WO2018205667A1 - 蒸镀装置以及显示器件制造设备 - Google Patents

蒸镀装置以及显示器件制造设备 Download PDF

Info

Publication number
WO2018205667A1
WO2018205667A1 PCT/CN2018/071775 CN2018071775W WO2018205667A1 WO 2018205667 A1 WO2018205667 A1 WO 2018205667A1 CN 2018071775 W CN2018071775 W CN 2018071775W WO 2018205667 A1 WO2018205667 A1 WO 2018205667A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat sensitive
magnetic adsorption
vapor deposition
substrate
Prior art date
Application number
PCT/CN2018/071775
Other languages
English (en)
French (fr)
Inventor
杜小波
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/080,454 priority Critical patent/US20190256964A1/en
Publication of WO2018205667A1 publication Critical patent/WO2018205667A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • At least one embodiment of the present disclosure is directed to an evaporation device and a display device manufacturing apparatus.
  • Vacuum evaporation has been widely used in the preparation process of display devices, but when a mask for vacuum evaporation is mounted on a substrate to be processed, wrinkles may occur in a part of the mask, resulting in a mask The plate does not completely adhere to the substrate during the vapor deposition process, affecting the vapor deposition precision of the substrate, thereby causing problems such as poor display of the prepared display product.
  • At least one embodiment of the present disclosure provides an evaporation apparatus for substrate evaporation, wherein one side of the substrate is provided with a mask, the evaporation apparatus includes: a magnetic adsorption layer and a side of the magnetic adsorption layer a heat sensitive layer, wherein the heat sensitive layer is located between the magnetic adsorption layer and a side of the substrate remote from the mask, and the heat sensitive layer is configured to adjust the mask and The distance between the magnetic adsorption layers.
  • the linear expansion coefficient of the heat sensitive layer ranges from about 10 -5 to 10 -3 m/degree.
  • the thickness of the heat sensitive layer ranges from about 1 mm to 10 cm in a direction perpendicular to a face of the magnetic adsorption layer.
  • the magnetic adsorption layer may include a plurality of magnetic adsorption units arranged in an array.
  • each of the magnetic adsorption units may be mounted by a resilient member.
  • the heat sensitive layer may include a plurality of heat sensitive units arranged in an array, each of the heat sensitive units corresponding to one or more of the magnetic adsorption unit.
  • the evaporation apparatus may further include a cooling layer on a side of the magnetic adsorption layer facing the heat sensitive layer.
  • one side of the cooling layer may be located on a side of the heat sensitive layer remote from the magnetic adsorption layer, and the other side of the cooling layer The vapor-deposited substrate is mounted.
  • the evaporation device may further include: a limiting layer that limits the magnetic adsorption layer; wherein the limiting layer is a flexible layer, and the limiting layer is located Between the heat sensitive layer and the magnetic adsorption layer.
  • the cooling layer may be located between the magnetic adsorption layer and the heat sensitive layer, and the cooling layer is a flexible cooling layer.
  • a surface of the cooling layer remote from the heat sensitive layer may be provided with a groove that limits the magnetic adsorption layer.
  • the evaporation device may further include an evaporation source, and the evaporation source may be located on a side of the heat sensitive layer away from the magnetic adsorption layer and spaced apart from the thermal layer. A distance, wherein the evaporation source is for containing an evaporated material.
  • the vapor deposition apparatus may further include a mounting portion, wherein the mounting portion is located between the heat sensitive layer and the evaporation source and is disposed to sequentially mount the substrate and the Mask plate.
  • At least one embodiment of the present disclosure provides a display device manufacturing apparatus, which may include the vapor deposition apparatus in any of the above embodiments.
  • the heat sensitive layer of the corresponding region is changed.
  • the thermosensitive layer adjusts its thickness according to the temperature change to reduce the spacing between the magnetic adsorption layer and the mask in the region, thereby eliminating the wrinkle problem of the mask and improving the evaporation yield of the substrate.
  • FIG. 1 is a schematic structural view of an evaporation device according to an embodiment of the present disclosure
  • FIG. 1 are process diagrams showing the operation principle of the vapor deposition device shown in Fig. 1;
  • FIG. 3 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure.
  • Figure 7 is a cross-sectional view showing another vapor deposition device according to an embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure.
  • 9A-9C are process diagrams of an evaporation method of a vapor deposition device according to an embodiment of the present disclosure.
  • 1-vacuum evaporation chamber 2-support portion; 100-magnetic adsorption layer; 110-magnetic adsorption unit; 120-elastic element; 200-heat-sensitive layer; 210-thermographic unit; 300-substrate; 400-mask 500-cooling layer; 510-slot; 600-evaporation source; 700-stop layer; 800-mounting portion.
  • At least one embodiment of the present disclosure provides an evaporation device and a display device manufacturing apparatus.
  • the vapor deposition apparatus includes a magnetic adsorption layer and a heat sensitive layer, wherein one side of the heat sensitive layer is laminated on the magnetic adsorption layer, and a side of the heat sensitive layer away from the magnetic adsorption layer is disposed toward the vapor deposited substrate.
  • the vapor deposition device can at least solve the problem of poor vapor deposition of the substrate due to the failure of the mask to completely adhere to the substrate.
