIL260 structure with the corresponding GPCR, the benzamidine group of BLT1-BIIL260 was docked to the subject GPCR. The original position of the linker moiety linked to each ligand is arbitrary, but is indicated by an elliptical dotted line.
  • FIGS. 14 (A) to (D) are diagrams showing the results of confirming the physical property values (NMR, MS, etc.) of Compound 1 synthesized in Example 2.
  • FIG. FIGS. 15A to 15H are diagrams showing the results of confirming the physical property values (NMR, MS, etc.) of Compound 2 synthesized in Example 2.
  • FIG. FIGS. 16A to 16G are diagrams showing confirmation results of physical property values (NMR, MS, etc.) of Compound 3 synthesized in Example 2.
  • FIG. 17 (A) to 17 (H) are diagrams showing confirmation results of physical property values (NMR, MS, etc.) of Compound 4 synthesized in Example 2.
  • FIGS. 18 (A) to (F) are diagrams showing the results of examining the GPCR activity inhibitory effect of a compound having a structure in which a class A GPCR-binding compound and a benzamidine group are bound.
  • the ability of the above compounds to suppress G-protein activity was measured by TGF ⁇ -cleavage assay.
  • ⁇ and ⁇ a compound having a structure in which a class A GPCR-binding compound and a benzamidine group are bonded
  • x a benzamidine molecule.
  • FIG. 19 is a diagram showing the structure of the protonated state of benzamidine hydrochloride hydrate and benzamidine derivatives used in Example 3.
  • FIGS. 20 (A) to 20 (P) are graphs showing the results of measuring the suppressive ability of each class A GPCR for G-protein activity in the absence of an agonist by TGF ⁇ -cleavage assay for benzamidine derivatives.
  • the present inventor has discovered that the inhibitory activity of BIIL260 on BLT1 is critically dependent on the benzamidine group. Structural and pharmacological results show that the benzamidine group mimics a water molecule cluster centered on the sodium ion located below the orthosteric binding site inside the transmembrane helix bundle, making the BLT1-LTB 4 system negative. It was clarified to adjust.
  • the amidine group of benzamidine forms salt bridges and hydrogen bonds with residues D66 2.50 , S106 3.39 , and S276 7.45 , and the phenyl ring with residues V69 2.53 and W236 6.48 , respectively, and CH-to- ⁇ interaction and Form edge-to- ⁇ interaction.
  • Benzamidine (120 Da) is smaller than amiloride (230 Da) (Gutierrez-de-Teran, H. et al., Structure 21 (2013) 2175-2185). According to the structure shown in the examples below, The mode has little conflict with the orthosteric binding site.
  • benzamidine group-containing inverse agonists specific for various class A GPCRs can be designed for a wide range of class A GPCRs.
  • no inverse agonist with a benzamidine group has been reported for any class A GPCR.
  • a compound designed to consist of a benzamidine group as a regulatory moiety and another moiety that binds specifically and tightly to class A GPCRs can function as an effective inverse agonist.
  • it is important that the benzamidine binding site and the orthosteric binding site are adjacent (FIGS. 6A and 6B). For example, when each receptor is superimposed on BLT1 (FIG.
  • an embodiment of the present invention provides a rational design method for novel and specific inverse agonists for various GPCRs. Considering the fact that GPCR inverse agonists have been discovered by chance by random screening of large chemical libraries, the inventor's findings are a significant breakthrough in drug discovery targeting GPCRs. is there.
  • One embodiment of the present invention is a novel compound.
  • This compound includes, for example, a compound having a structure in which a class A GPCR binding compound and a Na + -water molecule cluster binding site binding functional group of class A GPCR are bound, or a salt thereof. When this compound or a salt thereof is used, the function of class A GPCR can be inhibited as demonstrated in the examples described later.
  • One embodiment of the present invention is a compound selected from the group consisting of a class A GPCR-binding compound, a benzamidine group or a derivative thereof, a protonated amine group having a phenyl group, and an unprotonated amine group having a phenyl group.
  • bonded, or its salt is included.
  • this compound or a salt thereof is used, the function of class A GPCR can be inhibited as demonstrated in the examples described later.
  • one embodiment of the present invention includes a compound having a structure in which a class A GPCR-binding compound and a class A GPCR Na + -water molecule cluster binding site-binding compound are bound, or a salt thereof. When this compound or a salt thereof is used, the function of class A GPCR can be inhibited as demonstrated in the examples described later.
  • Class A GPCR comprises the following family members: (1) Amine receptors (eg, adrenoceptors ( ⁇ 1A, ⁇ 1B, ⁇ 1D, ⁇ 2A, ⁇ 2B, ⁇ 2C, ⁇ 1, ⁇ 2, ⁇ 3), serotonin receptors (5-HT1A, 5-HT1B, 5-HT1D, 5-HT HT1E, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT5B, 5-HT6, 5-HT7), muscarinic acetylcholine receptors (M1, M2, M3) , M4, M5), dopamine receptors (D1, D2, D3, D4, D5), histamine receptors (H1, H2, H3, H4), traceamine receptors (TAAR1)), (2) nucleic acid receptors ( Examples: adenosine receptors (A1, A2A, A2B, A3), P2Y receptors (P2A), and adenosine
  • Class A GPCRs are known to be divided into four groups ( ⁇ -group, ⁇ -group, ⁇ -group, and ⁇ -group) (Frederiksson, R. et al., Mol Pharmacol 63). (2003) 1256-1272).
  • class A GPCRs exhibit varying degrees of basic or constitutive activity (ie active in the absence of agonist).
  • class A GPCRs include GPCRs that exhibit basal or constitutive activity, including but not limited to adrenoceptors, histamine receptors, adenosine receptors, glycoproteins.
  • Hormone receptors (TSHR, LHR, FSHR), bradykinin receptors, 5-hydroxytryptamine receptors, melanin-concentrating hormone receptors, dopamine receptors, acetylcholine receptors, angiotensin receptors, prostanoid receptors, cannabinoid receptors, lysolin Lipid (S1P) receptor, opioid receptor, thyroid stimulating hormone-releasing hormone receptor, formyl peptide receptor, complement peptide receptor, platelet activating factor receptor, chemokine receptor, tachykinin receptor, neurotensin receptor, Vasopressin and oxytocin receptors, cholecystokinin receptors, P2Y receptors , Melanocortin receptors, and orexin receptors (Seifert, R.
  • S1P lysolin Lipid
  • the following class A GPCR is preferable from the viewpoint of the strong inverse agonistic action or antagonistic action by the compound of the above-mentioned embodiment of the present invention.
  • the numbers in parentheses indicate UniProtKB / Swiss-Prot accession numbers.
  • EP1 (P34995), OXGR1 (Q96P68), GPR119 (Q8TDV5), CysLT1 (Q9Y271), FFAT2 (O15552), G2A (Q9UNW8), P2Y2 (P41231), P2Y4 (P51582), NK2 (P21452), P2 PAR1 (P25116), V2 (P30518), DP (Q13258), FP (P43088), 5-HT2A (P28223), EP2 (P43116), EP4 (P35408), V1B (P47901), V1A (P37288), ⁇ 1A (P35348) ), 5-HT4 (Q13639), CB2 (P34972), EBI2 (P32249), BLT2 (Q9NPC1), 5-HT1A (P08908), 5-HT1D (P28221), ⁇ 1D (P25100), PAR3 (O00254), P2Y13 ( Q9BPV8),
  • the class A GPCR may be a mutant containing one or more mutations in the amino acid sequence of the wild type class A GPCR. Mutations include those resulting from DNA sequence differences between individuals, such as SNPs.
  • inverse agonists include those that inhibit the basic or constitutive activity of GPCRs to be lower than normal.
  • Basal or constitutive activity includes activity in the absence (or no contact) of an agonist, or endogenous activity.
  • Antagonists include compounds that can inhibit the function of a receptor molecule. Antagonists include inverse agonists.
  • One embodiment of the present invention is a class A GPCR binding compound variant, wherein the class A GPCR binding compound is a Ballesteros-Weinstein numbering system (Ballesteros, JA et al., Methods Neurosci (1995) 366-428).
  • the class A GPCR binding compound is a Ballesteros-Weinstein numbering system (Ballesteros, JA et al., Methods Neurosci (1995) 366-428).
  • a functional group that binds to a GPCR pocket composed of amino acid 2.50 , amino acid 3.39 , amino acid 6.48 , and amino acid 7.45 specified in 1.
  • Ballesteros-Weinstein numbering scheme is well known in the art and applies to all Class A GPCRs herein.
  • a “class A GPCR binding compound variant” has a reverse or partial inverse agonist activity that may be orthosteric, allosteric, syntopic, or bitopic to a class A GPCR by modification. Including the compound to be possessed.
  • the “class A GPCR binding compound” includes a compound exhibiting a binding activity to a class A GPCR.
  • the class A GPCR-binding compound includes a compound that has been modified with a functional group that enters the pocket of the class A GPCR.
  • Such compounds eg, chemical compounds, ligands, drugs
  • Class A GPCR binding compounds may have organic or inorganic moieties.
  • Class A GPCR binding compounds are sometimes referred to as “ligands”.
  • the class A GPCR binding compound may be linked with a linker.
  • Class A GPCR binding compounds include those that bind to the orthosteric binding site of a GPCR.
  • Class A GPCR binding compounds include polypeptides (eg, chemokines).
  • Class A GPCR binding compounds include, for example, class A GPCR ligands.
  • Class A GPCR ligands include, for example, amine receptors, nucleic acid receptors, lipid receptors, small molecule receptors, peptide receptors, protein receptors, and artificial ligands for class A orphan GPCRs. including. More specifically, the class A GPCR ligand may contain, for example, the following ligands. The parentheses are examples of corresponding receptors.
  • Amine receptor ligands adrenaline (adrenoceptor), noradrenaline (adrenoceptor), serotonin (serotonin receptor), acetylcholine (muscarinic acetylcholine receptor), dopamine (dopamine receptor), histamine (histamine receptor), Tyramine (trace amine receptor), carazolol (adrenoceptor), carvedilol (adrenoceptor), CGP 12177 (adrenoceptor), or isoprenaline (adrenoceptor).
  • Nucleic acid receptor ligands adenosine (adenosine receptor), ADP (P2Y receptor), ATP (P2Y receptor), UTP (P2Y receptor), UDP (P2Y receptor), UDP-glucose (P2Y receptor), CGS21680 (adenosine receptor), NECA (adenosine receptor), apadenoson (adenosine receptor), or piclidenoson (adenosine receptor).
  • Lipid receptor ligands chenodeoxycholic acid (bile acid receptor), cholic acid (bile acid receptor), deoxycholic acid (bile acid receptor), lithocholic acid (bile acid receptor), anandamide (cannabinoid receptor), 2-arachidonoylglycerol (cannabinoid receptor), 17 ⁇ -estradiol (estrogen receptor), free fatty acid (free fatty acid receptor), leukotriene B4 (leukotriene receptor), 12-hydroxyheptadecatrienoic acid (leukotriene receptor), Leukotriene C4, leukotriene D4 (leukotriene receptor), leukotriene E4 (leukotriene receptor), 5-oxo-ETE (leukotriene receptor), 5-oxo-ODE (leukotriene receptor), lysophosphatidic acid (lysophosphatidic acid receptor) ), Sphingosine 1-phosphate (sphingosine 1-phosphate Receptor), HU-210 (can
  • Ligands for low molecular weight compounds Lactic acid (hydroxycarboxylic acid receptor), 3-hydroxybutyric acid (hydroxycarboxylic acid receptor), 3-hydroxyoctanoic acid (hydroxycarboxylic acid receptor), melatonin (melatonin receptor), oxoglutar Acid (oxoglutarate receptor) or succinic acid (succinate receptor).
  • Peptide receptor ligands Angiotensin II (Angiotensin receptor), Angiotensin III (Angiotensin receptor), Apelin-13 (Apelin receptor), Apelin-17 (Apelin receptor), Apelin-36 (Apelin receptor), Gastrin Release peptide (bombesin receptor), neuromedulin B (bombesin receptor), bradykinin (bradykinin receptor), kallidin (bradykinin receptor), chemerin (chemerin receptor), resolvin E1 (chemerin receptor), CCK-4 (Cholecystokinin receptor), CCK-8 (cholecystokinin receptor), CCK-33 (cholecystokinin receptor), gastrin (cholecystokinin receptor), endothelin-1 (endothelin receptor), endothelin- 2 (endothelin receptor), endothelin-3 (endothelin receptor), a Xin (formyl peptide receptor
  • Protein receptor ligands chemokines (chemokine receptors), Ca3 (complement receptors), Ca5 (complement receptors), thyroid stimulating hormone (glycoprotein hormone receptor), follicle stimulating hormone (glycoprotein hormone receptor) , Luteinizing hormone (glycoprotein hormone receptor), human chorionic gonadotropin (glycoprotein hormone receptor), gonadotropin releasing hormone (gonadotropin releasing hormone receptor), Maraviroc (chemokine receptor), isothiourea-1t ( Chemokine receptor), or X4P-001 (chemokine receptor).
  • N-oleoylethanolamide GPR119
  • lysophospholipid G2A
  • dihydroxycholesterol EBI2
  • hydroxycholesterol EBI2
  • fatty acid GPR84
  • cysteinyl-leukotrienes GPR17
  • uracil nucleotide GPR17
  • 5-nonyloxytryptamine GPR61
  • compound 7a GPR52
  • prosaponin GPR37
  • resolvin D1 GPR32
  • lipoxin A4 GPR32
  • lysophosphatidylinositol GPR55
  • CCL5 GPR75
  • proprotein convertase subtilisin / kexin type 1 inhibitor GPR83
  • N-arachidonoylglycine GPR18
  • R-spondin LGR5
  • tryptophan GPR142
  • JNJ-63533054 GPR139
  • the class A GPCR-binding compound includes, for example, a compound having an affinity with a dissociation constant (K d ) (M) of 1 ⁇ 10 ⁇ 2 M or less for class A GPCR.
  • K d dissociation constant
  • This value is, for example, 1 ⁇ 10 ⁇ 2 , 1 ⁇ 10 ⁇ 3 , 1 ⁇ 10 ⁇ 4 , 1 ⁇ 10 ⁇ 5 , 1 ⁇ 10 ⁇ 6 , 1 ⁇ 10 ⁇ 7 , 1 ⁇ 10 ⁇ 8 , 1 ⁇ It may be 10 ⁇ 9 , 1 ⁇ 10 ⁇ 10 , or 1 ⁇ 10 ⁇ 11 M, less than those values, or within the range of these two values. Affinity may be measured, for example, with a TGF ⁇ shedding assay. If there are multiple compounds for evaluating affinity, high-throughput screening may be used.
  • Class A GPCR binding compounds include, for example, compounds having a molecular weight of 130 or greater. This molecular weight can be 130, 150, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 10000, or 30000, more than those values, or even within the range of these two values. Good. From the viewpoint of a strong antagonistic action by the compound of the above-described embodiment of the present invention, the molecular weight is preferably 150 to 1000, more preferably 200 to 600. Further, the class A GPCR binding compound may be a compound excluding a compound having a Na + -water molecule cluster binding site binding functional group.
  • the class A GPCR binding compound may have, for example, a hydroxyl group, an amino group, or a thiol group.
  • the number of groups may be, for example, 1, 2, 3, 4, or 5, respectively, more than those numbers, or within the range of these two numbers.
  • the modification includes chemical structure modification by a functional group described later.
  • the GPCR pocket composed of amino acid 2.50 , amino acid 3.39 , amino acid 6.48 , and amino acid 7.45 identified by the Ballesteros-Weinstein numbering system is highly conserved among class A GPCRs, and class A GPCRs and each GPCR It contributes to the binding between the binding compound variants.
  • a class A GPCR-binding compound is modified with a group (for example, a benzamidine group) that enters the pocket of the class A GPCR, whereby the binding activity to the class A GPCR is enhanced.
  • amidine group of the benzamidine group interacts with the carboxyl group of D66 2.50 via intermolecular force, interacts with the hydroxyl group of S106 3.39 and S276 7.45 via intermolecular force, and mainly Contributes to strong bonds.
  • a class A GPCR binding compound modified with a group selected from amidinyl, N-hydroxyamidinyl, guanidinyl, guanidinyl substituted with amidinyl, ethylamino, methylamino, amino, amidyl, amide, or NHCH 3 Are able to bind to class A GPCRs more strongly than the original compounds not modified with such groups.
  • intermolecular force includes salt bridge, hydrogen bond, ⁇ -to-edge interaction, CH-to- ⁇ interaction, and hydrophobic interaction.
  • bond includes covalent bond, bond by intermolecular force, bond through a linker.
  • the Na + -water molecule cluster binding site comprises, for example, Ballesteros-Weinstein numbered amino acids 2.50 , 3.39 , 6.48 , or 7.45 .
  • the amino acids listed in Table 2 may also be included.
  • the amino acid at amino acid 2.50 is a negatively charged amino acid.
  • the amino acid at amino acid 2.50 is Asp, Glu, or Asn.
  • the amino acid at amino acid 3.39 is a hydrophilic amino acid.
  • the amino acid at amino acid 3.39 is Ser, Thr, Gln, or Gly.
  • the amino acid at amino acid 6.48 is a hydrophobic amino acid.
  • the amino acid at amino acid 6.48 is Trp, Phe, Ala, Ile, Met, Tyr, or Val.
  • the amino acid at amino acid 7.45 is a hydrophilic amino acid.
  • the amino acid at amino acid 7.45 is Asp, Ser, or Thr.
  • the functional group may have a structure accommodated in a GPCR pocket including amino acids 2.50 , 3.39 , 6.48 , and 7.45 of Ballesteros-Weinstein number system.
  • the functional group is a class A GPCR Na + - Na + in the water molecule cluster binding site - a water molecule clusters may have a replaceable structure.
  • the Na + -water molecule cluster binding site binding functional group may be a Na + -water molecule cluster binding site binding compound.
  • the functional group may be linked to a linker.
  • G may mean the structure of a class A GPCR binding compound
  • L may mean a linker
  • -AB is a functional group (Na + -water molecule cluster binding site of class A GPCR A binding functional group, a benzamidine group or a derivative thereof, a protonated amine group having a phenyl group, or a non-protonated amine group having a phenyl group).
  • - may represent a covalent bond.
  • the functional group preferably has the following structure from the viewpoint of strong antagonist activity against class A GPCRs.
  • -AB (Where A is a 3- to 6-membered saturated or unsaturated carbocyclic group or heterocyclic group, The hetero atom of the heterocyclic group is at least one selected from the group consisting of N, O, and S;
  • the carbocyclic or heterocyclic group is optionally substituted with at least one group selected from the group consisting of halogen, methyl, hydroxyl, amino, nitro, and N 3 ; and B is amidinyl, N-hydroxyamidinyl, guanidinyl, guanidinyl substituted with amidinyl, ethylamino, methylamino, amino, amidyl, amide, or NHCH 3 . ).
  • the functional group is more preferably selected from the following group from the viewpoint of strong antagonist activity against class A GPCRs.
  • Benzamidine or its derivatives eg: Protonated amine groups with phenyl groups (eg: Unprotonated amine groups with phenyl groups (eg:
  • the benzamidine or derivative thereof may have the following structure, for example.
  • Ring C is a 3- to 6-membered saturated or unsaturated carbocyclic group or heterocyclic group
  • R 1 is amidinyl, N-hydroxyamidinyl, guanidinyl, guanidinyl substituted with amidinyl, ethylamino, methylamino, amino, amidyl, amide, or NHCH 3
  • R 2 and R 3 are the same or different and are H, methyl, halogen, hydroxyl, amino, nitro, or N 3
  • m and n are the same or different and are each an integer of 0 to 11. ).
  • the benzamidine or derivative thereof may have a structure selected from the following group, for example. Wherein R is selected from the following group. ).
  • the functional group may have a structure included in the following range as long as it has binding properties to the Na + -water molecule cluster binding site of class A GPCR.
  • the number of heteroatoms may be 1 to 3.
  • the number of N contained in B may be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 and is greater than or within the range of these two values. May be.
  • the number of C contained in B may be 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, more than those values, or within the range of these two values.
  • the number of H contained in B is 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, or 20, more than those values, or within the range of these two values There may be.
  • the number of atoms (for example, O) other than N, C, and H contained in B may be 1, 2, 3, 4, or 5, greater than or within the range of these two values It may be.
  • the number of substitutions may be 1-5.
  • the substitution described above may be substituted at the 2, 3, 4, 5, or 6 position when the binding position of B to A is the 1st position.
  • the number of atoms in the structure of -AB described, binding position, the R 1 - to 3 and is also applicable to Formula containing a ring C in this case, the A ring C and R 2-3, B May be read as R 1 ).
  • R 1 when R 1 is attached to ring C at position 1, it may be bonded to a class A GPCR-binding compound at position 2, 3, 4, 5, or 6.
  • R 2 or R 3 may be bonded at the 2, 3, 4, 5, or 6 position when the bonding position of R 1 is the 1 position.
  • the halogen includes F, Cl, Br, or I.
  • the “functional group” or “compound” specified by a specific structural formula includes a form in which the structural formula (eg, amino group) is protonated.
  • the functional group includes, for example, a compound having a molecular weight of 80 or more.
  • This molecular weight may be 80, 90, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, or 1000, more than those values, or even within the range of these two values. Good.
  • 80 to 300 is preferable, and 100 to 200 is more preferable.
  • the class A GPCR binding compound may be a compound excluding a compound having a Na + -water molecule cluster binding site binding functional group.
  • the above functional group is preferably bonded to, for example, a hydroxyl group, an amino group, or a thiol group of a class A GPCR-binding compound from the viewpoint of strong antagonist activity for class A GPCR.
  • the above functional group is most preferably amidinylphenyl from the viewpoint of strong antagonist activity against class A GPCR.
  • the class A GPCR binding compound variant is a class A GPCR inverse agonist.
  • One embodiment of the invention comprises a class A GPCR binding compound variant, wherein the class A GPCR binding compound is covalently modified with a functional group of the following structure: . -AB (Where A is a 3- to 6-membered saturated or unsaturated carbocyclic group or heterocyclic group, The hetero atom of the heterocyclic group is at least one selected from the group consisting of N, O, and S; The carbocyclic or heterocyclic group is optionally substituted with at least one group selected from the group consisting of halogen, methyl, hydroxyl, amino, nitro, and N 3 ; and B is amidinyl, N-hydroxyamidinyl, guanidinyl, guanidinyl substituted with amidinyl, ethylamino, methylamino, amino, amidyl, amide, or NHCH 3 ).
  • the ability of a functional group or compound to bind to a Na + -water molecule cluster binding site may be evaluated, for example, by crystal structure analysis or mutation experiment.
  • the binding strength of a functional group or compound to a variant having a mutation in the amino acid at the Na + -water molecule cluster binding site eg, amino acid 2.50 , 3.39 , 6.48 , or 7.45 in the Ballesteros-Weinstein number system
  • the binding strength to the wild type is significantly reduced, it may be evaluated that the functional group or the compound has a binding property to the Na + -water molecule cluster binding site.
  • the bond strength after reduction may be, for example, 80, 70, 60, 50, 40, 30, 20, 10, or 0%, or within the range of these two values, before reduction. May be.
  • high-throughput screening may be used.
  • the K d of the functional group or compound to the wild type may include the value of K d for the class A GPCR of the class A GPCR-binding compound described above.
  • One embodiment of the present invention is a method for preparing a class A GPCR binding compound variant, comprising a GPCR pocket comprising amino acid 2.50 , amino acid 3.39 , amino acid 6.48 , and amino acid 7.45 specified by the Ballesteros-Weinstein numbering system A method comprising the step of covalently attaching a functional group attached thereto to a class A GPCR binding compound.
  • amino acids may be abbreviated by three letters or one letter. Such abbreviations are well known in the art and have the same meaning as used in the art.
  • aspartic acid can be abbreviated as Asp or D, Asp 2.50 and D 2.50 have the same meaning.
  • the function of class A GPCR when the function of class A GPCR is inhibited (including when basal or constitutive activity is inhibited), 5, 10, 15, 20 compared to when it is not inhibited 25, 30, 40, 50, 60, 70, 75, 80, 85, 90, 95%, or 100% of the activity may be inhibited.
  • This inhibition strength may be within the range of the above two values.
  • in the case of inhibition for example, in the presence of a variant of a class A GPCR binding compound, or a class A GPCR binding compound, and a class A GPCR Na + -water molecule cluster binding site binding functional group, In the presence of a compound having a structure in which is bound. In the case of not being inhibited, the case in the absence of such an inhibitory substance is included.
  • the class A GPCR binding compound and the class A GPCR Na + -water molecule cluster binding site binding functional group may be linked directly or via a linker.
  • the class A GPCR-binding compound, the linker, and the class A GPCR Na + -water molecule cluster binding site-binding functional group can be linked using, for example, click chemistry. Click chemistry is described, for example, by Hou J et al., Expert Opin Drug Discov. 2012 Jun; 7 (6): 489-501., Bonnet Det al., Bioconjug Chem. 2006 Nov-Dec; 17 (6): 1618- 23. Technology such as can be used.
  • the “linker” includes a compound located between two compounds, for example, in such a form as to connect two compounds.
  • the linker include an alkyl chain linker, a PEG linker, and a triazole linker having an alkyl chain.
  • the linker is preferably a triazole linker having an alkyl chain.
  • the triazole linker having an alkyl chain may have a structure in which an alkyl chain is bonded to each one of N and C of triazole, or any one of N and C.
  • the triazole may be 1,2,3-triazole.
  • the triazole linker may have a structure in which an alkyl chain is bonded to N at the 1-position or C at the 4-position of 1,2,3-triazole.
  • linkers or compounds having linkers, or the coupling of compounds via linkers are commissioned by Funakoshi Co., Ltd., Tokyo Chemical Industry Co., Ltd., Shinsei Chemical Co., Ltd., Waken Pharmaceutical Co., Ltd., etc. You may entrust a manufacturing company or a reagent company.
  • the linker may have a structure in which one end or both ends are bonded to, for example, —CO—.
  • the linker may be substituted with, for example, halogen, methyl, hydroxyl, amino, nitro, or N 3 .
  • Linkers include those that do not substantially eliminate the activity (including binding activity) of the two compounds after the two compounds of interest are bound.
  • Linkers include those that themselves have substantially no binding activity to class A GPCRs.
  • the linker is included in the range shown below as long as the antagonist activity of the compound having a structure in which a class A GPCR-binding compound and a class A GPCR Na + -water molecule cluster binding site-binding functional group are lost is lost. It may have a structure.
  • the linker includes, for example, a linker having a molecular weight of 10 or more. This molecular weight is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, or 1000, above those values, or within the range of these two values It may be.
  • the number of carbon atoms in the alkyl chain may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, greater than or equal to these values. It may be within the range.
  • the linker may be bonded to the compound to be linked through O, N, or S, for example.
  • One embodiment of the present invention includes a composition comprising a compound having a structure in which a class A GPCR-binding compound and the above functional group are bonded, or a salt thereof.
  • This composition comprises an antagonist composition, an inverse agonist composition, a class A GPCR activity, a composition for shifting the inactive equilibrium state toward inactivation, or a class A GPCR to an inactive form. It may be a composition for fixing.
  • the composition may contain a pharmacologically acceptable carrier.
  • One embodiment of the present invention includes the use of a compound having a structure in which a class A GPCR-binding compound and the functional group are bound, or a salt thereof, for the production of the composition.
  • One embodiment of the present invention is an inverse method to a class A GPCR comprising the step of bringing a class A GPCR into contact with a compound having a structure in which a class A GPCR binding compound and the above functional group are bound, or a salt thereof.
  • a method of producing an agonistic action is also included in the present invention.
  • One embodiment of the present invention also includes a method for producing an antagonistic action, a method for shifting the activity of class A GPCR, an inactive equilibrium state toward inactivation, and an inactive form of class A GPCR, comprising the above steps. Including a method of fixing to.
  • the Class A GPCR Na + - containing compound or a salt thereof with a water molecule cluster binding site binding functional group including inverse agonist compositions of the Class A GPCR.
  • One embodiment of the present invention includes a method for producing an antagonist of the class A GPCR, comprising the step of binding a class A GPCR Na + -water molecule cluster binding site binding compound to another compound.
  • the other compound is preferably a class A GPCR-binding compound from the viewpoint of binding stability to class A GPCR or strong antagonist activity.
  • the antagonist may be an inverse agonist.
  • the production method may include a step of binding a linker to the Na + -water molecule cluster binding site binding compound or another compound.
  • the production method may include a step of linking the Na + -water molecule cluster binding site binding compound and another compound with a linker.
