WO2018207396A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2018207396A1 WO2018207396A1 PCT/JP2017/044514 JP2017044514W WO2018207396A1 WO 2018207396 A1 WO2018207396 A1 WO 2018207396A1 JP 2017044514 W JP2017044514 W JP 2017044514W WO 2018207396 A1 WO2018207396 A1 WO 2018207396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base plate
- thickness
- bonding
- semiconductor device
- semiconductor chip
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 90
- 239000000463 material Substances 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 40
- 239000012212 insulator Substances 0.000 claims abstract description 35
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 22
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 239000007769 metal material Substances 0.000 claims abstract description 11
- 239000010949 copper Substances 0.000 claims description 40
- 229910052802 copper Inorganic materials 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 16
- 230000007423 decrease Effects 0.000 description 11
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910017755 Cu-Sn Inorganic materials 0.000 description 2
- 229910017927 Cu—Sn Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000962 AlSiC Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/492—Bases or plates or solder therefor
- H01L23/4924—Bases or plates or solder therefor characterised by the materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29139—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29155—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29347—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29355—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
- H01L2224/48472—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/4901—Structure
- H01L2224/4903—Connectors having different sizes, e.g. different diameters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/922—Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
- H01L2224/9222—Sequential connecting processes
- H01L2224/92242—Sequential connecting processes the first connecting process involving a layer connector
- H01L2224/92247—Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
- H01L24/92—Specific sequence of method steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1027—IV
- H01L2924/10272—Silicon Carbide [SiC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Definitions
- the present disclosure relates to a semiconductor device.
- the semiconductor When electrically connecting the surface electrode of the semiconductor chip and the circuit pattern on the surface of the insulating substrate by a copper plate, the semiconductor having a structure in which the surface electrode of the semiconductor chip and the copper plate are bonded via a solder bonding layer having a thickness of 100 ⁇ m or more.
- An apparatus is known (for example, Patent Document 1). According to this semiconductor device, thermal stress and strain generated in the solder bonding layer due to the difference in coefficient of linear expansion between the semiconductor chip and the copper plate can be reduced, and the reliability of bonding between the semiconductor chip and the copper plate can be improved. .
- a semiconductor chip formed of a material containing silicon carbide, a base plate in which a metal layer is formed on both surfaces of a plate-like insulator portion, and one surface of the base plate And a bonding material for bonding the semiconductor chip.
- the bonding material is formed of a metal material having a melting point of 773 ° C. or higher after bonding, the thickness of the bonding material is 50 ⁇ m or less, the thickness of the base plate is 500 ⁇ m or more, and the insulator portion
- the value of t I / t M is 4.3 or more, where t is the thickness of t 1 and the thickness of the metal layer is t M.
- FIG. 1 is a model diagram of a semiconductor device used for examining the thickness of the bonding layer.
- FIG. 2 is a correlation diagram of the deformation amount of the bonding layer with respect to the thickness of the bonding layer and the deformation amount of the base plate.
- FIG. 3 is a model diagram of the semiconductor device used for conducting the temperature increase / decrease test.
- FIG. 4 is a correlation diagram between the number of heating / cooling cycles and the bonding area in the bonding layer.
- FIG. 5 is a correlation diagram between Cu strain and stress.
- FIG. 6 is a structural diagram of a base plate used in the semiconductor device according to one embodiment of the present disclosure.
- FIG. 7 is a correlation diagram (1) between the volume ratio of the insulator portion to the metal layer in the base plate and the linear expansion coefficient.
- FIG. 8 is a correlation diagram (2) between the volume ratio of the insulator portion to the metal layer in the base plate and the linear expansion coefficient.
- FIG. 9 is an explanatory diagram of the power module of the semiconductor device according to one embodiment of the present disclosure.
- FIG. 10 is an explanatory diagram of a power module of a semiconductor device used for comparison.
- FIG. 11 is a correlation diagram between the number of heating / cooling cycles and the amount of change in thermal resistance.
- FIG. 12 is a correlation diagram between the number of heating / cooling cycles and the amount of change in on-resistance.
- FIG. 13 is an explanatory diagram of a semiconductor device according to another aspect of the present disclosure.
- a high thermal conductivity and high electrical conductivity bonding layer generally has a large linear expansion coefficient (for example, 17 to 25 ppm / K). For this reason, the thermal stress caused by the difference between the linear expansion coefficient of silicon (Si) or silicon carbide (SiC) constituting the semiconductor chip or the semiconductor element and the linear expansion coefficient of the bonding layer is generated. Cracks and peeling easily occur. In particular, in the case of a semiconductor device using SiC as a semiconductor material, such a tendency is likely to occur because many of the devices corresponding to high output are likely to become high temperature.
- a highly reliable semiconductor device using SiC can be provided.
- a semiconductor device includes a semiconductor chip formed of a material containing silicon carbide, a base plate in which a metal layer is formed on both surfaces of a plate-like insulator, and the base A bonding material for bonding the semiconductor chip to one surface of the plate, and the bonding material is formed of a metal material having a melting point of 773 ° C. or higher after bonding, and the thickness of the bonding material is , 50 ⁇ m or less, the thickness of the base plate is 500 ⁇ m or more, t I / t M , where t I is the thickness of the insulator and t M is the thickness of the metal layer. The value of is 4.3 or more.
- the inventor of the present application is a base plate that is bonded to a semiconductor chip formed of a material containing silicon carbide via a bonding material.
- the bonding material is a metal material having a melting point of 773 ° C. or higher after bonding, and has a thickness of
- the thickness of the base plate is 500 ⁇ m or more
- the thickness of the insulator portion in the base plate is t I
- the thickness of the metal layer is t M , t I / t
- the insulator portion is made of a material containing silicon nitride, and the metal layer is made of a material containing copper.
- the bonding material is formed of a metal material having a melting point of 773 ° C. or higher after bonding, the thickness of the bonding material is 50 ⁇ m or less, and the thickness of the base plate is 500 ⁇ m or more.
- the linear expansion coefficient of the base plate is 2.9 ppm / K or more and 5.1 ppm / K or less.
- the thickness of the base plate is 2 mm or less.
- the base plate is a first base plate, and the first base plate is bonded to one surface of the semiconductor chip, and the other surface of the semiconductor chip is bonded to the other surface.
- a second base plate is joined by a material, and the second base plate has the same structure as the first base plate.
- the present embodiment an embodiment of the present disclosure (hereinafter referred to as “the present embodiment”) will be described in detail, but the present embodiment is not limited thereto.
- the semiconductor chip 20 is made of SiC having a size of 5 mm ⁇ 5 mm and a thickness of 0.2 mm to 0.3 mm.
- SiC has a linear expansion coefficient of 4 ppm / K and a Young's modulus of 440 GPa.