  • the magnetic adsorption layer can adsorb a mask for vapor deposition on the substrate.
  • the vapor-deposited material exotherms during the deposition process.
  • the mask of the first region is A space is formed between the substrates such that the temperature of the heat sensitive layer portion of the first region is lower than the temperature of the heat sensitive layer portion of the other regions, such that the thickness of the heat sensitive layer portion of the first region is reduced, so that the magnetic attraction of the first region
  • the spacing distance between the layer portion and the mask portion of the first region is decreased, and accordingly, the magnetic attraction force between the magnetic adsorption layer portion of the first region and the mask portion of the first region is increased, so that the first region
  • the mask is partially attached to the substrate.
  • the vapor deposition apparatus provided by at least one embodiment of the present disclosure can adjust the distance between the magnetic adsorption layer and the mask, and can be adjusted, for example, in real time and automatically, so that the problem of wrinkles of the mask can be alleviated or eliminated. Improve the vapor deposition accuracy of the vapor deposition device to the substrate.
  • At least one embodiment of the present disclosure provides an evaporation device that can be used for vapor deposition of a substrate, one side of the substrate is provided with a mask plate, the evaporation device includes: a magnetic adsorption layer and is disposed on the magnetic adsorption The heat sensitive layer on one side of the layer is located between the magnetic adsorption layer and the side of the substrate remote from the mask, and the heat sensitive layer is configured to adjust the distance between the mask and the magnetic adsorption layer.
  • FIG. 1 is a schematic structural diagram of an evaporation device according to an embodiment of the present disclosure. Exemplarily, as shown in FIG.
  • the vapor deposition device is used for vapor deposition of the substrate 300, and one side of the substrate 300 is provided with a mask 400, which may include: a magnetic adsorption layer 100 and a heat sensitive layer. 200, wherein the heat sensitive layer 200 is disposed on one side of the magnetic adsorption layer 100, and the heat sensitive layer 200 is located between the magnetic adsorption layer 100 and a side of the substrate 300 remote from the mask 400, and the heat sensitive layer 200 is disposed In order to adjust the distance between the mask 400 and the magnetic adsorption layer 100.
  • a mask 400 which may include: a magnetic adsorption layer 100 and a heat sensitive layer. 200, wherein the heat sensitive layer 200 is disposed on one side of the magnetic adsorption layer 100, and the heat sensitive layer 200 is located between the magnetic adsorption layer 100 and a side of the substrate 300 remote from the mask 400, and the heat sensitive layer 200 is disposed In order to adjust the distance between the mask 400 and the magnetic adsorption layer 100.
  • the vapor-deposited substrate 300 is mounted on the side of the heat sensitive layer 200 remote from the magnetic adsorption layer 100.
  • a mask plate 400 is disposed on a side of the substrate 300 remote from the magnetic adsorption layer 100.
  • a magnetic attraction force can be generated between the magnetic adsorption layer 100 and the mask 400.
  • the magnetic adsorption force can adsorb the mask 400 on the substrate 300 and then evaporate the substrate 300 through the mask 400.
  • the heat sensitive layer 200 can adjust the separation distance between the magnetic adsorption layer 100 and the mask 400 of the corresponding region, that is, the region can be adjusted.
  • the magnetic attraction between the magnetic adsorption layer 100 and the mask 400 allows the pleated portion of the mask 400 to be adsorbed on the substrate 300. Therefore, the heat sensitive layer 200 can closely bond the substrate 300 and the mask 400 to improve the vapor deposition precision of the substrate 300.
  • the heat sensitive layer 200 can adjust the separation distance between the magnetic adsorption layer 100 and the mask 400 of the corresponding region, reference may be made to the relevant contents in the following embodiments (for example, the embodiments shown in FIGS. 2A to 2D). I will not repeat them here.
  • the preparation material of the mask 400 may include a metal material, and may also include a magnetic adsorption material.
  • the material for preparing the mask 400 is not limited as long as a magnetic attraction force can be generated between the mask 400 and the magnetic adsorption layer 100.
  • the vapor deposition apparatus may further include an evaporation source, and the evaporation source may be located on a side of the heat sensitive layer remote from the magnetic adsorption layer and spaced apart from the heat sensitive layer by a predetermined distance, wherein the evaporation source is used for Contains evaporated material.
  • the evaporation device may further include an evaporation source 600 disposed on a side of the heat sensitive layer 200 away from the magnetic adsorption layer 100 and spaced apart from the heat sensitive layer 200 by a predetermined distance.
  • the evaporation source 600 can be used to accommodate the evaporated material and can be heated to cause the material to be evaporated.
  • the predetermined distance between the evaporation source 600 and the heat sensitive layer 200 may be determined according to actual needs, and the disclosure is not limited herein.
  • the evaporation process may include: heating the evaporation material in the evaporation source 600 such that atoms or molecules of the evaporation material vaporize to form a vapor flow, and the vapor deposition material in the gaseous state is guided (for example, gravity, electric field or magnetic field). After being applied to the substrate 300, condensation forms a solid film while releasing a certain amount of heat, wherein the mask 400 can define a pattern of the solid film.