  • One embodiment of the present invention includes a method for designing an antagonist of the class A GPCR, which comprises the step of binding a class A GPCR Na + -water molecule cluster binding site binding compound to another compound.
  • a compound having a structure in which a class A GPCR-binding compound and a class A GPCR Na + -water molecule cluster-binding site-binding functional group are bound to each other is represented by Na + -water molecule cluster binding. It does not include all compounds containing site-binding functional groups (eg, benzamidine groups), but contains class A GPCR-binding compounds separately from Na + -water molecule cluster binding site-binding functional groups is important.
  • a compound having a structure in which a class A GPCR-binding compound and a class A GPCR Na + -water molecule cluster binding site-binding functional group are bonded is a compound of BIIL260, BIIL284, DW-1350, CGS-25019C Not included.
  • a compound having a structure in which a class A GPCR binding compound and a class A GPCR Na + -water molecule cluster binding site binding functional group are bonded can be produced from among the compounds described in the following documents: The benzamidine group-containing compound described in 1) is not included.
  • JP4334016 B2
  • JP4288299 B2
  • JP4288299 B2
  • JP4215278 B2
  • JP4047275 B2
  • JP3917516 B2
  • JP2931410 B2
  • JP2007536299 A
  • JP2007513068 A
  • JP2006508992 A
  • JP2005529085 A
  • JP2005502630 A
  • JP2004513100 A
  • Nakayama et al. Bioorg Med Chem. 1997 May; 5 (5): 971-85., Marie et al., J Biol Chem. 2001 Nov 2; 276 (44): 41100-11., Anat et al., PLoS One. 2011; 6 (11): e27990., Kruse et al., Mol Pharmacol. 2013 Oct; 84 (4): 528-40.
  • the “compound” or “compound variant” includes a salt form.
  • the “salt” is not particularly limited.
  • the salts include inorganic salts and organic salts, and salts described in “Berge SM et al., J Pharm Sci. 1977 Jan; 66 (1): 1-19.”. Examples thereof include metal salts, ammonium salts, salts with organic bases, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids, and the like.
  • “compound” or “compound variant” includes those in the form of solvates.
  • a compound having a structure in which a class A GPCR-binding compound and a class A GPCR Na + -water molecule cluster binding site-binding functional group are bound to each other includes a solvate of the compound.
  • “solvate” includes compounds formed by solutes and solvents. As for the solvate, for example, “J. Honig et al., The Van Nostrand Chemist's Dictionary P650 (1953)” can be referred to. If the solvent is water, the solvate formed is a hydrate.
  • Solvates include those that absorb moisture when exposed to air or recrystallize, and optionally have hygroscopic water or become hydrates.
  • One embodiment of the invention includes a binding molecule that specifically binds to an inactivated class A GPCR.
  • This binding molecule may be, for example, an antibody or an aptamer.
  • inactivated class A GPCR can be specifically detected.
  • a disease caused by inactivation of class A GPCR can be diagnosed.
  • One embodiment of the present invention is a binding molecule that specifically binds to a complex comprising a class A GPCR and a compound having a Na + -water molecule cluster binding site binding functional group of class A GPCR or a salt thereof.
  • This binding molecule may be an antibody or an aptamer.
  • inactivated class A GPCR can be specifically detected.
  • a disease caused by inactivation of class A GPCR can be diagnosed by detecting inactivated class A GPCR.
  • One embodiment of the present invention is an antigen comprising a class A GPCR and a complex comprising a class A GPCR Na + -water molecule cluster binding site-binding functional group or a salt thereof.
  • One embodiment of the present invention is an antigen comprising a class A GPCR and a compound having a Na + -water molecule cluster binding site binding functional group of class A GPCR or a salt thereof.
  • One embodiment of the present invention is a method for producing an antibody, comprising the step of immunizing an organism with the antigen.
  • an “antibody” comprises a molecule or population thereof that can specifically bind to a particular epitope on an antigen.
  • the antibody may be a polyclonal antibody or a monoclonal antibody.
  • the form of the antibody is not particularly limited. For example, a full-length antibody (an antibody having a Fab region and an Fc region), Fv antibody, Fab antibody, F (ab ′) 2 antibody, Fab ′ antibody, single-chain antibody (for example, scFv ), One or more forms selected from the group consisting of dsFv, antigen-binding peptide, antibody-like molecule, chimeric antibody, mouse antibody, chicken antibody, humanized antibody, human antibody, or equivalents (or equivalents) including.
  • the antibody includes an antibody modified product or an antibody unmodified product.
  • an antibody and various molecules such as polyethylene glycol may be bound.
  • the modified antibody can be obtained by chemically modifying the antibody using a known technique.
  • the amino acid sequence, class, or subclass of the antibody may be derived from, for example, humans, mammals other than humans (eg, rats, mice, rabbits, cows, monkeys, etc.).
  • the antibody class is not particularly limited, and may be, for example, IgM, IgD, IgG, IgA, IgE, or IgY.
  • the antibody subclass is not particularly limited, and may be, for example, IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2.
  • the antibody includes, for example, an isolated antibody, a purified antibody, or a recombinant antibody.
  • the antibody can be used, for example, in vitro or in vivo.
  • a “polyclonal antibody” can be generated, for example, by administering an immunogen containing an antigen of interest to a mammal (eg, rat, mouse, rabbit, cow, monkey, etc.). It is. Administration of the immunogen may be infused with one or more immunizing agents, or adjuvants. Adjuvants may be used to increase the immune response and may include Freund's adjuvant (complete or incomplete), mineral gel (such as aluminum hydroxide), or a surfactant (such as lysolecithin). . Immunization protocols are known in the art and may be performed by any method that elicits an immune response, depending on the host organism chosen (Protein Experiment Handbook, Yodosha (2003): 86-91). .).
  • a “monoclonal antibody” includes an antibody in which individual antibodies constituting a population react with substantially the same epitope. Alternatively, it may be an antibody when the individual antibodies constituting the population are substantially the same (spontaneously occurring mutations are allowed). Monoclonal antibodies are highly specific and differ from normal polyclonal antibodies, which typically include different antibodies corresponding to different epitopes.
  • the method for producing the monoclonal antibody is not particularly limited. For example, a method similar to the hybridoma method described in "Kohler G, Milstein C., Nature. 1975 Aug 7; 256 (5517): 495-497.” You may produce by.
  • monoclonal antibodies may be made by methods similar to recombinant methods such as those described in US Pat. No. 4,816,567.
  • monoclonal antibodies can be identified as “Clackson et al., Nature. 1991 Aug 15; 352 (6336): 624-628.” Or “Marks et al., J Mol Biol. 1991 Dec 5; 222 (3): 581 It may be isolated from a phage antibody library using methods similar to those described in US Pat.
  • the protein may be prepared by the method described in “Protein Experiment Handbook, Yodosha (2003): 92-96”.
  • the “aptamer” includes a nucleic acid (DNA or RNA) aptamer or a peptide aptamer that specifically binds to a specific molecule.
  • Nucleic acid aptamers can be prepared by, for example, techniques such as the in vitro selection method or the SELEX method (Darmostuk M et al., Biotechnol Adv. 2015 Nov 1; 33 (6 Pt 2): 1141-61.).
  • Peptide aptamers can be prepared, for example, by a yeast two-hybrid method or a phage display method (ReverdattoeverS et al., Curr Top Med Chem. 2015; 15 (12): 1082-101.).
  • “significantly” means, for example, a state where p ⁇ 0.05 or p ⁇ 0.01 when statistical significance is evaluated using Student's t test (one-sided or two-sided). Also good.
  • Example 1 1.1 Expression of BLT1 mutants for characterization of BLT1 Thermostabilized BLT1 mutants previously constructed in pcDNA3 vector to assess the thermal stability of guinea pig BLT1 mutants designed by consensus method (Figure 8A) Point mutations were introduced into cDNA (having residues 1-14 removed, carrying the H83G / K88G / S309A mutation and having a FLAG tag at the N-terminus) using the QuikChange kit (Agilent) (Hori, T. et al. et al., Protein Expr. Purif. 72 (2010) 66-74, Hori, T. et al., Biochem. Biophys. Rep. 4 (2015) 243-249).
  • An expression vector encoding the BLT1 mutant was transfected into COS-7 cells using Lipofectamine2000.
  • a point mutation was introduced into the cDNA of wild-type BLT1 having an N-terminal FLAG tag in pcDNA3 vector using In-Fusion enzyme (Clontech).
  • the expression vector was transfected into HEK293 cells using polyethyleneimine.
  • pcDNA3 vector encoding wild type BLT1 with N-terminal FLAG tag was transfected into HEK293 cells using polyethyleneimine.
  • the BLT1 mutant was expressed transiently at 37 ° C. for 3 days.
  • the cells were washed with PBS, harvested using PBS-EDTA, disrupted with a sonicator, and centrifuged at 800 ⁇ g for 5 minutes. The supernatant was further subjected to ultracentrifugation at 100,000 ⁇ g for 60 minutes to collect the precipitate.
  • thermostable BLT1 mutant For ligand binding assay of BLT1-T4L, it was a thermostable BLT1 mutant with additional mutation V212A by consensus method (removing residues 1-14 and having H83G / K88G / V212A / S309A mutation) BLT1 N-terminal ⁇ -factor prepro signal sequence and FLAG tag, C-terminal containing PreScission site and His 6 tag (Hori T. et al., 2010, above) using In-Fusion enzyme T4L cDNA was incorporated into a cDNA encoding a newly prepared thermostable BLT1 mutant in a pPIC3.5K vector (FIG. 7A).
  • the expression vector was introduced into the yeast Pichia pastoris using the EasyComp kit (Thermo Fisher Scientific). BLT1-T4L was expressed in 10 ml cultures and membrane fractions were prepared as previously described (Hori T. et al., 2010, supra; Hori T. et al., 2015, supra).
  • benzamidine or NaCl binding assays various concentrations of benzamidine or NaCl were incubated with the membrane fraction of wild type BLT1 expressing HEK293 cells for 60 minutes at 20 ° C. prior to reaction with 3 H-LTB 4 .
  • TGF ⁇ shedding assay to assess the allosteric effect of benzamidine
  • TGF ⁇ shedding assay To assess the effect of benzamidine on BLT1-dependent intracellular signaling, the TGF ⁇ shedding assay (Inoue, A. et al., Nat. Methods 9 (2012 ) 1021-1029).
  • Y Y max ([A] + K d ) / ⁇ [A] + K d (1+ [B] / K B ) / (1 + ⁇ [B] / K B ) ⁇
  • Y max radioligand ( 3 H-LTB 4 ) specific binding without allosteric modulator
  • [A] is 3 H-LTB 4 concentration
  • [B] is allosteric modulator ( Benzamidine or NaCl)
  • K d is the equilibrium dissociation constant of 3 H-LTB 4
  • K B is the equilibrium dissociation constant of the allosteric regulator
  • 3 H-LTB 4 This is the coefficient of cooperation with the regulator.
  • E E m ⁇ A [A] (K B + ⁇ [B]) ⁇ n / ⁇ ([A] K B + K A K B + K A [B] + ⁇ [A] [B]) n + ( ⁇ A [A] (K B + ⁇ [B])) n ⁇
  • E m is the maximum estimated signal response
  • K A is the equilibrium dissociation constant of LTB 4
  • beta is a cooperative coefficients describing the LTB 4 induced effect regulation by benzamidine
  • n is in log
  • ⁇ A is the unit of agonist signal agonist potency; the other parameters are as described above.
  • the yeast pellet was added to 1 L BMMY medium (1% (w / v) yeast extract, 2% (w / v) peptone, 100 mM potassium phosphate buffer (pH 6.0), 1.34% (w / v) yeast.
  • BLT1-T4L was expressed at 30 ° C. for 18-20 hours suspended and cultured in nitrogen base and 0.5% (v / v) methanol).
  • the yeast cells were recovered by centrifugation (3,500 ⁇ g, 4 ° C., 20 minutes), washed with water and stored at ⁇ 30 ° C. until use.
  • the yeast cells were suspended in buffer A containing protease inhibitor cocktail (Roche) (50 mM Tris (pH 8.0), 1 M NaCl, 5% (v / v) glycerol).
  • the yeast cell suspension and glass beads were placed in a bead agitation vessel (pre-cooled in an ice-water bath for at least 2 hours prior to cell disruption).
  • Yeast cells were disrupted for 1 minute using a bead stirrer (Hamilton Beach Brands) and chilled with ice water for 2 minutes. These crushing and cooling steps were repeated 20 times.
  • the disrupted cell solution was centrifuged (3,500 ⁇ g, 4 ° C., 5 minutes) to remove cell debris, and the supernatant was ultracentrifuged (100,000 ⁇ g, 4 ° C., 1 hour).
  • the pellet was suspended in buffer A using a Potter homogenizer and the suspension was ultracentrifuged again.
  • the pellet was suspended in 5 ml of buffer B (50 mM Tris-Cl buffer (pH 8.0), 150 mM NaCl, 5% (v / v) glycerol) and stored at ⁇ 80 ° C. until use.
  • a typical suspension pellet volume was 25 ml.
  • the suspension membrane pellet was homogenized with a Potter homogenizer, diluted in 25 ml buffer B containing 4 mg / ml iodoacetamide, protease inhibitor cocktail, and 80 ⁇ M BIIL260, and 4 BLT1 was reacted with BIIL260 by incubating for at least 4 hours at ° C.
  • buffer C buffer B with 1.3% (w / v) lauryl maltose, neopentyl glycol (LMNG), 0.013% (w / v) cholesteryl hemisuccinate (CHS)
  • the final concentrations of BIIL260, LMNG, and CHS were 9.5 ⁇ M, 1% (w / v), and 0.001% (w / v), respectively.
  • the solution was ultracentrifuged (100,000 ⁇ g, 4 ° C., 1 hour) and the supernatant was incubated with 10 ml TALON resin (Clontech) overnight at 4 ° C.
  • the resin is packed in a natural flow column and washed with 20 CV (column volume) of buffer D (buffer B containing 0.02% (w / v) LMNG, 0.01% (w / v) CHS, and 10 ⁇ M BIIL260). did.
  • BLT1-T4L was eluted with 3.5 CV buffer E (buffer D containing 500 mM imidazole (pH 8.0)). The eluted fraction was concentrated using Amicon ultrafilter (Millipore, 10 kDa MWCO) and desalted using PD10 column (GE Healthcare) equilibrated with buffer D. BLT1-T4L was bound to Ni-Sepharose resin (GE Healthcare, 1 ml), which was washed with 2 CV buffer D to remove excess surfactant. BLT1-T4L was eluted with 2.5 CV buffer E.
  • the eluted fractions were desalted using a PC10 column equilibrated with buffer D and treated with 25 ⁇ l His-tagged HRV3C protease (Takara) overnight at 4 ° C.
  • the reaction solution was added to Ni-Sepharose resin (1 ml), and HRV3C protease, His 6 tag, and contaminating proteins were removed, and the unbound fraction was collected.
  • the unbound fraction was concentrated and purified by gel filtration (once or twice) on a Superose-6 column. A typical final gel filtration result is shown in FIG. 9A.
  • Purified BLT1-T4L was concentrated to 10-50 mg / ml and 100 ⁇ M BIIL260 was added. Samples were frozen in liquid nitrogen and stored at ⁇ 80 ° C. until use.
  • Crystallization was performed by the lipid cubic phase method. Concentrate the BLT1-T4L sample at 20 ° C using a syringe stirrer with a mixture of monooleic lipid and 10% (w / w) cholesterol in a 2: 3 ratio to reconstitute BLT1-T4L Formed legislative phase membranes (Hato, M. et al., J. Phys. Chem. B113 (2009) 10196-10209; Hato, M.et al., J. Struct. Funct. Genomics 15 (2014) 165 -171).
  • the final crystallization conditions were 100 mM bicine buffer (pH 8.5-9.0), 22.5-30 % (V / v) PEG300, 50-75 mM ammonium phosphate, 75-100 mM ammonium formate, and 2-4% (v / v) 3-methyl-1,5-heptanediol. Crystals used for structure determination were grown at 4 ° C. and recovered 34 days after crystallization setup. We attempted crystallization with all BLT1-T4L chimeric proteins (FIG. 7).
  • a crystal of another construct appeared, but no diffraction spots were observed despite repeated optimization of the crystallization conditions.
  • the present inventors also performed expression of BLT1 protein having a Bril (Bril: heat-stabilized apocytochrome, b562RIL) fusion within ICL3 and attempted to crystallize it.
  • BLT1 protein having a Bril Bosset: heat-stabilized apocytochrome, b562RIL
  • Crystals were collected using the MiTeGen cryoloop and stored in liquid nitrogen. Since many small crystals appeared in the cubic phase bolus (FIG. 9B), the entire 20-40 nl bolus containing these crystals and cubic phase lipids was collected in one cryoloop and frozen in liquid nitrogen.
  • X-ray diffraction experiments were performed on a BL32XU at SPring-8 in Japan using an EIGER X 9M detector. First, crystal diffraction was scanned across the cubic phase bolus as a static image using 0.8 MGy 5 ⁇ 5 ⁇ m 2 X-ray beam per frame to determine the position of the crystal in the cubic phase bolus.
  • the structure was solved by a molecular replacement method using Phenix (Adams, PD et al., Acta Crystallogr. D Biol. Crystallogr. 66 (2010) 213-221).
  • the starting model for molecular replacement consists of the CRFR1-T4L chimeric structure (PDB code: 4K5Y) loop region and T4 lysozyme as two independent search models in which all side chains except glycine are replaced with alanine. It was a 7-transmembrane helix region of the deleted CCR5 structure (PDB code: 4MBS).
  • the structure was reconstructed using Coot (Emsley, P. et al., Acta Crystallogr. D Biol. Crystallogr.
  • a benzamidine group is covalently bound to a class A GPCR-binding compound for the following target GPCRs as a functional group for preparing a class A GPCR-binding compound variant (hereinafter referred to as “BENZ-ligand”).
  • BENZ-ligand a class A GPCR-binding compound variant
  • Class A GPCR binding compounds were selected for each subject GPCR from among the known class A GPCR binding compounds.
  • H 1 HR Histamine for H 1 histamine receptor
  • a 2A AR Adenosine for the A 2A adenosine receptor
  • ⁇ 1 AR ⁇ 1 adrenergic receptor
  • carazolol Tropol
  • BENZ-ligands with different linkers can be made by those skilled in the art including, for example, alkyl chain linkers with different carbon numbers, PEG linkers, triazole linkers with alkyl chains.
  • alkyl chain linkers with different carbon numbers PEG linkers
  • triazole linkers with alkyl chains triazole linkers with alkyl chains.
  • a BENZ-ligand having at least three different alkyl chain linkers and nine different triazole linkers with different alkyl chain lengths was designed (FIG. 12).
  • H 1 HR three types of triazole linkers with different alkyl chain lengths were designed (FIG. 12).
  • Parameters and topology files for the energy minimization process can be downloaded from the HIC-UP site (http://xray.bmc.uu.se/hicup/) or GlycoBioChem PRODRG2 server (http://davapc1.bioch.dundee.ac.uk / cgi-bin / prodrg).
  • the force field of dihedral angle and false twist angle was changed when necessary.
  • Each BENZ-ligand designed in (3) was superimposed on the target GPCR in the following manner.
  • the position of the benzamidine group of the BENZ-ligand is that of the bound benzamidine group of BLT1 after the BLT1 structure is superimposed on the target GPCR structure as described in (1).
  • the position of the ligand portion of the BENZ-ligand is that of the binding ligand of the subject GPCR.
  • the linker moiety is linked to the ligand of the subject GPCR, but its position is arbitrary.
  • Each GPCR with BENZ-ligand was modified by (energy minimization) program CNS (for program CNS (Crystallographyalland NMR System), Brunger, AT et al., Acta Cryst. D54 (1998) 905-921, Brunger , AT, Nature, Protocols 2 (2007) 2728-2733). As shown in this example, those skilled in the art can easily determine and select an appropriate length of a covalent bond (linker).
  • the linker was selected so that the amidine group interacts with D 2.50 , S 3.39 , and N 7.45 , and the position of benzamidine is similar to that of BLT1.
  • FIG. 13A A 2A adenosine receptor (A 2A AR) and adenosine - shows a benzamidine - linker.
  • FIG. 13B shows ⁇ 1 adrenergic receptor ( ⁇ 1 AR) and carazolol-linker-benzamidine.
  • FIG. 13C shows ⁇ opioid receptor ( ⁇ -OR) and TIPP-linker-benzamidine.
  • FIG. 13D shows H 1 histamine receptor (H 1 HR) and histamine-linker-benzamidine.
  • Fig. 13 panel (a) shows the structure of GPCR and benzamidine-ligand improved by the program CNS. There is no conflict between the ligand and the GPCR. Two modeling results using different linker lengths are illustrated for each GPCR.
  • Panel (b) of FIG. 13 shows a schematic diagram of ligand-linker-benzamidine. Ligand and benzamidine molecule are linked using click chemistry.
  • Panel (c) in Fig. 13 shows the structure before the energy minimization process by CNS.
  • the benzamidine group of BLT1-BIIL260 was docked to the subject GPCR.
  • the initial position of the linker moiety linked to each ligand is arbitrary, but is indicated by an elliptical dotted line.
  • gAmino acids are shown in parentheses.
  • BLT1 BLT1 has a standard seven-transmembrane helix structure with the N-terminus located outside the cell and the C-terminus located inside the cell (FIGS. 1C and 10A).
  • the transmembrane helix bundle of the BLT1 structure is similar to that of the chemokine GPCR.
  • the mean square deviation of the main chain atom to CXCR4 (Wu, B. et al., Science 330 (2010) 1066-1071) (PDB code: 3OE8, sequence identity: 29% for 207 residues) is 1.6 ⁇ , CCR5 (Tan, Q.
  • the extracellular loop region of the BLT1 structure has features common to ⁇ -classified GPCRs (Fredriksson, R. et al., 2003, supra). Like Gchem to chemokine and peptide ligands (Zhang, H. et al., Cell 161 (2015) 833-844), the extracellular loop 2 (ECL2) of BLT1 has a ⁇ -hairpin ( Figure 1E) ing. Although the BLT1 entrance is open on the extracellular surface (FIG. 1F), the bound BIIL260 was not visible from the membrane side (FIG. 10B). Views this is supported (including BIIL260 and LTB 4) BLT1 ligand is that it may be in and out to the ligand binding site through the extracellular surface.
  • the intracellular side of the BLT1 structure has typical features associated with an inactive GPCR state.
  • the inner half of the transmembrane helix bundle of BLT1 is the inactive nociceptin / orphanin FQ (N / OFQ) peptide receptor (Thompson, AA et al., Nature 485 (2012) 395-399) (NOP, PDB code: 4EA3), which is most similar to that of the inner half of the transmembrane helix, with a mean square deviation of 1.4 ⁇ (Figure 10C).
  • the side chains of D116 3.49 and R117 3.50 within the DRY motif are M1 and M3 muscarinic receptors (Thal, DM et al., Nature 531 (2016) 335-340, Kruse, AC et al ., Nature 482 (2013b) 552-556) does not form a salt bridge (referred to as ion lock).
  • the guanidino group of R117 3.50 interacts with the main chain carbonyl group of G222 6.34 via the hydroxyl group of Y203 5.58 .
  • This conformation suggests that the BLT1-BIIL260 complex may correspond to the S2 inactive state in which the ion lock (Manglik, A. et al., Cell 161 (2015) 1101-1111) is broken. It is.
  • BIIL260 does not contact ECL, but specifically interacts with 8 residues of transmembrane helices 1, 2, 3, 6, and 7 of BLT1 (see FIG. 1C). 10A) and also form hydrophobic interactions ( Figures 2A and 2B).
  • the amidine group of the benzamidine group forms a salt bridge with the carboxyl group of D66 2.50 and forms a hydrogen bond with the hydroxyl groups of S106 3.39 and S276 7.45 , while the imino group is protonated.
  • the pKa of benzamidine is 11.6 (Lam, PY et al., J. Med. Chem. 46 (2003) 4405-4418)).
  • inactive GPCRs Common among the high-resolution structures of such inactive GPCRs is that the sodium ion is coordinated to the D66 2.50 and S106 3.39 corresponding residues, and the bound water molecule (Liu et al., 2012, Interact with W236 6.48 , S276 7.45 , and N280 7.49 corresponding residues via Miller-Gallacher et al., 2014, above, Zhang et al., 2012, above, Fenalti et al., 2014, above) ( Figures 4A, 4B, 11A, 11C, and 11E, Table 2). These are characteristic of the inactive GPCR state. Thus, in the absence of BIIL260, inactive BLT1 should bind to sodium ions in the same manner.
  • benzamidine groups eliminate sodium ions and surrounding water molecules (except for water molecules that interact with N280 7.49 ) due to steric hindrance. Instead, the benzamidine group complements the interaction lost by the loss of sodium ions and surrounding water molecules by mimicking a water molecule cluster centered on sodium ions through a strong interaction with BLT1 (Fig. 4A, 4B, 11A, 11C, and 11E, Table 2).
  • the size of benzamidine corresponds to that of a water molecule cluster centered on sodium ions when BLT1-BIIL260 and other GPCR structures are overlaid and evaluated (FIGS. 4C, 11B, 11D, and 11F).
  • benzamidine can fit into the sodium ion binding site from both a physical and chemical point of view. Since the water molecule cluster centering on sodium ions stabilizes the inactive GPCR (Gutierrez-de-Teran, H. et al., 2013, above), the benzamidine group also stabilizes the inactive state of BLT1. It is thought that.
  • the benzamidine group is thought to suppress the structural change of BLT1 to the active state.
  • agonist binding is dependent on G protein coupling (Rosenbaum DM et al., 2007, supra; Rasmussen, SG et al., 2011, supra, Rosenbaum, DM et al Nature 469 (2011) 236-240) is thought to induce structural changes in the sodium ion binding site.
  • transmembrane helix 3 approaches helices 2 and 7, eliminating the bound sodium ions present in the inactive state, and highly conserved residues 2.50 and 3.39 (Rasmussen, SG et al. al., 2011, supra, Carpenter, B.
  • Example 2 2.1 Functional analysis of a compound having a structure in which a class A GPCR-binding compound and a benzamidine group are bound.
  • a compound Compound (compound 1) having a structure in which a benzamidine group is bound to carazolol (adrenergic receptor ligand), A compound having a structure in which a benzamidine group is bound to adenosine (ligand of A 2A adenosine receptor) (compound 2), and a compound having a structure in which a benzamidine group is bound to histamine (ligand of histamine receptor) (compounds 3 and 4) was synthesized.
  • the procedure is as follows.
  • Compound 43-28 corresponds to Compound 4
  • Compound 42-28 corresponds to Compound 3
  • Compound 7-28 corresponds to Compound 2
  • Compound 15-28 corresponds to Compound 1.
  • reaction solution was stirred at room temperature overnight, then concentrated under reduced pressure using a rotary evaporator, methylene chloride (20 mL) was added, and the residue of the copper reagent was removed by Kiriyama filtration.
  • the filtrate was concentrated under reduced pressure using a rotary evaporator and vacuum dried using a hydraulic vacuum pump to obtain 7 crude product (2.13 g) as a yellow solid.
  • reaction solution was stirred at room temperature for 4 hours, concentrated under reduced pressure using a rotary evaporator, and then dried under vacuum using a hydraulic vacuum pump to obtain 10 crude products (0.84 g) as a yellow viscous solid.
  • the reaction solution was depressurized with a rotary evaporator to remove tert-butanol, and then extracted three times with ethyl acetate (20 mL).
  • the combined organic layer was washed with saturated brine (30 mL), and washed with sodium sulfate. Dried. After filtration with pleats, the filtrate was concentrated under reduced pressure using a rotary evaporator and dried under vacuum using a hydraulic vacuum pump to obtain 45 crude products (451 mg) as a green viscous solid.
  • AP-TGF ⁇ cleavage assay for measuring antagonist activity and inverse agonist activity followed the method of Inoue et al. (Inoue et al. 2012). The following is a brief description. 6 ⁇ 10 5 HEK293 cells were seeded on a 3 cm diameter culture plate in DMEM medium containing 10% fetal calf serum and cultured overnight at 37 ° C. Using polyethyleneimine, each expression vector encoding AP-TGF ⁇ , target class A GPCR, and G protein cDNA coupled to target class A GPCR was introduced into HEK293 cells and further cultured overnight.
  • the culture supernatant was removed, the cells were detached from the culture plate with a protease / EDTA solution (TrypLE Express, Thermo), and washed with an HSBB solution (pH 7.4).
  • the cells were suspended in 5 ml of HSBB solution (pH 7.4).
  • 10 ⁇ l of the compound (class A GPCR-binding compound and benzamidine group-bound compound or benzamidine derivative) 10 ⁇ l was dispensed in advance 90 ⁇ l of the suspended cells were seeded and cultured overnight (about 16 hours). 80 ⁇ l of the culture supernatant was dispensed into another 96-well plate (CM solution).
  • AP-TGF ⁇ release (%) ( ⁇ OD 405 Sup / ( ⁇ OD 405 Sup + ⁇ OD 405 Cell)) ⁇ 125
  • Antagonist activity is a measurement in the presence of an agonist (agonist) at a concentration near the EC50 value
  • inverse agonist activity is a measure of the ability to suppress activity in the absence of an agonist.
  • Antagonist activity or inverse agonist activity by compounds 1 to 4 could be confirmed for ⁇ 1 , ⁇ 2 adrenergic receptor, A 2A adenosine receptor, H 1 , H 2 , and H 4 histamine receptor.
  • binding affinity to the receptor was improved by binding a benzamidine group to a class A GPCR binding compound.
  • the t-test was used to verify the presence or absence of a significant difference with respect to the condition (control) in which no benzamidine derivative was added, and indicated by * when P ⁇ 0.05. Furthermore, the value normalized with respect to control is shown. When the normalized value was 0.85 or less at a final concentration of 1 mM and 0.95 at 1 ⁇ M, or 0.95 or less at a final concentration of 1 mM, it was defined that G protein activity was suppressed. As a result, activity suppression was confirmed by 202 class A GPCRs.
  • a novel class A GPCR can be obtained by binding a known class A GPCR ligand to a class A GPCR Na + -water molecule cluster binding site binding functional group such as a benzamidine group or a derivative thereof. It was revealed that antagonists of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

