WO2018205841A1 - 中孔NaY型沸石分子筛的制备方法 - Google Patents

中孔NaY型沸石分子筛的制备方法 Download PDF

Info

Publication number
WO2018205841A1
WO2018205841A1 PCT/CN2018/084609 CN2018084609W WO2018205841A1 WO 2018205841 A1 WO2018205841 A1 WO 2018205841A1 CN 2018084609 W CN2018084609 W CN 2018084609W WO 2018205841 A1 WO2018205841 A1 WO 2018205841A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
nay
zeolite molecular
mesoporous
preparing
Prior art date
Application number
PCT/CN2018/084609
Other languages
English (en)
French (fr)
Inventor
冯春峰
石友良
王杰华
张然
许莉
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2018205841A1 publication Critical patent/WO2018205841A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/205Faujasite type, e.g. type X or Y using at least one organic template directing agent; Hexagonal faujasite; Intergrowth products of cubic and hexagonal faujasite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Definitions

  • the invention relates to a catalyst carrier, in particular to a method for preparing a medium pore NaY zeolite molecular sieve.
  • the NaY type molecular sieve has a Si/Al ratio of generally 1.5 to 3. It belongs to a faujasite type (FAU) molecular sieve and has a three-dimensional twelve-membered ring channel structure, the orifice diameter is about 0.74 nm, and the inner cavity size is about 1.3 nm. . Due to its unique pore structure, suitable acidity and thermal stability, NaY molecular sieves are widely used in the petrochemical industry, especially in the fluid catalytic cracking (FCC) reaction.
  • FAU fluid catalytic cracking
  • the smaller pore size also increases the mass transfer resistance of the reactants and products, so that the reaction product cannot be diffused and deposited on the surface of the catalyst to form carbon deposits in time, thereby reducing the catalytic activity. Therefore, the smaller pore size limits the use of microporous zeolites in reactions involving macromolecules.
  • Mesoporous materials such as MCM-41s, have a larger pore size advantage than conventional zeolite molecular sieves, allowing larger diameter molecules to enter the pores and catalyzing reactions involving macromolecules.
  • a larger pore size reduces the mass transfer resistance and facilitates the diffusion of reactants and products.
  • due to the amorphous pore wall structure of mesoporous molecular sieves their acidity and hydrothermal stability are poor, especially compared to microporous zeolites, which limits their use in catalysis.
  • microporous template TPA can guide the formation of micropores on the mesoporous wall to form a composite molecular sieve having a micro mesoporous structure.
  • the two templating agents are competing with each other to form a mixture of mesoporous materials and microporous materials.
  • Fan Wei et al. prepared a three-dimensional ordered mesoporous (3DOm) carbon hard template with adjustable pore size, and successfully synthesized ordered nanocrystals using the hard template to produce intercrystalline mesopores.
  • the object of the present invention is to provide a preparation method of a medium pore NaY type zeolite molecular sieve.
  • the medium pore NaY type zeolite molecular sieve prepared by the method has large specific surface area, excellent pore structure, simple preparation steps and low cost.
  • the technical scheme adopted by the present invention is: a preparation method of a medium pore NaY type zeolite molecular sieve, comprising the following steps:
  • the aluminosilicate gel is crystallized, the crystallization temperature is 60-90 ° C, the crystallization time is 72-120 h;
  • step 2) The product of step 2) is calcined at 500-600 ° C for 4-8 h to remove the templating agent to obtain the mesoporous NaY zeolite molecular sieve.
  • step 1) the preparation of zeolite NaY directing agent is as follows: sodium hydroxide, sodium aluminate, silica sol and water by Na 2 O:Al 2 O 3 :SiO 2 :H 2 O
  • the mixture is uniformly mixed in a molar ratio of from 13.0 to 19.0:0.8 to 1.3:12.0 to 18.0:225.0 to 425.0, and then aged at 25 to 35 ° C for 15 to 25 hours.
  • the organic quaternary ammonium salt is tetradecyldimethylbenzyl ammonium chloride.
  • the aluminum source is sodium metaaluminate, aluminum sulfate or aluminum nitrate.
  • the silicon source is fumed silica, water glass, silica sol or tetraethyl orthosilicate.
  • step 2) after the aluminosilicate gel is crystallized, washing, filtration and drying treatment are sequentially performed.
  • the aging time is 16 to 22 hours.
  • the crystallization temperature is 75 to 85 ° C
  • the crystallization time is 84 to 110 h.
  • the calcination temperature is 530 to 580 ° C, and the calcination time is 5 to 7 h.
  • the mesoporous pore size of the mesoporous NaY type zeolite molecular sieve is concentrated at 2.5 to 8.0 nm.
  • the invention has the following advantages:
  • a silica sol is used as a silicon source.
  • a NaY zeolite molecular sieve directing agent is prepared, and then a mesoporous template is added to a sol-gel system for preparing a NaY zeolite molecular sieve, and is prepared by a low temperature hydrothermal method.
  • the pore NaY type zeolite is calcined by crystallization to remove the templating agent to obtain a mesoporous NaY type zeolite molecular sieve.
  • the mesoporous NaY type zeolite molecular sieve prepared by the invention has a crystalized pore wall structure, and the multi-stage pore structure zeolite molecular sieve can avoid defects of a single pore structure, and is a very valuable catalytic material, especially in the case of It has broad application prospects in reactions to macromolecules and diffusion-limited.
  • the mesoporous NaY zeolite molecular sieve prepared by the invention is composed of nanometer crystal grains of different particle sizes of 200 nm to 500 nm, and the crystallinity and thermal stability of the product are good.
  • the nano-grain makes the mesoporous NaY zeolite molecular sieve have a larger outer surface area, so that more active centers are exposed, effectively eliminating the diffusion resistance, and the catalyst efficiency is fully utilized, thereby improving the macromolecular reaction performance; It has more exposed pores and is not easily blocked by reactive deposits, which is beneficial for long reaction cycle operation.