  • At least one embodiment of the present disclosure does not limit the type of evaporation source 600.
  • the evaporation source 600 may be a point evaporation source or a linear evaporation source or the like.
  • the relative position of the evaporation source and the substrate to be evaporated is not limited, and may be selected according to a specific process of evaporation.
  • the evaporation source may be located above the substrate to be evaporated, and the evaporation source may also be located below the substrate to be evaporated, as long as the mask is located between the evaporation source and the substrate to be evaporated.
  • the vapor deposition apparatus may further include a vacuum evaporation chamber 1 that can accommodate, for example, a magnetic adsorption layer 100, a heat sensitive layer 200, and an evaporation source 600.
  • a vacuum evaporation chamber 1 that can accommodate, for example, a magnetic adsorption layer 100, a heat sensitive layer 200, and an evaporation source 600.
  • the vapor-deposited substrate 300 and the like, and the magnetic adsorption layer 100, the heat sensitive layer 200, the vapor-deposited substrate 300, and the mask 400 on the substrate 300 can be fixed to the vacuum evaporation chamber 1 by the support portion 2, for example. in.
  • FIGS. 2A-2D are process diagrams of the operation of the vapor deposition apparatus of FIG. 1, which is a partial schematic view of the vapor deposition apparatus.
  • the working principle of the vapor deposition apparatus for improving the vapor deposition precision of the substrate 100 may include the following processes:
  • an evaporation apparatus is provided, and the evaporation apparatus is provided with a substrate 300 on which a mask 400 is disposed, wherein, for example, the mask 400 of the B region is wrinkled and is interposed between the substrate 300 There is a gap formed.
  • the temperature is lower than the temperature of the substrate 300 of the A region, and accordingly, the temperature of the heat sensitive layer 200 of the B region is lower than the temperature of the heat sensitive layer 100 of the A region, and therefore, in a direction perpendicular to the face of the heat sensitive layer 200, That is, in the direction of the Z axis (for example, the direction perpendicular to the face of the substrate 300), the thickness of the heat sensitive layer 200 of the B region is smaller than the thickness of the heat sensitive layer 200 of the A region.
  • the thickness of the heat sensitive layer 200 of the B region is reduced as compared with the heat sensitive layer 200 of the A region, so that the magnetic attraction force between the magnetic adsorption layer 100 of the B region and the mask 400 is increased.
  • the magnetic adsorption layer 100 of the B region adsorbs the mask 400 of the B region on the substrate 300 by magnetic attraction, so that the wrinkle problem of the mask 400 can be eliminated.
  • the temperature of the substrate 300 in the B region is increased, that is, the temperature of the heat sensitive layer 200 in the B region is also increased.
  • the temperature of the heat sensitive layer 200 of the B region is equal or approximately equal to the temperature of the heat sensitive layer 200 of the A region
  • the thickness of the heat sensitive layer 200 of the B region and the heat sensitive layer 200 of the A region in the direction of the Z axis The thickness is equal.
  • the thermal expansion coefficient of the thermosensitive layer 200 is not limited as long as the thermosensitive layer 200 can adjust the separation distance between the magnetic adsorption layer 100 and the mask 400 by temperature change.
  • the linear expansion coefficient of the heat sensitive layer 100 ranges from about 10 -5 to 10 -3 meters per kW.
  • the heat sensitive layer 200 has a thickness to adjust the distance between the magnetic adsorption layer 100 and the mask 400.
  • the thickness of the heat sensitive layer 200 includes a range of about 1 mm to 10 cm in a direction perpendicular to the face of the magnetic adsorption layer 100.
  • the heat sensitive layer 200 is too thin or too thick to be detrimental to its adjustment function in the evaporation apparatus, and for example, the thickness of the heat sensitive layer 200 includes about 1 cm to 5 cm. It should be noted that the thickness of the heat sensitive layer 200 ranges from a reference value at a normal temperature (for example, 25 degrees Celsius).
  • the specific structure of the magnetic adsorption layer is not limited as long as the shape of the magnetic adsorption layer may vary with the thickness of the heat sensitive layer.
  • the magnetically absorbing layer may be provided as a flexible layer comprising a magnetic material.
  • the magnetically absorbing layer may include a plurality of magnetic adsorption units arranged in an array.
  • the magnetic adsorption layer 100 may include a plurality of magnetic adsorption units 110 arranged in an array.
  • the magnetic adsorption layer 100 is provided to include a plurality of magnetic adsorption units 110.
  • no interference occurs between adjacent magnetic adsorption units 110, and the sensitivity of the evaporation apparatus can be improved.
  • FIG. 2C when the thickness of the heat sensitive layer 200 of the B region is decreased, the magnetic attraction unit 110 in the B region also moves, but the magnetic adsorption unit 110 in the A region near the B region does not belong to the B region. The movement of the magnetic adsorption unit 110 causes interference.
  • each of the magnetic attraction units 110 may be configured to be mounted perpendicular to the face on which the magnetic adsorption layer 100 is located. As such, when the heat sensitive layer 200 is deformed, the movement of the magnetic attraction unit 110 can be facilitated, that is, the magnetic adsorption unit is facilitated to move in the direction along the Z axis.