新規のクラスA GPCRのアンタゴニスト、その生産方法、又はクラスA GPCRのNa+-水分子クラスター結合部位と相互作用する新規化合物等を取得する。 クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物又はその塩を用いる。又は、クラスA GPCRのNa+-水分子クラスター結合部位結合性化合物と別の化合物とを結合させる工程を含む、クラスA GPCRのアンタゴニストの生産方法を用いる。

Description

クラスA GPCR結合性化合物改変体
 本発明は、クラスA GPCRアンタゴニスト、又はクラスA GPCRのアンタゴニストを設計もしくは生産する方法等に関する。
 クラスA(ロドプシンファミリーとも呼ばれる)Gタンパク質共役型受容体(GPCR)の立体構造は、細胞外及び細胞内分子(例:作動薬(agonists)、逆作動薬(inverse agonists)、アロステリック調節因子、Gプロテイン、脂質、及びナトリウムイオン)によって調節される(非特許文献1、2)。例えば、Gタンパク質がGPCRに共役することにより、GPCRの立体構造の平衡を、受容体が非共役状態にあるのと比較して高親和性作動薬結合状態へとアロステリックに変化させる。アロステリックリガンドはGPCRのオルソステリックな結合部位とは異なる部位に結合し、オルソステリック作動薬とGPCR系との結合親和性やシグナル伝達効率を正又は負に調節する。ナトリウムイオンもまた、GPCR活性の負のアロステリック調節因子として働く。
 ナトリウムイオンのアロステリック調節作用は、各種GPCRについて観察されてきた。まず、生理的以上のナトリウムイオン濃度はGPCRに対する拮抗薬作用を助ける。ナトリウムイオンは拮抗薬(antagonists)の解離速度を減速し(非特許文献3~5)、その結合親和性を向上(非特許文献6~8)するが、作動薬の結合親和性を低下させた(非特許文献9)。リガンド結合親和性への効果に加えて、ナトリウムイオンはGタンパク質シグナル伝達効率を減少させた。ナトリウムイオンは、作動薬刺激があるか(非特許文献10、11)又は無い(非特許文献10、12~14)GPCRによるGタンパク質のGTPγS結合活性を減少させた。ナトリウムイオンの総合的作用は作動薬-GPCR活性の負の調節であって、作動薬との親和性が低下し、Gタンパク質の効力が減少し、その作用には、作動薬と独立した基礎シグナル活性の減弱も含まれる。対照的に、拮抗薬-GPCR活性は、ナトリウムイオンによって正に調節される。
 変異体研究に基づいて、ナトリウムイオンと高度に保存されるAsp2.50(Ballesteros-Weinstein残基番号(非特許文献15))との相互作用は、ナトリウムイオンの調節作用のメカニズムに寄与すると考えられた(非特許文献4、5)。また、作動薬やG-タンパク質が結合した活性状態のGPCRと不活性状態のGPCRの高分解能結晶構造が最近明らかとなり、ナトリウムイオンの調節メカニズムが解明された。不活性状態のGPCR(A2Aアデノシン受容体(A2AAR)(非特許文献16)、β1アドレナリン受容体(β1AR)(非特許文献17)、プロテアーゼ活性化受容体1(PAR1)(非特許文献18)、及びδ-オピオイド受容体(δ-OR)(非特許文献19))では、ナトリウムイオンは膜貫通ヘリックス束の中央の高度に保存された残基に結合することが判明した。ナトリウムイオンは、Asp2.50とSer3.39に共通して結合し、さらに、δ-ORではAsn3.35、PAR1ではAsn7.49に結合する。結合したナトリウムイオンは、水分子クラスターを組織化して、Trp6.48、Asn7.45、Ser7.46、及びAsn7.49を含むいくつかの残基と相互作用して不活性状態のGPCR構造を安定化する。273種類のヒトGPCR間で、ナトリウムイオンを中心とする水分子クラスターに関与するそれら残基は良く保存されていて(表2)、そのクラスターは不活性状態のほとんどのクラスA GPCRに共通して存在すると考えられる。対照的に、作動薬やGタンパク質(又はGタンパク質模倣ナノボディー)結合型の活性状態GPCRでは、ナトリウムイオンを中心とする水分子クラスターは崩壊することが期待される。なぜなら、そのナトリウムイオンは、作動薬の結合とGタンパク質共役に伴うGPCR構造変化が引き起こすナトリウムイオン結合部位の隙間容量の減少によって、結合部位から排除されるからである(非特許文献20~23)。言い換えると、ナトリウムイオンを中心とする水分子クラスターによって、不活性状態として安定化されるGPCR構造は拮抗薬結合には有用であるが、Gタンパク質共役や作動薬結合には適していない。これらの構造の結果は、何故結合したナトリウムイオンが、拮抗薬が結合した状態のGPCRの正の調節因子となり、作動薬/Gタンパク質が結合した状態のGPCRの負の調節因子として機能するかを説明した。
 また、クラスA GPCRのNa+-水分子クラスター結合部位は、良く保存されたアミノ酸配列を有し、類似構造を形成し(非特許文献16~19)、また、オルソステリックな結合部位(そこでは、アミノ酸残基は多様であり、その構造は各GPCRで異なっている)に近接している。
Canals, M. et al., Trends Biochem.Sci.36, 663-672 (2011) Mahoney, J.P et al., Curr.Opin.Struct.Biol.41, 247-254 (2016) Gao, Z.G. et al., Biochem.Pharmacol.65, 525-534 (2003a) Gao, Z.G. et al., Mol.Pharmacol.63, 1021-1031 (2003b) Ceresa, B.P. et al., J. Biol.Chem.269, 29557-29564 (1994) Neve, K.A. et al., Mol.Pharmacol.60, 373-381 (2001) Horstman, D.A. et al, J. Biol.Chem.265, 21590-21595 (1990) Wilson, M.H. et al., Mol.Pharmacol.59, 929-938(2001) Ardati, A. et al., Mol.Pharmacol.51, 816-824 (1997) Selley, D.E. et al., Br.J. Pharmacol.130, 987-996 (2000) Kleemann, P. et al., Naunyn Schmiedebergs Arch Pharmacol.378, 261-274 (2008) Vosahlikova, M. et al., Naunyn Schmiedebergs Arch Pharmacol.387, 487-502 (2014) Nickl, K. et al., Neurosci.Lett.447, 68-72 (2008) Schnell, D. et al., Neurosci.Lett.472, 114-118 (2010) Ballesteros, J.A. et al., "Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors." In Methods in Neurosciences, C.S.Stuart, ed.(Academic Press), pp. 366-428 (1995) Liu, W. et al., Science 337, 232-236 (2012) Miller-Gallacher, J.L. et al., PLoS One 9, e92727 (2014) Zhang, C. et al., Nature 492, 387-392 (2012) Fenalti, G. et al., Nature 506, 191-196 (2014) Rasmussen, S.G. et al., Nature 477 (2011) 549-555 Carpenter, B. et al., Nature 536 (2016) 104-107 Kruse, A.C. et al., Nature 504 (2013a) 101-106 Huang, W. et al., Nature 524 (2015) 315-321 Birke, F.W.et al.,J. Pharmacol. Exp. Ther. 297(2001)458-466 Yokomizo, T. et al., Nature 387 (1997) 620-624
 一方で、従来、クラスA GPCRのアンタゴニスト(インバースアゴニストを含む)を効率的に設計する方法は報告されていなかった。また、クラスA GPCRのNa+-水分子クラスター結合部位と相互作用する結合リガンドに関する報告はなかった。そのため、従来はクラスA GPCRを標的とした合理的な薬剤設計を行うことができなかった。
 本発明は上記事情に鑑みてなされたものであり、合理的な設計手法に基づくクラスA GPCRのアンタゴニスト、クラスA GPCRのアンタゴニストの新規の生産方法、クラスA GPCRの新規のアンタゴニスト、又はクラスA GPCRのNa+-水分子クラスター結合部位と相互作用する新規化合物等を提供することを目的とする。
 本願発明者は、結晶構造解析により、拮抗薬BIIL260(非特許文献24)が結合したBLT1(ロイコトリエンB4(LTB4)受容体、クラスA GPCR)(非特許文献25)の結晶構造をはじめて明らかにした(実施例1参照)。この結晶構造解析の結果、BIIL260のベンズアミジン(以下、「アミジニルフェニル」とも称する)基は、BLT1のNa+-水分子クラスター結合部位に結合して、ナトリウムイオンを中心とする水分子クラスターを再現していた。ここで、水分子クラスター結合部位に、疎水性のベンゼン環を有するベンズアミジン基が入っていたことは、特に予想外の結果であった。
 そこで、本願発明者は、ベンズアミジン基をBLT1以外のクラスA GPCR(アドレナリン受容体等)に結合する公知の化合物(カラゾロール等)に結合させ、生成した化合物の機能を調べた。その結果、生成した化合物はクラスA GPCRに特異的に結合し、アンタゴニスト活性又はインバースアゴニスト活性を示した(実施例2参照)。この結果は、(i)各クラスA GPCRにおいて、Na+-水分子クラスター結合部位が保存された構造を有している(例えば、表2、非特許文献16~19)ため、ベンズアミジン基がBLT1以外のクラスA GPCRに結合したこと、及び(ii)ベンズアミジン基がNa+-水分子クラスターに代わってアンタゴニスト作用又はインバースアゴニスト作用を示したためと考えられる。
 さらに、本願発明者は、ベンズアミジン誘導体を作製し、202種のクラスA GPCR(プロスタグランジン受容体等)へのインバースアゴニスト活性を調べた(実施例3参照)。その結果、ベンズアミジン誘導体は、各クラスA GPCRに対するインバースアゴニスト活性を有していた。この結果は、(i)各クラスA GPCRにおいて、Na+-水分子クラスター結合部位が保存された構造を有している(例えば、表2、非特許文献16~19)ため、ベンズアミジン誘導体が各クラスA GPCRに結合したこと、及び(ii)ベンズアミジン誘導体がNa+-水分子クラスターに代わってインバースアゴニスト作用を示したためと考えられる。
 以上の結果から、公知のクラスA GPCRのリガンドと、ベンズアミジン基又はその誘導体等のクラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、を結合させることで、新規のクラスA GPCRのアンタゴニストを作製できることが明らかとなった。
 即ち本発明の一態様によれば、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物又はその塩が提供される。この化合物又はその塩を用いれば、クラスA GPCRの機能を阻害することができる。
 また本発明の一態様によれば、クラスA GPCR結合性化合物と、ベンズアミジン基もしくはその誘導体、フェニル基を有するプロトン化アミン基、及びフェニル基を有する非プロトン化アミン基からなる群から選ばれる1種以上の官能基と、が結合した構造を有する化合物又はその塩が提供される。この化合物又はその塩を用いれば、クラスA GPCRの機能を阻害することができる。
 また本発明の一態様によれば、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基を有する化合物又はその塩を含む、前記クラスA GPCRのアンタゴニスト用組成物が提供される。この組成物を用いれば、アンタゴニスト作用により、クラスA GPCRの機能を阻害することができる。
 また本発明の一態様によれば、クラスA GPCRのNa+-水分子クラスター結合部位結合性化合物と別の化合物とを結合させる工程を含む、前記クラスA GPCRのアンタゴニストの生産方法が提供される。この生産方法を用いれば、クラスA GPCRのアンタゴニストを生産することができる。
 また本発明の一態様によれば、Na+-水分子クラスター結合部位結合性化合物を含む、クラスA GPCRのアンタゴニスト作製用材料が提供される。この材料を用いて、クラスA GPCR結合性化合物とNa+-水分子クラスター結合部位結合性化合物とを結合させることによって、クラスA GPCRのアンタゴニストを作製することができる。
 また本発明の一態様によれば、不活性化型ロイコトリエン受容体、不活性化型アドレナリン受容体、不活性化型オピオイド受容体、又は不活性化型ヒスタミン受容体に特異的に結合する、結合分子が提供される。この結合分子を用いれば、不活性化型ロイコトリエン受容体、不活性化型アドレナリン受容体、不活性化型オピオイド受容体、又は不活性化型ヒスタミン受容体を検出することができる。
 また本発明の一態様によれば、クラスA GPCRと、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基を有する化合物又はその塩と、を含む複合体に特異的に結合する、結合分子が提供される。この結合分子を用いれば、不活性化型クラスA GPCRを検出することができる。
図1は、拮抗薬BIIL260が結合したBLT1の結晶構造の結果を表した図である。(A)σレベル2.0で表示したBIIL260結合シミュレーション化mFo-DFcオミットマップ(BIIL260を二方向から見たもの)。(B)BIIL260結合に具体的に関与する残基に関する、σレベル2.0で表示した結合シミュレーション化mFo-DFcオミットマップ。対応する残基はグリシンで置換して、オミットマップを計算した。(C)BLT1-BIIL260複合体の全体構造。BIIL260とD662.50側鎖は、球体モデルで示し、(BIIL260の炭素原子は)サーモン色、(D662.50の炭素原子は)マゼンタ、(酸素原子は)赤、及び(窒素原子は)青で示す。(D)結合したGPCRリガンドの位置の比較。全てのGPCR結晶構造をBLT1-BIIL260に重ね合わせ、そして、結合したリガンドの全てをスティック(stick)モデルで示した。(E)BLT1(シアン;ECL2は青色)とCXCR4(淡黄色;ECL2はオレンジ)の構造の比較を、cartoonモデルで図示し、細胞外側から見たもの。(F)BLT1の細胞外領域の表面図。表面はBIIL260分子なしに計算し、(E)と同じ視点で示した。 図2は、BIIL260のBLT1への結合様式を表した図である。(A)BIIL260結合部位の構造。BIIL260とBIIL260から4Å以内にあるBLT1側鎖をスティックモデルで示し、膜貫通ヘリックスを薄いリボンで図示する。硫黄原子は金色である。(B)BLT1-BIIL260の概略図。分子間力(例、塩橋、水素結合、π-to-edge相互作用、CH-to-π相互作用、及び疎水性相互作用)を、それぞれ、赤、青、オレンジ、バイオレット、及び緑で示す。ヒトBLT1及びBLT2(BLT1の同族受容体)中での非同一の3つの残基を緑斜線ボックスで強調し、ヒトBLT1及びBLT2(それぞれ、hBLT1及びhBLT2)の対応する残基もまた提示する。(C)変異体と野生型BLT1を発現するHEK293細胞の膜画分を使用する、BIIL260の0.5nM 3H-LTB4との競合結合アッセイ。特異的BIIL260結合に関与する残基に変異を導入した。各点(±平均値の標準誤差(s.e.m))は、2つの独立した実験で各実験が反応を3回行ったものの平均値である。NSは、0.5μM LTB4で測定した非特異的結合である。結合定数を表1にまとめる。 図3は、ベンズアミジンのBLT1-LTB4結合とLTB4によるシグナル伝達への効果を表した図である。(A)野生型BLT1を発現するHEK293細胞の膜画分を使用する、ベンズアミジン及びNaClの0.5nm 3H-LTB4との競合結合アッセイ。各点(±平均値の標準誤差(s.e.m))は、3つの独立した実験で各実験が反応を3回行ったものの平均値である。(B)各種濃度のベンズアミジンを用いた場合の、3H-LTB4とBLT1の飽和アッセイ。各点(±平均値の標準誤差(s.e.m))は、3つの独立した実験で各実験が反応を3回行ったものの平均値である。(C及びD)ベンズアミジンのLTB4によるGタンパク質活性化への影響を、Gq/i1(C)及びG16(D)を用いるTGFαシェディングアッセイによって測定したもの。各点(±s.e.m.)は、3回の反応の平均を示す。全ての薬理学的パラメータを表1にまとめる。 図4は、BLT1のベンズアミジン基結合部位の構造、及び不活性状態のA2Aアデノシン受容体との比較を表した図である。(A)BIIL260結合部位におけるベンズアミジン基周辺のBLT1の相互作用。塩橋に関与する残基を示し、そして、水素結合をシアン色の点線で示す。(B)BLT1(シアン色の炭素)を不活性状態のA2Aアデノシン受容体(A2AR:淡黄色の炭素;PDBコード:4EIY)に重ね合わせた。BLT1-BIIL260中で存在又は非存在の類似した相互作用でのA2ARの相互作用を、それぞれ、黒色又は白色点線で示す。それら受容体を、残基2.49~2.51、3.38~3.40、及び7.45~7.47のCα原子を基準とした重ね合わせ(pair fitting)を使用して重ね合わせた。A2ARのナトリウムイオンと水分子w1及びw4は、BIIL260のベンズアミジン基からファンデルワールス距離以内にある。(C)(B)のベンズアミジン基と結合ナトリウムイオン及び水分子を、それぞれ球体とドットで図示する。 図5は、結合したベンズアミジン基の作動薬誘導BLT1活性化への影響を表した図である。(A、B)ベンズアミジン基結合部位周辺の、作動薬結合型GPCR(左図)又は対応する不活性状態GPCR(右図)とBLT1膜貫通ヘリックス2、3、及び7の構造の比較。作動薬結合状態のBLT1、β2アドレナリン受容体(PDBコード:3SN6)、A2Aアデノシン受容体(5G53)、μ-オピオイド受容体(5C1M)、M2ムスカリン受容体(4MQS)、US28(4XT1)、ロドプシン(3PQR)を比較する。不活性状態のBLT1、β2アドレナリン受容体(2RH1)、A2Aアデノシン受容体(4EIY)、μ-オピオイド受容体(4DKL)、M2ムスカリン受容体(3UON)、ロドプシン(1U19)、CXCR4(3OUU)、CCR2(5T1A)、CCR5(4MBS)、及びCCR9(5LWE)を比較する。全ての受容体を、残基2.49~2.51、3.38~3.40、及び7.45~7.47のCα原子を基準とした重ね合わせ(pair fitting)を使用して、BLT1と重ね合わせた。分子は、側面視(A)として膜側からと、底面図(B)として細胞質側から見た。作動薬結合状態では、側鎖残基3.39と7.46は、ベンズアミジンのアミジン基へはファンデルワールス距離以内にある。 図6は、GPCRのベンズアミジン基結合部位とオルソステリック結合部位のアミノ酸保存に関する図である。(A、B)クラスA GPCRのアミノ酸保存を、BLT1構造を用いて図示したもの。(A)オルソステリック結合部位とベンズアミジン結合部位を構成する各側鎖を示し、273個のGPCR中の各残基の保存の標準偏差に従って色付けした。(B)では、各側鎖を(A)でのもののように色付けしたが、各残基を以下の4つの特徴に従って分類する:負荷電残基(D及びE)、正荷電残基(K及びR)、親水性残基(C、H、N、Q、S、T、及びY)、及び疎水性残基(A、F、G、I、L、M、P、V、及びW)。例えば、ある残基が273個全てのGPCRで完全に保存されている場合、標準偏差値は(A)では61、(B)では137である。標準偏差値がより高いことは、アミノ酸残基の保存がより高いことを反映する。オルソステリック結合部位を構成する残基は保存されていないが、ベンズアミジン結合部位のものは273個のGPCRで保存されている。(C)代表的結合GPCRリガンドの重ね合わせ。β2アドレナリン受容体(β2AR:PDBcode:2RH1)、A2Aアデノシン受容体(A2AR、2YDO)、δ-オピオイド受容体(δ-OR、4N6H)、カンナビノイド受容体(CB1、3PQR)、CCR5ケモカイン受容体(4MBS)、及びBLT1を比較する。各受容体は、残基2.49~2.51、3.38~3.40、及び7.45~7.47のCαを基準に重ね合わせし、結合したリガンドだけを表示した。BLT1では、ベンズアミジン基だけを図示する。分子を、(A及びB)でのものと同じ視点で表示する。全てのリガンドはベンズアミジン基近辺に位置していた。このことは、結合ベンズアミジン基がオルソステリック結合部位に隣接していることを示している。CCR5では、マラビロクがアロステリック調節因子であるので、ベンズアミジン基はアロステリック部位近辺にある。 図7は、発現コンストラクトと、LTB4結合及び熱安定性を表した図である。(A)スネークモデルで表示した発現コンストラクト。発現領域はgpBLT1の残基15~348を含み、N末端には出芽酵母(Saccharomyces cerevisiae)のα因子プレプロシグナル配列とそれに続くFLAGタグ、C末端にはPreScission部位とHis6タグを含み、ICL3に融合したT4リゾチーム(T4L)も含む。(B)に示されるように、12種類のBLT1-T4Lキメラ体を各種融合部位を用いて作製した。構造が解かれたコンストラクト(ICL3-10)を実線で示し、他のものは点線で示す。gpBLT1の熱安定性を増加させるために導入した3つの変異(H83G/K88G/V212A)を赤で示す。新たに導入したV212A変異を用いて得た実験結果を図8Aに示す。リン酸化を回避するために、S309A変異もこのコンストラクトに導入した。シグナル配列は内在性の酵母プロテアーゼを用いて発現中に消化され、His6タグは精製工程においてHRV3Cプロテアーゼを用いて除去した。N-末端FLAGタグ、C末端残基288~348(PreScission部位を含むもの)、及び残基T254とL255(灰色)は、改良された構造には含まれていない。なぜなら、それらの電子密度が不明確であったからだ。BLT1の12残基(緑色)とT4Lの8残基を、電子密度が不明瞭なためこの結晶構造中ではアラニンに置換した。(B)BLT1-T4Lの融合部分T4Lを、BLT1のICL3内、N末端、又は、N末端とICL3の両方に導入した。ICL3での融合では、T4Lを膜貫通ヘリックス5(TM5)のC末端(R211、A212、又はR213)とTM6のN末端(R214、F215、又はH216)との間に、シアン色のリンカー残基を用いて融合した。なお、V212は、図8Aに示した結果に基づいて、アラニンに置換した。BLT1のICL3中の残基数はCXCR4のものと同じであり、ICL3-1コンストラクトはCXCR4-T4L(PDBコード:3ODU)のものと同じ長さのリンカー中での同じ位置にT4Lを有している。類似した結晶条件下でICL3-1とICL3-10コンストラクトの結晶が現れた。そして、ICL3-10コンストラクトに関してのみその構造を解いた。 図8は、BLT1の各種熱安定化変異体と各T4リゾチームキメラ体の特徴解析の結果を表した図である。(A)(左図)COS7細胞で発現されたBLT1各種変異体のLTB4結合アッセイと熱安定性アッセイ。BLT1を安定化するために、点変異をコンセンサス法に従って導入した。親コンストラクト(親1)は、N末端残基1~14が除去され、過去に確認された二個の熱安定化変異H83G及びK88Gと、リン酸化部位変異S309Aを有するBLT1変異体であった。RAは残存活性であり、以下の等式によって計算される:RA=(総結合量(50℃熱前処理)-NS結合量(1μM LTB4))/(総結合量(20℃熱前処理)-NS結合量(1μM LTB4))。(右図)ピキア・パストリス(Pichia pastoris)で発現された、(B)に掲載されている各BLT1-T4Lキメラ体のLTB4結合アッセイと熱安定性アッセイ。親コンストラクト(親2)は、残基1~14が除去されたH83G/K88G/V212A/S309A変異体である。(B及びC)BLT1-T4L(ICL3-10コンストラクト)の飽和アッセイ(B)と競合結合アッセイ(C)。 図9は、BLT1-T4Lの精製、結晶化、電子密度マップ、及び結晶充填の結果を表した図である。(A)Superose-6カラムでのゲルろ過の最終結果。(B)脂質立方相法によって得られた、BLT1-T4L-BIIL260複合体の結晶。図は円偏光を使用して撮影した。(C)2mFo-DFc電子密度のBLT1-T4L分子。(D)BLT1-T4Lの格子充填BLT1はシアン色、T4Lはマゼンタ色にした。BLT1-BLT1分子間相互作用はない。結晶格子を矢印で示した。(E)LTB4、BIIL260の化学構造。 図10は、BLT1の構造特徴を表した図である。(A)Cartoon表示BLT1を虹色のcartoonモデルで表示し、BIIL260を淡ピンク(炭素)、赤(酸素)、及び青(窒素)の球体で表示する。細胞外領域近傍の膜貫通ヘリックス3、4、及び5は比較的オープンな構造(楕円で示すもの)を取っている。(B)(A)と同じ方向から見た表面図。BIIL260の無い表面を計算した。細胞外表面からの視点以外では、図1Fに示すように、BIIL260分子はこの表面モデルではどの方向からも視認できない。(C)細胞質側から見た、BLT1と不活性状態ノシセプチン/オルファニンFQ(N/OFQ)ペプチド受容体(NOP;PDBコード:4EA3)の重ね合わせ図。膜貫通ヘリックスの内側半分である残基1.50~1.60、2.39~2.50、3.39~3.55、4.39~4.50、5.50~5.68、6.34~6.48、及び7.45~7.53の95個のCα原子を基準にして(pair fitting)、それらの構造を重ね合わせた。右のパネルでは、γ分類のGPCRの対応する内側TM残基の主鎖原子に関する平均二乗偏差(r.m.s.d.)を一覧にする。*で示したGPCRは活性型である。(D)細胞質側のヘリックス間水素結合相互作用。BLT1の主鎖を虹色のリボンモデルで表示する。ヘリックス間相互作用に関与する残基をスティックモデルで示し、そして、それらの相互作用を黒点線で示す。 図11は、BLT1とナトリウムイオンが結合したGPCRの構造比較を表した図である。(A、C、E)ナトリウムイオンが付いたBLT1と複数のGPCRを、図4Bのように重ね合わせる。β1アセチルコリン受容体(β1AR;PDBコード:4BVN)、(C)δ-オピオイド受容体(δ-OR;PDBコード:4N6H),、及び(E)プロテアーゼ活性化受容体1(PAR1;PDBコード:3VW7)。各受容体を、残基2.49~2.51、3.38~3.40、及び7.45~7.47のCα原子を基準とした重ね合わせ(pair fitting)によって重ね合わせた。BLT1の炭素原子、結合BIIL260のベンズアミジン基、及び他のGPCRを、それぞれ、シアン色、サーモン色、及び淡黄色にする。BLT1-BIIL260複合体内の塩橋相互作用と水素結合相互作用をシアン色の点線で示す。BLT1以外のGPCRでは、BLT1-BIIL260複合体中の当該相互作用を有する相互作用をオレンジ色点線、当該相互作用のない相互作用を灰色点線で示す。(B、D、F)(A、C、E)でのベンズアミジン基と結合ナトリウムイオン及び水分子を、それぞれ、球体とドットで図示する。 図12(A)、(B)は、クラスA GPCR結合化合物改変体の候補構造物を表した図である。選択した4種類のA2AAR、β1AR、δ-OR、及びヒスタミン受容体に関するクラスA GPCR結合化合物改変体候補を、各種リンカー型、長さ、及び組成で試験的に作製した。 図13(A)~(D)は、GPCRとクラスA GPCR結合化合物改変体とのモデリング試験の結果を表した図である。(A)は、A2Aアデノシン受容体(A2AAR)とアデノシン-リンカー-ベンズアミジンとのモデリングを示す。(B)は、β1アドレナリン受容体(β1AR)とカラゾロール-リンカー-ベンズアミジンとのモデリングを示す。(C)は、δオピオイド受容体(δ-OR)とTIPP-リンカー-ベンズアミジンとのモデリングを示す。(D)は、H1ヒスタミン受容体(H1HR)とヒスタミン-リンカー-ベンズアミジンとのモデリングを示す。パネル(a)は、GPCRとベンズアミジン-リガンドとの構造をプログラムCNSにより改良したものを示す。リガンドとGPCRとの間にコンフリクトはない。各GPCRでは、異なるリンカー長を用いた二つのモデリング結果を図示した。パネル(b)は、リガンド-リンカー-ベンズアミジンの模式図を示す。リガンドとベンズアミジン分子とをクリックケミストリーを用いて連結する。パネル(c)は、プログラムCNSによるエネルギー最小化工程前の構造を示す。BLT1-BIIL260構造と対応するGPCRを互いに重ねた後、BLT1-BIIL260のベンズアミジン基を対象GPCRにドッキングした。各リガンドに連結するリンカー部分の元の位置は任意であるが、楕円点線で示した。 図14(A)~(D)は、実施例2において合成した化合物1の物性値(NMR、MS等)の確認結果を示した図である。 図15(A)~(H)は、実施例2において合成した化合物2の物性値(NMR、MS等)の確認結果を示した図である。 図16(A)~(G)は、実施例2において合成した化合物3の物性値(NMR、MS等)の確認結果を示した図である。 図17(A)~(H)は、実施例2において合成した化合物4の物性値(NMR、MS等)の確認結果を示した図である。 図18(A)~(F)は、クラスA GPCR結合性化合物とベンズアミジン基とが結合した構造を有する化合物によるGPCRの活性抑制効果を調べた結果を表した図である。上記化合物によるG-タンパク質活性抑制能をTGFα-切断アッセイにより測定した。(1)β1およびβ2アドレナリン受容体、(2)A2Aアデノシン受容体、(3)H1およびH2, H4ヒスタミン受容体。●及び○:クラスA GPCR結合性化合物とベンズアミジン基とが結合した構造を有する化合物、×:ベンズアミジン分子。各実験においては反応を3回行い、各点(±平均値の標準誤差(s.e.m))は平均値である。 図19は、実施例3で使用したベンズアミジン塩酸塩水和物及びベンズアミジン誘導体のプロトン化状態の構造を示した図である。 図20(A)~(P)は、ベンズアミジン誘導体について、アゴニスト非存在下での各クラスA GPCRのG-タンパク質活性に対する抑制能を、TGFα-切断アッセイにより測定した結果を示した図である。
 以下、本発明の実施の形態について詳細に説明する。なお、同様な内容については繰り返しの煩雑を避けるために、適宜説明を省略する。
 本発明者はBLT1に対するBIIL260の阻害活性がベンズアミジン基に決定的に依存していることを発見した。構造的及び薬理学的結果は、ベンズアミジン基が膜貫通ヘリックス束の内側のオルソステリック結合部位の下部に位置するナトリウムイオンを中心とする水分子クラスターを模倣して、BLT1-LTB4システムを負に調節することを明らかにした。ベンズアミジンのアミジン基が残基D662.50、S1063.39、及びS2767.45と塩橋及び水素結合を形成し、そして、フェニル環が残基V692.53及びW2366.48と、それぞれ、CH-to-π相互作用及びedge-to-π相互作用を形成する。これらの相互作用は、GPCR(Liu et al., 2012, 上記、Miller-Gallacher et al., 2014, 上記、Zhang et al., 2012, 上記、Fenalti et al., 2014, 上記)で観察されるナトリウムイオンを中心とする水分子クラスターを真に再現し、そして、BLT1を不活性状態(Liu et al., 2012, 上記)に保つと考えられる。その上、大きいベンズアミジン基は、膜貫通ヘリックスの作動薬誘導構造変化を立体障害によって阻害する。さらに、ベンズアミジン分子それ自体は、ナトリウムイオンよりも一桁より強力にBLT1-LTB4結合を抑える(図3A)。この現象が起こるのは、BLT1に結合したより大きなベンズアミジン分子を除去することが、ナトリウムイオンと比べてはるかに難しく、そのため、受容体に作動薬誘導構造変化(Liu et al., 2012, 上記、Miller-Gallacher et al., 2014, 上記、Zhang et al., 2012, 上記、Fenalti et al., 2014, 上記)が起こることを阻害するからであると考えられる。まとめると、結合ベンズアミジン基はBLT1を不活性状態に選択的に維持する作用を示したと考えられる。
 BIIL260のベンズアミジン基と相互作用するアミノ酸残基はGPCR間で高度に保存されている(表2)。実際、ベンズアミジン分子それ自体は、BLT1に対する作動薬LTB4の活性の負のアロステリック調節因子として働くことができる(図3Cと3D)。従って、ベンズアミジン分子は他のGPCRのアロステリック調節因子としても機能することができる。ベンズアミジン(120Da)はアミロライド(230Da)(Gutierrez-de-Teran, H. et al., Structure 21 (2013) 2175-2185)よりも小さく、後述の実施例で示された構造によれば、ベンズアミジン結合様式は、オルソステリック結合部位とのコンフリクトがほとんどない。
 本発明者が得た結果によると、各種クラスA GPCRに特異的なベンズアミジン基含有逆作動薬を、幅広い範囲のクラスA GPCRに関して設計可能である。これまで、ベンズアミジン基を有する逆作動薬は、どのクラスA GPCRに関しても報告されていない。一方で、調節部分としてのベンズアミジン基と、クラスA GPCRに特異的かつタイトに結合する別の部分と、からなるように設計された化合物は効果的な逆作動薬として機能することができる。この機能には、ベンズアミジン結合部位とオルソステリック結合部位とが隣接していることが重要である(図6Aと6B)。例えば、各受容体をBLT1に重ね合わせる場合(図6C)、β2アドレナリン受容体(PDBコード:2RH1)(Rosenbaum, D.M. et al., Science 318 (2007) 1266-1273)では、ベンズアミジンと結合カラゾロールの最も近接する原子は4.4Å離れている。この距離は、δ-オピオイド受容体(ナルトリンドール、PDBコード:4N6H)(Fenalti et al., 2014, 上記)では、2.3Åである。また、アミノ酸配列分析は、ベンズアミジン結合部位の残基がクラスA GPCR間で保存されていることを示した(図6Aと6B、表2)。以上の結果や考察に基づき、本発明の一実施形態では、各種GPCRに対する新規かつ特異的な逆作動薬の合理的設計方法を提供する。従来、GPCRの逆作動薬が大規模な化学物質ライブラリのランダムスクリーニングによって偶然発見されてきたという事実を考慮すると、本発明者が得た知見はGPCRを標的とする創薬における重大なブレークスルーである。
 本発明の一実施形態は、新規の化合物である。この化合物は、例えば、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物又はその塩を含む。この化合物又はその塩を用いれば、後述する実施例で実証されているように、クラスA GPCRの機能を阻害することができる。また本発明の一実施形態は、クラスA GPCR結合性化合物と、ベンズアミジン基もしくはその誘導体、フェニル基を有するプロトン化アミン基、及びフェニル基を有する非プロトン化アミン基からなる群から選ばれる1種以上の官能基と、が結合した構造を有する化合物又はその塩を含む。この化合物又はその塩を用いれば、後述する実施例で実証されているように、クラスA GPCRの機能を阻害することができる。また本発明の一実施形態は、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性化合物と、が結合した構造を有する化合物又はその塩を含む。この化合物又はその塩を用いれば、後述する実施例で実証されているように、クラスA GPCRの機能を阻害することができる。
 本発明の一実施形態において「クラスA GPCR」は、以下のファミリーメンバーを含む。