  • the invention adopts the hydrothermal synthesis method at a lower crystallization temperature, simplifies the synthesis step, has a simple preparation process, and the NaY type molecular sieve directing agent has good uniformity in the mixed liquid.
  • the self-made NaY type molecular sieve directing agent of the invention utilizes tetradecyl dimethyl benzyl ammonium chloride (TDBAC) organic quaternary ammonium salt as a mesoporous templating agent, and can be aggregated by using a long alkyl chain moiety.
  • TDBAC tetradecyl dimethyl benzyl ammonium chloride
  • the pores form a mesoporous NaY zeolite molecular sieve, thereby providing a novel and simple and feasible template for the preparation of the mesoporous NaY zeolite molecular sieve.
  • Figure 1 is an X-ray diffraction diagram of a mesoporous NaY zeolite molecular sieve prepared in accordance with the present invention in comparison with a conventional microporous NaY zeolite.
  • FIG. 3 is a nitrogen adsorption-desorption isotherm of a mesoporous NaY type zeolite molecular sieve prepared by the present invention and a conventional microporous NaY type zeolite.
  • step (3) The material prepared in the step (2) is charged into a stainless steel reaction vessel containing a polytetrafluoroethylene liner, and crystallized at 80 ° C for 72 hours. After the crystallization is finished, the solid product is subjected to suction filtration, washing and drying. Thereafter, the organic templating agent was removed by calcination at 550 ° C for 8 hours in the air to obtain a mesoporous NaY zeolite molecular sieve, which was named MNY-1.
  • step (3) The material prepared in the step (2) is charged into a stainless steel reaction vessel containing a polytetrafluoroethylene liner, and crystallized at 80 ° C for 72 hours. After the crystallization is finished, the solid product is subjected to suction filtration, washing and drying. Thereafter, the organic templating agent was removed by calcination at 550 ° C for 8 hours in the air to obtain a mesoporous NaY zeolite molecular sieve, which was named MNY-2.
  • step (3) The material prepared in the step (2) is charged into a stainless steel reaction vessel containing a polytetrafluoroethylene liner, and crystallized at 80 ° C for 72 hours. After the crystallization is finished, the solid product is subjected to suction filtration, washing and drying. Thereafter, the organic templating agent was removed by calcination at 550 ° C for 8 hours in the air to obtain a mesoporous NaY zeolite molecular sieve, which was named MNY-3.
  • step (3) The material prepared in the step (2) is charged into a stainless steel reaction vessel containing a polytetrafluoroethylene liner, and crystallized at 80 ° C for 72 hours. After the crystallization is finished, the solid product is subjected to suction filtration, washing and drying. Thereafter, the organic templating agent was removed by calcination at 550 ° C for 8 hours in the air to obtain a mesoporous NaY zeolite molecular sieve, which was named MNY-4.
  • step (3) The material prepared in the step (2) is charged into a stainless steel reaction vessel containing a polytetrafluoroethylene liner, and crystallized at 80 ° C for 72 hours. After the crystallization is finished, the solid product is subjected to suction filtration, washing and drying. Thereafter, the organic template was removed by calcination at 550 ° C for 8 hours in the air to obtain a mesoporous NaY zeolite molecular sieve, which was named MNY-5.
  • step (3) The material prepared in the step (2) is charged into a stainless steel reaction vessel containing a polytetrafluoroethylene liner, and crystallized at 80 ° C for 72 hours. After the crystallization is finished, the solid product is subjected to suction filtration, washing and drying. Thereafter, the organic template was removed by calcination at 550 ° C for 8 hours in the air to obtain a mesoporous NaY zeolite molecular sieve, which was named MNY-6.
  • step (3) The material prepared in the step (2) is charged into a stainless steel reaction vessel containing a polytetrafluoroethylene liner, and crystallized at 80 ° C for 72 hours. After the crystallization is finished, the solid product is subjected to suction filtration, washing and drying. Thereafter, the organic templating agent was removed by calcination at 550 ° C for 8 hours in the air to obtain a mesoporous NaY zeolite molecular sieve, which was named MNY-7.
  • step (3) The material prepared in the step (2) is charged into a stainless steel reaction vessel containing a polytetrafluoroethylene liner, and crystallized at 80 ° C for 72 hours. After the crystallization is finished, the solid product is subjected to suction filtration, washing and drying. After that, it was calcined in air at 550 ° C for 8 h to obtain a microporous NaY zeolite molecular sieve, which was named NY-1'.
  • the structure and performance data of the NaY zeolite molecular sieves prepared in Examples 1 to 7 and Comparative Example 1 are shown in Table 1 below.
  • the properties, structure and specific morphology of the NaY zeolite molecular sieve prepared in Example 3 are shown in Figures 1-4.
  • the sample was characterized by Shimadzu LabX XRD-6000 X-ray diffractometer.
  • the test conditions were: Cu target K ⁇ radiation source, Ni filter, tube working voltage 40kV, tube current 30mA, scanning step length 0.02°, scanning range 5-35°, scanning speed 8°/min, room temperature; the results are shown in Figure 1.
  • the sample shows the characteristic diffraction peak of typical NaY zeolite and matches the diffraction peak of ordinary NaY zeolite, indicating the product. There is a NaY-type zeolite phase.
  • the surface morphology of the sample was characterized by a Japanese HITACHI S-4800 scanning electron microscope. The results are shown in Figure 2. The sample exhibited a uniform layered morphology.
  • the pore structure of the product was analyzed by a US ASAP 2020 N 2 adsorption analyzer.
  • the mesoporous NaY zeolite molecular sieve of the present invention was in the low P/P 0 region of 0.0 ⁇ P/P 0 ⁇ 0.01.
  • the amount of adsorption increases sharply with the increase of P/P 0 due to the filling of N 2 in the micropore region; a hysteresis loop occurs in the region of 0.4 ⁇ P/P0 ⁇ 0.9, which is due to the capillary of N 2 in the mesopores.