  • each magnetic adsorption unit is mounted by a resilient element.
  • FIG. 3 is a cross-sectional view of another vapor deposition apparatus according to an embodiment of the present disclosure, which is a partial schematic view.
  • each magnetic attraction unit 110 can be mounted on a mounting surface (eg, a dashed line in FIG. 3) by a resilient member 120.
  • the elastic member 120 can provide a restoring force for the movement of the magnetic attraction unit 110.
  • the elastic member 120 is, for example, a compression spring or the like.
  • the magnetic attraction unit 110 may be a permanent magnet or an electromagnet or the like.
  • the specific structure of the magnetic adsorption unit 110 is not limited as long as a magnetic adsorption force can be generated between the magnetic adsorption unit 110 and the mask 400.
  • the specific structure of the heat sensitive layer is not limited.
  • the heat sensitive layer can be provided as an integral flexible layer.
  • the accuracy of the deformation of the heat sensitive layer affects the accuracy of the movement of the magnetic adsorption layer (for example, the magnetic adsorption unit).
  • the portions of the heat sensitive layer having different shape variables are Will affect each other and affect the accuracy of the deformation of the thermosensitive layer.
  • the heat sensitive layer may include a plurality of heat sensitive units arranged in an array, each heat sensitive unit corresponding to one or more magnetic adsorption units.
  • the heat sensitive elements having different shape variables in the heat sensitive layer do not affect each other, and the accuracy of the deformation of the heat sensitive layer is improved.
  • FIG. 4 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure, which is a partial schematic view.
  • the heat sensitive layer 200 may include a plurality of thermal units 210 distributed in an array, each of which may correspond to one or more magnetic adsorption units 110.
  • the deformation process (thickness variation) of the heat sensitive layer 200 as shown in FIG. 2C the deformation of the heat sensitive layer 200 of the A region interferes with the deformation of the heat sensitive layer 200 of the B region, affecting the evaporation device to eliminate the mask 400.
  • the sensitivity of the folds The heat sensitive layer 200 shown in FIG. 4 is provided to include a plurality of heat sensitive units 210, and no interference occurs between adjacent heat sensitive units 210, which solves the above problems, and can improve the performance of the vapor deposition apparatus.
  • the vapor deposition device may further include a cooling layer 500 disposed on a side of the magnetic adsorption layer 100 facing the heat sensitive layer 200. While the vapor deposition apparatus is operating, the cooling layer 500 can transfer heat on the substrate 300 to prevent the substrate 300 from being overheated.
  • a plurality of draft tubes may be disposed in the cooling layer 500, and a coolant such as water or the like is introduced into the draft tubes.
  • the position of the cooling layer 500 can be determined according to actual needs, and the embodiment of the present disclosure does not limit this. Several locations of the cooling layer 500 are described below by way of several embodiments.
  • FIG. 5 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure, which is a partial schematic view.
  • one side of the cooling layer 500 in the embodiment of the present disclosure may be located on a side of the heat sensitive layer 200 away from the magnetic adsorption layer 100, and the other side of the cooling layer 500 is disposed toward the substrate to be evaporated.
  • 300 that is, the cooling layer 500 may be disposed between the heat sensitive layer 200 and the substrate 300.
  • the vapor deposition apparatus may further include a limiting layer 700 for limiting the magnetic adsorption layer 100, and the limiting layer 700 may be located at the magnetic adsorption layer 100 and the thermal layer. Between layers 200.
  • the stopper layer 700 may fix the magnetic adsorption layer 100 in the horizontal direction (the direction of the X-axis) as in FIG.
  • the limiting layer 700 may be used to position each of the magnetic adsorption units 110 in order to adjust the distribution of the magnetic field generated by the magnetic adsorption layer 100.
  • the interference layer 700 in the deformation process of the heat sensitive layer 200 illustrated in FIG. 2C, in order to avoid movement of the magnetic attraction layer 100 by the limiting layer 700 (eg, movement of the magnetic adsorption unit 110 in the B region)
  • the interference layer 700 can be configured as a flexible layer.
  • FIG. 6 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure, which is a partial schematic view.
  • the cooling layer 500 in the vapor deposition device is disposed between the magnetic adsorption layer 100 and the heat sensitive layer 200.
  • the distance between the heat sensitive layer 200 and the substrate 300 shown in FIG. 6 is smaller than that of the cooling layer 500 in the vapor deposition device shown in FIG. 5.
  • the heat sensitive layer 200 may also be in direct contact with the substrate 300. In this case, the heat sensitive layer 200 is more sensitive to the temperature change of the substrate 300.
  • the cooling layer 500 may be provided as a flexible cooling layer.
  • FIG. 7 is a cross-sectional view of another vapor deposition apparatus according to an embodiment of the present disclosure, which is a partial schematic view.
  • the surface of the cooling layer 500 remote from the heat sensitive layer 200 is provided with a groove 510 that limits the magnetic adsorption layer 100.
  • the groove 510 can fix the magnetic attraction layer 100 in, for example, the horizontal direction (the direction of the X-axis) in FIG.
  • the grooves 510 may be used to position each of the magnetic adsorption units 110 in order to adjust the distribution of the magnetic field generated by the magnetic adsorption layer 100.