(1)アミン受容体(例:アドレノセプター(α1A、α1B、α1D、α2A、α2B、α2C、β1、β2、β3)、セロトニン受容体(5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT5B, 5-HT6, 5-HT7)、ムスカリン性アセチルコリン受容体(M1、M2、M3、M4、M5)、ドーパミン受容体(D1、D2、D3、D4、D5)、ヒスタミン受容体(H1、H2、H3、H4)、トレースアミン受容体(TAAR1))、(2)核酸受容体(例:アデノシン受容体(A1、A2A、A2B、A3)、P2Y受容体(P2Y1、P2Y2、P2Y4、P2Y6、P2Y11、P2Y12、P2Y13、P2Y14))、(3)脂質受容体(例:胆汁酸受容体(GPBA)、カンナビノイド受容体(CB1、CB2)、エストロゲン受容体(GPER)、遊離脂肪酸受容体(FFA1、FFA2、FFA3、FFA4、GPR42)、ロイコトリエン受容体(BLT1、BLT2、CysLT1、CysLT2、OXE、FPR2/ALX)、血小板活性化因子受容体(PAFR)、プロスタノイド受容体(DP1、DP2/ GPR44、EP1、EP2、EP3、EP4、FP、IP、TP)、リゾホスファチジン酸受容体(LPA1、LPA2、LPA3、LPA4、LPA5、LPA6)、スフィンゴシン1-リン酸受容体(S1P1、S1P2、S1P3、S1P4、S1P5))、(4)低分子化合物受容体(例:ヒドロキシカルボン酸受容体(HCA1、HCA2、HCA3)、メラトニン受容体(MT1、MT2)、オキソグルタル酸受容体(OXGR1)、コハク酸受容体(SUCNR1))、(5)ペプチド受容体(例:アンジオテンシン受容体(AT1、AT2)、アペリン受容体(APLNR)、ボンベシン受容体(BB1、BB2、BB3)、ブラジキニン受容体(B1、B2)、ケメリン受容体(CMKLR1、GPR1)、コレシストキニン受容体(CCK1、CCK2)、エンドセリン受容体(ETA、ETB)、ホルミルペプチド受容体(FPR1、FPR2/ALX、FPR3)、ガラニン受容体(GAL1、GAL2、GAL3)、グレニン受容体(GHSR)、キスペプチン受容体(KISS1R)、メラニン凝集ホルモン受容体(MCH1、MCH2)、メラノコルチン受容体(MC1、MC2、MC3、MC4、MC5)、モチリン受容体(MTLR)、ニューロメジュリンU受容体(NMU1、NMU2)、ニューロペプチドFF受容体(NPFF1、NPFF2)、ニューロペプチドS受容体(NPS)、ニューロペプチドBW受容体(NPBW1、NPBW2)、ニューロペプチドY受容体(Y1、Y2、Y3、Y4、Y5、Y6)、ニューロテンシン受容体(NTS1、NTS2)、オピオイド受容体(δOR、κOR、μOR、NOP)、オレキシン受容体(OX1、OX2)、プロキネクチン受容体(PKR1、PKR2)、プロラクチン分泌促進ペプチド受容体(PrRP)、QRFP受容体(QRFPR)、リラキシンファミリーペプチド受容体(RXFP1、RXFP2、RXFP3、RXFP4)、ソマトスタチン受容体(SST1、SST2、SST3、SST4、SST5)、タキキニン受容体(NK1、NK2、NK3)、甲状腺刺激ホルモン放出ホルモン受容体(TRH1、TRH2)、ウロテンシン受容体(UTS2R)、バソプレッシン受容体(V1A、V1B、V2)、オキシトシン受容体(OT))、(6)タンパク質受容体(例:ケモカイン受容体(CCR1、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CCR10、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CXCR6、CX3CR1、XCR1、ACKR1、ACKR2、ACKR3、ACKR4、CCRL2)、補体受容体(C3a、C5a1、C5a2)、糖タンパクホルモン受容体(FSH、LH、TSH)、性腺刺激ホルモン放出ホルモン受容体(GnRH1、RnRH2)、副甲状腺ホルモン受容体(PTH1、PTH2)、プロテアアーゼ受容体(PAR1、PAR2、PAR3、PAR4))、(7)ロドプシン受容体(例:OPN1LW、OPN1MW、OPN1SW、Rhodopsin、OPN3、OPN4、OPN5)、(8)嗅覚受容体(例:OR1G1、OR51E2、OR3A2)、(9)人工的なリガンドが同定されているクラスA オーファンGPCR(例:GPR119、G2A、EBI2、GPR84GPR17、GPR61、GPR52、GPR37、GPR32、GPR55、GPR75、GPR83、GPR18、LGR5、GPR142、GPR139、GPR182、GPR35、MRGX2、MRGD、MAS1、TAAR5、TAAR2)。またクラスA GPCRは、Na+-水分子クラスター結合部位とオルソステリック結合部位とが隣接しているものであってもよい。またクラスA GPCRは、例えば、ヒト、サル、マウス、又はラットのクラスA GPCRであってもよい。
 またクラスA GPCRは、4種類のグループ(α-群、β-群、γ-群、及びδ-群)に分類されることが知られている(Frederiksson, R. et al., Mol Pharmacol 63 (2003)1256-1272)。
 各種クラスA GPCRが、様々な程度の基礎的又は恒常的活性(つまり、作動薬の非存在下で活性がある)を示すことも知られている。本発明の実施形態において、クラスA GPCRには、基礎的又は恒常的活性を示すGPCRが含まれ、その中には、限定はされないが、アドレノセプター、ヒスタミン受容体、アデノシン受容体、糖蛋白ホルモン受容体(TSHR、LHR、FSHR)、ブラジキニン受容体、5-ヒドロキシトリプタミン受容体、メラニン濃縮ホルモン受容体、ドーパミン受容体、アセチルコリン受容体、アンジオテンシン受容体、プロスタノイド受容体、カンナビノイド受容体、リゾリン脂質(S1P)受容体、オピオイド受容体、甲状腺刺激ホルモン放出ホルモン受容体、ホルミルペプチド受容体、補体ペプチド受容体、血小板活性化因子受容体、ケモカイン受容体、タキキニン受容体、ニューロテンシン受容体、バソプレシン及びオキシトシン受容体、コレシストキニン受容体、P2Y受容体、メラノコルチン受容体、並びにオレキシン受容体が含まれる(Seifert, R. et al., Naunyn-Schmiedeberg's Arch Pharmacol (2002)381-416、Khilnani, G. et al., indian J Pharmacol(2011)492-501、Stoy, H. et al., Genes & Diseases(2015) 108-132、Drug Bank (https://www.drugbank.ca/))。
 またクラスA GPCRは、上記の本発明の一実施形態の化合物よる強いインバースアゴニスト作用又はアンタゴニスト作用の観点からは、以下のものが好ましい。なお、括弧内の数字はUniProtKB/Swiss-Protのアクセッション番号を意味する。EP1 (P34995)、OXGR1 (Q96P68)、GPR119 (Q8TDV5)、CysLT1 (Q9Y271)、FFAT2 (O15552)、G2A (Q9UNW8)、P2Y2 (P41231)、P2Y4 (P51582)、NK2 (P21452)、P2Y6 (Q15077)、PAR1 (P25116)、V2 (P30518)、DP (Q13258)、FP (P43088)、5-HT2A (P28223)、EP2 (P43116)、EP4 (P35408)、V1B (P47901)、V1A (P37288)、α1A (P35348)、5-HT4 (Q13639)、CB2 (P34972)、EBI2 (P32249)、BLT2 (Q9NPC1)、5-HT1A (P08908)、5-HT1D (P28221)、α1D (P25100)、PAR3 (O00254)、P2Y13 (Q9BPV8)、P2Y12 (Q9H244)、P2Y14 (Q15391)、FFA3 (O14843)、NOP (P41146)、5-HT1E (P28566)、GPR84 (Q9NQS5)、PAR4 (Q96RI0)、κOR (P41145)、D5 (P21918)、A3 (P0DMS8)、H2 (P25021)、FPR1 (P21462)、D1 (P21728)、FFA4 (Q5NUL3)、EP3 (iso8) (P43115-8)、AGTR2 (P50052)、5-HT1F (P30939)、β1 (P08588)、CCR1 (P32246)、CCR8 (P51685)、CCR6 (P51684)、CCR5 (P51681)、HCRTR2(OX2R) (O43614)、GPR81 (Q9BXC0)、GPR85 (P60893)、GNRHR (P30968)、GPR149 (Q86SP6)、GPR17 (Q13304)、GPR61 (Q9BZJ8)、GALR3 (O60755)、GALR2 (O43603)、GPR1 (P46091)、GPR62 (Q9BZJ7)、GPR52 (Q9Y2T5)、GPR37 (O15354)、GPR32 (O75388)、M5 (P08912)、GPR55 (Q9Y2T6)、PAFR (P25105)、B1 (P46663)、OT (P30559)、CysLT2 (Q9NS75)、FFA1 (O14842)、AT1 (P30556)、B2 (P30411)、M1 (P11229)、P2Y11 (Q96G91)、NK3 (P29371)、P2Y1 (P47900)、A2B (P29275)、A2A (P29274)、S1P5 (Q9H228)、IP (P43119)、5-HT6 (P50406)、5-HT2B (P41595)、S1P3 (Q99500)、α1B (P35368)、TP (P21731)、D3 (P35462)、S1P1 (P21453)、H4 (Q9H3N8)、S1P2 (O95136)、5-HT1B (P28222)、ETB (P24530)、M4 (P08173)、EP3 (P43115)、M2 (P08172)、H3 (Q9Y5N1)、5-HT7 (P34969)、D2 (P14416)、D4 (P21917)、CB1 (P21554)、ETA (P25101)、δ-OR (P41143)、A1 (P30542)、FPR2 (P25090)、α2C (P18825)、α2A (P08913)、α2B (P18089)、BLT1 (Q15722)、FPR3 (P25089)、C3AR1 (Q16581)、CCR3 (P51677)、CMKLR1 (Q99788)、C5AR1 (P21730)、β3 (P13945)、CCR7 (P32248)、EP3 (iso6) (P43115-6)、CCR4 (P51679)、CXCR5 (P32302)、DARC (Q16570)、CCKBR (P32239)、GPR109A (Q8TDS4)、GRPR (P30550)、GPR75 (O95800)、GPER (Q99527)、GPR173 (Q9NS66)、GPR18 (Q14330)、GPR101 (Q96P66)、LGR5 (O75473)、GPR142 (Q7Z601)、GPR146 (Q96CH1)、GHSR (Q92847)、GALR1 (P47211)、GPR161 (Q8N6U8)、GPR44/DP2 (Q9Y5Y4)、GPR139 (Q6DWJ6)、GPR182 (O15218)、MRGX2 (Q96LB1)、NPFFR2 (Q9Y5X5)、NMUR1 (Q9HB89)、Mrgb1/Mrgprx2 (Q96LB1)、Mrga1 (Q91WW)、NPY2R (P49146)、NPY5R (Q99463)、NPBWR2 (P48146)、Mrga2a (Q91WW4)、Mrgb3 (Q91ZC1)、MC5R (P33032)、MC3R (P41968)、NPFFR1 (Q9GZQ6)、MCHR2 (Q969V1)、MRGE (Q86SM8)、Mrgb4 (Q91ZC0)、Mrgb5 (Q91ZB9)、MRGD (Q8TDS7)、Mrgb2 (Q3KNA1)、Mrgh (Q99MT8)、NPBWR1 (P48145)、MCHR1 (Q99705)、Mrga4 (Q91WW2)、MAS1L (P35410)、Mrga7 (Q91ZC5)、MRGX3 (Q96LB0)、MT1R (P48039)、MC4R (P32245)、MC1R (Q01726)、MRGF (Q96AM1)、MC2R (Q01718)、XCR1 (P46094)、OR1G1 (P47890)、OXER1 (Q8TDS5)、RGR (P47804)、S1P4 (O95977)、PROKR2 (Q8NFJ6)、SSTR1 (P30872)、TP (iso2) (P21731-2)、CCR2 (P41597)、CCBP2 (O00590)、RABGAP(GPR21)、SSTR5 (P35346)、PRLHR (P49683)、β2 (P07550)、PAR2 (P55085)、TAAR5 (O14804)、RXFP3 (Q9NSD7)、RXFP4 (Q8TDU9)、TAAR2 (Q9P1P5)、SSTR2 (P30874)、OPN1LW (P04000)、OPN1MW (P04001)、5-HT5A (P47898)、OR51E2 (Q9H255)、TAAR6 (Q96RI8)、VN1R1 (Q9GZP7)、CXCR6 (O00574)、OR3A2 (P47893)、SSTR3 (P32745)、EP3 (iso5) (P43115-5)、RRH (O14718)、TAAR9 (Q96RI9)、又はTAAR8 (Q969N4)。
 クラスA GPCRは、野生型クラスA GPCRのアミノ酸配列に1以上の変異を含む変異体であってもよい。変異は、SNPsのように、個体間のDNA配列の差異に起因するものを含む。
 本発明の実施形態において、「逆作動薬(inverse agonists)」は、GPCRの基礎的又は恒常的活性を、正常時より低くするように阻害するものを含む。基礎的又は恒常的活性は、アゴニスト非存在下(又は非接触時)の活性、又は内因性の活性を含む。
 本発明の実施形態において、「拮抗薬(antagonists)」は、受容体分子に対して、その機能を阻害することができる化合物を含む。拮抗薬は、逆作動薬を含む。
 本発明の一実施形態は、クラスA GPCR結合性化合物改変体であって、クラスA GPCR結合性化合物が、Ballesteros-Weinstein番号方式(Ballesteros, J. A. et al., Methods Neurosci (1995) 366‐428)で特定されるアミノ酸2.50、アミノ酸3.39、アミノ酸6.48、及びアミノ酸7.45から構成されるGPCRポケット中に結合する官能基と共有結合で修飾されるものを提供する。
 Ballesteros-Weinstein番号方式は当該技術分野で周知であり、本明細書中ですべてのクラスA GPCRに適用される。
 本発明の実施形態において、「クラスA GPCR結合化合物改変体」は、改変によってクラスA GPCRに対してオルソステリック、アロステリック、シントピック、又はバイトピックであり得る、逆作動又は部分的逆作動活性を有することとなった化合物を含む。
 本発明の実施形態において、「クラスA GPCR結合性化合物」は、クラスA GPCRに対して結合活性を示す化合物を含む。またクラスA GPCR結合性化合物は、クラスA GPCRの上記ポケットに入りこむ官能基で修飾される以前の化合物を含む。そのような化合物(例:化学化合物、リガンド、薬剤)は、逆作動薬、作動薬、部分作動薬、部分逆作動薬、拮抗薬、部分拮抗薬、調節因子であってもよく、又は、クラスA GPCRへの効果を持っていなくてもよい。クラスA GPCR結合性化合物は、有機又は無機部分を有していてもよい。クラスA GPCR結合性化合物は、「リガンド」と称されることもある。クラスA GPCR結合性化合物は、リンカーを結合していてもよい。クラスA GPCR結合性化合物は、GPCRのオルソステリック結合部位と結合する化合物を含む。クラスA GPCR結合性化合物は、ポリペプチド(例:ケモカイン)を含む。
 またクラスA GPCR結合性化合物は、例えば、クラスA GPCRリガンドを含む。クラスA GPCRリガンドは、例えば、アミン受容体、核酸受容体、脂質受容体、低分子化合物受容体、ペプチド受容体、タンパク質受容体、人工的なリガンドが同定されているクラスA オーファンGPCRのリガンドを含む。クラスA GPCRリガンドは、より具体的には、例えば、以下のリガンドを含んでいてもよい。なお、括弧内は対応する受容体の例である。
アミン受容体のリガンド:アドレナリン(アドレノセプター)、ノルアドレナリン(アドレノセプター)、セロトニン(セロトニン受容体)、アセチルコリン(ムスカリン性アセチルコリン受容体)、ドーパミン(ドーパミン受容体)、ヒスタミン(ヒスタミン受容体)、チラミン(トレースアミン受容体)、カラゾロール(アドレノセプター)、カルベジロール(アドレノセプター)、CGP 12177(アドレノセプター)、又はイソプレナリン(アドレノセプター)。
核酸受容体のリガンド:アデノシン(アデノシン受容体)、ADP(P2Y受容体)、ATP(P2Y受容体)、UTP(P2Y受容体)、UDP(P2Y受容体)、UDP-glucose(P2Y受容体)、CGS21680(アデノシン受容体)、NECA(アデノシン受容体)、apadenoson(アデノシン受容体)、又はpiclidenoson(アデノシン受容体)。
脂質受容体のリガンド:ケノデオキシコール酸(胆汁酸受容体)、コール酸(胆汁酸受容体)、デオキシコール酸(胆汁酸受容体)、リトコール酸(胆汁酸受容体)、アナンダミド(カンナビノイド受容体)、2-アラキドノイルグリセロール(カンナビノイド受容体)、17β-estradiol(エストロゲン受容体)、遊離脂肪酸(遊離脂肪酸受容体)、ロイコトリエンB4(ロイコトリエン受容体)、12-ヒドロキシヘプタデカトリエン酸(ロイコトリエン受容体)、ロイコトリエンC4、ロイコトリエンD4(ロイコトリエン受容体)、ロイコトリエンE4(ロイコトリエン受容体)、5-oxo-ETE(ロイコトリエン受容体)、5-oxo-ODE(ロイコトリエン受容体)、リゾホスファチジン酸(リゾホスファチジン酸受容体)、スフィンゴシン1-リン酸(スフィンゴシン1-リン酸受容体)、HU-210(カンナビノイド受容体)、CP55940(カンナビノイド受容体)、AM1241(カンナビノイド受容体)、JWH-133(カンナビノイド受容体)、又はSR144528(カンナビノイド受容体)。
低分子化合物受容体のリガンド:乳酸(ヒドロキシカルボン酸受容体)、3-ヒドロキシ酪酸(ヒドロキシカルボン酸受容体)、3-ヒドロキシオクタン酸(ヒドロキシカルボン酸受容体)、メラトニン(メラトニン受容体)、オキソグルタル酸(オキソグルタル酸受容体)、又はコハク酸(コハク酸受容体)。
ペプチド受容体のリガンド:アンジオテンシンII(アンジオテンシン受容体)、アンジオテンシンIII(アンジオテンシン受容体)、アペリン-13(アペリン受容体)、アペリン-17(アペリン受容体)、アペリン-36(アペリン受容体)、ガストリン放出ペプチド(ボンベシン受容体)、ニューロメジュリンB(ボンベシン受容体)、ブラジキニン(ブラジキニン受容体)、カリジン(ブラジキニン受容体)、ケメリン(ケメリン受容体)、レゾルビンE1(ケメリン受容体)、CCK-4(コレシストキニン受容体)、CCK-8(コレシストキニン受容体)、CCK-33(コレシストキニン受容体)、ガストリン(コレシストキニン受容体)、エンドセリン-1(エンドセリン受容体)、エンドセリン-2(エンドセリン受容体)、エンドセリン-3(エンドセリン受容体)、アネキシン(ホルミルペプチド受容体、ロイコトリエン受容体)、カテプシン(ホルミルペプチド受容体)、リポキシンA4(ホルミルペプチド受容体、ロイコトリエン受容体)、レゾルビンD(ホルミルペプチド受容体、ロイコトリエン受容体)、F2L(ホルミルペプチド受容体)、ヒューマニン(ホルミルペプチド受容体)、ガラニン(ガラニン受容体)、ガラニン様ペプチド(ガラニン受容体)、グレニン(グレニン受容体)、キスぺプチン(キスペプチン受容体)、メラニン凝集ホルモン(メラニン凝集ホルモン受容体)、モチリン(モチリン受容体)、ニューロメジュリン-23(ニューロメジュリンU受容体)、ニューロメジュリン-25(ニューロメジュリンU受容体)、ニューロメジュリン-33(ニューロメジュリンU受容体)、ニューロメジュリン-35(ニューロメジュリンU受容体)、ニューロペプチドFF(ニューロペプチドFF受容体)、ニューロペプチドAF(ニューロペプチドFF受容体)、ニューロペプチドSF(ニューロペプチドFF受容体)、RFamide-Related Peptide-1(ニューロペプチドFF受容体)、RFamide-Related Peptide-3(ニューロペプチドFF受容体)、ニューロペプチドS(ニューロペプチドS受容体)、DADLE(オピオイド受容体)、TIPP(オピオイド受容体)、DAMGO(オピオイド受容体)、又はenadoline(オピオイド受容体)。
タンパク質受容体のリガンド:ケモカイン(ケモカイン受容体)、Ca3(補体受容体)、Ca5(補体受容体)、甲状腺刺激ホルモン(糖タンパクホルモン受容体)、卵胞刺激ホルモン(糖タンパクホルモン受容体)、黄体形成ホルモン(糖タンパクホルモン受容体)、ヒト絨毛性ゴナドトロピン(糖タンパクホルモン受容体)、性腺刺激ホルモン放出ホルモン(性腺刺激ホルモン放出ホルモン受容体)、Maraviroc(ケモカイン受容体)、isothiourea-1t(ケモカイン受容体)、又はX4P-001(ケモカイン受容体)。
人工的なリガンドが同定されているクラスAオーファンGPCRのリガンド:N-oleoylethanolamide(GPR119)、リゾホスフォリピッド(G2A)、dihydroxycholesterol(EBI2)、hydroxycholesterol(EBI2)、脂肪酸(GPR84)、cysteinyl-leukotrienes(GPR17)、ウラシルヌクレオチド(GPR17)、5-ノニルオキシトリプタミン(GPR61)、compound 7a(GPR52)、プロサポニン(GPR37)、レゾルビンD1(GPR32)、リポキシンA4(GPR32)、リゾフォスファチジルイノシトール(GPR55)、CCL5(GPR75)、proprotein convertase subtilisin/kexin type 1 inhibitor(GPR83)、N‐アラキドノイルグリシン(GPR18)、R-スポンジン(LGR5)、トリプトファン(GPR142)、JNJ-63533054(GPR139)、アドレノメジュリン(GPR182)、2-オレオイルリゾホスファチジン酸(GPR35)、PAMP-12(MRGX2)、β-アラニン(MRGD)、angiotensin-(1-7)(MAS1)、トリメチルアミン(TAAR5)、又はβ-フェニルエチルアミン(TAAR2)。
 またクラスA GPCR結合性化合物は、例えば、クラスA GPCRに対して、解離定数(Kd)(M)が1×10-2M以下のアフィニティを有する化合物を含む。この値は、例えば、1×10-2、1×10-3、1×10-4、1×10-5、1×10-6、1×10-7、1×10-8、1×10-9、1×10-10、又は1×10-11M、それらの値以下、又はそれら2つの値の範囲内であってもよい。アフィニティは、例えば、TGFαシェディングアッセイで測定してもよい。アフィニティを評価する化合物が複数ある場合は、ハイスループットスクリーニングを利用してもよい。
 クラスA GPCR結合性化合物は、例えば、分子量が130以上の化合物を含む。この分子量は、130、150、100、200、300,400、500、600、700、800、900、1000、10000、又は30000、それらの値以上、又はそれら2つの値の範囲内であってもよい。上記の本発明の一実施形態の化合物による強いアンタゴニスト作用の観点からは、この分子量は150~1000が好ましく、200~600がより好ましい。またクラスA GPCR結合性化合物は、Na+-水分子クラスター結合部位結合性官能基を有する化合物を除く化合物であってもよい。
 クラスA GPCR結合性化合物は、例えば、ヒドロキシル基、アミノ基、又はチオール基を有していてもよい。この基の数は、それぞれ、例えば、1、2、3、4、又は5、それらの数以上、又はそれら2つの数の範囲内であってもよい。
 改変には、後述の官能基による化学構造修飾が含まれる。Ballesteros-Weinstein番号方式で特定されるアミノ酸2.50、アミノ酸3.39、アミノ酸6.48、及びアミノ酸7.45から構成されるGPCRポケットは、クラスA GPCRの中で高度に保存されていて、そして、クラスA GPCRと各GPCR結合性化合物改変体との間の結合に寄与する。クラスA GPCR結合性化合物は、クラスA GPCRのポケットに侵入する基(例:ベンズアミジン基)で修飾することによって、クラスA GPCRへの結合活性が強化される。下記に説明するように、ベンズアミジン基のアミジン基は、D662.50のカルボキシル基と分子間力を介して相互作用し、S1063.39とS2767.45のヒドロキシル基と分子間力を介して相互作用し、主として強固な結合に貢献する。従って、アミジニル、N-ヒドロキシアミジニル、グアニジニル、アミジニルで置換されたグアニジニル、エチルアミノ、メチルアミノ、アミノ、アミジル、アミド、又はNHCH3より選択される基で修飾されるクラスA GPCR結合性化合物は、そのような基で修飾されていない元の化合物よりもクラスA GPCRに強く結合可能である。
 本発明の実施形態において、「分子間力」は、塩橋、水素結合、π-to-edge相互作用、CH-to-π相互作用、及び疎水性相互作用を含む。本発明の実施形態において、「結合」は、共有結合、分子間力による結合、リンカーを介した結合を含む。
 本発明の一実施形態において、上記Na+-水分子クラスター結合部位は、例えば、Ballesteros-Weinstein番号方式のアミノ酸2.503.396.48、又は7.45を含む。また表2に記載のアミノ酸を含んでいてもよい。
 本発明の一実施形態では、アミノ酸2.50のアミノ酸は負荷電アミノ酸である。好ましくは、アミノ酸2.50のアミノ酸はAsp、Glu、又はAsnである。
 本発明の一実施形態では、アミノ酸3.39のアミノ酸は親水性アミノ酸である。好ましくは、アミノ酸3.39のアミノ酸はSer、Thr、Gln、又はGlyである。
 本発明の一実施形態では、アミノ酸6.48のアミノ酸は疎水性アミノ酸である。好ましくは、アミノ酸6.48のアミノ酸はTrp、Phe、Ala、Ile、Met、Tyr、又はValである。
 本発明の一実施形態では、アミノ酸7.45のアミノ酸は親水性アミノ酸である。好ましくは、アミノ酸7.45のアミノ酸はAsp、Ser、又はThrである。
 本発明の一実施形態において、上記官能基は、Ballesteros-Weinstein番号方式のアミノ酸2.503.396.48、及び7.45を含むGPCRポケットに収容される構造を有していてもよい。また上記官能基は、クラスA GPCRのNa+-水分子クラスター結合部位においてNa+-水分子クラスターを置換可能な構造を有していてもよい。またNa+-水分子クラスター結合部位結合性官能基は、Na+-水分子クラスター結合部位結合性化合物であってもよい。また上記官能基は、リンカーを結合していてもよい。
 上記の本発明の一実施形態の化合物の構造は、G-A-B又はG-L-A-Bの式で表すこともできる。この式中、GはクラスA GPCR結合性化合物の構造を意味してもよく、Lはリンカーを意味していてもよく、-A-Bは官能基(クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基、ベンズアミジン基もしくはその誘導体、フェニル基を有するプロトン化アミン基、又はフェニル基を有する非プロトン化アミン基を含む)を意味していてもよい。また式中、-は共有結合を意味していてもよい。
 上記官能基は、クラスA GPCRへの強いアンタゴニスト活性の観点からは、好ましくは、以下の構造を有する。
 -A-B
 (式中、
 Aは、3~6員環の飽和もしくは不飽和の炭素環基又は複素環基であって、
 前記複素環基の複素原子がN、O、及びSからなる群より選択される少なくとも一つであり、
 前記炭素環基又は複素環基が、任意で、ハロゲン、メチル、ヒドロキシル、アミノ、ニトロ、及びN3からなる群より選択される少なくとも一つの基によって置換され、並びに、
 Bは、アミジニル、N-ヒドロキシアミジニル、グアニジニル、アミジニルで置換されたグアニジニル、エチルアミノ、メチルアミノ、アミノ、アミジル、アミド、又はNHCH3である。)。
 上記官能基は、クラスA GPCRへの強いアンタゴニスト活性の観点から、より好ましくは、以下の群より選択される。
 ベンズアミジン又はその誘導体(例:
Figure JPOXMLDOC01-appb-I000001
 フェニル基を有するプロトン化アミン基(例:
Figure JPOXMLDOC01-appb-I000002
 フェニル基を有する非プロトン化アミン基(例:
Figure JPOXMLDOC01-appb-I000003
 上記ベンズアミジン又はその誘導体は、例えば、以下の構造を有していてもよい。
Figure JPOXMLDOC01-appb-I000004
 (式中、
 環Cは、3~6員環の飽和又は不飽和の炭素環基又は複素環基であり、
 R1は、アミジニル、N-ヒドロキシアミジニル、グアニジニル、アミジニルで置換されたグアニジニル、エチルアミノ、メチルアミノ、アミノ、アミジル、アミド、又はNHCH3であり、
 R2及びR3は、同一又は異なって、H、メチル、ハロゲン、ヒドロキシル、アミノ、ニトロ、又はN3であり、
 m及びnは、同一又は異なって、0~11のいずれかの整数である。)。
 上記ベンズアミジン又はその誘導体は、例えば、以下の群より選択される構造を有していてもよい。
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 (式中、Rは以下の群より選択される。
Figure JPOXMLDOC01-appb-I000007
)。
 上記官能基は、クラスA GPCRのNa+-水分子クラスター結合部位への結合性を有する限り、以下に示す範囲に含まれる構造を有していてもよい。上記-A-Bの構造において、複素原子の数は1~3であってもよい。Aに対するBの結合位置を1位とした場合、2、3、4、5、又は6位において、クラスA GPCR結合性化合物と結合していてもよい。Bに含まれるNの数は、1、2、3、4、5、6、7、8、9、又は10であってもよく、それらの値以上、又はそれら2つの値の範囲内であってもよい。Bに含まれるCの数は、3、4、5、6、7、8、9、10、11、又は12、それらの値以上、又はそれら2つの値の範囲内であってもよい。Bに含まれるHの数は、4、5、6、7、8、9、10、11、12、14、16、18、又は20、それらの値以上、又はそれら2つの値の範囲内であってもよい。Bに含まれるN、C、及びH以外の原子(例えばO)の数は、1、2、3、4、又は5であってもよく、それらの値以上、又はそれら2つの値の範囲内であってもよい。上記置換の数は1~5であってもよい。上記置換は、Aに対するBの結合位置を1位とした場合、2、3、4、5、又は6位において置換されていてもよい。ここで説明した-A-Bの構造における原子の数、結合位置は、上記R1-3及び環Cを含む式についても適用可能である(この場合、Aを環C及びR2-3に、BをR1に読み替えてもよい)。例えば、環Cに対するR1の結合位置を1位とした場合、2、3、4、5、又は6位において、クラスA GPCR結合性化合物と結合していてもよい。上記R2又はR3は、R1の結合位置を1位とした場合、2、3、4、5、又は6位で結合していてもよい。上記ハロゲンは、F、Cl、Br、又はIを含む。本発明の一実施形態において、特定の構造式で特定された「官能基」又は「化合物」は、その構造式(例えば、アミノ基)がプロトン化された形態のものを含む。
 上記官能基は、例えば、分子量が80以上の化合物を含む。この分子量は、80、90、100、150、200、250、300、400、500、600、700、800、900、又は1000、それらの値以上、又はそれら2つの値の範囲内であってもよい。クラスA GPCRへの強いアンタゴニスト活性の観点からは、80~300が好ましく、100~200がより好ましい。またクラスA GPCR結合性化合物は、Na+-水分子クラスター結合部位結合性官能基を有する化合物を除く化合物であってもよい。
 上記官能基は、クラスA GPCRへの強いアンタゴニスト活性の観点から、例えば、クラスA GPCR結合性化合物のヒドロキシル基、アミノ基、又はチオール基に対して結合することが好ましい。
 上記官能基は、クラスA GPCRへの強いアンタゴニスト活性の観点からは、最も好ましくは、アミジニルフェニルである。
 本発明の一実施形態では、クラスA GPCR結合性化合物改変体はクラスA GPCRの逆作動薬である。
 本発明の一実施形態は、クラスA GPCR結合化合物改変体であって、クラスA GPCR結合性化合物が、以下の構造の官能基と共有結合によって修飾される、クラスA GPCR結合化合物改変体を含む。
 -A-B
 (式中、
 Aは、3~6員環の飽和もしくは不飽和の炭素環基又は複素環基であって、
 前記複素環基の複素原子がN、O、及びSからなる群より選択される少なくとも一つであり、
 前記炭素環基又は複素環基が、任意で、ハロゲン、メチル、ヒドロキシル、アミノ、ニトロ、及びN3からなる群より選択される少なくとも一つの基によって置換され、並びに、
 Bは、アミジニル、N-ヒドロキシアミジニル、グアニジニル、アミジニルで置換されたグアニジニル、エチルアミノ、メチルアミノ、アミノ、アミジル、アミド、又はNHCH3である)。
 本発明の一実施形態において、Na+-水分子クラスター結合部位に対して官能基又は化合物が結合性を有することは、例えば、結晶構造解析又は変異実験によって評価してもよい。例えば、Na+-水分子クラスター結合部位のアミノ酸(例えば、Ballesteros‐Weinstein番号方式のアミノ酸2.503.396.48、又は7.45のアミノ酸)に変異を有する変異体への官能基又は化合物の結合強度が、野生型への結合強度よりも有意に減少した場合、Na+-水分子クラスター結合部位に対して官能基又は化合物が結合性を有すると評価してもよい。減少後の結合強度は、減少前に比べて、例えば、80、70、60、50、40、30、20、10、又は0%であってもよく、又はそれら2つの値の範囲内であってもよい。結合強度を評価する化合物が複数ある場合は、ハイスループットスクリーニングを利用してもよい。野生型への官能基又は化合物のKdは、上記のクラスA GPCR結合性化合物のクラスA GPCRに対するKdの値を含んでいてもよい。
 本発明の一実施形態は、クラスA GPCR結合性化合物改変体の調製方法であって、Ballesteros-Weinstein番号方式で特定されるアミノ酸2.50、アミノ酸3.39、アミノ酸6.48、及びアミノ酸7.45から構成されるGPCRポケット中に結合する官能基を、クラスA GPCR結合化合物に共有結合させる工程を含む、方法を含む。
 本明細書中では、アミノ酸は3文字又は1文字で略称される場合がある。そのような略称は当該技術分野で周知であり、そして、当該技術分野で使用されるのと同一の意味を有する。例えば、アスパラギン酸はAsp又はDとして略称可能であり、Asp2.50とD2.50は同じ意味を有する。
 本発明の実施形態において、クラスA GPCRの機能が阻害されている場合(基礎的又は恒常的活性が阻害される場合を含む)、阻害されていない場合に比べて、5、10、15、20、25、30、40、50、60、70、75、80、85、90、95%、又は100%の活性が阻害されていてもよい。この阻害強度は、上記2つの値の範囲内であってもよい。なお、阻害されている場合は、例えば、クラスA GPCR結合化合物改変体の存在下、又は、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物の存在下の場合を含む。阻害されていない場合は、そのような阻害性物質の非存在下の場合を含む。
 本発明の一実施形態において、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、は直接的又はリンカーを介して結合していてもよい。クラスA GPCR結合性化合物と、リンカーと、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基とは、例えば、クリックケミストリーを用いて連結することができる。クリックケミストリーは、例えば、Hou J et al., Expert Opin Drug Discov. 2012 Jun;7(6):489-501.、Bonnet Det al., Bioconjug Chem. 2006 Nov-Dec;17(6):1618-23.等の技術を利用できる。
 本発明の一実施形態において「リンカー」は、例えば、2つの化合物を連結するような形態で、2つの化合物の間に位置する化合物を含む。リンカーは、例えば、アルキル鎖リンカー、PEGリンカー、アルキル鎖を有するトリアゾールリンカーを含む。製造効率の観点からは、リンカーは、アルキル鎖を有するトリアゾールリンカーが好ましい。アルキル鎖を有するトリアゾールリンカーは、トリアゾールのN及びCの各1箇所、又はN及びCのいずれか1箇所にアルキル鎖が結合した構造を有していてもよい。上記トリアゾールは、1,2,3-トリアゾールであってもよい。上記トリアゾールリンカーは、1,2,3-トリアゾールの1位のN、又は4位のCにアルキル鎖が結合した構造を有していてもよい。