- the base plate 10 is assumed to have a size of 50 mm ⁇ 50 mm and a thickness of 1.0 mm, a linear expansion coefficient of 5 ppm / K, and a Young's modulus of 240 GPa. Since the bonding layer 30 uses copper (Cu) and bonds the semiconductor chip 20, the size is the same as that of the semiconductor chip 20, and the thickness is changed. The linear expansion coefficient of Cu is 17 ppm / K, and the Young's modulus is 130 GPa. In the present application, the bonding layer 30 may be described as a bonding material.
- FIG. 2 shows the result of simulation for a model having such a structure by changing the temperature in a temperature range of 175 ° C.
- the horizontal axis in FIG. 2 is the thickness of the sintered copper, which is the thickness of the bonding layer 30, and the vertical axis is the value of the deformation amount of the bonding layer 30 relative to the deformation amount of the base plate 10, that is, the (deformation amount of the bonding layer). ) / (Deformation amount of base plate).
- the bonding layer 30 when the thickness of the bonding layer 30 is 0.05 mm (50 ⁇ m), the value of (deformation amount of the bonding layer 30) / (deformation amount of the base plate 10) is approximately 1, and the bonding layer 30 When the thickness of the bonding layer 30 is 0.05 mm or less, the bonding layer 30 deforms substantially following the deformation of the base plate 10.
- Examples of the material for forming the bonding layer 30 include Cu having a linear expansion coefficient of 17 ppm / K, and sintered bodies such as silver (Ag), Cu—Sn alloy, and Ni.
- the linear expansion coefficient of Ag is 19 ppm / K
- the linear expansion coefficient of the Cu—Sn alloy is 21 ppm / K or more
- the linear expansion coefficient of Ni is 12.8 ppm / K.
- Ni has lower thermal conductivity and higher resistance than Cu and Ag.
- Cu or Ag is preferable as a material for forming the bonding layer 30.
- Cu has a lower coefficient of linear expansion than Ag and is inexpensive, so Cu is more preferable from this viewpoint.
- the melting point of Ag is 961 ° C.
- the melting point of Cu is 1083 ° C.
- the bonding layer 30 has a higher density, and the density is preferably 96% or more.
- the semiconductor device In the semiconductor device according to the present embodiment, consider a case where the semiconductor chip 20 is formed of SiC and the operating temperature region is ⁇ 50 ° C. to 250 ° C. (the change in temperature is 300 ° C.). It is known that a metal material undergoes a phenomenon called creep deformation at a high temperature and does not elastically deform even with a small amount of strain, resulting in a decrease in life. The effect of creep deformation appears at about 1/2 of the melting point at absolute temperature. Therefore, by using a material having a melting point of 1046 K (773 ° C.) or more, which is twice the absolute temperature of 523 K at 250 ° C., the influence of creep deformation is suppressed, and deformation within the elastic region is achieved. Decline can be prevented.
- the thickness of the base plate 10 is 3 mm, and the bonding layer 30 is formed of sintered copper having a thickness of 50 ⁇ m. It carried out in the state put in the gel 70.
- FIG. The base plate 10 is originally formed with a metal film or the like on the surface of the insulator substrate, but for the sake of convenience, it is made of a metal material.
- sample 3A has base plate 10 made of molybdenum (Mo)
- sample 3B has base plate 10 made of Cu-85Mo
- sample 3C has base plate 10 made of Cu-60Mo. ing.
- the linear expansion coefficient of Mo is 5.1 ppm / K
- the linear expansion coefficient of Cu-85Mo is 7.0 ppm / K
- the linear expansion coefficient of Cu-60Mo is 8.4 ppm / K.
- a cycle in which the temperature is raised to ⁇ 40 ° C. for 30 minutes, then raised to 200 ° C., then lowered to 200 ° C. for 30 minutes, and then lowered to ⁇ 40 ° C. is defined as one cycle.
- the bonding area in the bonding layer 30 were examined. The bonding area in the bonding layer 30 was measured using a SAT (Scanning / Acoustic / Tomograph).
- the bonding area in the bonding layer 30 is about 98% of the initial, and the bonding area in the bonding layer 30 is It was about 95% or more, and the reliability of bonding was high.
- FIG. 5 is a diagram showing the relationship between Cu strain and stress. From this figure, the yield point of Cu is about 0.052%.
- the distortion of the base plate 10 with respect to the semiconductor chip 20 when the temperature is raised from ⁇ 40 ° C. to 200 ° C. is about 0.03% for the sample 3A, about 0.07% for the sample 3B, and about 0.07% for the sample 3C. 0.11%.
- the deformation is within the range below the Cu yield point, and in the samples 3B and 3C, the deformation exceeds the Cu yield point. For this reason, in samples 3B and 3C, the deformation exceeding the yield point of Cu was repeated due to the temperature rise and fall, so the bonding area was greatly reduced, but in sample 3A, the deformation was in a range not exceeding the yield point of Cu. It is presumed that there is almost no decrease in the bonding area even when the temperature is raised or lowered. When the temperature change is from ⁇ 50 ° C. to 250 ° C., the temperature change is 300 ° C. In this case, the strain of the sample A is about 0.033, and the deformation does not exceed the Cu yield point. It becomes.
- the difference between the linear expansion coefficient of the base plate 10 and the linear expansion coefficient of SiC which is the semiconductor chip 20 ⁇ 300 ° C. is within the elastic region of the bonding material, and the deformation is within the elastic region of the bonding material. Considering deformation in the range of the yield point, it is preferably 6.0 ppm / K or less.
- the joint area does not decrease even if many deformations due to temperature increase and decrease are repeated.
- the difference in the coefficient of linear expansion of SiC is preferably 1.1 ppm / K or less.
- the linear expansion coefficient of the base plate 10 be in the range of the linear expansion coefficient of the semiconductor chip 20 ⁇ 1.1 ppm / K or more and the linear expansion coefficient of the semiconductor chip 20 +1.1 ppm / K or less. Therefore, when the semiconductor chip 20 is SiC, the linear expansion coefficient of SiC is 4 ppm / K, and therefore the linear expansion coefficient of the base plate 10 is in the range of 2.9 ppm / K or more and 5.1 ppm / K or less. Is preferred.
- the base plate 10 is actually formed with metal layers 12 and 13 on both surfaces of a plate-like insulator portion 11 formed of an insulator, as shown in FIG.
- the material and thickness forming the metal layers 12 and 13 are important.
- the metal material for forming the metal layers 12 and 13 is required to have high conductivity. For example, copper or a material containing copper is preferable. High metal materials generally have a large coefficient of linear expansion.
- the insulator part 11 forming the base plate 10 is made of an insulating material and has a low linear expansion coefficient.
- the material for forming the insulator portion 11 include aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), and silicon nitride (Si 3 N 4 ). These linear expansion coefficients are 4.6 ppm / K for AlN, 7.2 ppm / K for Al 2 O 3 , and 2.7 ppm / K for Si 3 N 4 . Therefore, among these, Si 3 N 4 has the lowest linear expansion coefficient, which is preferable as a material for forming the insulator portion 11 of the base plate 10 in the present embodiment.