Abstract

一种中孔NaY型沸石分子筛的制备方法,包括以下步骤:1)将硅源、铝源及水在25-35℃下混合,调pH至9-12,并将NaY型分子筛导向剂滴入,再将有机季铵盐作为模板剂逐滴加入得到硅铝酸盐凝胶;2)将硅铝酸盐凝胶进行晶化;3)将步骤2)的产物焙烧除去模板剂。得到的分子筛具有晶化的孔壁结构,多级孔结构的沸石分子筛避免了单一孔结构的缺陷,是一种非常有价值的催化材料,特别在涉及大分子并受扩散限制的反应中具有广阔的应用前景。该方法利用十四烷基二甲基苄基氯化铵有机季铵盐作为中孔模板剂,为中孔NaY型沸石分子筛的制备提供了一种新的模板剂。

Description

中孔NaY型沸石分子筛的制备方法 技术领域
本发明涉及催化剂载体,具体地指一种中孔NaY型沸石分子筛的制备方法。
背景技术
NaY型分子筛的Si/Al比一般在1.5~3之间,属于八面沸石型(FAU)分子筛,具有三维十二元环孔道结构,孔口直径约为0.74nm,内腔尺寸约为1.3nm。由于NaY型分子筛独特的孔道结构、适合的酸性和热稳定性,被广泛应用于石化工业中,尤其是在流动床催化裂化(FCC)反应中起到了不可替代的作用。但由于NaY型沸石分子筛相对狭窄的孔道结构导致直径较大的重油分子很难进入到孔径只有0.74nm左右的孔道中,且沸石内表面分布的活性中心对反应也没有作用,极大地降低了活性位的有效利用率,此外,较小的孔径也增大反应物和生成物的传质阻力,使反应产物不能及时扩散沉积在催化剂表面形成积碳,降低了催化活性。因此,较小的孔径限制了微孔沸石在涉及大分子反应中的应用。
介孔材料,如:MCM-41s,和常规的沸石分子筛相比,其具有更大的孔径优势,允许较大直径的分子进入孔道,可以催化涉及大分子的反应。另一方面,较大的孔径减小了传质阻力,有利于反应物和生成物的扩散。但是,由于介孔分子筛无定形的孔壁结构导致其酸性和水热稳定性较差,尤其与微孔沸石相比要低很多,这些因素限制了其在催化方面的应用。
为了克服微孔沸石和介孔分子筛各自的局限性,很多研究者致力于寻找一种结合微孔沸石材料和介孔材料二者优点的新材料,既具有高水热稳定性和较高酸强度又包含有较大孔径,使二者优势互补,可在催化领域得到较大应用。Karlsson Arne等人将介孔模板剂十六烷基三甲基溴化铵(CTAB)加入到含有四丙基铵(TPA)的合成MFI沸石的凝聚溶液中,期望CTAB能导向介孔结构的形成,而微孔模板剂TPA可以在介孔壁上导向微孔的形成,从而形成具有微介孔结构的复合分子筛。但实际上两种模板剂是相互竞争组装,形成的是介孔材料和微孔材料的混合物。2008年,Fan Wei等人制备了孔径可调的三维有序介孔(3DOm)碳硬模板,利用该硬模板成功合成了有序的纳米单晶,产生了晶间介孔。这些研究成果实现了多级孔分子筛的孔道结构,材料既含有介孔,又具有晶化的孔壁结构,但是这些方法存在合成成本过高、制备步骤复杂等不利于工业化生产的缺点。
发明内容
本发明的目的就是要提供一种中孔NaY型沸石分子筛的制备方法,该方法制备的中孔NaY型沸石分子筛比表面积大,孔道结构优良,制备步骤简单,且成本低。
为实现上述目的,本发明采用的技术方案是:一种中孔NaY型沸石分子筛的制备方法,包括以下步骤:
1)先将硅源、铝源及水在25~35℃下混合均匀,并调pH至9~12,然后将NaY型分子筛导向剂滴入混合均匀,搅拌3~5h后,再将有机季铵盐作为模板剂逐滴加入,继续搅拌0.5~2h,得到硅铝酸盐凝胶,所述NaY型分子筛导向剂,铝源,硅源,模板剂及水按最终硅铝酸盐凝胶体系中Na 2O∶Al 2O 3∶SiO 2∶模板剂∶H 2O的摩尔比为2.0~4.0∶0.8~1.3∶8.0~9.7∶0.09~0.36∶200~240的比例加入;
2)将所述硅铝酸盐凝胶进行晶化,晶化温度为60~90℃,晶化时间为72~120h;
3)将步骤2)的产物在500~600℃下焙烧4~8h除去模板剂,即可得到所述中孔NaY型沸石分子筛。
进一步地,所述步骤1)中,NaY型分子筛导向剂的制备方法如下:将氢氧化钠、偏铝酸钠、硅溶胶和水按Na 2O∶Al 2O 3∶SiO 2∶H 2O为13.0~19.0∶0.8~1.3∶12.0~18.0∶225.0~425.0的摩尔比例充分混合均匀,然后在25~35℃温度下老化15~25h。