  • FIG. 8 is a cross-sectional view of another vapor deposition device according to an embodiment of the present disclosure, which is a partial schematic view.
  • the vapor deposition apparatus may further include a mounting portion 800 between the heat sensitive layer 200 and the evaporation source 600 and disposed to sequentially mount the vaporized substrate 300 and the mask for vapor deposition. 400.
  • the mounting portion 800 can fix and limit the substrate 300, and the mounting portion 800 can align the mask 400 and the substrate 300 to ensure the accuracy of substrate evaporation.
  • At least one embodiment of the present disclosure provides a display device manufacturing apparatus, which may include the vapor deposition apparatus in any of the above embodiments.
  • the display device manufacturing apparatus may further include a vacuum pump, an evaporation material transfer line, and the like.
  • the display device manufacturing apparatus can be applied to a manufacturing process in a display device.
  • the display device manufacturing apparatus can be applied to a structure such as an organic light-emitting device in the production of an organic light-emitting diode (OLED) display panel, for example, a cathode, an anode, a light-emitting layer between the cathode and the anode, and the like in the organic light-emitting device can be prepared.
  • OLED organic light-emitting diode
  • At least one embodiment of the present disclosure provides an evaporation method of an evaporation device, which may include: sequentially mounting an evaporated substrate and a mask covering the substrate on a side of the heat sensitive layer away from the magnetic adsorption layer; On the side of the substrate remote from the heat sensitive layer, the evaporation material is heated and the substrate is evaporated through the mask.
  • an evaporation method of an evaporation device which may include: sequentially mounting an evaporated substrate and a mask covering the substrate on a side of the heat sensitive layer away from the magnetic adsorption layer; On the side of the substrate remote from the heat sensitive layer, the evaporation material is heated and the substrate is evaporated through the mask.
  • FIGS. 9A to 9C are provided in an embodiment of the present disclosure.
  • an evaporation apparatus which includes a magnetic adsorption layer 100, a cooling plate 500, and a heat sensitive layer 200 between the magnetic adsorption layer 100 and the cooling plate 500.
  • a magnetic adsorption layer 100 As shown in FIG. 9A, an evaporation apparatus is provided which includes a magnetic adsorption layer 100, a cooling plate 500, and a heat sensitive layer 200 between the magnetic adsorption layer 100 and the cooling plate 500.
  • the mask 400 is disposed on the substrate 300 through the mounting portion 800, and the substrate 300 provided with the mask 400 is fixed to the vapor deposition device, wherein the substrate 300 is located away from the heat sensitive layer 200.
  • One side of the magnetic adsorption layer 100, and the mask 400 are located on the side of the substrate 300 remote from the magnetic adsorption layer 100.
  • an evaporation source 600 is provided.
  • the evaporation material in the evaporation source 600 is heated, and a vapor deposition pattern forming an evaporation material is deposited on the surface of the substrate 300 away from the heat sensitive layer 200 through the mask 400.
  • a vapor deposition pattern forming an evaporation material is deposited on the surface of the substrate 300 away from the heat sensitive layer 200 through the mask 400.
  • At least one embodiment of the present disclosure provides an evaporation apparatus and a display device manufacturing apparatus, and may have at least one of the following effects:
  • At least one embodiment of the present disclosure provides an evaporation device in which a heat sensitive layer can adjust a thickness thereof according to a temperature change to adjust a distance between a magnetic adsorption layer and a mask, and can alleviate or eliminate a mask.
  • a heat sensitive layer can adjust a thickness thereof according to a temperature change to adjust a distance between a magnetic adsorption layer and a mask, and can alleviate or eliminate a mask. The problem of wrinkling of the board.
  • the vapor deposition device can adjust the separation distance between the mask plate and the magnetic adsorption layer in real time, and ensure a close fit between the mask plate and the substrate during the evaporation process. Improve the evaporation yield of the substrate.