- the relationship between the thickness of the insulator 11 and the thickness of the metal layers 12 and 13 is such that the linear expansion coefficient of the base plate 10 is 2.9 ppm / It was investigated whether it would be in the range of K to 5.1 ppm / K. Specifically, the linear expansion coefficient ⁇ AMB of the base plate 10 was calculated and examined based on the following equation (1).
- the insulator portion 11 is made of Si 3 N 4 and the metal layers 12 and 13 are made of copper.
- ⁇ Cu is a linear expansion coefficient of copper of 17 ppm / K
- ⁇ SiN is a linear expansion coefficient of Si 3 N 4 of 2.7 ppm / K.
- E Cu is the Young's modulus of copper and 130 GPa
- E SiN is the Young's modulus of Si 3 N 4 and is 290 GPa.
- V Cu is the volume of each copper on one side and the other side
- V SiN is the volume of Si 3 N 4 . Since the metal layer 12 and the metal layer 13 are formed so as to have the same volume and are formed on both surfaces of the insulator part 11, the volume of copper in the base plate 10 is 2V Cu .
- FIGS. 7 is a diagram in which the value of V SiN / V Cu is from 0 to 100
- FIG. 8 is a diagram in which the value of V SiN / V Cu is from 0 to 10.
- the linear expansion coefficient ⁇ AMB of the base plate 10 is 5.1 ppm / K when the value of V SiN / V Cu is 4.3.
- the coefficient ⁇ AMB is 2.9 ppm / K when the value of V SiN / V Cu is 80. Therefore, the range of the value of V SiN / V Cu in the base plate 10 is preferably 4.3 or more and 80 or less.
- the value of V SiN / V Cu is a ratio of thickness.
- the range of the thickness t I of the insulator portion 11 relative to the thickness t M of the metal layers 12 and 13 in the base plate 10, that is, the range of the value of t I / t M is 4.3 or more and 80 or less. preferable.
- the linear expansion coefficient ⁇ AMB of the base plate 10 is 5.1 ppm / K or less, and is preferably 4 ppm / K or more, which is the same as the linear expansion coefficient of SiC.
- the linear expansion coefficient ⁇ AMB of the base plate 10 is 4 ppm / K when the value of V SiN / V Cu is 9.2. Therefore, the range of the value of V SiN / V Cu in the base plate 10 is preferably 4.3 or more and 9.2 or less.
- the range of the thickness t I of the insulator portion 11 relative to the thickness t M of the metal layers 12 and 13 in the base plate 10, that is, the range of the value of t I / t M is 4.3 or more, 9.2 The following is preferred.
- the semiconductor chip 20 is bonded to the base plate 10 by the bonding layer 30.
- the bonding layer 30 in order for the influence of the base plate 10 to be dominant, the bonding layer It is preferable that the base plate 10 is sufficiently thicker than 30. Therefore, when the thickness of the bonding layer 30 is 50 ⁇ m, the thickness of the base plate 10 is preferably 500 ⁇ m or more.
- the thickness of the base plate 10 is preferably 2 mm or less. Further, in order to sufficiently secure the conductivity in the metal layers 12 and 13, when the metal layers 12 and 13 are formed of Cu, the thickness of the metal layers 12 and 13 needs to be 100 ⁇ m or more. Therefore, when the thickness of the base plate 10 is 2 mm (2000 ⁇ m) and the thickness t M of the metal layers 12 and 13 is 100 ⁇ m, the thickness t I of the insulator portion 11 of the base plate 10 is 1800 ⁇ m. .
- the thickness t I of the insulator portion 11 with respect to the thickness t M of the metal layers 12 and 13 in the base plate 10, that is, the value of t I / t M is 18. Therefore, t I / t M is preferably 18 or less.
- FIG. 9 shows a power module of the semiconductor device according to this embodiment.
- a semiconductor chip 20 made of SiC is bonded to one surface of a base plate 10 by a bonding layer 30, and a heat dissipation plate 40 is connected to a heat dissipation plate bonding layer 41 on the other surface of the base plate 10. It is joined by.
- the electrode terminals formed by the electrode terminals on the upper surface of the semiconductor chip 20 and the metal layer of the base plate 10, or the electrode terminals formed by the metal layer of the base plate 10 are connected by bonding wires 51, 52 and 53. Yes.
- the base plate 10 and the semiconductor chip 20 on the heat radiating plate 40 are covered with a resin case 60, and the resin case 60 is provided with connection wirings 71, 72, 73 for connection to the outside. ing.
- a sealing material 61 is placed inside the resin case 60.
- the bonding layer 30 is formed of sintered copper having a thickness of 50 ⁇ m.
- the insulator portion 11 is made of Si 3 N 4 having a thickness of 650 ⁇ m, and the metal layers 12 and 13 are made of Cu each having a thickness of 150 ⁇ m, and the linear expansion coefficient is about 5.1 ppm / K. is there.
- the heat sink 40 is made of AlSiC, which is a metal composite material. The value of V SiN / V Cu is 4.33, and the linear expansion coefficient is about 7.5 ppm / K.
- the heat sink bonding layer 41 is formed of a Sn-5Sb solder material formed of Sn and antimony (Sb).
- the bonding wires 51, 52 and 53 are made of aluminum (Al)
- the resin case 60 is made of a resin material
- the sealing material 61 is made of, for example, silicone gel.
- FIG. 10 shows a power module 10A of a semiconductor device used for comparison.
- a semiconductor chip 20 made of SiC is bonded to one surface of a base plate 910 by a bonding layer 930, and a heat radiating plate 940 is connected to the heat radiating plate bonding layer 41 on the other surface of the base plate 910. It is joined by.
- the electrode terminals formed by the electrode terminals on the upper surface of the semiconductor chip 20 and the metal layer of the base plate 10, or the electrode terminals formed by the metal layer of the base plate 10 are connected by bonding wires 51, 52 and 53. Yes.
- the base plate 10 and the semiconductor chip 20 on the heat radiating plate 40 are covered with a resin case 60, and the resin case 60 is provided with connection wirings 71, 72, 73 for connection to the outside. ing.
- a sealing material 61 is placed inside the resin case 60.
- the bonding layer 930 is made of Sn-10Sb having a thickness of 100 ⁇ m, and the linear expansion coefficient is 21 ppm / K.
- the insulator portion 911 is made of Si 3 N 4 with a thickness of 320 ⁇ m, and the metal layers 912 and 913 are made of Cu with a thickness of 300 ⁇ m.
- the value of V SiN / V Cu is 1.
- the linear expansion coefficient is 9 ppm / K.
- the heat sink 940 is made of Cu.