进一步地,所述步骤1)中,所述有机季铵盐为十四烷基二甲基苄基氯化铵。
进一步地,所述步骤1)中,所述铝源为偏铝酸钠、硫酸铝或硝酸铝。
进一步地,所述步骤1)中,所述硅源为气相二氧化硅、水玻璃、硅溶胶或正硅酸乙酯。
进一步地,所述步骤2)中,将所述硅铝酸盐凝胶晶化后,依次进行洗涤、过滤和干燥处理。
进一步地,所述NaY型分子筛导向剂的制备方法中,将氢氧化钠、偏铝酸钠、硅溶胶和水按Na 2O∶Al 2O 3∶SiO 2∶H 2O为15.0~17.0∶0.9~1.2∶14.0~16.0∶300.0~380.0的摩尔比例混合。
进一步地,所述老化时间为16~22h。
进一步地,所述步骤2)中,晶化温度为75~85℃,晶化时间为84~110h。
进一步地,所述步骤3)中,焙烧温度为530~580℃,焙烧时间为5~7h。
更进一步地,所述步骤3)中,所述中孔NaY型沸石分子筛的中孔孔径集中在2.5~8.0nm。
本发明与现有技术相比,具有以下优点:
其一,本发明以硅溶胶为硅源,首先制备了NaY型沸石分子筛导向剂,然后将介孔模板剂加入到制备NaY型沸石分子筛的溶胶-凝胶体系中,采用低温水热法制备中孔NaY型沸石,晶化后焙烧去除模板剂,得到中孔NaY型沸石分子筛。本发明制备的中孔NaY型沸石分子筛,具有晶化的孔壁结构,这种多级孔结构的沸石分子筛可避免单一孔结构的缺陷,是一种非常有价值的催化材料,特别是在涉及到大分子并受扩散限制的反应中具有广阔的应用前景。
其二,本发明制备的中孔NaY型沸石分子筛,是由200nm到500nm的不同颗粒大小的纳米晶粒聚集而成,产品的结晶度及热稳定性好。纳米晶粒使得中孔NaY型沸石分子筛具有更大的外表面积,使更多的活性中心得到暴露,有效地消除扩散阻力,而使催化剂效率得到充分发挥,从而可以改善大分子反应性能;另外,具有更多暴露在外部的孔口,不易被反应沉积物堵塞,有利于长反应周期运转。
其三,本发明在较低的晶化温度下采用水热合成法,简化了合成步骤,制备工艺简单,且NaY型分子筛导向剂在混合液中均一性好。
其四,本发明自制NaY型分子筛导向剂,并利用十四烷基二甲基苄基氯化铵(TDBAC)有机季铵盐作为中孔模板剂,利用长的烷基链部分可聚集形成中孔,形成中孔NaY型沸石分子筛,从而为中孔NaY型沸石分子筛的制备提供了一种新的且制备过程简单可行的模板剂。
附图说明
图1为本发明制备的中孔NaY型沸石分子筛与普通微孔NaY型沸石对比的X射线衍射图。
图2为本发明制备的中孔NaY型沸石分子筛材料的扫描电镜照片。
图3为本发明制备的介孔NaY型沸石分子筛和普通的微孔NaY型沸石的氮气吸附-脱附等温线。
图4为本发明制备的介孔NaY型沸石分子筛和普通的微孔NaY型沸石根据BJH模型计算得到的孔径分布曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
以下各实施例中,分子筛的晶型与相对结晶度由XRD测定,表面积及孔结构参数由低温氮气吸脱附测定,具体数据见表1。
实施例1
(1)将6.00g的氢氧化钠(96wt%NaOH,工业级)、1.24g的偏铝酸钠(41.0wt%Al 2O 3,工业级)、18.75g蒸馏水、15.00g硅溶胶(30wt%SiO 2,工业级)混合均匀,超声震荡1h,在30℃下搅拌20h得到NaY型沸石导向剂。
(2)将1.12g的氢氧化钠(96wt%NaOH,工业级)、2.49g偏铝酸钠(41.0wt%Al 2O 3,工业级)、25.67g蒸馏水、16.80g硅溶胶(30wt%SiO 2,工业级)在30℃下混合均匀,再将1.84g步骤(1)制得的导向剂缓慢滴入其中,混合均匀,搅拌4h后,再将0.74g十四烷基二甲基苄基氯化铵(50wt%TDBAC,工业级)逐滴加入,继续搅拌1h,得到粘稠状的硅铝酸盐凝胶。
(3)将经过步骤(2)制成的物料装入含聚四氟乙烯内衬的不锈钢反应釜中,在80℃下晶化72h,晶化结束后,固体产物经抽滤、洗涤和干燥后再在空气中550℃下焙烧8h除去有机模板剂,得到中孔NaY型沸石分子筛,命名为MNY-1。
实施例2