Abstract

一种用于基板蒸镀的蒸镀装置,基板(300)的一侧设置有掩膜板(400),蒸镀装置包括:磁吸附层(100);热敏层(200),位于磁吸附层(100)的一侧的;其中,热敏层(200)位于磁吸附层(100)和基板(300)的远离掩膜板(400)的一侧之间,并且热敏层(200)配置为调节掩膜板(400)和磁吸附层(100)之间的距离。

Description

蒸镀装置以及显示器件制造设备
本申请要求于2017年5月11日递交的中国专利申请第201710331390.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种蒸镀装置以及显示器件制造设备。
背景技术
真空蒸镀已经广泛应用于显示器件的制备工艺中,但是,当用于真空蒸镀的掩膜板在安装在被处理的基板上时,掩膜板的部分区域可能会出现褶皱,导致掩膜板在蒸镀过程中不会完全贴合在基板上,影响基板的蒸镀精度,由此导致所制备的显示产品的显示不良等问题。
发明内容
本公开至少一个实施例提供一种用于基板蒸镀的蒸镀装置,所述基板的一侧设置有掩膜板,所述蒸镀装置包括:磁吸附层以及位于所述磁吸附层一侧的热敏层,其中,所述热敏层位于所述磁吸附层和所述基板的远离所述掩膜板的一侧之间,并且所述热敏层配置为调节所述掩膜板和所述磁吸附层之间的距离。
例如,在本公开至少一个实施例提供的蒸镀装置中,所述热敏层的线膨胀系数的范围包括约10 -5-10 -3米/度。
例如,在本公开至少一个实施例提供的蒸镀装置中,在垂直于所述磁吸附层所在面的方向上,所述热敏层的厚度范围包括约1毫米~10厘米。
例如,在本公开至少一个实施例提供的蒸镀装置中,所述磁吸附层可以包括多个按阵列布置的磁吸附单元。
例如,在本公开至少一个实施例提供的蒸镀装置中,每个所述磁吸附单元可以通过弹性元件安装。
例如,在本公开至少一个实施例提供的蒸镀装置中,所述热敏层可以 包括多个按阵列布置的热敏单元,每个所述热敏单元对应于一个或多个所述磁吸附单元。
例如,本公开至少一个实施例提供的蒸镀装置还可以包括位于所述磁吸附层的面向所述热敏层一侧的冷却层。
例如,在本公开至少一个实施例提供的蒸镀装置中,所述冷却层的一侧可以位于所述热敏层的远离所述磁吸附层的一侧上,所述冷却层的另一侧安装所述被蒸镀的基板。
例如,本公开至少一个实施例提供的蒸镀装置中还可以包括:对所述磁吸附层进行限位的限位层;其中,所述限位层为柔性层,并且所述限位层位于所述热敏层和所述磁吸附层之间。
例如,在本公开至少一个实施例提供的蒸镀装置中,所述冷却层可以位于所述磁吸附层和所述热敏层之间,并且所述冷却层为柔性冷却层。
例如,在本公开至少一个实施例提供的蒸镀装置中,所述冷却层的远离所述热敏层的表面可以设置有对所述磁吸附层限位的凹槽。
例如,本公开至少一个实施例提供的蒸镀装置中还可以包括蒸发源,所述蒸发源可以位于所述热敏层的远离所述磁吸附层的一侧并且与所述热敏层间隔预定距离,其中,所述蒸发源用于容纳被蒸发材料。
例如,本公开至少一个实施例提供的蒸镀装置中还可以包括安装部,其中,所述安装部位于所述热敏层与所述蒸发源之间且设置为依次安装所述基板和所述掩膜板。
本公开至少一个实施例提供一种显示器件制造设备,可以包括上述任一个实施例中的蒸镀装置。
在本公开至少一个实施例提供的蒸镀装置中,在基板的蒸镀过程中,当用于对基板蒸镀的掩膜板在某一区域产生褶皱时,会改变相应区域的热敏层的温度,热敏层根据温度变化调节自身厚度以减小该区域的磁吸附层与掩膜板的间距,从而消除掩膜板的褶皱问题,提高基板的蒸镀良率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一个实施例提供的一种蒸镀装置的结构示意图;
图2A~图2D为图1所示蒸镀装置的工作原理的过程图;
图3为本公开一个实施例提供的另一种蒸镀装置的剖面图;
图4为本公开一个实施例提供的另一种蒸镀装置的剖面图;
图5为本公开一个实施例提供的另一种蒸镀装置的剖面图;
图6为本公开一个实施例提供的另一种蒸镀装置的剖面图;
图7为本公开一个实施例提供的另一种蒸镀装置的剖面图;
图8为本公开一个实施例提供的另一种蒸镀装置的剖面图;以及
图9A~图9C为本公开一个实施例提供的一种蒸镀装置的蒸镀方法的过程图。
附图标记:
1-真空蒸镀室;2-支撑部;100-磁吸附层;110-磁吸附单元;120-弹性元件;200-热敏层;210-热敏单元;300-基板;400-掩膜板;500-冷却层;510-槽;600-蒸发源;700-限位层;800-安装部。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开至少一个实施例提供一种蒸镀装置以及显示器件制造设备。该 蒸镀装置包括:磁吸附层以及热敏层,其中,热敏层的一侧层叠在磁吸附层上,在热敏层远离磁吸附层的一侧设置为朝向被蒸镀的基板。在蒸镀过程中,该蒸镀装置至少可以解决掩膜板不能与基板完全贴合而导致的基板蒸镀不良的问题。