 各種リンカー又はリンカーを有する化合物の合成、又は化合物のリンカーを介した結合は、例えば、フナコシ(株)、東京化成工業(株)、(有)新成化学、和研薬(株)等の受託製造会社又は試薬会社に委託してもよい。リンカーは、片端又は両端が、例えば、-CO-と結合した構造を有していてもよい。リンカーは、例えば、ハロゲン、メチル、ヒドロキシル、アミノ、ニトロ、又はN3で置換されていてもよい。リンカーは、対象とする2つの化合物が結合された後、2つの化合物の活性(結合活性を含む)を実質的に消失させないものを含む。リンカーは、自身ではクラスA GPCRへの結合活性を実質的に有さないものを含む。リンカーは、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物のアンタゴニスト活性を消失させない限り、以下に示す範囲に含まれる構造を有していてもよい。リンカーは、例えば、分子量が10以上のリンカーを含む。この分子量は、10、20、30、40、50、60、70、80、90、100、150、200、300、400、500、又は1000、それらの値以上、又はそれら2つの値の範囲内であってもよい。上記アルキル鎖の炭素数は、例えば、1、2、3、4、5、6、7、8、9、10、11、又は12であってもよく、それらの値以上、又はそれら2つの値の範囲内であってもよい。リンカーは、例えば、連結対象の化合物とO、N、又はSを介して結合していてもよい。
 本発明の一実施形態は、クラスA GPCR結合性化合物と、上記官能基と、が結合した構造を有する化合物又はその塩を含む、組成物を含む。この組成物は、アンタゴニスト用組成物、又はインバースアゴニスト用組成物、クラスA GPCRの活性、不活性の平衡状態を不活性化の方にシフトさせるための組成物、クラスA GPCRを不活性型に固定するための組成物であってもよい。この組成物は、薬理学的に許容される担体を含んでいてもよい。本発明の一実施形態は、上記組成物の製造のための、クラスA GPCR結合性化合物と、上記官能基と、が結合した構造を有する化合物又はその塩の使用を含む。
 本発明の一実施形態は、クラスA GPCR結合性化合物と、上記官能基と、が結合した構造を有する化合物又はその塩と、クラスA GPCRを接触させる工程を含む、クラスA GPCRに対してインバースアゴニスト作用を生じさせる方法を含む。また本発明の一実施形態は、上記工程を含む、アンタゴニスト作用を生じさせる方法、クラスA GPCRの活性、不活性の平衡状態を不活性化の方にシフトさせる方法、クラスA GPCRを不活性型に固定する方法を含む。
 本発明の一実施形態は、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基を有する化合物又はその塩を含む、前記クラスA GPCRのインバースアゴニスト用組成物を含む。
 本発明の一実施形態は、クラスA GPCRのNa+-水分子クラスター結合部位結合性化合物と別の化合物とを結合させる工程を含む、前記クラスA GPCRのアンタゴニストの生産方法を含む。上記別の化合物は、クラスA GPCRへ結合安定性、又は強いアンタゴニスト活性の観点から、クラスA GPCR結合性化合物が好ましい。上記アンタゴニストは、インバースアゴニストであってもよい。上記生産方法は、Na+-水分子クラスター結合部位結合性化合物、又は別の化合物に対して、リンカーを結合させる工程を含んでいてもよい。上記生産方法は、Na+-水分子クラスター結合部位結合性化合物と、別の化合物とをリンカーで連結する工程を含んでいてもよい。
 本発明の一実施形態は、クラスA GPCRのNa+-水分子クラスター結合部位結合性化合物と別の化合物とを結合させる工程を含む、前記クラスA GPCRのアンタゴニストの設計方法を含む。
 本発明の一実施形態において、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物は、Na+-水分子クラスター結合部位結合性官能基(例えば、ベンズアミジン基)が含有されている化合物を全て包含するものではなく、Na+-水分子クラスター結合部位結合性官能基とは別にクラスA GPCR結合性化合物を含有することが重要である。例えば、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物は、BIIL260、BIIL284、DW-1350、CGS-25019Cの化合物を含まない。また、例えば、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物は、以下の文献に記載の化合物のうち生産可能に記載されているベンズアミジン基含有化合物を含まない。JP4334016(B2)、JP4288299(B2)、JP4288299(B2)、JP4215278(B2)、JP4047275(B2)、JP3917516(B2)、JP2931410(B2)、JP2007536299(A)、JP2007513068(A)、JP2006508992(A)、JP2005529085(A)、JP2005502630(A)、JP2004513100(A)、Nakayama et al., Bioorg Med Chem. 1997 May;5(5):971-85.、Marie et al., J Biol Chem. 2001 Nov 2;276(44):41100-11.、Anat et al., PLoS One. 2011;6(11):e27990.、Kruse et al., Mol Pharmacol. 2013 Oct;84(4):528-40.。
 本発明の一実施形態において「化合物」又は「化合物改変体」は、塩の形態のものを含む。本発明の一実施形態において「塩」は、特に限定されないが、例えば任意の酸性(例えばカルボキシル)基で形成されるアニオン塩、又は任意の塩基性(例えばアミノ)基で形成されるカチオン塩を含む。塩類には無機塩および有機塩を含み、"Berge SM et al., J Pharm Sci. 1977 Jan;66(1):1-19."に記載されている塩が含まれる。例えば、金属塩、アンモニウム塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性又は酸性アミノ酸との塩等が挙げられる。
 本発明の一実施形態において「化合物」又は「化合物改変体」は、溶媒和物の形態のものを含む。例えば、クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物は、その化合物の溶媒和物を含む。本発明の一実施形態において「溶媒和物」は、溶質及び溶媒によって形成される化合物を含む。溶媒和物については例えば、"J.Honig et al., The Van Nostrand Chemist's Dictionary P650 (1953)"を参照できる。溶媒が水であれば形成される溶媒和物は水和物である。この溶媒は、限定されないが、例えば、水、有機溶媒(例えば、エタノール、酢酸、又はDMSO)が挙げられる。溶媒和物は、大気に触れるか又は再結晶するときに水分を吸収し、場合によっては吸湿水を有するか又は水和物となるものも含む。
 本発明の一実施形態は、不活性化型クラスA GPCRに特異的に結合する、結合分子を含む。この結合分子は、例えば、抗体、又はアプタマーであってもよい。この結合分子を用いれば、例えば、不活性化型クラスA GPCRを特異的に検出することができる。また、例えば、不活性化型クラスA GPCR検出することにより、クラスA GPCRの不活性化に起因する疾患の診断をすることができる。
 本発明の一実施形態は、クラスA GPCRと、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基を有する化合物又はその塩と、を含む複合体に特異的に結合する、結合分子を含む。この結合分子は、抗体、又はアプタマーであってもよい。この結合分子を用いれば、例えば、不活性化型クラスA GPCRを特異的に検出することができる。また、例えば、不活性化型クラスA GPCR検出することにより、クラスA GPCRの不活性化に起因する疾患の診断をすることができる。
 本発明の一実施形態は、クラスA GPCRと、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基を有する化合物又はその塩と、を含む複合体、を含む抗原である。本発明の一実施形態は、クラスA GPCRと、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基を有する化合物又はその塩と、を含む抗原である。本発明の一実施形態は、上記抗原を生物に免疫する工程を含む、抗体の生産方法である。
 本発明の一実施形態において「抗体」は、抗原上の特定のエピトープに特異的に結合することができる分子又はその集団を含む。また抗体は、ポリクローナル抗体又はモノクローナル抗体であってもよい。抗体の形態は特に限定されず、例えば、全長抗体(Fab領域とFc領域を有する抗体)、Fv抗体、Fab抗体、F(ab')2抗体、Fab'抗体、一本鎖抗体(例えば、scFv)、dsFv、抗原結合性ペプチド、抗体様分子、キメラ抗体、マウス抗体、ニワトリ抗体、ヒト化抗体、ヒト抗体、又はそれらの同等物(又は等価物)からなる群から選ばれる1種以上の形態を含む。また抗体は、抗体修飾物又は抗体非修飾物を含む。抗体修飾物は、抗体と、例えばポリエチレングリコール等の各種分子が結合していてもよい。抗体修飾物は、抗体に公知の手法を用いて化学的な修飾を施すことによって得ることができる。抗体のアミノ酸配列、クラス、又はサブクラスは、例えば、ヒト、ヒトを除く哺乳類(例えば、ラット、マウス、ウサギ、ウシ、サル等)等由来であってもよい。抗体クラスは特に限定されないが、例えばIgM、IgD、IgG、IgA、IgE、又はIgYであってもよい。抗体サブクラスは特に限定されないが、例えばIgG1、IgG2、IgG3、IgG4、IgA1、又はIgA2であってもよい。また抗体は、例えば、単離抗体、精製抗体、又は組換抗体を含む。また抗体は、例えば、in vitro又はin vivoで使用できる。
 本発明の一実施形態において「ポリクローナル抗体」は、例えば、哺乳類(例えば、ラット、マウス、ウサギ、ウシ、サル等)等に、目的の抗原を含む免疫原を投与することによって生成することが可能である。免疫原の投与は、1つ以上の免疫剤、又はアジュバントを注入してもよい。アジュバントは、免疫応答を増加させるために使用されることもあり、フロイントアジュバント(完全又は不完全)、ミネラルゲル(水酸化アルミニウム等)、又は界面活性物質(リゾレシチン等)等を含んでいてもよい。免疫プロトコルは、当該技術分野で公知であり、選択する宿主生物に合わせて、免疫応答を誘発する任意の方法によって実施される場合がある(タンパク質実験ハンドブック, 羊土社(2003):86-91.)。
 本発明の一実施形態において「モノクローナル抗体」は、集団を構成する個々の抗体が、実質的に同じエピトープに反応する場合の抗体を含む。又は、集団を構成する個々の抗体が、実質的に同一(自然発生可能な突然変異は許容される)である場合の抗体であってもよい。モノクローナル抗体は高度に特異的であり、異なるエピトープに対応する異なる抗体を典型的に含むような、通常のポリクローナル抗体とは異なる。モノクローナル抗体の作製方法は特に限定されないが、例えば、"Kohler G, Milstein C., Nature. 1975 Aug 7;256(5517):495-497."に掲載されているようなハイブリドーマ法と同様の方法によって作製してもよい。あるいは、モノクローナル抗体は、米国特許第4816567号に記載されているような組換え法と同様の方法によって作製してもよい。又は、モノクローナル抗体は、"Clackson et al., Nature. 1991 Aug 15;352(6336):624-628."、又は"Marks et al., J Mol Biol. 1991 Dec 5;222(3):581-597."に記載されているような技術と同様の方法を用いてファージ抗体ライブラリーから単離してもよい。又は、"タンパク質実験ハンドブック, 羊土社(2003):92-96."に掲載されている方法によって作製してもよい。
 本発明の一実施形態において「アプタマー」は、特定の分子と特異的に結合する核酸(DNA又はRNA)アプタマーやペプチドアプタマーを含む。核酸アプタマーは、例えば、in vitro selection法、又はSELEX法等の手法により作製できる(Darmostuk M et al., Biotechnol Adv. 2015 Nov 1;33(6 Pt 2):1141-61.)。ペプチドアプタマーは、例えば、酵母のTwo-hybrid法、又はファージディスプレイ法等の手法により作製できる(Reverdatto S et al., Curr Top Med Chem. 2015;15(12):1082-101.)。
 本発明の一実施形態において「有意に」は、例えば、統計学的有意差をスチューデントのt検定(片側又は両側)を使用して評価し、p<0.05又はp<0.01である状態であってもよい。
 本明細書において「又は」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、上記実施形態に記載の構成を組み合わせて採用することもできる。
 以下、実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 1.1 BLT1の特徴解析のためのBLT1変異体の発現
 コンセンサス法(図8A)で設計したモルモットBLT1変異体の熱安定性の評価のために、pcDNA3ベクター中に過去に構築した熱安定化BLT1変異体cDNA(残基1~14を除去し、H83G/K88G/S309A変異を持ち、及びN末端にFLAGタグを有するもの)にQuikChangeキット(Agilent)を使用して点変異を導入した(Hori, T. et al., Protein Expr. Purif. 72 (2010) 66-74、Hori, T. et al., Biochem. Biophys. Rep.4 (2015) 243-249)。BLT1変異体をコードする発現ベクターを、Lipofectamine2000を用いてCOS-7細胞にトランスフェクトした。BLT1のBIIL260結合残基の解析のため、pcDNA3ベクター中の、N末端FLAGタグを有する野生型BLT1のcDNAへ、In-Fusion酵素(Clontech)を使用して点変異を導入した。発現ベクターを、ポリエチレンイミンを使用してHEK293細胞へとトランスフェクトした。ベンズアミジン競合アッセイに関しては、N末端FLAGタグを有する野生型BLT1をコードするpcDNA3ベクターを、ポリエチレンイミンを使用してHEK293細胞へとトランスフェクトした。BLT1変異体は、37℃で3日間一過性に発現させた。その細胞をPBSで洗浄し、PBS-EDTAを用いて回収し、ソニケーターで破砕し、そして、800×gで5分間遠心分離した。上清をさらに100,000×gで60分間超遠心に掛けて、沈殿物を回収した。
 BLT1-T4Lのリガンド結合アッセイのために、コンセンサス法によって追加的変異V212Aを有する熱安定性BLT1変異体(残基1~14を除去し、H83G/K88G/V212A/S309A変異を有するもの)であって、BLT1のN末端にα因子プレプロシグナル配列とFLAGタグ、C末端にはPreScission部位とHis6タグを含むもの(Hori T. et al., 2010, 上記)を、In-Fusion酵素を使用してpPIC3.5Kベクターに入れた新規作製熱安定性BLT1変異体をコードするcDNAにT4L cDNAを組み込んだ(図7A)。発現ベクターを酵母ピキア・パストリスに、EasyCompキット(Thermo Fisher Scientific)を使用して導入した。BLT1-T4Lを10mlの培養物中で発現させ、膜画分を過去に記載したように調製した(Hori T. et al., 2010, 上記; Hori T. et al., 2015, 上記)。
 1.2 各BLT1変異体のLTB4結合アッセイと熱安定性評価
 各BLT1変異体とBLT1-T4Lのリガンド結合活性の評価のために、3H-LTB4結合アッセイを、過去に記載(Hori T. et al., 2010, 上記; Hori T. et al., 2015, 上記)されたように、COS-7、HEK293、又はピキア・パストリス細胞のBLT1発現膜画分を使用して実施した。熱安定性の評価に関しては、その膜画分を3H-LTB4結合アッセイ前に熱処理した。ベンズアミジン又はNaCl結合アッセイに関しては、各種濃度のベンズアミジン又はNaClを、3H-LTB4との反応前に、野生型BLT1発現HEK293細胞の膜画分と20℃で60分間インキュベートした。
 1.3 ベンズアミジンのアロステリック効果を評価するためのTGFαシェディングアッセイ
 ベンズアミジンのBLT1依存性細胞内シグナルへの効果を評価するために、TGFαシェディングアッセイ(Inoue, A. et al., Nat. Methods 9 (2012) 1021-1029)を実施した。
 1.4 アロステリック調節のデータ解析
 全ての薬理学的解析に関しては、非線形回帰曲線フィッティングを、Prism5(Graph Pad Software)を使用して実行した。ベンズアミジンとNaClとの競合結合アッセイのために、次の等式を用いる「the allosteric modulation titration analysis(アロステリック調節滴定解析)」(Christopoulos, A. et al., Pharmacol. Rev. 54 (2002) 323-374)を使用して曲線フィッティングを実行した:
 Y=Ymax([A]+Kd)/{[A]+Kd(1+[B]/KB)/(1+α[B]/KB)}
 式中、Ymaxは、アロステリック調節因子無しの放射性リガンド(3H-LTB4)特異的結合であり、[A]は、3H-LTB4濃度であり、[B]は、アロステリック調節因子(ベンズアミジン又はNaCl)の濃度であり、Kdは、3H-LTB4の平衡解離定数であり、KBは、アロステリック調節因子の平衡解離定数であり、及び、αは、3H-LTB4と調節因子との間の協力係数である。
 各種濃度のベンズアミジンを用いた飽和結合アッセイでは、次の等式を用いる「the saturation binding assay analysis with allosteric modulation shift(アロステリック調節が変化する飽和結合アッセイ解析)」(Christopoulos, A. et al., 2002, 上記)を使用してグローバルフィッティングを実行する:
 Y=Bmax[A]/{[A]+Kd(1+[B]/KB)/(1+α[B]/KB)}
 式中、Bmaxは受容体密度であり、その他のパラメータは上記したものである。
 各種濃度のベンズアミジンを用いたシェディングアッセイでは、以下の等式(Leach, K. et al., Trends Pharmacol. Sci. 28 (2007) 382-389)を使用してグローバルフィッティングを実行した:
 E=Em{τA[A](KB+αβ[B])}n/{([A]KB+KAKB+KA[B]+α[A][B])n+(τA[A](KB+αβ[B]))n
 式中、Emは、最大推定シグナル応答であり、KAは、LTB4の平衡解離定数であり、βは、ベンズアミジンによるLTB4誘導効力調節を説明する協力係数であり、nは、logでの勾配係数であり、τAは、作動薬シグナル効力の作動単位であり;その他のパラメータは上記したものである。ベンズアミジンはBLT1の作動薬として働かなかったので、元の等式に存在するパラメータτBは0に等しかった(Leach, K. et al., 2007, 上記)。パラメータを決定するために、3つの工程のフィッティング方法を実行した。第一フィッティングでは、パラメータEmとnを定数として固定し(Em=25(Gq/i1)と20(G16)、及びn=1)、パラメータlogτAをフィッティングによって求めた。第二フィッティングでは、パラメータlogτAとEmを固定し(Em=25(Gq/i1)と20(G16),及びlogτA=0.8195(Gq/i1)と0.07596(G16))、パラメータnを求めた。最終フィッティングでは、パラメータlogτAとnを固定し(logτA=0.8195(Gq/i1)と0.07596(G16)、及びn=0.8664(Gq/i1)と0.5451(G16))、その他のパラメータを求めた。
 1.5 各BLT1-T4Lのラージスケール発現、精製、及び結晶化
 全てのBLT1-T4Lを、同じ方法で発現、精製、及び結晶化した(図7)。BLT1-T4Lを安定的に発現するピキア・パストリスを、1LのBMGY培地(1%(w/v)酵母抽出物、2%(w/v)ペプトン、100mMリン酸カリウム緩衝液(pH6.0),1.34%(w/v)酵母窒素ベース、及び1%(v/v)グリセロール)中で20~24時間30℃で培養した。その酵母細胞を遠心分離(3,500×g、20℃、20分)によって回収した。その酵母ペレットを、1LのBMMY培地(1%(w/v)酵母抽出物、2%(w/v)ペプトン、100mMリン酸カリウム緩衝液(pH6.0),1.34%(w/v)酵母窒素ベース、及び0.5%(v/v)メタノール)中に懸濁及び培養して、18~20時間30℃でBLT1-T4Lを発現させた。その酵母細胞を遠心分離(3,500×g、4℃、20分)によって回収し、水で洗浄し、そして、使用まで-30℃で保存した。
 その酵母細胞を、プロテアーゼ阻害剤カクテル(Roche)入り緩衝液A(50mM Tris(pH8.0)、1M NaCl、5%(v/v)グリセロール)に懸濁した。酵母細胞懸濁物とガラスビーズを(細胞破砕前に少なくとも2時間氷水浴中で事前に冷やした)ビーズかき混ぜ容器内に配置した。酵母細胞をビーズかき混ぜ機(Hamilton Beach Brands)を使用して1分間破砕し、そして、氷水で2分間冷やした。これら破砕と冷却工程を20回繰り返した。破砕した細胞溶液を遠心分離(3,500×g、4℃、5分)して、細胞の欠片を除去し、そして、上清を超遠心(100,000×g、4℃、1時間)した。ペレットを緩衝液A中でPotterホモジナイザーを使用して懸濁し、そして、懸濁物を再度超遠心した。ペレットを5mlの緩衝液B(50mM Tris-Clバッファー(pH8.0)、150mM NaCl、5%(v/v)グリセロール)に懸濁し、使用まで-80℃で保存した。典型的な懸濁ペレット容量は25mlであった。
 BLT1-T4Lの精製のため、懸濁膜ペレットをPotterホモジナイザーでホモジナイズし、4mg/mlのヨードアセトアミド、プロテアーゼ阻害剤カクテル、及び80μMのBIIL260を含む25mlの緩衝液B中に希釈し、そして、4℃で少なくとも4時間インキュベートしてBLT1をBIIL260と反応させた。可溶化のために、160mlの緩衝液C(1.3%(w/v)ラウリル・マルトース・ネオペンチル・グリコール(LMNG)、0.013%(w/v)コレステリルヘミスクシナート(CHS)を含む緩衝液B)を、BLT1-BIIL260膜画分溶液に加えた。BIIL260、LMNG、及びCHSの終濃度は、それぞれ、9.5μM、1%(w/v)、及び0.001%(w/v)であった。4℃で1~2時間のインキュベーション後、その溶液を超遠心(100,000×g、4℃、1時間)し、そして、上清を4℃で一晩10mlのTALON樹脂(Clontech)と共にインキュベートした。その樹脂を自然流下方式カラムに充填し、20CV(カラム容量)の緩衝液D(0.02%(w/v)LMNG、0.01%(w/v)CHS、及び10μM BIIL260を含む緩衝液B)で洗浄した。BLT1-T4Lは、3.5CVの緩衝液E(500mMイミダゾール(pH8.0)を含む緩衝液D)で溶出した。溶出画分をAmiconウルトラフィルター(Millipore、10kDa MWCO)を使用して濃縮し、緩衝液Dで平衡化したPD10カラム(GE Healthcare)を用いて脱塩した。BLT1-T4LはNi-Sepharose樹脂(GE Healthcare、1ml)に結合させ、それを2CVの緩衝液Dで洗浄して過剰な界面活性剤を除去した。BLT1-T4Lを2.5CVの緩衝液Eで溶出した。溶出画分を緩衝液Dで平衡化したPC10カラムを使用して脱塩し、そして、4℃で一晩25μlのHisタグ付きHRV3Cプロテアーゼ(Takara)で処理した。反応溶液をNi-Sepharose樹脂(1ml)に添加し、HRV3Cプロテアーゼ、His6タグ、及び夾雑タンパク質を除去して非結合画分を回収した。その非結合画分を濃縮し、Superose-6カラムでのゲルろ過(一度又は二度)によって精製した。典型的最終ゲルろ過結果を図9Aに示す。精製BLT1-T4Lを10~50mg/mlへと濃縮し、100μMのBIIL260を加えた。サンプルを液体窒素中で凍結し、使用まで-80℃で保存した。
 結晶化を脂質立方相法によって実行した。濃縮BLT1-T4Lサンプルを、20℃で、シリンジ撹拌装置を使用して、2:3の比率でモノオレイン脂質に10%(w/w)コレステロールを混ぜたものと共に混合し、BLT1-T4L再構成立法相膜を形成させた(Hato, M. et al., J. Phys. Chem. B113 (2009) 10196-10209; Hato, M.et al., J. Struct. Funct. Genomics 15 (2014) 165-171)。結晶化のセットアップに関しては、20~40nlの立方相ボーラスを、ガラスプレート上に0.8μlの沈殿溶液と共に載せ、そして、20℃の研究所内の結晶化装置を使用して薄ガラスプレートで封止した。初期のスクリーニング実験を、30%(v/v)PEG400から構成される自作スクリーン、96種類のイオン(48イオンと各イオンについて2種類の濃度)、及びpH4.0~9.0(1.0pH単位ごと)の576種類の条件で実施した。最初の結晶が、100mMビシン(pH9.0)、30%(v/v)PEG400、及び150mMリン酸アンモニウム中20℃で成長させたコンストラクトICL3-10で観察された(図9B)。(20℃又は4℃の)結晶成長温度を含む結晶化条件を繰り返し最適化し、下記のX線回折実験によって評価後、最終結晶化条件は100mMビシンバッファー(pH8.5~9.0)、22.5~30%(v/v)PEG300、50~75mMリン酸アンモニウム、75~100mMギ酸アンモニウム、及び2~4%(v/v)3-メチル-1,5-ヘプタンジオールとなった。構造決定に使用する結晶を4℃で成長させ、結晶化セットアップから34日後に回収した。本発明者らは、全てのBLT1-T4Lキメラタンパク質(図7)で結晶化を試みた。別のコンストラクト(ICL3-1)の結晶が出現したが、結晶化条件を繰り返し最適化したにもかかわらず、回折スポットは観察されなかった。本発明者らはまた、ICL3内にBril(Bril:熱安定化アポチトクローム、b562RIL)融合体を有するBLT1タンパク質の発現を実行し、その結晶化を試みた。BLT1のICL3内に各種挿入位置のBrilを有する7種類のBLT1-Brilコンストラクトと各種BLT1-T4Lとの中で、結晶化条件を繰り返し最適化した後でも、BLT1-Brilコンストラクトのたった一つに関してしか結晶は出現せず、(10Åより悪い)低解像度の回折だけしか観察されなかった。
 1.6 データ収集と構造決定
 MiTeGenクライオループを使って結晶を回収し、そして、液体窒素中に保存した。立方相ボーラスに多数の小さな結晶が出現したので(図9B)、それら結晶と立方相脂質を含む20~40nlのボーラス全体を一つのクライオループで回収し、そして、液体窒素中で凍結した。X線回折実験を、日本のSPring-8のBL32XUで、EIGER X 9M検出器を使用して実施した。まず、結晶回折を、フレーム当たり0.8MGyの5×5μm2X線ビームを使用して、静止画像として立方相ボーラス全体に渡ってスキャンして、その立方相ボーラス中の結晶の位置を決定した。5より多くの回折スポットが(5Åまでの)低解像度領域に観察された結晶に関しては、5種類の0.5°振動イメージを各結晶から収集した。各ウエッジ(wedge)に対する吸収線量を、約11 MGyに設定した。KAMOシステム(https://github.com/keitaroyam/yamtbx)(自動化データ処理システムであって、XDS(Kabsch, W.Acta Crystallogr. D Biol. Crystallogr. 66 (2010) 125-132)、ポイントレス(Evans, P.R. et al., Acta Crystallogr. D Biol. Crystallogr. 67 (2011) 282-292)、XSCALE(Kabsch, W., 2010, 上記)、及びBLEND(Foadi, J. et al. Acta Crystallogr. D Biol. Crystallogr. 69 (2013) 1617-1632)を利用するもの)を使用して、データを処理、統合、計測、及び合体させた。最終的には、494個のウエッジ(494個の結晶由来のもの)を合体させた。高分解能の限界を50%より大きいCC1/2値となるように決めた(Evans, P.R. et al., Acta Crystallogr. D Biol. Crystallogr. 69 (2013 )1204-1214、Karplus, P.A. et al., Science 336 (2012) 1030-1033)。データ収集統計値と分子パラメータを表2にまとめる。表2の左の列のA、C、D等はアミノ酸の一文字表記であり、その右側に示す数値はクラスA GPCRの数を意味する。構造は、Phenix(Adams, P.D. et al., Acta Crystallogr. D Biol. Crystallogr. 66 (2010) 213-221)を使用する分子置換法によって解いた。分子置換用の開始モデルは、グリシン以外の全ての側鎖がアラニンで置換された、二個の独立した検索モデルとしての、CRFR1-T4Lキメラ構造(PDBコード:4K5Y)のループ領域とT4リゾチームが欠失したCCR5構造(PDBコード:4MBS)の7回膜貫通ヘリックス領域であった。構造は、Coot(Emsley, P. et al., Acta Crystallogr. D Biol. Crystallogr. 66 (2010) 486-501)を使用して再構築し、そして、Phenixを使用して改良した。BIIL260の配位は、PubChemウエブサイト(https://www.ncbi.nlm.nih.gov/pccompound/)から得た。構造検証を、PhaserのMolProbity(Chen, V.B. et al., Acta Crystallogr. D Biol. Crystallogr. 66 (2010) 12-21)を使用して実施した。最終BLT1-T4Lモデルでは、N末端FLAGタグ、(PreScission認識部位の一部を含む)C末端残基288~348、及び残基T254とL255は含まれていない。そして、電子密度が不明瞭なので、BLT1及びT4Lのそれぞれ12個及び8個の非アラニン残基をアラニンとして割り当てる(図7A)。全ての残基の二面角は、支持される領域内(96.8%)又は許容される領域内(3.2%)であった。
 1.7 クラスA GPCR結合化合物改変体の作製方法
 各種クラスA GPCR結合化合物改変体は、当業者に周知の以下説明方法に示されるように作製可能である。
 本実施例では、ベンズアミジン基を、以下の対象GPCRに対するクラスA GPCR結合化合物に共有結合することによって、クラスA GPCR結合化合物改変体(以後、「BENZ-リガンド」)を作製するための官能基として使用する:
 H1ヒスタミン受容体、A2Aアデノシン受容体、β1アドレナリン受容体、及びδ-オピオイド受容体の各々。
 (1)BLT1と対象GPCRの結晶構造を、残基2.49~2.51、3.38~3.40、及び7.45~7.47のCα原子を基準にして重ね合わせた。
 (2)次の4つのクラスA GPCR結合化合物を、既知クラスA GPCR結合化合物の中から、各対象GPCRに関して選択した。クラスA GPCR結合化合物は、Drug Bank(https://www.drugbank.ca/)、IUPHAR/BPS(http://www.guidetopharmacology.org/GRAC/GPCRListForward?class=A)、又は関連科学雑誌中に容易に見つけることができる。当業者は、(1)の情報がある化合物を選択するのに適切な手法を理解することができる。我々は以下のクラスA結合化合物を選択した:
 H1ヒスタミン受容体(H1HR)に対してはヒスタミン、
 A2Aアデノシン受容体(A2AAR)に対してはアデノシン、
 β1アドレナリン受容体(β1AR)に対してはカラゾロール、
 δオピオイド受容体に対してはTIPP。
 (3)実際に、例えば、炭素数の異なるアルキル鎖リンカー、PEGリンカー、アルキル鎖を有するトリアゾールリンカーを含む、異なるリンカーを有するいくつかのBENZ-リガンドは当業者によって作製可能である。本実施例では、A2AAR、β1AR、及びδ-ORに関して、アルキル鎖の長さが異なる少なくとも3種類のアルキル鎖リンカーと9種類のトリアゾールリンカーを有するBENZ-リガンドを設計した(図12)。H1HRに関しては、アルキル鎖の長さが異なる3種類のトリアゾールリンカーを設計した(図12)。エネルギー最小化工程用のパラメータとトポロジーファイルを、HIC-UPサイト(http://xray.bmc.uu.se/hicup/)又はGlycoBioChem PRODRG2サーバー(http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg)によって作成した。二面角と誤ったねじれ角の力場は、必要な場合、変更された。
 (4)(3)で設計された各BENZ-リガンドを、対象GPCRに以下のやり方で重ね合わせた。BENZ-リガンドのベンズアミジン基の位置は、BLT1構造が(1)で述べたように対象GPCR構造に重ね合わされた後のBLT1の結合ベンズアミジン基のものである。BENZ-リガンドのリガンド部分の位置は、対象GPCRの結合リガンドのものである。リンカー部分を対象GPCRのリガンドに連結するが、その位置は任意である。BENZ-リガンドを有する各GPCRを、(エネルギー最小化)プログラムCNSによって改良した(プログラムCNS(Crystallography and NMR System)に関しては、Brunger, A.T. et al., Acta Cryst. D54 (1998) 905-921、Brunger, A.T., Nature Protocols 2 (2007) 2728-2733を参照)。本実施例に示すように、当業者は共有結合物(リンカー)の適切な長さを容易に決定・選択することができる。
 (5)エネルギー最小化後の構造では、アミジン基がD2.50、S3.39、及びN7.45と相互作用し、ベンズアミジンの位置がBLT1のものと類似するように、リンカーを選択した。
 GPCRとクラスA GPCR結合化合物改変体とのモデリング試験
 上記実施例で作製したBENZ-リガンドと対象GPCRのモデル試験を実施して、工程(1)~(5)を使用することによって適切なクラスA GPCR結合化合物改変体を選択することの有効性を実証した。
 図13Aは、A2Aアデノシン受容体(A2AAR)とアデノシン-リンカー-ベンズアミジンを示す。
 図13Bは、β1アドレナリン受容体(β1AR)とカラゾロール-リンカー-ベンズアミジンを示す。
 図13Cは、δオピオイド受容体(δ-OR)とTIPP-リンカー-ベンズアミジンを示す。
 図13Dは、H1ヒスタミン受容体(H1HR)とヒスタミン-リンカー-ベンズアミジンを示す。
 図13のパネル(a)は、GPCRとベンズアミジン-リガンドとの構造をプログラムCNSにより改良したものを示す。リガンドとGPCRとの間にコンフリクトはない。各GPCRについて、異なるリンカー長を用いた二つのモデリング結果を図示した。
 図13のパネル(b)は、リガンド-リンカー-ベンズアミジンの模式図を示す。リガンドとベンズアミジン分子とをクリックケミストリーを用いて連結する。
 図13のパネル(c)は、CNSによるエネルギー最小化工程前の構造を示す。BLT1-BIIL260構造と対応するGPCRを互いに重ねた後、BLT1-BIIL260のベンズアミジン基を対象GPCRにドッキングした。各リガンドに連結するリンカー部分の初期位置は任意であるが、楕円点線で示した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-I000010