(1)将6.00g的氢氧化钠(96wt%NaOH,工业级)、1.24g的偏铝酸钠(41.0wt%Al 2O 3,工业级)、18.75g蒸馏水、15.00g硅溶胶(30wt%SiO 2,工业级)混合均匀,超声震荡1h,在30℃下搅拌20h得到NaY型沸石导向剂。
(2)将1.12g的氢氧化钠(96wt%NaOH,工业级)、2.49g偏铝酸钠(41.0wt%Al 2O 3,工业级)、25.30g蒸馏水、16.80g硅溶胶(30wt%SiO 2,工业级)在30℃下混合均匀,再将1.84g步骤(1)制得的导向剂缓慢滴入其中,混合均匀,搅拌4h后,再将1.47g十四烷基二甲基苄基氯化铵(50wt%TDBAC,工业级)逐滴加入,继续搅拌1h,得到粘稠状的硅铝酸盐凝胶。
(3)将经过步骤(2)制成的物料装入含聚四氟乙烯内衬的不锈钢反应釜中,在80℃下晶化72h,晶化结束后,固体产物经抽滤、洗涤和干燥后再在空气中550℃下焙烧8h 除去有机模板剂,得到中孔NaY型沸石分子筛,命名为MNY-2。
实施例3
(1)将6.00g的氢氧化钠(96wt%NaOH,工业级)、1.24g的偏铝酸钠(41.0wt%Al 2O 3,工业级)、18.75g蒸馏水、15.00g硅溶胶(30wt%SiO 2,工业级)混合均匀,超声震荡1h,在30℃下搅拌20h得到NaY型沸石导向剂。
(2)将1.12g的氢氧化钠(96wt%NaOH,工业级)、2.49g偏铝酸钠(41.0wt%Al 2O 3,工业级)、24.94g蒸馏水、16.80g硅溶胶(30wt%SiO 2,工业级)在30℃下混合均匀,再将1.84g步骤(1)制得的导向剂缓慢滴入其中,混合均匀,搅拌4h后,再将2.21g十四烷基二甲基苄基氯化铵(50wt%TDBAC,工业级)逐滴加入,继续搅拌1h,得到粘稠状的硅铝酸盐凝胶。
(3)将经过步骤(2)制成的物料装入含聚四氟乙烯内衬的不锈钢反应釜中,在80℃下晶化72h,晶化结束后,固体产物经抽滤、洗涤和干燥后再在空气中550℃下焙烧8h除去有机模板剂,得到中孔NaY型沸石分子筛,命名为MNY-3。
实施例4
(1)将6.00g的氢氧化钠(96wt%NaOH,工业级)、1.24g的偏铝酸钠(41.0wt%Al 2O 3,工业级)、18.75g蒸馏水、15.00g硅溶胶(30wt%SiO 2,工业级)混合均匀,超声震荡1h,在30℃下搅拌20h得到NaY型沸石导向剂。
(2)将5.21mL的2mol/L的HCl、2.49g偏铝酸钠(41.0wt%Al 2O 3,工业级)、22.72g蒸馏水、19.38g水玻璃(模数为3.1)在30℃下混合均匀,再将1.84g步骤(1)制得的导向剂缓慢滴入其中,混合均匀,搅拌4h后,再将1.47g十四烷基二甲基苄基氯化铵(50wt%TDBAC,工业级)逐滴加入,继续搅拌1h,得到粘稠状的硅铝酸盐凝胶。
(3)将经过步骤(2)制成的物料装入含聚四氟乙烯内衬的不锈钢反应釜中,在80℃下晶化72h,晶化结束后,固体产物经抽滤、洗涤和干燥后再在空气中550℃下焙烧8h除去有机模板剂,得到介孔NaY型沸石分子筛,命名为MNY-4。
实施例5
(1)将6.00g的氢氧化钠(96wt%NaOH,工业级)、1.24g的偏铝酸钠(41.0wt%Al 2O 3,工业级)、18.75g蒸馏水、15.00g硅溶胶(30wt%SiO 2,工业级)混合均匀,超声震荡1h,在30℃下搅拌20h得到NaY型沸石导向剂。
(2)将5.21mL的2mol/L的HCl、2.49g偏铝酸钠(41.0wt%Al 2O 3,工业级)、22.35g蒸馏水、19.38g水玻璃(模数为3.1)在30℃下混合均匀,再将1.84g步骤(1)制得的导向剂缓慢滴入其中,混合均匀,搅拌4h后,再将2.21g十四烷基二甲基苄基氯化铵(50wt%TDBAC,工业级)逐滴加入,继续搅拌1h,得到粘稠状的硅铝酸盐凝胶。
(3)将经过步骤(2)制成的物料装入含聚四氟乙烯内衬的不锈钢反应釜中,在80℃下晶化72h,晶化结束后,固体产物经抽滤、洗涤和干燥后再在空气中550℃下焙烧8h除去有机模板剂,得到介孔NaY型沸石分子筛,命名为MNY-5。
实施例6
(1)将6.00g的氢氧化钠(96wt%NaOH,工业级)、1.24g的偏铝酸钠(41.0wt%Al 2O 3,工业级)、18.75g蒸馏水、15.00g硅溶胶(30wt%SiO 2,工业级)混合均匀,超声震荡1h,在30℃下搅拌20h得到NaY型沸石导向剂。