- FIGS. 11 and 12 show the results of a temperature increase / decrease test performed on the power module of the semiconductor device shown in FIG. 9 and the power module of the semiconductor device used for comparison shown in FIG. 11 and 12, three power modules 9A of the semiconductor device in the present embodiment and three power modules 10A of the semiconductor device used for comparison were manufactured and measured.
- the solid line in FIGS. 11 and 12 is the characteristic of the power module 9A of the semiconductor device in the present embodiment, and the broken line is the characteristic of the power module 10A of the semiconductor device used for comparison.
- FIG. 11 shows the change in thermal resistance in each power module.
- Rth (T 1 ⁇ T 2 )
- the vertical axis indicates the amount of change in the value of the thermal resistance Rth calculated by / P.
- the power module 9A of the semiconductor device in the present embodiment and the power module 10A of the semiconductor device used for comparison do not change much.
- the temperature increase / decrease cycle exceeds 500 times and reaches about 1000 times
- the amount of change in thermal resistance in the power module 10A of the semiconductor device used for comparison increases rapidly.
- the power module 9A of the semiconductor device in this embodiment there is not much change and the change amount is 10% or less.
- FIG. 12 shows the change in on-resistance in each power module, and shows the amount of change in on-resistance relative to the initial on-resistance on the vertical axis.
- the current that flows when the applied voltage is 2 V is 100 A
- the initial on-resistance is 2 m ⁇ .
- the power module 9A of the semiconductor device in the present embodiment and the power module 10A of the semiconductor device used for comparison do not change much.
- the amount of change in on-resistance in the power module 10A of the semiconductor device used for comparison increases rapidly.
- the power module 9A of the semiconductor device in this embodiment there is not much change and the change amount is 10% or less.
- the amount of change in thermal resistance and the amount of change in on-resistance in the power module 10 ⁇ / b> A of the semiconductor device used for comparison increase rapidly because the bonding area in the bonding layer decreases. It is guessed.
- the power module 9A of the semiconductor device according to the present embodiment since the junction area in the junction layer is hardly reduced, the amount of change in thermal resistance and on-resistance is not much changed.
- the semiconductor chip may have a structure in which base plates are provided on both sides. Specifically, as shown in FIG. 13, the first base plate 111 is bonded to one surface 20a of the semiconductor chip 20 by the first bonding layer 131, and the second bonding layer 132 is bonded to the other surface 20b. Therefore, the second base plate 112 may be joined.
- the first base plate 111 and the second base plate 112 have the same structure as the base plate 10 shown in FIG. 6, and metal layers 12 and 13 are formed on both surfaces of the insulator portion 11. Yes. Further, the first bonding layer 131 and the second bonding layer 132 are formed of the same material as the bonding layer 30.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Die Bonding (AREA)
Abstract
半導体装置は、炭化珪素を含む材料により形成されている半導体チップと、板状の絶縁体部の両面に、金属層が形成されたベース板と、ベース板の一方の面に、前記半導体チップを接合する接合材と、を有し、接合材は、接合後の融点が773℃以上の金属材料により形成されており、接合材の厚さは、50μm以下であり、ベース板の厚さは、500μm以上であり、絶縁体部の厚さをtIとし、金属層の厚さをtMとした場合に、tI/tMの値は、4.3以上である。
Description
本開示は、半導体装置に関するものである。
本出願は、2017年5月11日出願の日本特許出願第2017-094358号に基づく優先権を主張し、前記日本特許出願に記載された全ての記載内容を援用するものである。
半導体チップの表面電極と絶縁基板の表面の回路パターンとを銅板により電気的に接続するに際し、半導体チップの表面電極と銅板とを100μm以上の厚さの半田接合層を介して接合した構造の半導体装置が知られている(例えば、特許文献1)。この半導体装置によれば、半導体チップと銅板との線膨張係数差に起因して半田接合層に発生する熱応力と歪みが低減され、半導体チップと銅板との接合の信頼性を高めることができる。
本実施形態の一観点によれば、炭化珪素を含む材料により形成されている半導体チップと、板状の絶縁体部の両面に、金属層が形成されたベース板と、ベース板の一方の面に、半導体チップを接合する接合材と、を有している。また、接合材は、接合後の融点が773℃以上の金属材料により形成されており、接合材の厚さは、50μm以下であり、ベース板の厚さは、500μm以上であり、絶縁体部の厚さをtIとし、金属層の厚さをtMとした場合に、tI/tMの値は、4.3以上である。