磁吸附层可以将用于蒸镀的掩膜板吸附在基板上。在蒸镀过程中,被蒸镀材料在沉积的过程中放热,当掩膜板和基板之间出现褶皱时,例如出现褶皱的区域为第一区域,则第一区域的掩膜板因为与基板之间出现间隔,使得第一区域的热敏层部分的温度低于其它区域的热敏层部分的温度,如此,第一区域的热敏层部分厚度减小,使得第一区域的磁吸附层部分与第一区域的掩膜板部分的间隔距离减小,相应地,第一区域的磁吸附层部分与第一区域的掩膜板部分之间的磁吸附力增加,使得第一区域的掩膜板部分贴合至基板上。如此,本公开至少一个实施例提供的蒸镀装置可以调节磁吸附层和掩膜板之间的距离,并且例如可以实时且自动地进行调节,从而可以缓解或消除掩膜板出现褶皱的问题,提高蒸镀装置对基板的蒸镀精度。
下面将结合附图对根据本公开至少一个实施例中的蒸镀装置以及显示器件制造设备进行详细的描述。
本公开至少一个实施例提供一种蒸镀装置,该蒸镀装置可以用于基板的蒸镀,该基板的一侧设置有掩膜板,该蒸镀装置包括:磁吸附层以及设置在磁吸附层一侧的热敏层,热敏层位于磁吸附层和基板的远离掩膜板的一侧之间,并且热敏层配置为调节掩膜板和磁吸附层之间的距离。图1为本公开一个实施例提供的一种蒸镀装置的结构示意图。示例性的,如图1所示,该蒸镀装置用于对基板300的蒸镀,基板300的一侧设置有掩膜板400,该蒸镀装置可以包括:磁吸附层100以及热敏层200,其中,热敏层200设置在磁吸附层100的一侧,热敏层200位于磁吸附层100和基板300的远离所述掩膜板400的一侧之间,并且热敏层200配置为可以调节掩膜板400和磁吸附层100之间的距离。
在蒸镀过程中,在热敏层200的远离磁吸附层100的一侧安装被蒸镀的基板300。例如,基板300的远离磁吸附层100的一侧设置有掩膜板400。磁吸附层100和掩膜板400之间可以产生磁吸附力,该磁吸附力可以将掩膜板400吸附在基板300上,然后通过掩膜板400向基板300进行蒸镀。 当掩膜板400的局部区域(例如图2A中的区域B)出现褶皱时,热敏层200可以调节相应区域的磁吸附层100和掩膜板400之间的间隔距离,即可以调整该区域磁吸附层100和掩膜板400之间的磁吸附力,从而可以将掩膜板400中的褶皱部分吸附在基板300上。因此,热敏层200可以将基板300和掩膜板400之间贴合紧密,以提高基板300的蒸镀精度。关于热敏层200可以调节相应区域的磁吸附层100和掩膜板400之间的间隔距离的相关说明可以参考下述实施例(例如图2A~图2D所示的实施例)中的相关内容,在此不做赘述。
例如,在本公开至少一个实施例中,掩膜板400的制备材料可以包括金属材料,也可以包括磁吸附材料。在本公开至少一个实施例中,对掩膜板400的制备材料不做限制,只要掩膜板400与磁吸附层100之间可以产生磁吸附力即可。
例如,在本公开至少一个实施例中,蒸镀装置还可以包括蒸发源,蒸发源可以位于热敏层的远离磁吸附层的一侧并且与热敏层间隔预定距离,其中,蒸发源用于容纳被蒸发材料。示例性的,如图1所示,蒸镀装置还可以包括蒸发源600,所述蒸发源600设置在热敏层200的远离磁吸附层100的一侧并且与热敏层200间隔预定距离,其中,蒸发源600可以用于容纳被蒸发的材料,且可以被加热以使得材料被蒸发。蒸发源600与热敏层200间隔的预定距离的大小可以根据实际需求决定,本公开在此不做限制。例如,蒸镀过程可以包括:对蒸发源600中的蒸镀材料加热,使得蒸镀材料的原子或者分子气化逸出形成蒸汽流,气态下的蒸镀材料被引导(例如重力、电场或者磁场等)至基板300上后,冷凝形成固态薄膜同时释放出一定的热量,其中,掩膜板400可以限定该固态薄膜的图案。
本公开至少一个实施例对蒸发源600的种类不做限制。例如,在本公开至少一个实施例中,蒸发源600可以为点型蒸发源或者线型蒸发源等。
例如,在本公开至少一个实施例中,对蒸发源和待蒸镀的基板的相对位置不做限制,可以根据蒸镀的具体工艺进行选择。例如,在重力方向上,蒸发源可以位于待蒸镀的基板的上方,蒸发源也可以位于待蒸镀的基板的下方,只要掩膜板位于蒸发源和待蒸镀的基板之间即可。
例如,在本公开至少一个实施例中,如图1所示,蒸镀装置还可以包括真空蒸镀室1,真空蒸镀室1可以容纳例如磁吸附层100、热敏层200、 蒸发源600以及被蒸镀的基板300等,并且磁吸附层100、热敏层200、被蒸镀的基板300以及基板300上的掩膜板400等结构例如可以通过支撑部2固定于真空蒸镀室1中。
例如,在本公开至少一个实施例中,图2A~图2D为图1所示蒸镀装置的工作原理的过程图,其为所述蒸镀装置的局部示意图。例如图2A~图2D所示,蒸镀装置可以提高基板100的蒸镀精度的工作原理可以包括如下过程:
如图2A所示,提供一个蒸镀装置,该蒸镀装置上设置有基板300,基板300上设置有掩膜板400,其中,例如B区域的掩膜板400存在褶皱并且与基板300之间形成有间隔。