aBallesteros-Weinstein番号付け。
bD及び E。
cK 及び R。
dC、H、N、Q、S、T、及びY。
eA、F、G、I、L、M、P、V、及びW。
f相互作用する官能基(ベンズアミジンのアミジンとフェニル)、Na+、又は水を示す。
gアミノ酸は()に示す。
Figure JPOXMLDOC01-appb-T000011
 1.8 結果
 1.8.1 BLT1-BIIL260複合体の構造決定
 構造研究のために、文献(Rosenbaum D.M. et al., 2007, 上記)に記載の方法に従って、細胞内ループ3(ICL3)にT4リゾチームを融合した熱安定化モルモットBLT1変異体(残基1~14を欠き、H83G/K88G/V212A/S309A変異を有するもの)(図7と8)を、ピキア・パストリス(Hori T. et al., 2010, 上記、Hori T. et al., 2015, 上記)によって発現させた。そして、それを、脂質立方相法によって、拮抗薬BIIL260との複合体として結晶化した(コンストラクトICL3-10、図9A~9D)。変異は、ピキア・パストリスによって発現される野生型モルモットBLT1と比べると、LTB4とBIIL260(図9E)に対する親和性を変えなかった(図8Bと8C)。構造は3.7Åで決定した(表3)。結合BIIL260と周辺残基の電子密度は解釈用に十分明確なものであった(図1Aと1B)。
 1.8.2 BLT1の全体構造
 BLT1は、N末端が細胞外側に位置し、C末端が細胞内側に位置する標準的な7回膜貫通ヘリックス構造を有している(図1Cと10A)。BLT1構造の膜貫通ヘリックス束は、ケモカインGPCRのものと類似している。CXCR4(Wu, B. et al., Science 330 (2010) 1066-1071)(PDBコード:3OE8、配列同一性:207残基に関して29%)への主鎖原子の平均二乗偏差は1.6Åであり、CCR5(Tan, Q. et al., Science 341 (2013) 1387-1390)(4MBS、207残基に関して28%)へは1.8Åであった(それらケモカインはGPCRのγ分類(Fredriksson, R. et al., Mol. Pharmacol. 63 (2003) 1256-1272)に属する)。BIIL260のベンズアミジン基はクラスA GPCR間で高度に保存されているD662.50と相互作用する(図1Cと表2)。
 BLT1構造の細胞外ループ領域は、γ分類のGPCR(Fredriksson, R. et al., 2003, 上記)に共通する特徴を取っている。ケモカインリガンドやペプチドリガンドへのGPCR(Zhang, H. et al., Cell 161 (2015) 833-844)のように、BLT1の細胞外ループ2(ECL2)はβ-ヘアピン(図1E)を有している。BLT1の出入り口は細胞外表面で開いて(図1F)いるが、結合BIIL260は膜側からは視認できなかった(図10B)。このことが支持する見解は、BLT1リガンド(BIIL260とLTB4を含む)はこの細胞外表面を介してリガンド結合部位に出たり入ったりする場合があることである。
 BLT1構造の細胞内側は、不活性GPCR状態と関連する典型的特徴を有している。BLT1の膜貫通ヘリックス束の内側半分は、不活性状態のノシセプチン/オルファニンFQ(N/OFQ)ペプチド受容体(Thompson, A.A. et al., Nature 485 (2012) 395-399)(NOP、PDBコード:4EA3)のものと最も類似していて、膜貫通ヘリックスの内側半分の主鎖原子の平均二乗偏差は1.4Åである(図10C)。ほとんどの不活性状態GPCRでも観察されるように、膜貫通ヘリックス2、3、5、及び6とICL2の間のヘリックス間水素結合ネットワークがある(図10D)。DRYモチーフ内のD1163.49とR1173.50の側鎖は、逆作動薬結合不活性状態のM1とM3ムスカリン受容体(Thal, D.M. et al., Nature 531 (2016) 335-340、Kruse, A.C. et al., Nature 482 (2013b) 552-556)に関して塩橋(イオンロックと称される)を形成しない。R1173.50のグアニジノ基は、Y2035.58のヒドロキシル基を介してG2226.34の主鎖カルボニル基と相互作用する。この立体構造が示唆するのは、BLT1-BIIL260複合体はイオンロック(Manglik, A. et al., Cell 161 (2015) 1101-1111)が壊れたS2不活性状態に相当する可能性があることである。
 1.8.3 BIIL260のBLT1への結合様式
 BIIL260はECLには接触しないが、BLT1の膜貫通ヘリックス1、2、3、6、及び7の8つの残基と特異的に相互作用し(図1Cと10A)、また、疎水性相互作用も形成する(図2Aと2B)。まず第一に、ベンズアミジン基のアミジン基がD662.50のカルボキシル基と塩橋を形成し、S1063.39とS2767.45のヒドロキシル基と水素結合を形成する一方で、そのイミノ基はプロトン化されると考えられる(ベンズアミジンのpKaは11.6(Lam, P.Y. et al., J. Med. Chem. 46 (2003) 4405-4418)である)。従って、本発明者らは、BIIL260の3H-LTB4への結合競合アッセイを実施して、D662.50A及びS2767.45A変異の効果を解析した。そして、これらの変異がBIIL260結合能力をそれぞれ除去及び減少させたことを実際に見出した(図2C、表1)。このことから、これら2つの残基と相互作用するベンズアミジン基のプロトン化アミジン基が、BLT1-BIIL260結合に必須であることがわかる。その上、ベンズアミジン基のフェニル環は、W2366.48のインドール環とedge-to-π相互作用、及び、V692.53のメチル基とCH-to-π相互作用を形成する。BIIL260の他の3つのフェニル基は、F2747.43及びF762.60のフェニル基とedge-to-π相互作用、並びに、L802.64のメチル基とCH-to-π相互作用を形成する(図2Aと2B)。
 1.8.4 ベンズアミジンによるLTB4-BLT1活性のアロステリック調節
 BLT1-BIIL260構造のベンズアミジン基結合部位に焦点を当てると、ベンズアミジン基は、クラスA GPCR間で負のアロステリック調節因子として広く機能するナトリウムイオン(Katritch, V. et al., Trends Biochem. Sci. 39 (2014) 233-244)と同じ場所に結合する。事実、BLT1への作動薬LTB4の結合は、ナトリウムイオン濃度依存的に減少した(図3A)。オルソステリックLTB4結合部位は、変異研究(Basu, S. et al., J. Biol. Chem. 282 (2007) 10005-10017、Sabirsh, A. et al., Biochemistry 45 (2006) 5733-5744)に基づくと、BLT1のナトリウムイオン結合部位と離れていると考えられるので、ナトリウムイオンはまた、LTB4-BLT1結合の負のアロステリック調節因子となる。そこで、本発明者らは、ベンズアミジン分子それ自体を試験した。ナトリウムイオンと同様に、ベンズアミジン分子は、ベンズアミジン濃度依存的に、LTB4-BLT1結合量を減少させ(図3A)、LTB4のBLT1への結合親和性を低下させ(図3B)、BLT1-LTB4媒介Gq/i1及びG16活性化を減少させた(図3Cと3D)。全体として、LTB4のBLT1への結合の協力係数はα≦1であり、LTB4誘導効力調節の協力係数はβ<1である。
 これらの結果が明らかにするのは、ベンズアミジン分子それ自体がLTB4-BLT1活性の負のアロステリック調節因子として機能可能であることであり、これはBIIL260のベンズアミジン基がBLT1への結合に必須である上記の知見と一致する。
 1.8.5 ベンズアミジン基によるLTB4-BLT1活性のアロステリック調節の構造的側面
 BLT1-BIIL260複合体構造は、ベンズアミジン基によるBLT1-LTB4活性の負のアロステリック調節メカニズムを明らかにした。まず、BIIL260のベンズアミジン基はBLT1構造の不活性状態を維持すると考えられる。D662.50、S1063.39、W2366.48、及びS2767.45残基(上記したように、ベンズアミジン基と特異的に相互作用する側鎖を有するもの)は、クラスA GPCR間で高度に保存されている(図4A、表2)。不活性状態のそのようなGPCRの高分解能構造間で共通しているのは、ナトリウムイオンがD662.50及びS1063.39対応残基に配位し、ならびに、結合水分子(Liu et al., 2012, 上記、Miller-Gallacher et al., 2014, 上記、Zhang et al., 2012, 上記、Fenalti et al., 2014, 上記)を介してW2366.48、S2767.45、及びN2807.49対応残基と相互作用することである(図4A、4B、11A、11C、及び11E、表2)。これらは不活性GPCR状態の特徴である。従って、BIIL260の非存在下では、不活性状態のBLT1は同じ様式でナトリウムイオンに結合するはずである。対照的に、本BLT1-BIIL260構造では、ベンズアミジン基によりナトリウムイオンと周囲の水分子(N2807.49と相互作用する水分子は除く)が立体障害のために排除される。代わりに、ベンズアミジン基は、BLT1との強い相互作用を介してナトリウムイオンを中心とする水分子クラスターを模倣することによって、ナトリウムイオンと周囲の水分子が無くなって失われる相互作用を補完する(図4A、4B、11A、11C、及び11E、表2)。ベンズアミジンのサイズは、BLT1-BIIL260と他のGPCR構造を重ね合わせて評価すると、ナトリウムイオンを中心とする水分子クラスターのものに相当する(図4C、11B、11D、及び11F)。このことは、物理的及び化学的の双方の観点から、ベンズアミジンがナトリウムイオン結合部位にぴったり合うことができることを示す。ナトリウムイオンを中心とする水分子クラスターが不活性状態のGPCR(Gutierrez-de-Teran, H. et al., 2013, 上記)を安定化するので、ベンズアミジン基も同様にBLT1の不活性状態を安定化すると考えられる。
 また、ベンズアミジン基はBLT1の活性状態への構造変化を抑制すると考えられる。作動薬結合型GPCRの結晶構造に基づくと、作動薬の結合は、Gタンパク質共役依存的(Rosenbaum D.M. et al., 2007, 上記; Rasmussen, S.G. et al., 2011, 上記、Rosenbaum, D.M. et al. Nature 469 (2011) 236-240)に、ナトリウムイオン結合部位の構造変化を誘導すると考えられる。作動薬が結合することによって膜貫通ヘリックス3がヘリックス2及び7へ近づくことによって不活性状態において存在している結合ナトリウムイオンを排除し、高度に保存された残基2.50及び3.39(Rasmussen, S.G. et al., 2011, 上記、Carpenter, B. et al., 2016, 上記、Kruse, A.C. et al.,2013a, 上記、Huang, W. et al., 2015, 上記)との間の直接的水素結合を可能とする(図5)。BLT1-BIIL260複合体では、ベンズアミジン基は、D662.50、S1063.39、及びS2777.46が互いに接近するのを立体障害によって阻止し、そして、直接的水素結合を形成不能にする(図5)。ヒトBLT1での対応する残基の変異は、LTB4結合親和性に影響することなしに、Gタンパク質へのシグナル伝達をD2.50Aでは喪失、S7.45A、S7.46A、S7.47A、又はN7.49Aでは減少させた(Basu, S. et al., 2007, 上記)。このことは、A2AARに関しても報告されている(Massink, A. et al., Mol. Pharmacol. 87 (2015) 305-313)。以上から、膜貫通ヘリックス2、3、及び7の接近、及びD662.50、S1063.39、及びS2777.46の直接的水素結合の、ベンズアミジン基を介した阻止は、BLT1の活性状態への構造変化を阻害し、それによって、BLT1によるシグナル伝達を不能にすると考えられる。
 <実施例2>
 2.1 クラスA GPCR結合性化合物とベンズアミジン基とが結合した構造を有する化合物の機能解析
 2.1.1 化合物の合成
 カラゾロール(アドレナリン受容体のリガンド)にベンズアミジン基が結合した構造を有する化合物(化合物1)、アデノシン(A2Aアデノシン受容体のリガンド)にベンズアミジン基が結合した構造を有する化合物(化合物2)、及びヒスタミン(ヒスタミン受容体のリガンド)にベンズアミジン基が結合した構造を有する化合物(化合物3、4)を合成した。手順は以下の通りである。なお、以下のCompound 43-28が化合物4、Compound 42-28が化合物3、Compound 7-28が化合物2、Compound 15-28が化合物1に対応する。
 2.1.1.1 Compound 43-28, 42-28の合成
Figure JPOXMLDOC01-appb-I000012
 ヒスタミン二塩酸塩のノシル化、光延反応の後に別途合成したアミジンとのクリック反応によって3を合成した。ノシル基の脱保護を行うことで4を合成し、その後Boc保護を行って精製した後に、簡便な後処理のみで目的物を合成可能である塩化水素‐ジオキサン条件にてCompound 43-28を合成した。
Figure JPOXMLDOC01-appb-I000013
 先と同じ中間体1の光延反応の後にアミジンのBoc保護体とのクリック反応によって7を合成した。7のノシル基の脱保護を行って得られたBoc保護体8は順相系のシリカゲルで容易に精製することができ、Boc保護を最後に除去することでCompound 42-28を合成した。
 2.1.1.2 Compound 7-28の合成
Figure JPOXMLDOC01-appb-I000014
 アデノシンに対してプロパルギルブロミドを塩基性条件下において作用させることで、9を合成した。その後にアミジンのBoc保護体とのクリック反応を行い、Boc基を脱保護することでCompound 7-28を合成した。
 2.1.1.3 Compound 15-28の合成
Figure JPOXMLDOC01-appb-I000015
 カラゾロールに対して保護基を導入せずに塩基性条件下でプロパルギルブロミドを作用させた結果、塩基の種類と当量によってプロパルギル基が導入される位置を制御できた。二当量以上の水素化ナトリウムによってジアニオンを発生させることで、44が得られた。
Figure JPOXMLDOC01-appb-I000016
 44へのクリック反応は容易に進行し、最後にBocの脱保護を行うことでCompound 15-28を合成した。
 2.1.1.4 合成方法の詳細
 上記の各化合物の合成は、より詳細には以下の通り行った。
 (i)クリック反応において共通原料として使用したアミジン
Figure JPOXMLDOC01-appb-I000017
 S1の合成
 撹拌子、温度計、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、4-アミノベンズアミジン二塩酸塩 (8.32 g, 40 mmol)を4M塩酸 (20 mL)に懸濁させ、氷浴0°Cにて冷やした。続けて亜硝酸ナトリウム (2.90 g, 42 mmol)の超純水(9 mL)溶液を約30分かけて滴下し、そのままさらに30分間撹拌した。得られた橙色溶液を氷浴中激しく撹拌しながら、アジ化ナトリウム(5.20 g, 80 mmol)の超純水 (20 mL)溶液を約1時間30分かけて滴下し、さらに20分撹拌した。得られた肌色スラリーの反応混合物を超純水(150 mL)に加えて溶解し、塩化メチレン(50 mL)で2回洗浄した。得られた水層に10M水酸化ナトリウム水溶液(15 mL)を加え、塩化メチレン(100 mL, 50 mL)で抽出した。合わせた有機層を1M塩酸(100 mL)で2回抽出した。合わせた水層をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると淡褐色固体のS1 (6.91 g, 収率87%)を得た。
 S2の合成
撹拌子、温度計、窒素ラインを備えた300 mL三径フラスコを窒素置換した後、S1 (3.95 g, 20 mmol)、塩化メチレン (100 mL)を加えて、氷浴0°Cにて冷やした。続けてトリエチルアミン (6.10 mL, 44mmol)、4-ジメチルアミノピリジン (122mg, 1.0mmol)を加え、二炭酸ジ‐tert‐ブチル (5.05 mL, 22 mmol)を滴下した。得られた褐色溶液を室温下において終夜撹拌した後、反応溶液を15%塩化アンモニウム水溶液 (100 mL)で洗浄し、塩化メチレン (50 mL)で抽出した。合わせた有機層を硫酸ナトリウムで乾燥させ、ひだろ過後、ろ液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、褐色固体のS2の粗生物(4.96 g)を得た。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 200 g、ヘキサン/酢酸エチル=90/10~70/30)にて精製し、淡灰色固体のS2 (4.82 g, 収率92%)を得た。
 (ii) Compound 43-28
 1の合成
 撹拌子、50mL滴下ロート、温度計、窒素ラインを備えた300 mL三径フラスコを窒素置換した後、ヒスタミン二塩酸塩 (12.9 mL, 72 mmol)、塩化メチレン (50 mL)、2‐ニトロベンゼンスルホニルクロリド (24.4 g, 110 mmol)を加えて、氷浴0°Cにて冷やした。トリエチルアミン (30.7 mL, 220mmol)を4時間かけて滴下した後、得られた褐色溶液を30分間撹拌した。反応溶液に対してイオン交換水 (100 mL)を加え、塩化メチレン(10 mL)で2回抽出し、合わせた有機層を硫酸ナトリウムで乾燥させた。ひだろ過後、ろ液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、褐色油状液体の1の粗生物(29 g)を得た。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 200 g、塩化メチレン/メタノール=100/0~97/3)にて精製し、淡黄色粘性固体の1 (14.8 g, 収率61%)を得た。
 2の合成
 撹拌子、温度計、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、1 (4.81 g, 10 mmol)、4-ペンチン-1-オール (1.11 mL、12 mmol)、脱水THF(50 mL)を加え、室温にて撹拌した。得られた黄色溶液にトリフェニルホスフィン (3.93 g, 15 mmol)を加え、アゾジカルボン酸ジイソプロピル (40%トルエン溶液, 約1.9mol/L) (6.3 mL, 12 mmol)を滴下した。室温にて終夜反応させた後に、ロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、反応試剤の残渣を含む2の粗生物が得られた。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 200 g、塩化メチレン/メタノール=97/3)にて精製したのちに、さらに中圧分取液体カラムクロマトグラフィー(シリカゲル 100 g、ヘキサン/酢酸エチル=90/10~40/60)にて精製し、黄色粘性固体の2 (2.78 g, 収率51%)を得た。
 3の合成
 撹拌子、温度計、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、2 (1.30 g, 2.4 mmol) 、THF(6.0 mL)、S1 (535 mg, 2.71 mmol)を加えた。tert-ブタノール (3.0 mL)、イオン交換水 (1.8 mL)を加えた後に、硫酸銅五水和物 (136 mg, 0.55 mmol)をイオン交換水 (0.6 mL)に溶かして加え、さらにL-アスコルビン酸ナトリウム (221 mg, 1.12 mmol)をイオン交換水 (0.6 mL)に溶かして加えた。この褐色溶液を室温にて終夜撹拌した後に、イオン交換水 (18 mL)を加え、酢酸エチル (10 mL)にて二回抽出を行い、水層を濃縮すると褐色粘性固体の3の粗生物 (0.97 g)が得られた。これをフラッシュカラムクロマトグラフィー(ODSシリカゲル 60 g、イオン交換水/メタノール=70/30~30/70)にて精製し、黄色粘性固体の3 (263 mg, 収率20%)を得た。
 4の合成
 撹拌子、窒素ラインを備えた200 mL一口ナスフラスコを窒素置換した後、3 (86.2 mg, 0.15 mmol) 、アセトニトリル (2.0 mL)、炭酸カリウム (102 mg, 0.74 mmol)を加えた。1-ドデカンチオール (0.088 mL, 0.37 mmol)を加えた後に、50 °Cにて8時間撹拌した。得られた黄色溶液にイオン交換水 (5.0 mL)を加え、酢酸エチル (10 mL)にて二回抽出を行い、水層を濃縮すると反応試剤の残渣を含む淡黄色固体の4の粗生物 (230 mg)が得られた。
 5の合成
 撹拌子、温度計、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、4の粗生物 (230 mg)、脱水DMF (2.0 mL)、トリエチルアミン (0.15 mL, 1.05 mmol)を加え、さらに二炭酸ジ-tert-ブチル (0.12 mL, 0.53 mmol)、4-ジメチルアミノピリジン (3.0 mg, 0.025 mmol)を加えた。得られた黄色溶液を50 °Cにて4時間撹拌した後、飽和食塩水 (5.0 mL)を加え、塩化メチレン (5.0 mL)にて二回抽出を行った。合わせた有機層を硫酸ナトリウムで乾燥させ、ひだろ過後、ろ液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、黄色油状液体の5の粗生物(83.6 mg)を得た。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 10 g、塩化メチレン/メタノール=99/1~94/6)にて精製し、黄色油状液体の5 (46.7 mg, 収率49%)を得た。
 Compound 43-28の合成
撹拌子、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、5 (46.7 mg, 0.0736 mmol)、塩化水素 (約4mol/L 1,4-ジオキサン溶液) (0.28 mL, 1.10 mmol)を加え、室温にて終夜撹拌した。反応溶液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、黄色固体のCompound 43-28 (19.2 mg, 収率77%)を得た。物性値(NMR、MS等)の確認結果を図17(A)~(H)に示す。
 (iii) Compound 42-28
 1の合成
 Compound 43-28の実験項に記載した。
 6の合成
 撹拌子、温度計、窒素ラインを備えた300 mL三径フラスコを窒素置換した後、1 (4.81 g, 10 mmol)、3-ブチン-1-オール (0.90 mL、12 mmol)、脱水THF(50 mL)を加え、室温にて撹拌した。得られた黄色溶液にトリフェニルホスフィン (3.93 g, 15 mmol)を加え、アゾジカルボン酸ジイソプロピル (40%トルエン溶液, 約1.9mol/L) (6.3 mL, 12 mmol)を滴下した。室温にて終夜反応させた後に、ロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、反応試剤の残渣を含む6の粗生物が得られた。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 200 g、塩化メチレン/メタノール=99/1~98/2)にて精製したのちに、さらに中圧分取液体カラムクロマトグラフィー(シリカゲル 100 g、ヘキサン/酢酸エチル=60/40~30/70)にて精製し、黄色粘性固体の6 (2.28 g, 収率42%)を得た。
 7の合成
 撹拌子、温度計、窒素ラインを備えた200 mL三径フラスコを窒素置換した後、6 (1.15 g, 2.16 mmol) 、THF(7.5 mL)、S2 (642 mg, 2.46 mmol)を加えた。tert-ブタノール (3.0 mL)、イオン交換水 (1.8 mL)を加えた後に、硫酸銅五水和物 (124 mg, 0.50 mmol)をイオン交換水 (0.6 mL)に溶かして加え、さらにL-アスコルビン酸ナトリウム (201 mg, 1.01 mmol)をイオン交換水 (0.6 mL)に溶かして加えた。反応溶液を室温にて終夜撹拌した後に、ロータリーエバポレーターにて減圧濃縮し、塩化メチレン (20 mL)を加えて桐山ろ過することで銅試剤の残渣を除去した。ろ液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、黄色固体の7の粗生物 (2.13g)が得られた。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 100 g、塩化メチレン/メタノール=99/1~92/8)にて精製し、黄色粘性固体の7 (1.63 g, 収率95%)を得た。
 8の合成
 撹拌子、窒素ラインを備えた200 mL三径フラスコを窒素置換した後、7 (1.70 g, 2.14 mmol) 、アセトニトリル (25 mL)、炭酸カリウム (5.68 g, 41.0 mmol)を加えた。1-ドデカンチオール (4.89 mL, 20.5 mmol)を加えた後に、50 °Cにて終夜撹拌した。得られた黄色溶液にイオン交換水 (25 mL)を加え、酢酸エチル (10 mL)にて二回抽出を行い、合わせた有機層を硫酸ナトリウムで乾燥させた。ひだろ過後、ろ液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、黄色油状液体の8の粗生物(4.93 g)を得た。これを中圧分取液体カラムクロマトグラフィー(NHシリカゲル 30 g、塩化メチレン/メタノール=99/1~92/8)にて精製し、白色粘性固体の8 (625 mg, 収率69%)を得た。
 Compound 42-28の合成
撹拌子、窒素ラインを備えた30 mL二径フラスコを窒素置換した後、8 (100 mg, 0.236 mmol)、塩化水素 (約4mol/L 1,4-ジオキサン溶液) (1.18 mL, 4.71 mmol)を加え、室温にて1.5時間撹拌した。反応溶液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥した後、凍結乾燥を行い、白色固体のCompound 42-28 (60 mg, 収率79%)を得た。物性値(NMR、MS等)の確認結果を図16(A)~(G)に示す。
 (iv) Compound 7-28
 9の合成
 撹拌子、窒素ラインを備えた500 mL三径フラスコを窒素置換した後、アデノシン (5.0 g, 19.8 mmol)と無水DMF (200 mL)を加え、水浴50 °Cにて加熱撹拌することでアデノシンを溶解させた。氷浴0 °Cにて冷やした後に60% 水素化ナトリウム(1.0 g, 25.8 mmol)を添加し、0 °Cで15分間撹拌した。さらにテトラブチルアンモニウムヨージド (1.5 g, 4.06 mmol)、プロパルギルブロミド (1.67 mL, 22.2 mmol)を加えて水浴55 °Cで終夜撹拌した。反応溶液を室温に戻した後にメタノール (20 mL)を加え、ロータリーエバポレーターにて加熱しながら油圧式真空ポンプで減圧することでDMFを留去し、褐色液体の9の粗生物(10 g)を得た。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 200 g、塩化メチレン/メタノール=99/1~90/10)にて精製したところ、褐色粘性固体の9 (810 mg)が得られた。得られた固体をエタノール (10 mL)に水浴70 °Cにて溶解させ、冷やして再結晶を行い、桐山ろ過をすると、白色固体の9 (551 mg, 収率10%)が得られた。
 10の合成
 撹拌子、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、9 (330 mg, 1.08 mmol) 、THF (3.0 mL)、S2 (322 mg, 1.23 mmol)を加えた。tert-ブタノール (1.5 mL)、イオン交換水 (0.9 mL)を加えた後に、硫酸銅五水和物 (62.1 mg, 0.25 mmol)をイオン交換水 (0.3 mL)に溶かして加え、さらにL-アスコルビン酸ナトリウム (101 mg, 0.51 mmol)をイオン交換水 (0.3 mL)に溶かして加えた。反応溶液を室温にて4時間撹拌した後にロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、黄色粘性固体の10の粗生物 (0.84g)が得られた。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 30 g、塩化メチレン/メタノール=99/1~90/10)にて精製し、黄色粘性固体の10 (0.40 g, 収率66%)を得た。
 Compound 7-28の合成
 撹拌子、窒素ラインを備えた50 mL二径フラスコを窒素置換した後、10 (300 mg, 0.53 mmol)、ジオキサン (6.0 mL)を加え、氷浴0 °Cにて冷やした。塩化水素 (約4mol/L 1,4-ジオキサン溶液) (2.5 mL, 10.4 mmol)を加え、室温にて終夜撹拌した。反応溶液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、白色固体のCompound 7-28の粗生物 (345 mg)が得られた。これを中圧分取液体カラムクロマトグラフィー(ODSシリカゲル 10 g、イオン交換水/メタノール=95/5~80/20)にて精製し、白色固体のCompound 7-28 (59 mg, 収率21%)を得た。物性値(NMR、MS等)の確認結果を図15(A)~(H)に示す。
 (v) Compound 15-28
 44の合成
 撹拌子、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、カラゾロール (1.45 g, 4.86 mmol)と無水DMF(15 mL)を加えて溶解させ、氷浴0 °Cにて冷やした後に60% 水素化ナトリウム(583 mg, 14.6 mmol)を添加し、0 °Cで15分間撹拌した。さらにプロパルギルブロミド (0.37 mL, 4.86 mmol)を加え、室温にて1.5時間撹拌した。反応溶液に飽和食塩水 (30 mL)を加え、酢酸エチル (10 mL)で3回抽出した。合わせた有機層を飽和食塩水(20 mL)で洗浄し、硫酸ナトリウムで乾燥させた。ひだろ過後、ろ液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、44の粗生物 (1.93 g)を得た。これを中圧分取液体カラムクロマトグラフィー(シリカゲル 100 g、ヘキサン/酢酸エチル=100/0~65/35)にて精製したところ、淡黄色液体の44 (114 mg, 収率7%)が得られた。
 45の合成
 撹拌子、温度計、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、45 (262 mg, 0.78 mmol) 、THF(10 mL)、S2 (232 mg, 0.89 mmol)を加えた。tert-ブタノール (5.0 mL)、イオン交換水 (3.0 mL)を加えた後に、硫酸銅五水和物 (44.7 mg, 0.18 mmol)をイオン交換水 (1.0 mL)に溶かして加え、さらにL-アスコルビン酸ナトリウム (72.5 mg, 0.37 mmol)をイオン交換水 (1.0 mL)に溶かして加えた。反応溶液をロータリーエバポレーターにて減圧することでtert-ブタノールを除去した後、酢酸エチル (20 mL)で3回抽出し、合わせた有機層を飽和食塩水 (30 mL)で洗浄し、硫酸ナトリウムで乾燥させた。ひだろ過後、ろ液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、緑色粘性固体の45の粗生物 (451 mg)を得た。これを中圧分取液体カラムクロマトグラフィー(NHシリカゲル 30 g、ヘキサン/酢酸エチル=80/20~10/90)にて精製したところ、白色粘性固体の45 (310 mg, 収率67%)が得られた。
 Compound 15-28の合成
 撹拌子、窒素ラインを備えた100 mL三径フラスコを窒素置換した後、45 (310 mg, 0.52 mmol)、ジオキサン (10 mL)を加え、氷浴0 °Cにて冷やした。塩化水素 (約4mol/L 1,4-ジオキサン溶液) (10 mL, 41.5 mmol)を加え、室温にて4.5時間撹拌した。反応溶液をロータリーエバポレーターにて減圧濃縮し、油圧式真空ポンプにて真空乾燥すると、白色固体のCompound 15-28の粗生物 (350 mg)が得られた。これを中圧分取液体カラムクロマトグラフィー(ODSシリカゲル 10 g、イオン交換水/メタノール=90/10~50/50)にて精製し、白色固体のCompound 15-28 (166 mg, 収率53%)を得た。物性値(NMR、MS等)の確認結果を図14(A)~(D)に示す。
 2.1.2 AP-TGFα切断アッセイ
 拮抗薬活性測定及び逆作動薬活性測定のためのAP-TGFα切断アッセイは井上らの方法に従った(Inoue et al. 2012)。以下、簡単に記す。6×105個のHEK293細胞を、10 %ウシ胎仔血清を含むDMEM培地中で、直径3 cmの培養プレートに播種し、37°C一晩培養した。ポリエチレンイミンを使用して、AP-TGFαと対象クラスA GPCR、対象クラスA GPCRに共役するGタンパク質のcDNAをコードしたそれぞれの発現ベクターをHEK293細胞に導入し、さらに一晩培養した。培養上清を除去し、プロテアーゼ/EDTA溶液(TrypLE Express, Thermo)で細胞を培養プレートから剥がし、HSBB溶液(pH 7.4)で洗浄した。5 mlのHSBB溶液(pH 7.4)で細胞を懸濁した。あらかじめ、終濃度に対して10倍濃度の化合物(クラスA GPCR結合性化合物とベンズアミジン基とが結合した構造を有する化合物、又はベンズアミジン誘導体)10 μlを分注しておいた96ウェル培養プレートに、懸濁した細胞を90 μl播種し、一晩(約16時間)培養した。培養上清のうち80 μlを別の96ウェルプレートに分取した(CM溶液)。CM溶液と残りの20 μlの細胞溶液それぞれに80 μlの発色液(10 mM p-Nitrophenyl Phosphate in 120 mM Tris (pH 9.5), 40 mM NaCl, 10 mM MgCl2)を添加して、添加直後と添加1時間後の405 nmの吸光度を測定した。下記の式にしたがって、AP-TGFα release (%)を算出した。
 AP-TGFα release (%) = (ΔOD405Sup/(ΔOD405Sup +ΔOD405Cell)) × 125
 2.1.3 クラスA GPCR結合性化合物とベンズアミジン基とが結合した構造を有する化合物のEC50値の算出
 下記の3パラメーター式にプログラムGraphPad Prism5を使用してフィッテングした。
 Y=Bottom + (Top-Bottom)/(1+10^((X-LogEC50)))
 2.1.4 拮抗薬活性及び逆作動薬活性の測定結果
 以上の実験の結果を図18 (A)~(F)に示す。拮抗薬活性は、EC50値付近の濃度の作動薬(アゴニスト)存在下での測定であり、逆作動薬活性は作動薬非存在下での活性抑制能の測定である。β1、β2アドレナリン受容体、A2Aアデノシン受容体、H1、H2、及びH4ヒスタミン受容体に対して、化合物1~4による拮抗薬活性又は逆作動薬活性を確認できた。また、クラスA GPCR結合性化合物にベンズアミジン基を結合させたことによって、受容体への結合親和性が向上していた。
 <実施例3>
 3.1 ベンズアミジン誘導体の機能解析
 3.1.1 化合物
 表4のCompound 0(ベンズアミジン塩酸塩水和物)、Compound 1, 3-5, 7, 11-13(ベンズアミジン誘導体)を購入した。Compound 14(ベンズアミジン誘導体)は上記S1を使用した。各化合物のプロトン化状態の構造を図19に示す。
Figure JPOXMLDOC01-appb-T000018
 3.1.2 AP-TGFα切断アッセイ
 対象化合物をベンズアミジン誘導体に代えたことを除いて、上記2.1.2と同様の手順でアッセイした。
 3.1.3 ベンズアミジン誘導体の活性抑制率の算出
 各化合物に対して同じ条件で3重の反応(英語ではtriplicate reaction)(ただし、基準となる化合物なし条件(基底状態)は6重の反応)で実験を行い、同じ条件のAP-TGFα切断率の値の平均値と標準偏差を算出した。各クラスA GPCRのそれぞれの化合物のAP-TGFα切断率の値(値A)について、同じクラスA GPCRの基底状態の切断率の値(値B)に対する有意差をt検定により検証し、P<0.05の条件のみ評価に使用した。各化合物の活性抑制率を下記の式にしたがって算出した。
 活性抑制率 = 値A / 値B
 Inoue, A. et al. TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021-1029 (2012).
 3.1.4 逆作動薬活性の測定結果
 終濃度1 mMと1 μM濃度のベンズアミジン又はその誘導体(Compound 0, 1, 3-5, 7, 11-14)について、アゴニスト非存在下での各クラスA GPCRのG-タンパク質活性に対する抑制能を、TGFα-切断アッセイにより測定した。結果を図20(A)~(P)に示す。図20(A)~(P)の表の一段目にシリアル番号、二段目に受容体の名前を記した。各実験においては反応を3回行い、平均値と平均値の標準誤差を示した。ベンズアミジン誘導体を添加していない条件(control)に対する優位差の有無をt-検定で検証し、P<0.05の場合*で示した。さらに、controlに対して規格化した値を示した。規格化した値が終濃度1 mMで0.85以下かつ1 μMで0.95の場合、又は終濃度1 mMで0.95以下の場合、Gタンパク質活性が抑制されたと定義した。以上の結果、202種のクラスA GPCRで活性抑制が確認できた。
 以上の結果から、公知のクラスA GPCRのリガンドと、ベンズアミジン基又はその誘導体等のクラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、を結合させることで、新規のクラスA GPCRのアンタゴニストを作製できることが明らかとなった。
 以上、実施例を説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本願で引用した文書、科学文献等の内容は、その全体が本明細書中に参照により組み込まれる。