[本開示が解決しようとする課題]
ところで、高熱伝導、高電気伝導の接合層は一般的に線膨張係数が大きい(例えば、17~25ppm/K)。このため、半導体チップあるいは半導体素子を構成する珪素(Si)や炭化珪素(SiC)の線膨張係数と接合層の線膨張係数の差に起因する熱応力が発生するため、温度サイクルストレスにより接合層に亀裂や剥離が生じやすい。特に、半導体材料としてSiCを用いた半導体装置の場合、高出力に対応するものが多く高温になりやすいことから、このような傾向は生じやすい。
このため、SiC等を用いた半導体装置において、信頼性の高い半導体装置が求められている。
[本開示の効果]
本開示によれば、SiCを用いた信頼性の高い半導体装置を提供することができる。
実施するための形態について、以下に説明する。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
〔1〕 本開示の一態様に係る半導体装置は、炭化珪素を含む材料により形成されている半導体チップと、板状の絶縁体部の両面に、金属層が形成されたベース板と、前記ベース板の一方の面に、前記半導体チップを接合する接合材と、を有し、前記接合材は、接合後の融点が773℃以上の金属材料により形成されており、前記接合材の厚さは、50μm以下であり、前記ベース板の厚さは、500μm以上であり、前記絶縁体部の厚さをtIとし、前記金属層の厚さをtMとした場合に、tI/tMの値は、4.3以上である。
本願発明者は、炭化珪素を含む材料により形成されている半導体チップに接合材を介し接合されるベース板において、接合材は、接合後の融点が773℃以上の金属材料であって、厚さを50μm以下で形成し、ベース板の厚さを500μm以上で形成し、ベース板における絶縁体部の厚さをtIとし、金属層の厚さをtMとした場合に、tI/tMの値を4.3以上にすることにより、接合強度が高く、信頼性が向上することを見出した。これにより、SiCを用いた信頼性の高い半導体装置を提供することができる。尚、特許文献1の方法では、大きな熱応力を緩和するには半田接合層をより厚くする必要があるが、この場合、半田接合層を介した放熱が良好ではなくなる。
〔2〕 前記絶縁体部は、窒化珪素を含む材料により形成されており、前記金属層は、銅を含む材料により形成されている。
〔3〕 tI/tMの値は、18以下である。
〔4〕 tI/tMの値は、9.2以下である。
〔5〕 炭化珪素を含む材料により形成されている半導体チップと、絶縁体部の両面に金属層が形成されたベース板と、前記ベース板の一方の面に前記半導体チップを接合する接合材と、を有し、前記接合材は、接合後の融点が773℃以上の金属材料により形成されており、前記接合材の厚さは、50μm以下であり、前記ベース板の厚さは、500μm以上であり、前記ベース板の線膨張係数は、2.9ppm/K以上、5.1ppm/K以下である。
〔6〕 前記ベース板の厚さは、2mm以下である。
〔7〕 前記ベース板は第1のベース板であり、前記半導体チップの一方の面に前記第1のベース板が接合されているものであって、前記半導体チップの他方の面には、接合材により第2のベース板が接合されており、前記第2のベース板は、前記第1のベース板と、同じ構造のものである。
[本開示の実施形態の詳細]
以下、本開示の一実施形態(以下「本実施形態」と記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。
以下、本開示の一実施形態(以下「本実施形態」と記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。
最初に、発明者が行ったSiCを用いた半導体装置に関するシミュレーションの結果について説明する。まず、図1に示す構造のベース板10の上に半導体チップ20が接合層30により接合されているモデルについて、接合層30の膜厚と、ベース板10に対する接合層30の変形量との関係について調べた。半導体チップ20は、大きさが5mm×5mm、厚さが0.2mm~0.3mmのSiCにより形成されている。SiCの線膨張係数は4ppm/Kであり、ヤング率は440GPaである。ベース板10は、大きさが50mm×50mm、厚さが1.0mmで形成されており、線膨張係数は5ppm/Kであり、ヤング率は240GPaとなるものを想定している。接合層30には銅(Cu)を用いており、半導体チップ20を接合するものであるため、大きさは半導体チップ20と同じであり、厚さを変化させている。Cuの線膨張係数は17ppm/Kであり、ヤング率は130GPaである。尚、本願においては、接合層30を接合材と記載する場合がある。
このような構造のモデルについて、175℃の温度範囲で温度変化をさせてシミュレーションを行った結果を図2に示す。図2の横軸は接合層30の厚さとなる焼結銅の厚さであり、縦軸は、ベース板10の変形量に対する接合層30の変形量の値、即ち、(接合層の変形量)/(ベース板の変形量)の値を示す。図2に示されるように、接合層30の厚さが0.05mm(50μm)で、(接合層30の変形量)/(ベース板10の変形量)の値は略1となり、接合層30の厚さが0.05mm以下では、接合層30はベース板10の変形に略追随して変形する。
接合層30を形成するための材料としては、線膨張係数が17ppm/KであるCuの他、銀(Ag)、Cu-Sn合金、Ni等の焼結体が挙げられる。Agの線膨張係数は19ppm/Kであり、Cu-Sn合金の線膨張係数は21ppm/K以上であり、Niの線膨張係数は12.8ppm/Kである。NiはCuやAgに比べて熱伝導率が低く、抵抗も高い。従って、接合層30を形成する材料としてはCuまたはAgが好ましい。更には、CuはAgに比べて線膨張係数が低く、値段も安価であることから、この観点からは、Cuがより好ましい。尚、Agの融点は961℃であり、Cuの融点は1083℃である。また、接合層30において高い接合強度を得るためには、接合層30の緻密度が高い方が好ましく、緻密度が96%以上であることが好ましい。
本実施形態における半導体装置において、半導体チップ20はSiCにより形成されており、動作温度領域を-50℃~250℃(温度変化の変化量は300℃)とした場合について考える。金属材料は、高温になるとクリープ変形という現象が発生し、小さな歪み量であっても、弾性変形せず、寿命が低下することが知られている。クリープ変形の影響が現れるのは、絶対温度で融点の約1/2である。従って、融点が、250℃の絶対温度523Kの2倍となる1046K(773℃)以上となる材料を接合層30に用いることにより、クリープ変形の影響が抑制され、弾性域内における変形となり、寿命の低下を防ぐことができる。
次に、ベース板10を形成している材料が異なる試料を複数作製して実験を行った。尚、この実験では、図3に示されるように、ベース板10の厚さは3mmであり、接合層30は、厚さが50μmの焼結銅により形成されており、このような試料をシリコーンゲル70内に入れた状態で行った。ベース板10は、本来は絶縁体基板の表面等に金属膜等が形成されているが、便宜上、金属材料により形成したものを用いている。この実験では、試料3Aはベース板10がモリブデン(Mo)により形成されており、試料3Bはベース板10がCu-85Moにより形成されており、試料3Cはベース板10がCu-60Moにより形成されている。
また、Moの線膨張係数は5.1ppm/K、Cu-85Moの線膨張係数は7.0ppm/K、Cu-60Moの線膨張係数は8.4ppm/Kである。これらの試料3A、3B、3Cにおいて、-40℃で30分、その後200℃まで昇温し、200℃で30分、その後-40℃まで降温するサイクルを1サイクルとし、この昇降温サイクルの回数と接合層30における接合面積との関係について調べた。尚、接合層30における接合面積は、SAT(Scanning Acoustic Tomograph:超音波映像装置)を用いて測定を行った。
この結果を図4に示す。図4に示されるように、ベース板10がCu-60Moにより形成されている試料3Cでは、昇降温サイクルを1000回行った時点で、接合層30における接合面積が当初の72%となったため測定を中止した。また、ベース板10がCu-85Moにより形成されている試料3Bでは、昇降温サイクルを1000回行った結果、接合層30における接合面積が当初の約90%、2000回行った結果、接合層30における接合面積が約86%であった。これに対し、ベース板10がMoにより形成されている試料3Aでは、昇降温サイクルを2000回行った結果、接合層30における接合面積は当初の約98%であり、接合層30における接合面積が約95%以上であり、接合の信頼性は高かった。
次に、図4において得られた結果と接合層30を形成しているCuの歪みと応力との関係について検討を行った。図5は、Cuの歪みと応力の関係を示す図である。この図より、Cuの降伏点は約0.052%である。-40℃から200℃まで昇降温させた場合における半導体チップ20に対するベース板10の歪みは、試料3Aでは約0.03%であり、試料3Bでは約0.07%であり、試料3Cでは約0.11%である。