(2)将1.17g的氢氧化钠(96wt%NaOH,工业级)、2.49g偏铝酸钠(41.0wt%Al 2O 3,工业级)、37.06g蒸馏水、5.14g白炭黑(98wt%SiO 2,工业级)在30℃下混合均匀,再将1.84g步骤(1)制得的导向剂缓慢滴入其中,混合均匀,搅拌4h后,再将1.47g十四烷基二甲基苄基氯化铵(50wt%TDBAC,工业级)逐滴加入,继续搅拌1h,得到粘稠状的硅铝酸盐凝胶。
(3)将经过步骤(2)制成的物料装入含聚四氟乙烯内衬的不锈钢反应釜中,在80℃下晶化72h,晶化结束后,固体产物经抽滤、洗涤和干燥后再在空气中550℃下焙烧8h除去有机模板剂,得到介孔NaY型沸石分子筛,命名为MNY-6。
实施例7
(1)将6.00g的氢氧化钠(96wt%NaOH,工业级)、1.24g的偏铝酸钠(41.0wt%Al 2O 3,工业级)、18.75g蒸馏水、15.00g硅溶胶(30wt%SiO 2,工业级)混合均匀,超声震荡1h,在30℃下搅拌20h得到NaY型沸石导向剂。
(2)将1.17g的氢氧化钠(96wt%NaOH,工业级)、2.49g偏铝酸钠(41.0wt%Al 2O 3,工业级)、24.10g蒸馏水、18.00g正硅酸乙酯(28wt%SiO 2,工业级)在30℃下混合均匀,再将1.84g步骤(1)制得的导向剂缓慢滴入其中,混合均匀,搅拌4h后,再将1.47g十四烷基二甲基苄基氯化铵(50wt%TDBAC,工业级)逐滴加入,继续搅拌1h,得到粘稠状的硅铝酸盐凝胶。
(3)将经过步骤(2)制成的物料装入含聚四氟乙烯内衬的不锈钢反应釜中,在80℃下晶化72h,晶化结束后,固体产物经抽滤、洗涤和干燥后再在空气中550℃下焙烧8h除去有机模板剂,得到介孔NaY型沸石分子筛,命名为MNY-7。
对比例1
(1)将6.00g的氢氧化钠(96wt%NaOH,工业级)、1.24g的偏铝酸钠(41.0wt%Al2O3,工业级)、18.75g蒸馏水、15.00g硅溶胶(30wt%SiO2,工业级)混合均匀,超声震荡1h,在30℃下搅拌20h得到NaY型沸石导向剂。
(2)将1.12g的氢氧化钠(96wt%NaOH,工业级)、2.49g偏铝酸钠(41.0wt%Al2O3,工业级)、26.04g蒸馏水、16.80g硅溶胶(30wt%SiO2,工业级)在30℃下混合均匀,再将1.84g步骤(1)制得的导向剂缓慢滴入其中,混合均匀,搅拌4h后,得到粘稠状的硅铝酸盐凝胶。
(3)将经过步骤(2)制成的物料装入含聚四氟乙烯内衬的不锈钢反应釜中,在80℃下晶化72h,晶化结束后,固体产物经抽滤、洗涤和干燥后再在空气中550℃下焙烧8h,得到微孔NaY型沸石分子筛,命名为NY-1′。
实施例1~7及对比例1制得的NaY型沸石分子筛的结构及性能数据见下表1。实施例3制得的NaY型沸石分子筛的性能、结构及具体形貌见图1~4。其中,采用日本岛津LabX XRD-6000型X射线衍射仪对样品进行表征,测试条件为:Cu靶Kα辐射源,Ni滤波,管工作电压40kV,管电流30mA,扫描步长0.02°,扫描范围5-35°,扫描速度8°/min,室温;结果如图1所示,样品呈现出了典型的NaY型沸石的特征衍射峰,并与普通NaY型沸石衍射峰匹配的比较好,说明产物中存在NaY型沸石相。采用日本HITACHI S-4800型扫描电子显微镜对样品的表面形貌进行表征,结果如图2所示,样品呈现了均一的层状形貌。
采用美国ASAP 2020型N 2吸附分析仪对产物的孔结构进行分析,如图3所示,本发明的中孔NaY沸石分子筛表在0.0<P/P 0<0.01的低P/P 0区,吸附量随P/P 0的增加而急剧增大,这是由于N 2在微孔区的填充;在0.4<P/P0<0.9区出现滞回环,这是由于N 2在中孔中的毛细管凝聚造成的;在P/P 0>0.9的区域,吸附量又上升,是由于N 2在颗粒间形成的大孔中的吸附,说明样品中的微-中-大孔共存。图4为根据脱附BJH模型计算得到的孔径分布曲线,说明本发明的中孔NaY型沸石分子筛存在较窄的介孔孔径分 布,其平均孔径为5.5nm。
表1
Figure PCTCN2018084609-appb-000001