Claims (31)

  1.  クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が結合した構造を有する化合物又はその塩。
  2.  前記Na+-水分子クラスター結合部位は、Ballesteros‐Weinstein番号方式のアミノ酸2.50を含む、請求項1に記載の化合物又はその塩。
  3.  前記Na+-水分子クラスター結合部位は、Ballesteros‐Weinstein番号方式のアミノ酸2.50及び7.45を含む、請求項1又は2に記載の化合物又はその塩。
  4.  前記Na+-水分子クラスター結合部位は、Ballesteros‐Weinstein番号方式のアミノ酸2.503.396.48、及び7.45を含む、請求項1~3いずれかに記載の化合物又はその塩。
  5.  前記官能基が、Ballesteros-Weinstein番号方式のアミノ酸2.503.396.48、及び7.45を含むGPCRポケットに収容される構造を有する、請求項1~4いずれかに記載の化合物又はその塩。
  6.  前記官能基が、前記クラスA GPCRのNa+-水分子クラスター結合部位においてNa+-水分子クラスターを置換可能な構造を有する、請求項1~5いずれかに記載の化合物又はその塩。
  7.  前記官能基が、ベンズアミジン基もしくはその誘導体、フェニル基を有するプロトン化アミン基、又はフェニル基を有する非プロトン化アミン基である、請求項1~6いずれかに記載の化合物又はその塩。
  8.  前記官能基が、-A-Bの構造を有する、請求項1~7いずれかに記載の化合物又はその塩
     (式中、
     前記Aは、3~6員環の飽和又は不飽和の炭素環基又は複素環基であり、
     前記複素環基のヘテロ原子は、N、O、及びSからなる群から選択される少なくとも1種であり、
     前記炭素環基又は前記複素環基は、ハロゲン、メチル、ヒドロキシル、アミノ、ニトロ、及びN3からなる群から選択される少なくとも1つの基で置換されていてもよく、
     前記Bは、アミジニル、N-ヒドロキシアミジニル、グアニジニル、アミジニルで置換されたグアニジニル、エチルアミノ、メチルアミノ、アミノ、アミジル、アミド、又はNHCH3である)。
  9.  前記クラスA GPCR結合性化合物は、クラスA GPCRリガンドである、請求項1~8いずれかに記載の化合物又はその塩。
  10.  前記クラスA GPCR結合性化合物は、クラスA GPCRのオルソステリック結合部位に結合するクラスA GPCRリガンドである、請求項1~9いずれかに記載の化合物又はその塩。
  11.  クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、が直接的又はリンカーを介して結合している、請求項1~10いずれかに記載の化合物又はその塩。
  12.  クラスA GPCR結合性化合物と、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基と、がリンカーを介して結合している、請求項1~11いずれかに記載の化合物又はその塩。
  13.  請求項1~12いずれかに記載の化合物又はその塩を含む、組成物。
  14.  請求項1~12いずれかに記載の化合物又はその塩を含む、クラスA GPCRのアンタゴニスト用組成物。
  15.  請求項1~12いずれかに記載の化合物又はその塩を含む、クラスA GPCRのインバースアゴニスト用組成物。
  16.  請求項1~12いずれかに記載の化合物又はその塩を含む、クラスA GPCRの活性、不活性の平衡状態を不活性化の方にシフトさせるための組成物。
  17.  請求項1~12いずれかに記載の化合物又はその塩を含む、クラスA GPCRを不活性型に固定するための組成物。
  18.  請求項1~12いずれかに記載の化合物又はその塩と、クラスA GPCRを接触させる工程を含む、クラスA GPCRに対してアンタゴニスト作用を生じさせる方法。
  19.  請求項1~12いずれかに記載の化合物又はその塩と、クラスA GPCRを接触させる工程を含む、クラスA GPCRに対してインバースアゴニスト作用を生じさせる方法。
  20.  クラスA GPCR結合性化合物と、ベンズアミジン基もしくはその誘導体、フェニル基を有するプロトン化アミン基、及びフェニル基を有する非プロトン化アミン基からなる群から選ばれる1種以上の官能基と、が結合した構造を有する化合物又はその塩。
  21.  クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基を有する化合物又はその塩を含む、クラスA GPCRのアンタゴニスト用組成物。
  22.  前記アンタゴニストがインバースアゴニストである、請求項21に記載の組成物。
  23.  クラスA GPCRのNa+-水分子クラスター結合部位結合性化合物と別の化合物とを結合させる工程を含む、前記クラスA GPCRのアンタゴニストの生産方法。
  24.  前記別の化合物が、クラスA GPCR結合性化合物である、請求項23に記載のアンタゴニストの生産方法。
  25.  前記アンタゴニストがインバースアゴニストである、請求項23又は24に記載のアンタゴニストの生産方法。
  26.  Na+-水分子クラスター結合部位結合性化合物を含む、クラスA GPCRのアンタゴニスト作製用材料。
  27.  不活性化型ロイコトリエン受容体、不活性化型アドレナリン受容体、不活性化型オピオイド受容体、又は不活性化型ヒスタミン受容体に特異的に結合する、結合分子。
  28.  前記結合分子が抗体又はアプタマーである、請求項27に記載の結合分子。
  29.  クラスA GPCRと、クラスA GPCRのNa+-水分子クラスター結合部位結合性官能基を有する化合物又はその塩と、を含む複合体に特異的に結合する、結合分子。
  30.  前記複合体に含まれるクラスA GPCRが、不活性化型クラスA GPCRである、請求項29に記載の結合分子。
  31.  前記結合分子が抗体又はアプタマーである、請求項29又は30に記載の結合分子。
PCT/JP2018/018621 2017-05-12 2018-05-14 クラスa gpcr結合性化合物改変体 WO2018207950A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2018266393A AU2018266393A1 (en) 2017-05-12 2018-05-14 Class A GPCR-binding compound modifier
JP2019517741A JP7373191B2 (ja) 2017-05-12 2018-05-14 クラスa gpcr結合性化合物改変体
EP18798677.3A EP3623368A4 (en) 2017-05-12 2018-05-14 CLASS A GPCR BINDING COMPOUND MODIFIER
US16/613,049 US12275687B2 (en) 2017-05-12 2018-05-14 Class A GPCR-binding compound modifier
CN201880031551.0A CN110869362A (zh) 2017-05-12 2018-05-14 A类gpcr结合性化合物改性体
CA3063334A CA3063334A1 (en) 2017-05-12 2018-05-14 Modified class a gpcr binding compound
AU2022268323A AU2022268323A1 (en) 2017-05-12 2022-11-09 Class A GPCR-binding compound modifier
JP2023017433A JP2023062015A (ja) 2017-05-12 2023-02-08 クラスa gpcr結合性化合物改変体
AU2024204680A AU2024204680A1 (en) 2017-05-12 2024-07-05 Class A GPCR-binding compound modifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017096017 2017-05-12
JP2017-096017 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207950A1 true WO2018207950A1 (ja) 2018-11-15