従って、試料3AではCuの降伏点以下の範囲内における変形であり、試料3B及び3CではCuの降伏点を超える変形である。このため、試料3B及び3Cでは、昇降温により、Cuの降伏点を超える変形が繰り返されたため接合面積は大きく減少したが、試料3Aでは、Cuの降伏点を超えない範囲における変形であるため、昇降温を行っても接合面積の減少は殆どないものと推察される。尚、温度変化が-50℃から250℃までの場合では、温度変化は300℃であるが、この場合における試料Aの歪みは約0.033であり、Cuの降伏点を超えない範囲における変形となる。即ち、ベース板10の線膨張係数と半導体チップ20であるSiCの線膨張係数の差×300℃が接合材の弾性域の範囲内であり、変形が接合材の弾性域の範囲内にある。降伏点の範囲における変形を考えるならば、6.0ppm/K以下であることが好ましい。
また、降伏点の6割以下の範囲における変形であれば、昇降温による変形を多く繰り返しても、接合面積は減少することはないものと考えられているため、ベース板10の線膨張係数とSiCの線膨張係数の差が、1.1ppm/K以下であることが好ましい。
以上より、ベース板10の線膨張係数は、半導体チップ20の線膨張係数-1.1ppm/K以上、半導体チップ20の線膨張係数+1.1ppm/K以下の範囲であることが好ましい。従って、半導体チップ20がSiCの場合、SiCの線膨張係数は4ppm/Kであるため、ベース板10の線膨張係数は、2.9ppm/K以上、5.1ppm/K以下の範囲であることが好ましい。
ところで、ベース板10は、実際には、図6に示されるように、絶縁体により形成された板状の絶縁体部11の両面に、金属層12、13が形成されている。このようなベース板10において、線膨張係数が、2.9ppm/K以上、5.1ppm/K以下の範囲にするためには、ベース板10を形成している絶縁体部11の材料及び厚さ、金属層12、13を形成している材料及び厚さが重要になる。一般的に、金属層12、13を形成するための金属材料は、高い導電性を有すること等が求められており、例えば、銅、または、銅を含む材料が好ましく、このような導電性の高い金属材料は、一般的に線膨張係数が大きい。このため、ベース板10を形成している絶縁体部11は、絶縁性を有する材料であって、線膨張係数の低い材料を用いることが好ましい。絶縁体部11を形成する材料としては、窒化アルミニウム(AlN)、酸化アルミニウム(Al2O3)、窒化珪素(Si3N4)等が挙げられる。これらの線膨張係数は、AlNが4.6ppm/K、Al2O3が7.2ppm/K、Si3N4が2.7ppm/Kである。よって、これらの中では、Si3N4の線膨張係数が最も低く、本実施形態におけるベース板10の絶縁体部11を形成するための材料として好ましい。
次に、図6に示す構造のベース板10において、絶縁体部11の厚さと金属層12及び13の厚さをどのような関係にしたら、ベース板10の線膨張係数が、2.9ppm/K以上、5.1ppm/K以下の範囲となるか検討を行った。具体的には、下記の数1に示す式に基づきベース板10の線膨張係数αAMBを算出し検討を行った。
図7に示されるように、ベース板10の線膨張係数αAMBが5.1ppm/Kとなるのは、VSiN/VCuの値が4.3の場合であり、ベース板10の線膨張係数αAMBが2.9ppm/Kとなるのは、VSiN/VCuの値が80の場合である。従って、ベース板10におけるVSiN/VCuの値の範囲は、4.3以上、80以下が好ましい。ところで、絶縁体部11と金属層12及び13の面積が同じであれば、VSiN/VCuの値は厚さの比となる。従って、ベース板10における金属層12及び13の厚さtMに対する絶縁体部11の厚さtIの範囲、即ち、tI/tMの値の範囲は、4.3以上、80以下が好ましい。
また、ベース板10において、絶縁体部11が厚くなると放熱特性が低下するため、厚くなりすぎない方が好ましい。従って、ベース板10の線膨張係数αAMBは、5.1ppm/K以下であって、SiCの線膨張係数と同じ4ppm/K以上であることが好ましい。図8に示されるように、ベース板10の線膨張係数αAMBが4ppm/Kとなるのは、VSiN/VCuの値が9.2の場合である。従って、ベース板10におけるVSiN/VCuの値の範囲は、4.3以上、9.2以下が好ましい。よって、ベース板10における金属層12及び13の厚さtMに対する絶縁体部11の厚さtIの範囲、即ち、tI/tMの値の範囲は、4.3以上、9.2以下が好ましい。
更に、本実施形態においては、半導体チップ20は接合層30によりベース板10に接合されているが、図2に示されるように、ベース板10の影響が支配的であるためには、接合層30に対しベース板10が十分厚いことが好ましい。従って、接合層30の厚さが50μmである場合には、ベース板10の厚さは500μm以上であることが好ましい。
また、ベース板10が厚くなりすぎると、半導体装置が大きくなるため好ましくはないことから、ベース板10の厚さは2mm以下が好ましい。また、金属層12及び13における導電性を十分に確保するためには、金属層12及び13をCuにより形成した場合には、金属層12及び13の厚さは100μm以上必要である。これらのことから、ベース板10の厚さが2mm(2000μm)、金属層12及び13の厚さtMが100μmの場合では、ベース板10の絶縁体部11の厚さtIが1800μmとなる。この場合には、ベース板10における金属層12及び13の厚さtMに対する絶縁体部11の厚さtI、即ち、tI/tMの値は18である。よって、tI/tMは、18以下であることが好ましい。
次に、図9及び図10に示すようなモジュールを作製し、昇降温サイクルの試験を行った結果について説明する。図9は、本実施形態における半導体装置のパワーモジュールである。このパワーモジュールは、ベース板10の一方の面にSiCにより形成された半導体チップ20が接合層30により接合されており、ベース板10の他方の面には、放熱板40が放熱板接合層41により接合されている。半導体チップ20の上面の電極端子とベース板10の金属層により形成された電極端子、または、ベース板10の金属層により形成された電極端子同士は、ボンディングワイヤ51、52、53により接続されている。このパワーモジュールでは、放熱板40の上のベース板10及び半導体チップ20は樹脂ケース60により覆われており、樹脂ケース60には外部との接続のための接続配線71、72、73が設けられている。また、樹脂ケース60の内部には、封止材61が入れられている。
図9に示す本実施形態における半導体装置のパワーモジュール9Aでは、接合層30は厚さが50μmの焼結銅により形成されている。ベース板10は、絶縁体部11が厚さ650μmのSi3N4と、金属層12及び13が各々の厚さ150μmのCuにより形成されており、線膨張係数は約5.1ppm/Kである。放熱板40は、金属複合材であるAlSiCにより形成されており、VSiN/VCuの値は、4.33であり、線膨張係数は約7.5ppm/Kである。放熱板接合層41は、Sn及びアンチモン(Sb)により形成されるSn-5Sbはんだ材により形成されている。ボンディングワイヤ51、52、53は、アルミニウム(Al)により形成されており、樹脂ケース60は、樹脂材料により形成されており、封止材61は、例えば、シリコーンゲルにより形成されている。
図10は、比較に用いた半導体装置のパワーモジュール10Aである。このパワーモジュールは、ベース板910の一方の面にSiCにより形成された半導体チップ20が接合層930により接合されており、ベース板910の他方の面には、放熱板940が放熱板接合層41により接合されている。半導体チップ20の上面の電極端子とベース板10の金属層により形成された電極端子、または、ベース板10の金属層により形成された電極端子同士は、ボンディングワイヤ51、52、53により接続されている。このパワーモジュールでは、放熱板40の上のベース板10及び半導体チップ20は樹脂ケース60により覆われており、樹脂ケース60には外部との接続のための接続配線71、72、73が設けられている。また、樹脂ケース60の内部には、封止材61が入れられている。
図10に示す半導体装置のパワーモジュールでは、接合層930は厚さが100μmのSn-10Sbにより形成されており、この線膨張係数は、21ppm/Kである。ベース板910は、絶縁体部911が厚さ320μmのSi3N4と、金属層912及び913が各々の厚さ300μmのCuにより形成されており、VSiN/VCuの値は、1.07であり、線膨張係数は9ppm/Kである。放熱板940は、Cuにより形成されている。
図11及び図12は、図9に示され本実施形態における半導体装置のパワーモジュールと図10に示される比較に用いた半導体装置のパワーモジュールについて昇降温試験を行った結果である。図11及び図12では、本実施形態における半導体装置のパワーモジュール9A及び比較に用いた半導体装置のパワーモジュール10Aを各々3個作製して測定を行った。図11及び図12における実線は、本実施形態における半導体装置のパワーモジュール9Aにおける特性であり、破線は比較に用いた半導体装置のパワーモジュール10Aにおける特性である。