Claims (11)

  1. 一种中孔NaY型沸石分子筛的制备方法,其特征在于:包括以下步骤:
    1)先将硅源、铝源及水在25~35℃下混合均匀,并调pH至9~12,然后将NaY型分子筛导向剂滴入混合均匀,搅拌3~5h后,再将有机季铵盐作为模板剂逐滴加入,继续搅拌0.5~2h,得到硅铝酸盐凝胶,所述NaY型分子筛导向剂,铝源,硅源,模板剂及水按最终硅铝酸盐凝胶体系中Na 2O∶Al 2O 3∶SiO 2∶模板剂∶H 2O的摩尔比为2.0~4.0∶0.8~1.3∶8.0~9.7∶0.09~0.36∶200~240的比例加入;
    2)将所述硅铝酸盐凝胶进行晶化,晶化温度为60~90℃,晶化时间为72~120h;
    3)将步骤2)的产物在500~600℃下焙烧4~8h除去模板剂,即可得到所述中孔NaY型沸石分子筛。
  2. 根据权利要求1所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述步骤1)中,NaY型分子筛导向剂的制备方法如下:将氢氧化钠、偏铝酸钠、硅溶胶和水按Na 2O∶Al 2O 3∶SiO 2∶H 2O为13.0~19.0∶0.8~1.3∶12.0~18.0∶225.0~425.0的摩尔比例充分混合均匀,然后在25~35℃温度下老化15~25h。
  3. 根据权利要求1或2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述步骤1)中,所述有机季铵盐为十四烷基二甲基苄基氯化铵。
  4. 根据权利要求1或2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述步骤1)中,所述铝源为偏铝酸钠、硫酸铝或硝酸铝。
  5. 根据权利要求1或2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述步骤1)中,所述硅源为气相二氧化硅、水玻璃、硅溶胶或正硅酸乙酯。
  6. 根据权利要求1或2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述步骤2)中,将所述硅铝酸盐凝胶晶化后,依次进行洗涤、过滤和干燥处理。
  7. 根据权利要求2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述NaY型分子筛导向剂的制备方法中,将氢氧化钠、偏铝酸钠、硅溶胶和水按Na 2O∶Al 2O 3∶SiO 2∶H 2O为15.0~17.0∶0.9~1.2∶14.0~16.0∶300.0~380.0的摩尔比例混合。
  8. 根据权利要求2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述老化时间为16~22h。
  9. 根据权利要求1或2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所 述步骤2)中,晶化温度为75~85℃,晶化时间为84~110h。
  10. 根据权利要求1或2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述步骤3)中,焙烧温度为530~580℃,焙烧时间为5~7h。
  11. 根据权利要求1或2所述中孔NaY型沸石分子筛的制备方法,其特征在于:所述步骤3)中,所述中孔NaY型沸石分子筛的中孔孔径集中在2.5~8.0nm。
PCT/CN2018/084609 2017-05-08 2018-04-26 中孔NaY型沸石分子筛的制备方法 WO2018205841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710316861.4A CN107140656B (zh) 2017-05-08 2017-05-08 中孔NaY型沸石分子筛的制备方法
CN201710316861.4 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018205841A1 true WO2018205841A1 (zh) 2018-11-15

Family

ID=59776954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084609 WO2018205841A1 (zh) 2017-05-08 2018-04-26 中孔NaY型沸石分子筛的制备方法

Country Status (2)