Family

ID=64105337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018621 WO2018207950A1 (ja) 2017-05-12 2018-05-14 クラスa gpcr結合性化合物改変体

Country Status (7)

Country Link
US (1) US12275687B2 (ja)
EP (1) EP3623368A4 (ja)
JP (2) JP7373191B2 (ja)
CN (1) CN110869362A (ja)
AU (3) AU2018266393A1 (ja)
CA (1) CA3063334A1 (ja)
WO (1) WO2018207950A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276460A (zh) * 2022-03-04 2022-04-05 水木未来(北京)科技有限公司 改造型gpr75及其用途
JP2023062015A (ja) * 2017-05-12 2023-05-02 国立研究開発法人理化学研究所 クラスa gpcr結合性化合物改変体

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JP2931410B2 (ja) 1994-07-13 1999-08-09 ベーリンガー インゲルハイム コマンディトゲゼルシャフト 置換ベンズアミジン類、その製法及びそれらの医薬品としての使用
JP2000502333A (ja) * 1995-12-13 2000-02-29 ベーリンガー インゲルハイム コマンディトゲゼルシャフト 新規フェニルアミジン誘導体、それらの製造方法及びそれらの医薬組成物としての使用
JP2001500146A (ja) * 1996-09-12 2001-01-09 ベーリンガー インゲルハイム ファルマ コマンディトゲゼルシャフト 新規なピラノシド誘導体
JP2001502655A (ja) * 1995-12-21 2001-02-27 デュポン ファーマシューティカルズ カンパニー Xa因子阻害薬であるイソオキサゾリン、イソチアゾリンおよびピラゾリン
JP2001509787A (ja) * 1996-07-30 2001-07-24 アクシス ファーマシューティカルズ,インコーポレイティド トリプターゼ活性に関わる病気を処置するための新規の化合物及び組成物
JP2004513100A (ja) 2000-10-24 2004-04-30 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 新規ピラノシド誘導体
JP2005502630A (ja) 2001-07-14 2005-01-27 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Ltb4拮抗薬を含有する医薬製剤
JP2005529085A (ja) 2002-03-26 2005-09-29 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 動物薬におけるltb4拮抗薬の使用
JP2006508992A (ja) 2002-11-26 2006-03-16 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Ltb4拮抗薬とcox−2阻害薬又は組み合せcox1/2阻害薬を含む医薬組成物
JP3917516B2 (ja) 2000-10-24 2007-05-23 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Ltb4拮抗薬として役立つサルフェート基を含むベンズアミジン誘導体
JP2007513068A (ja) 2003-10-29 2007-05-24 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Ltb4−アンタゴニストを含む医薬製剤、並びにその調製方法及びその使用
JP2007528856A (ja) * 2003-07-11 2007-10-18 アリーナ ファーマシューティカルズ, インコーポレイテッド 代謝モジュレーターとしての三置換アリールおよびヘテロアリール誘導体ならびにそれらに関連する障害の予防および治療
JP2007536299A (ja) 2004-05-04 2007-12-13 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Ltb4アンタゴニトを含有する固形医薬形態
JP4047275B2 (ja) 2001-07-19 2008-02-13 ドンワ ファーマシューティカル インダストリーズ カンパニー リミティッド 4−[(4−チアゾリル)フェノキシ]アルコキシ−ベンズアミジン誘導体の骨粗しょう症治療剤としての用途
JP4288299B2 (ja) 1996-09-10 2009-07-01 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Ltb4−アンタゴニスト活性を有するベンズアミジン誘導体及びその医薬としての使用
JP2013536173A (ja) * 2010-07-16 2013-09-19 フエー・イー・ベー・フエー・ゼツト・ウエー Gpcrの機能的立体構造状態を安定化するタンパク質結合ドメインおよびその使用
US20160068512A1 (en) * 2014-09-09 2016-03-10 Janssen Pharmaceutica Nv Quinazoline Derivatives Useful as CB-1 Inverse Agonists

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939418A (en) 1995-12-21 1999-08-17 The Dupont Merck Pharmaceutical Company Isoxazoline, isothiazoline and pyrazoline factor Xa inhibitors
US6197753B1 (en) 1997-09-10 2001-03-06 Boehringer Ingelheim Kg Pyranoside derivatives
US6489359B2 (en) 2000-10-24 2002-12-03 Boehringer Ingelheim Pharma Kg Sulphoxybenzamides
US6528491B2 (en) 2000-10-24 2003-03-04 Boehringer Ingelheim Pharma Kg Pyranoside derivatives
DE10113027A1 (de) * 2001-03-17 2002-09-19 Wella Ag 3-(2,5-Diaminophenyl)-acrylamid-Derivate und diese Verbindungen enthaltende Färbemittel
US20030119901A1 (en) 2001-07-14 2003-06-26 Boehringer Ingelheim Pharma Kg Pharmaceutical formulation containing an LTB4 antagonist
US8242152B2 (en) 2001-07-19 2012-08-14 Dong Wha Pharmaceutical Co., Ltd. Use of 4-[(4-thiazolyl)phenoxy]alkoxy-benzamidine derivatives for the prophylaxis and treatment of osteoporosis
US6921752B2 (en) 2002-03-26 2005-07-26 Boehringer Ingelheim Pharma Gmbh & Co. Kg Use of LTB4 antagonists in veterinary medicine
EP2707034A1 (en) 2011-05-09 2014-03-19 Universiteit Antwerpen Activity-based probes for the urokinase plasminogen activator
EP3623368A4 (en) 2017-05-12 2021-04-07 Riken CLASS A GPCR BINDING COMPOUND MODIFIER

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JP2931410B2 (ja) 1994-07-13 1999-08-09 ベーリンガー インゲルハイム コマンディトゲゼルシャフト 置換ベンズアミジン類、その製法及びそれらの医薬品としての使用
JP2000502333A (ja) * 1995-12-13 2000-02-29 ベーリンガー インゲルハイム コマンディトゲゼルシャフト 新規フェニルアミジン誘導体、それらの製造方法及びそれらの医薬組成物としての使用
JP4334016B2 (ja) 1995-12-13 2009-09-16 ベーリンガー インゲルハイム コマンディトゲゼルシャフト 新規フェニルアミジン誘導体、それらの製造方法及びそれらの医薬組成物としての使用
JP2001502655A (ja) * 1995-12-21 2001-02-27 デュポン ファーマシューティカルズ カンパニー Xa因子阻害薬であるイソオキサゾリン、イソチアゾリンおよびピラゾリン
JP2001509787A (ja) * 1996-07-30 2001-07-24 アクシス ファーマシューティカルズ,インコーポレイティド トリプターゼ活性に関わる病気を処置するための新規の化合物及び組成物
JP4288299B2 (ja) 1996-09-10 2009-07-01 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Ltb4−アンタゴニスト活性を有するベンズアミジン誘導体及びその医薬としての使用
JP4215278B2 (ja) 1996-09-12 2009-01-28 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 新規なピラノシド誘導体
JP2001500146A (ja) * 1996-09-12 2001-01-09 ベーリンガー インゲルハイム ファルマ コマンディトゲゼルシャフト 新規なピラノシド誘導体
JP3917516B2 (ja) 2000-10-24 2007-05-23 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Ltb4拮抗薬として役立つサルフェート基を含むベンズアミジン誘導体
JP2004513100A (ja) 2000-10-24 2004-04-30 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 新規ピラノシド誘導体
JP2005502630A (ja) 2001-07-14 2005-01-27 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Ltb4拮抗薬を含有する医薬製剤
JP4047275B2 (ja) 2001-07-19 2008-02-13 ドンワ ファーマシューティカル インダストリーズ カンパニー リミティッド 4−[(4−チアゾリル)フェノキシ]アルコキシ−ベンズアミジン誘導体の骨粗しょう症治療剤としての用途
JP2005529085A (ja) 2002-03-26 2005-09-29 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 動物薬におけるltb4拮抗薬の使用
JP2006508992A (ja) 2002-11-26 2006-03-16 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Ltb4拮抗薬とcox−2阻害薬又は組み合せcox1/2阻害薬を含む医薬組成物
JP2007528856A (ja) * 2003-07-11 2007-10-18 アリーナ ファーマシューティカルズ, インコーポレイテッド 代謝モジュレーターとしての三置換アリールおよびヘテロアリール誘導体ならびにそれらに関連する障害の予防および治療
JP2007513068A (ja) 2003-10-29 2007-05-24 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Ltb4−アンタゴニストを含む医薬製剤、並びにその調製方法及びその使用
JP2007536299A (ja) 2004-05-04 2007-12-13 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Ltb4アンタゴニトを含有する固形医薬形態
JP2013536173A (ja) * 2010-07-16 2013-09-19 フエー・イー・ベー・フエー・ゼツト・ウエー Gpcrの機能的立体構造状態を安定化するタンパク質結合ドメインおよびその使用
US20160068512A1 (en) * 2014-09-09 2016-03-10 Janssen Pharmaceutica Nv Quinazoline Derivatives Useful as CB-1 Inverse Agonists

Non-Patent Citations (75)

* Cited by examiner, † Cited by third party
Title
ADAMS, P. D. ET AL., ACTA CRYSTALLOGR. D BIOL. CRYSTALLOGR., vol. 66, 2010, pages 486 - 501
AIGLSTORFER, I. ET AL.: "NPY Y1 antagonists: structure-activity relationships of arginine derivatives and hybrid compounds with arpromidine- like partial structures", REGULATORY PEPTIDES, vol. 75/76, 1998, pages 9 - 21, XP001010840, ISSN: 0167-0115, DOI: 10.1016/S0167-0115(98)00048-2 *
ANAT ET AL., PLOS ONE, vol. 6, no. 11, 2011, pages e27990
ARDATI, A. ET AL., MOL. PHARMACOL., vol. 51, 1997, pages 816 - 824
BALLESTEROS, J. A. ET AL., METHODS NEUROSCI, 1995, pages 366 - 428
BALLESTEROS, J. A. ET AL.: "Methods in Neurosciences", 1995, ACADEMIC PRESS, article "Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors", pages: 366 - 428
BASU, S. ET AL., J. BIOL. CHEM., vol. 282, 2007, pages 10005 - 10017
BERGE SM ET AL., J PHARM SCI., vol. 6, no. 1, 6 January 1977 (1977-01-06), pages 1 - 19
BIRKE, F. W. ET AL., J. PHARMACOL. EXP. THER., vol. 297, 2001, pages 458 - 466
BONNET D ET AL., BIOCONJUG CHEM., vol. 17, no. 6, November 2006 (2006-11-01), pages 1618 - 23
BRUNGER, A. T. ET AL., ACTA CRYST., vol. D54, 1998, pages 905 - 921
BRUNGER, A. T., NATURE PROTOCOLS, vol. 2, 2007, pages 2728 - 2733
CANALS, M. ET AL., TRENDS BIOCHEM. SCI., vol. 36, 2011, pages 663 - 672
CARPENTER, B. ET AL., NATURE, vol. 531, 2016, pages 335 - 340
CERESA, B. P. ET AL., J. BIOL. CHEM., vol. 269, 1994, pages 29557 - 29564
CHRISTOPOULOS, A. ET AL., PHARMACOL. REV., vol. 54, 2002, pages 323 - 374
CLACKSON ET AL., NATURE, vol. 352, no. 6336, 15 August 1991 (1991-08-15), pages 624 - 628
DARMOSTUK M ET AL., BIOTECHNOL ADV., vol. 33, no. 6, 1 November 2015 (2015-11-01), pages 1141 - 61
DATABASE CAS [online] 5 March 2014 (2014-03-05), retrieved from STN Database accession no. 1562462-15-0 *
DATABASE CAS [online] 6 March 2014 (2014-03-06), retrieved from STN Database accession no. 1563162-34-4 *
EVANS, P. R. ET AL., ACTA CRYSTALLOGR. D BIOL. CRYSTALLOGR., vol. 69, 2013, pages 1204 - 1214
EVANS, P. R., ACTA CRYSTALLOGR. D BIOL. CRYSTALLOGR., vol. 67, 2011, pages 282 - 292
FENALTI, G. ET AL., NATURE, vol. 506, 2014, pages 191 - 196
FREDERIKSSON, R. ET AL., MOL PHARMACOL, vol. 63, 2003, pages 1256 - 1272
FREDRIKSSON, R. ET AL., MOL. PHARMACOL., vol. 63, 2003, pages 1256 - 1272
GAO, Z. G. ET AL., BIOCHEM. PHARMACOL., vol. 65, 2003, pages 525 - 534
GUTIERREZ-DE-TERAN, H. ET AL., STRUCTURE, vol. 21, 2013, pages 2175 - 2185
HATO, M. ET AL., J. PHYS. CHEM. B, vol. 113, 2009, pages 10196 - 10209
HATO, M. ET AL., J. STRUCT. FUNCT. GENOMICS, vol. 15, 2014, pages 165 - 171
HICKS, ALEXANDRA ET AL.: "Leukotriene B4 receptor antagonists as therapeutics for inflammatory disease: preclinical and clinical developments", EXPERT OPINION ON INVESTIGATIONAL DRUGS, vol. 16, no. 12, 2007, pages 1909 - 1920, XP002726575, ISSN: 1354-3784, DOI: 10.1517/13543784.16.12.1909 *
HORI, T. ET AL., BIOCHEM. BIOPHYS. REP., vol. 4, 2015, pages 243 - 249
HORI, T. ET AL., PROTEIN EXPR. PURIF., vol. 72, 2010, pages 66 - 74
HORI, TETSUYA ET AL.: "Na+-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1", NATURE CHEMICAL BIOLOGY, vol. 14, no. 3, 8 January 2018 (2018-01-08), pages 262 - 269, XP055613102, ISSN: 1552-4450 *
HORSTMAN, D. A. ET AL., J. BIOL. CHEM., vol. 265, 1990, pages 21590 - 21595
HOU J ET AL., EXPERT OPIN DRUG DISCOV., vol. 7, no. 6, June 2012 (2012-06-01), pages 489 - 501
HUANG, W. ET AL., NATURE, vol. 524, 2015, pages 315 - 321
INOUE, A. ET AL.: "TGFa shedding assay: an accurate and versatile method for detecting GPCR activation", NAT. METHODS, vol. 9, 2012, pages 1021 - 1029, XP055220986, DOI: 10.1038/nmeth.2172
KARPLUS, P. A. ET AL., SCIENCE, vol. 336, 2012, pages 1030 - 1033
KATRITCH, V ET AL., TRENDS BIOCHEM. SCI., vol. 39, 2014, pages 233 - 244
KATRITCH, VSEVOLOD ET AL.: "Allosteric sodium in class A GPCR signaling", TRENDS IN BIOCHEMICAL SCIENCES, vol. 39, no. 5, 2014, pages 233 - 244, XP055613105, ISSN: 0968-0004 *
KHILNANI, G. ET AL., INDIAN J PHARMACOL, 2011, pages 492 - 501
KLEEMANN, P. ET AL., NAUNYN SCHMIEDEBERGS ARCH PHARMACOL., vol. 378, 2008, pages 261 - 274
KOHLER GMILSTEIN C., NATURE, vol. 256, no. 5517, 7 August 1975 (1975-08-07), pages 495 - 497
KRUSE ET AL., MOL PHARMACOL., vol. 84, no. 4, October 2013 (2013-10-01), pages 528 - 40
KRUSE, A. C. ET AL., NATURE, vol. 482, 2013, pages 552 - 556
KRUSE, ANDREW C. ET AL.: "Muscarinic Receptors as Model Targets and Anti targets for Structure-Based Ligand Discovery", MOLECULAR PHARMACOLOGY, vol. 84, no. 4, 1 October 2013 (2013-10-01), pages 528 - 540, XP009518097, ISSN: 1521-0111, DOI: 10.1124/mol.113.087551 *
LAM, P. Y ET AL., J. MED. CHEM., vol. 46, 2003, pages 4405 - 4418
LEACH, K. ET AL., TRENDS PHARMACOL. SCI., vol. 28, 2007, pages 382 - 389
LEVIT, A. ET AL.: "Modeling of human Prokineticin receptors: interactions with novel small-molecule binders and potential off-target drugs", PLOS ONE, vol. 6, no. 11, e27990, November 2011 (2011-11-01), pages 1 - 17, XP055613106, ISSN: 1932-6203 *
LUPALA, C. S. ET AL.: "New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding", JOURNAL OF COMPUTER- AIDED MOLECULAR DESIGN, vol. 30, no. 1, 2016, pages 85 - 101, XP035913023, ISSN: 0920-654X, DOI: 10.1007/s10822-015-9890-z *
MAHONEY, J. P ET AL., CURR. OPIN. STRUCT. BIOL., vol. 41, 2016, pages 247 - 254
MANGLIK, A. ET AL., CELL, vol. 161, 2015, pages 1101 - 1111
MARIE ET AL., J BIOL CHEM., vol. 276, no. 44, 2 November 2001 (2001-11-02), pages 41100 - 11
MARIE, J. ET AL.: "Control of conformational equilibria in the human B2 bradykinin receptor: Modeling of nonpeptidic ligand action and comparison to the rhodopsin structure", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 44, 2001, pages 41100 - 41111, XP055613107, ISSN: 0021-9258 *
MARKS ET AL., J MOL BIOL., vol. 222, no. 3, 5 December 1991 (1991-12-05), pages 581 - 597
MASSINK, A. ET AL., MOL. PHARMACOL., vol. 87, 2015, pages 305 - 313
MICHIELAN, L. ET AL.: "Exploring Potency and Selectivity Receptor Antagonist Profiles Using a Multi label Classification Approach: The Human Adenosine Receptors as a Key Study", JOURNAL OF CHEMICAL INFORMATION AND MODELING, vol. 49, no. 12, 12 November 2009 (2009-11-12), pages 2820 - 2836, XP055613108, ISSN: 1549-9596 *
MILLER-GALLACHER, J. L. ET AL., PLOS ONE, vol. 9, 2014, pages e92727
NAKAYAMA ET AL., BIOORG MED CHEM., vol. 5, no. 5, May 1997 (1997-05-01), pages 971 - 85
NAKAYAMA, Y. ET AL.: "New serine protease inhibitors with leukotriene B4 (LTB4) receptor binding affinity", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 5, no. 5, 1997, pages 971 - 985, XP001181712, ISSN: 0968-0896, DOI: 10.1016/S0968-0896(97)00036-9 *
NICKL, K. ET AL., NEUROSCI. LETT., vol. 447, 2008, pages 68 - 72
REVERDATTO S ET AL., CURR TOP MED CHEM., vol. 15, no. 12, 2015, pages 1082 - 101
ROSENBAUM, D. M. ET AL., NATURE, vol. 469, 2011, pages 236 - 240
ROSENBAUM, D. M. ET AL., SCIENCE, vol. 318, 2007, pages 1266 - 1273
SABIRSH, A. ET AL., BIOCHEMISTRY, vol. 45, 2006, pages 5733 - 5744
SCHNELL, D. ET AL., NEUROSCI. LETT., vol. 472, 2010, pages 114 - 118
SEIFERT, R. ET AL., NAUNYN-SCHMIEDEBERG'S ARCH PHARMACOL, 2002, pages 381 - 416
SELLEY, D. E. ET AL., BR. J. PHARMACOL., vol. 130, 2000, pages 987 - 996
STOY, H. ET AL., GENES & DISEASES, 2015, pages 108 - 132
TAN, Q. ET AL., SCIENCE, vol. 341, 2013, pages 1387 - 1390
THOMPSON, A. A. ET AL., NATURE, vol. 485, 2012, pages 395 - 399
VOSAHLIKOVA, M. ET AL., NAUNYN SCHMIEDEBERGS ARCH PHARMACOL., vol. 387, 2014, pages 487 - 502
WILSON, M. H. ET AL., MOL. PHARMACOL., vol. 59, 2001, pages 929 - 938
WU, B. ET AL., SCIENCE, vol. 330, 2010, pages 1066 - 1071
YOKOMIZO, T. ET AL., NATURE, vol. 387, 1997, pages 620 - 624

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023062015A (ja) * 2017-05-12 2023-05-02 国立研究開発法人理化学研究所 クラスa gpcr結合性化合物改変体
US12275687B2 (en) 2017-05-12 2025-04-15 Riken Class A GPCR-binding compound modifier
CN114276460A (zh) * 2022-03-04 2022-04-05 水木未来(北京)科技有限公司 改造型gpr75及其用途
CN114276460B (zh) * 2022-03-04 2022-06-24 水木未来(北京)科技有限公司 改造型gpr75及其用途

Also Published As

Publication number Publication date
CA3063334A1 (en) 2019-12-05
AU2018266393A1 (en) 2019-12-19
US12275687B2 (en) 2025-04-15
AU2024204680A1 (en) 2024-07-25
EP3623368A4 (en) 2021-04-07
JPWO2018207950A1 (ja) 2020-04-09
US20200199168A1 (en) 2020-06-25
EP3623368A1 (en) 2020-03-18
JP7373191B2 (ja) 2023-11-02
CN110869362A (zh) 2020-03-06
JP2023062015A (ja) 2023-05-02
AU2022268323A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
Ulloa-Aguirre et al. Structure-function relationships of the follicle-stimulating hormone receptor
ES2662372T3 (es) Dominios de unión dirigidos contra complejos GPCR:proteína G y usos derivados de los mismos
Zheng et al. Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling
ES3007288T3 (en) Protein binding domains stabilizing functional conformational states of gpcrs and uses thereof
JP2023062015A (ja) クラスa gpcr結合性化合物改変体
US11339383B2 (en) G proteins
Böhme et al. Agonist induced receptor internalization of neuropeptide Y receptor subtypes depends on third intracellular loop and C-terminus
Salom et al. Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells
Congreve et al. Engineering G protein-coupled receptors for drug design
Mao et al. Structural Basis of the LARP4-Filamin A Interaction and Competition with Integrin β7 Tails
Janezic Elucidating the role of unique structural features of the α1D-adrenergic receptor: A tale of two tails
JP4768946B2 (ja) ヒトgタンパク質共役型受容体の内因性および非内因性型
JP2001029083A (ja) 新規なg蛋白質共役型レセプター
Roth β-adrenergic receptor stability engineering for the advancement of GPCR structural biology
Strader et al. Genetic Analysis of β-Adrenergic Receptor Structure and Function
BR112013032451B1 (pt) Domínio variável simples de imunoglobulina, usos e métodos de produção do mesmo, complexo, sequência de ácidos nucleicos, vetor recombinante, bem como método de captura e/ou purificação de um complexo compreendendo um gpcr e uma proteína g
JP2001029084A (ja) 新規なg蛋白質共役型レセプター及び該g蛋白質共役型レセプター遺伝子
JP2001054389A (ja) 新規なg蛋白質共役型レセプター
JP2011097950A (ja) ヒトgタンパク質共役型受容体の内因性および非内因性型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517741

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3063334

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018266393

Country of ref document: AU

Date of ref document: 20180514

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018798677

Country of ref document: EP

Effective date: 20191212

WWG Wipo information: grant in national office

Ref document number: 16613049

Country of ref document: US