図11は、各々のパワーモジュールにおける熱抵抗の変化を調べたものであり、初期温度をT1とし、消費電力Pを投入した場合の温度をT2とした場合、Rth=(T1-T2)/Pにより算出される熱抵抗Rthの値の変化量を縦軸にしたものである。昇降温サイクルが500回程度までは、本実施形態における半導体装置のパワーモジュール9Aも比較に用いた半導体装置のパワーモジュール10Aもあまり変化はない。しかしながら、昇降温サイクルが500回を超え1000回程度になると、比較に用いた半導体装置のパワーモジュール10Aにおける熱抵抗の変化量が急増する。一方、本実施形態における半導体装置のパワーモジュール9Aでは、あまり変化がなく、変化量も10%以下である。
図12は、各々のパワーモジュールにおけるオン抵抗の変化を調べたものであり、初期のオン抵抗に対するオン抵抗の変化量を縦軸にしたものである。尚、初期においては、印加電圧が2Vにおいて流れる電流は100Aであり、初期のオン抵抗は2mΩである。昇降温サイクルが500回程度までは、本実施形態における半導体装置のパワーモジュール9Aも比較に用いた半導体装置のパワーモジュール10Aもあまり変化はない。しかしながら、昇降温サイクルが500回を超え1000回程度になると、比較に用いた半導体装置のパワーモジュール10Aにおけるオン抵抗の変化量が急増する。一方、本実施形態における半導体装置のパワーモジュール9Aでは、あまり変化がなく、変化量も10%以下である。
図11及び図12に示されるように、比較に用いた半導体装置のパワーモジュール10Aにおける熱抵抗の変化量やオン抵抗の変化量が急増するのは、接合層における接合面積が減少したことによるものと推察される。これに対し、本実施形態における半導体装置のパワーモジュール9Aでは、接合層における接合面積の減少は殆どないため、熱抵抗やオン抵抗の変化量はあまり変わらない。
また、本実施形態においては、半導体チップの両面にベース板を設けた構造のものであってもよい。具体的には、図13に示されるように、半導体チップ20の一方の面20aに第1の接合層131により第1のベース板111を接合し、他方の面20bに第2の接合層132により第2のベース板112を接合した構造のものであってもよい。尚、第1のベース板111及び第2のベース板112は、図6に示されるベース板10と同じ構造のものであり、絶縁体部11の両面に、金属層12、13が形成されている。また、第1の接合層131及び第2の接合層132は、接合層30と同じ材料により形成されている。
以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
10 ベース板
11 絶縁体部
12 金属層
13 金属層
20 半導体チップ
30 接合層
11 絶縁体部
12 金属層
13 金属層
20 半導体チップ
30 接合層
Claims (7)
- 炭化珪素を含む材料により形成されている半導体チップと、
板状の絶縁体部の両面に、金属層が形成されたベース板と、
前記ベース板の一方の面に、前記半導体チップを接合する接合材と、
を有し、
前記接合材は、接合後の融点が773℃以上の金属材料により形成されており、
前記接合材の厚さは、50μm以下であり、
前記ベース板の厚さは、500μm以上であり、
前記絶縁体部の厚さをtIとし、前記金属層の厚さをtMとした場合に、tI/tMの値は、4.3以上である半導体装置。 - 前記絶縁体部は、窒化珪素を含む材料により形成されており、
前記金属層は、銅または銀を含む材料により形成されている請求項1に記載の半導体装置。 - tI/tMの値は、18以下である請求項1または2に記載の半導体装置。
- tI/tMの値は、9.2以下である請求項1または2に記載の半導体装置。
- 炭化珪素を含む材料により形成されている半導体チップと、
絶縁体部の両面に金属層が形成されたベース板と、
前記ベース板の一方の面に前記半導体チップを接合する接合材と、
を有し、
前記接合材は、接合後の融点が773℃以上の金属材料により形成されており、
前記接合材の厚さは、50μm以下であり、
前記ベース板の厚さは、500μm以上であり、
前記ベース板の線膨張係数は、2.9ppm/K以上、5.1ppm/K以下である半導体装置。 - 前記ベース板の厚さは、2mm以下である請求項1から5のいずれかに記載の半導体装置。
- 前記ベース板は第1のベース板であり、前記半導体チップの一方の面に前記第1のベース板が接合されているものであって、
前記半導体チップの他方の面には、接合材により第2のベース板が接合されており、
前記第2のベース板は、前記第1のベース板と、同じ構造のものである請求項1から6のいずれかに記載の半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019516888A JP7127641B2 (ja) | 2017-05-11 | 2017-12-12 | 半導体装置 |
US16/608,345 US11043465B2 (en) | 2017-05-11 | 2017-12-12 | Semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-094358 | 2017-05-11 | ||
JP2017094358 | 2017-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018207396A1 true WO2018207396A1 (ja) | 2018-11-15 |
Family
ID=64104514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044514 WO2018207396A1 (ja) | 2017-05-11 | 2017-12-12 | 半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11043465B2 (ja) |
JP (1) | JP7127641B2 (ja) |
WO (1) | WO2018207396A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021150922A (ja) * | 2020-03-23 | 2021-09-27 | 太陽誘電株式会社 | 圧電薄膜共振器、フィルタ、及びマルチプレクサ |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015008242A (ja) * | 2013-06-26 | 2015-01-15 | 三菱電機株式会社 | 電力用半導体装置 |
JP2016174165A (ja) * | 2011-12-20 | 2016-09-29 | 株式会社東芝 | 半導体装置 |
WO2017006916A1 (ja) * | 2015-07-08 | 2017-01-12 | 国立研究開発法人産業技術総合研究所 | 半導体装置及び半導体装置の製造方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5956231A (en) * | 1994-10-07 | 1999-09-21 | Hitachi, Ltd. | Semiconductor device having power semiconductor elements |
US6286206B1 (en) * | 1997-02-25 | 2001-09-11 | Chou H. Li | Heat-resistant electronic systems and circuit boards |
JP2002203942A (ja) * | 2000-12-28 | 2002-07-19 | Fuji Electric Co Ltd | パワー半導体モジュール |
US6689684B1 (en) * | 2001-02-15 | 2004-02-10 | Advanced Micro Devices, Inc. | Cu damascene interconnections using barrier/capping layer |
US6566242B1 (en) * | 2001-03-23 | 2003-05-20 | International Business Machines Corporation | Dual damascene copper interconnect to a damascene tungsten wiring level |
TWI312166B (en) * | 2001-09-28 | 2009-07-11 | Toppan Printing Co Ltd | Multi-layer circuit board, integrated circuit package, and manufacturing method for multi-layer circuit board |
JP4028452B2 (ja) * | 2003-08-27 | 2007-12-26 | Dowaホールディングス株式会社 | 電子部品搭載基板およびその製造方法 |