Country Link
CN (1) CN107140656B (zh)
WO (1) WO2018205841A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408482A (zh) * 2020-10-28 2021-02-26 沈阳化工大学 一种钼改性铝镍非晶合金催化剂的碱溶母液综合利用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107140656B (zh) * 2017-05-08 2019-07-02 武汉凯迪工程技术研究总院有限公司 中孔NaY型沸石分子筛的制备方法
CN109694090B (zh) * 2017-10-20 2021-03-30 中国石油化工股份有限公司 Scm-13分子筛及其制备方法
CN110054197B (zh) * 2019-04-11 2021-01-15 北京航空航天大学 沸石分子筛及其制备方法、放射性核素锶吸附组合物
CN111302353A (zh) * 2020-02-11 2020-06-19 中科催化新技术(大连)股份有限公司 一种复合介-微孔结构sapo-34分子筛及其合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110171121A1 (en) * 2010-01-08 2011-07-14 Rive Technology, Inc. Compositions and methods for making stabilized mesoporous materials
CN102259889A (zh) * 2011-06-30 2011-11-30 温州大学 一种y型介孔沸石的合成方法
CN102774854A (zh) * 2011-05-12 2012-11-14 北京化工大学 一种新型介-微孔NaY分子筛合成方法
CN103449469A (zh) * 2012-06-01 2013-12-18 中国石油天然气股份有限公司 一种提高稳定性的NaY分子筛制备方法
CN107140656A (zh) * 2017-05-08 2017-09-08 武汉凯迪工程技术研究总院有限公司 中孔NaY型沸石分子筛的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214003B (zh) * 2013-04-09 2014-12-31 华南理工大学 一种介孔y型沸石分子筛及其制备方法
CN104891523B (zh) * 2014-03-07 2019-01-04 中国石油天然气股份有限公司 一种介孔y型分子筛的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110171121A1 (en) * 2010-01-08 2011-07-14 Rive Technology, Inc. Compositions and methods for making stabilized mesoporous materials
CN102774854A (zh) * 2011-05-12 2012-11-14 北京化工大学 一种新型介-微孔NaY分子筛合成方法
CN102259889A (zh) * 2011-06-30 2011-11-30 温州大学 一种y型介孔沸石的合成方法
CN103449469A (zh) * 2012-06-01 2013-12-18 中国石油天然气股份有限公司 一种提高稳定性的NaY分子筛制备方法
CN107140656A (zh) * 2017-05-08 2017-09-08 武汉凯迪工程技术研究总院有限公司 中孔NaY型沸石分子筛的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN, WEIJUAN ET AL.: "Synthesis and Characterization of Zeolite NaY with Small Crystal Size", CONTEMPORARY CHEMICAL INDUSTRY, 31 May 2015 (2015-05-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408482A (zh) * 2020-10-28 2021-02-26 沈阳化工大学 一种钼改性铝镍非晶合金催化剂的碱溶母液综合利用方法

Also Published As

Publication number Publication date
CN107140656A (zh) 2017-09-08
CN107140656B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2018205841A1 (zh) 中孔NaY型沸石分子筛的制备方法
TWI490167B (zh) 使用奈米結晶質zsm-5晶種製備zsm-5沸石之方法
WO2015024380A1 (zh) 一种具有中、微孔复合孔道结构的Beta分子筛及其合成方法
CN107512728B (zh) 插卡结构多级孔fau型沸石分子筛的制备方法
CN109205642B (zh) 一种中微双孔zsm-5沸石纳米薄片的制备方法
CN113694961B (zh) 一种纳米多级孔beta结构分子筛催化剂及其制备方法和应用
CN112794338B (zh) Zsm-5分子筛及其制备方法和应用
CN104043477A (zh) 一种zsm-5/mcm-48复合分子筛及其制备方法和应用
CN106219569B (zh) 一种无二次模板一步制备多级孔沸石的方法
WO2016145619A1 (zh) 一种具有介孔和微孔的丝光沸石的制备方法及应用
WO2018205839A1 (zh) 柴油和喷气燃料生产用加氢裂化催化剂及其制备方法
CN109534358B (zh) 一种中空多级孔Beta分子筛及其制备方法和应用
CN109694086B (zh) 纳米zsm-5沸石分子筛聚集体的制备方法
WO2022148416A1 (zh) Zsm-23分子筛及其制备方法
Liu et al. A facile strategy of preparing nanosized NaY zeolite by stimulating negative crystals to accelerate the formation of D6R units
WO2018218736A1 (zh) 具有bog结构的硅铝沸石分子筛及其制备方法
CN111689505A (zh) 一种介-微多级孔结构zsm-5分子筛的制备方法
CN102502685B (zh) 一种介孔lta沸石的制备方法
Zhang et al. Synthesis of hierarchical ZSM-5 composed of nanocrystals without a secondary template
CN113830778B (zh) ZSM-5/β核壳型分子筛及其合成方法和应用
CN112850742B (zh) 一种多级孔y型分子筛及其合成方法
CN112723374B (zh) 一种NaY分子筛及其合成方法
CN113083355A (zh) 一种Fe-ZSM-5催化剂及其制备方法和用途
WO2020227888A1 (zh) 一种zsm-57分子筛及其制备方法
CN107686119B (zh) 一种多级孔硅铝分子筛纳米簇及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798170

Country of ref document: EP

Kind code of ref document: A1