JP4664816B2 (ja) * | 2003-09-25 | 2011-04-06 | 株式会社東芝 | セラミック回路基板、その製造方法およびパワーモジュール |
JP4228926B2 (ja) | 2003-10-03 | 2009-02-25 | 富士電機デバイステクノロジー株式会社 | 半導体装置 |
JP4696532B2 (ja) * | 2004-05-20 | 2011-06-08 | 株式会社デンソー | パワー複合集積型半導体装置およびその製造方法 |
US8563869B2 (en) * | 2005-08-29 | 2013-10-22 | Hitachi Metals, Ltd. | Circuit board and semiconductor module using this, production method for circuit board |
US8273993B2 (en) * | 2006-03-08 | 2012-09-25 | Kabushiki Kaisha Toshiba | Electronic component module |
WO2008004552A1 (en) * | 2006-07-04 | 2008-01-10 | Kabushiki Kaisha Toshiba | Ceramic-metal bonded body, method for manufacturing the bonded body and semiconductor device using the bonded body |
US7755185B2 (en) * | 2006-09-29 | 2010-07-13 | Infineon Technologies Ag | Arrangement for cooling a power semiconductor module |
US20090278233A1 (en) * | 2007-07-26 | 2009-11-12 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
EP2282334B1 (en) * | 2008-05-16 | 2020-08-19 | Mitsubishi Materials Corporation | Method for producing substrate for power module |
EP2296177B1 (en) * | 2008-06-06 | 2021-04-14 | Mitsubishi Materials Corporation | Method for manufacturing a power module substrate |
HUE034429T2 (en) * | 2009-09-15 | 2018-02-28 | Toshiba Kk | Ceramic circuit board and method for producing it |
DE102009045181B4 (de) * | 2009-09-30 | 2020-07-09 | Infineon Technologies Ag | Leistungshalbleitermodul |
CN104350618B (zh) * | 2012-05-31 | 2017-07-25 | 松下知识产权经营株式会社 | Led模块 |
JP6259625B2 (ja) * | 2013-10-02 | 2018-01-10 | 日産自動車株式会社 | 絶縁基板と冷却器の接合構造体、その製造方法、パワー半導体モジュール、及びその製造方法 |
CN107251214B (zh) * | 2015-09-28 | 2019-08-27 | 株式会社东芝 | 氮化硅电路基板以及使用了该氮化硅电路基板的半导体模块 |
-
2017
- 2017-12-12 US US16/608,345 patent/US11043465B2/en active Active
- 2017-12-12 JP JP2019516888A patent/JP7127641B2/ja active Active
- 2017-12-12 WO PCT/JP2017/044514 patent/WO2018207396A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016174165A (ja) * | 2011-12-20 | 2016-09-29 | 株式会社東芝 | 半導体装置 |
JP2015008242A (ja) * | 2013-06-26 | 2015-01-15 | 三菱電機株式会社 | 電力用半導体装置 |
WO2017006916A1 (ja) * | 2015-07-08 | 2017-01-12 | 国立研究開発法人産業技術総合研究所 | 半導体装置及び半導体装置の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021150922A (ja) * | 2020-03-23 | 2021-09-27 | 太陽誘電株式会社 | 圧電薄膜共振器、フィルタ、及びマルチプレクサ |
JP7494420B2 (ja) | 2020-03-23 | 2024-06-04 | 太陽誘電株式会社 | 圧電薄膜共振器及びフィルタ |
Also Published As
Publication number | Publication date |
---|---|
JP7127641B2 (ja) | 2022-08-30 |
US20200365546A1 (en) | 2020-11-19 |
US11043465B2 (en) | 2021-06-22 |
JPWO2018207396A1 (ja) | 2020-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6632686B2 (ja) | 半導体装置および半導体装置の製造方法 | |
JP5656962B2 (ja) | 電子部品モジュール | |
JP4893095B2 (ja) | 回路基板およびこれを用いた半導体モジュール | |
US20120080800A1 (en) | Power module and method for manufacturing the same | |
JP5214936B2 (ja) | 半導体装置 | |
US10014237B2 (en) | Circuit board having a heat dissipating sheet with varying metal grain size | |
JP2008041752A (ja) | 半導体モジュールおよび半導体モジュール用放熱板 | |
JPH04162756A (ja) | 半導体モジュール | |
JP2009283741A (ja) | 半導体装置 | |
JP7273055B2 (ja) | 半導体装置 | |
TW201828480A (zh) | 半導體裝置及電力變換裝置 | |
US9589922B2 (en) | Electronic module and method of manufacturing the same | |
WO2017183222A1 (ja) | 半導体装置およびその製造方法 | |
JP5370460B2 (ja) | 半導体モジュール | |
Zhang et al. | A method for improving the thermal shock fatigue failure resistance of IGBT modules | |
JP5218621B2 (ja) | 回路基板およびこれを用いた半導体モジュール | |
WO2018207396A1 (ja) | 半導体装置 | |
JP5978589B2 (ja) | パワー半導体装置の製造方法 | |
JP6881304B2 (ja) | 半導体装置及び半導体装置の製造方法 | |
US20220003808A1 (en) | Semiconductor device and method for diagnosing deterioration of semiconductor device | |
JP2015026667A (ja) | 半導体モジュール | |
JP4555187B2 (ja) | パワーモジュールおよびその製造方法 | |
WO2021117402A1 (ja) | 半導体装置 | |
JP2004327732A (ja) | セラミック回路基板及び電気回路モジュール | |
JP2012169310A (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17909167 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019516888 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17909167 Country of ref document: EP Kind code of ref document: A1 |