如图2B所示,在蒸镀过程中,蒸镀材料沉积在基板300或者掩膜板400上后会产生热量,该热量直接释放在基板300或者由掩膜板400传递至基板300上,使得基板300的温度升高,并且该热量也会传递给热敏层200。在B区域的掩膜板400存在褶皱的情况下,B区域中的掩膜板400上的热量不会传递至基板300上,由此B区域的热导率下降,导致B区域的基板300的温度低于A区域的基板300的温度,相应地,B区域的热敏层200的温度低于A区域的热敏层100的温度,因此,在垂直于热敏层200所在面的方向上,即在Z轴的方向(例如垂直于基板300所在面的方向)上,B区域的热敏层200的厚度小于A区域的热敏层200的厚度。
如图2C所示,与A区域的热敏层200相比,B区域的热敏层200厚度减小,使得B区域的磁吸附层100与掩膜板400之间的磁吸附力增大,如此,B区域的磁吸附层100通过磁吸附力将B区域的掩膜板400吸附在基板300上,从而可以消除掩膜板400的褶皱问题。
如图2D所示,B区域的掩膜板400与基板300之间贴合后,B区域的基板300的温度升高,即B区域的热敏层200的温度也会升高。当B区域的热敏层200的温度与A区域的热敏层200的温度相等或者近似相等后,在Z轴的方向上,B区域的热敏层200的厚度与A区域的热敏层200的厚度相等。
在本公开至少一个实施例中,对热敏层200的热膨胀系数不做限制,只要热敏层200可以通过温度变化调整磁吸附层100和掩膜板400之间的间隔距离即可。例如,在本公开至少一个实施例中,热敏层100的线膨胀 系数的范围包括约10 -5-10 -3米/度。
在本公开至少一个实施例中,热敏层200具有一定的厚度以调整磁吸附层100和掩膜板400之间的距离。例如,在本公开至少一个实施例中,如图1所示,在垂直于磁吸附层100所在面的方向上,热敏层200的厚度范围包括约1毫米~10厘米。热敏层200太薄或太厚都不利于其在蒸镀装置中的调节功能,又例如热敏层200的厚度范围包括约1厘米~5厘米。需要说明的是,上述热敏层200的厚度范围为在常温(例如25摄氏度)条件下的参考值。
需要说明的是,在本公开至少一个实施例中,对磁吸附层的具体化结构不做限制,只要磁吸附层的形状可以随着热敏层的厚度变化即可。例如,在本公开一些实施例中,磁吸附层可以设置为包括磁性材料的柔性层。例如,在本公开另一些实施例中,磁吸附层可以包括多个按阵列布置的磁吸附单元。
例如,在本公开至少一个实施例中,如图1和图2A~图2D所示,磁吸附层100可以包括多个按阵列布置的磁吸附单元110。磁吸附层100设置为包括多个磁吸附单元110,在热敏层200形变过程(厚度变化)中,相邻的磁吸附单元110之间不会产生干扰,可以提高蒸镀装置的灵敏度。例如图2C所示,当B区域的热敏层200的厚度减小时,B区域中的磁吸附单元110也会移动,但是A区域中的靠近B区域的磁吸附单元110不会对B区域中的磁吸附单元110的移动产生干扰。
例如,在本公开至少一个实施例中,如图1和图2A~图2D所示,每个磁吸附单元110可以配置为垂直于磁吸附层100所在的面的方式安装。如此,在热敏层200发生形变时,可以便于磁吸附单元110的移动,即有利于磁吸附单元在沿着Z轴的方向上移动。
在本公开至少一个实施例中,对磁吸附单元的安装方式不做限制。例如,在本公开至少一个实施例中,每个磁吸附单元通过弹性元件安装。图3为本公开一个实施例提供的另一种蒸镀装置的剖面图,其为局部示意图。示例性的,如图3所示,每个磁吸附单元110可以通过弹性元件120安装在安装面(例如图3中的虚线)上。弹性元件120可以为磁吸附单元110的移动提供回复力。该弹性元件120例如为压缩弹簧等。
例如,在本公开至少一个实施例中,磁吸附单元110可以为永磁体或 者电磁体等。在本公开至少一个实施例中,对磁吸附单元110的具体结构不做限制,只要磁吸附单元110和掩膜板400之间可以产生磁性吸附力即可。
在本公开至少一个实施例中,对热敏层的具体化结构不做限制。例如,在本公开一些实施例中,热敏层可以设置为一体的柔性层。需要说明的是,热敏层的形变的精度会影响磁吸附层(例如磁吸附单元)的移动的精度,在热敏层为一体的情况下,热敏层中具有不同形变量的部分之间会相互影响,影响热敏层的形变的精度。例如,在本公开另一些实施例中,热敏层可以包括多个按阵列布置的热敏单元,每个热敏单元对应于一个或多个磁吸附单元。如此,热敏层中具有不同形变量的热敏单元之间不会相互影响,提高热敏层的形变的精度。
例如,在本公开至少一个实施例中,图4为本公开一个实施例提供的另一种蒸镀装置的剖面图,其为局部示意图。例如图4所示,热敏层200可以包括多个按阵列分布的热敏单元210,每个热敏单元210可以对应于一个或多个磁吸附单元110。在如图2C所示的热敏层200的形变过程(厚度变化)中,A区域的热敏层200的形变会干扰B区域的热敏层200的形变,影响蒸镀装置消除掩膜板400的褶皱的灵敏度。图4中所示的热敏层200设置为包括多个热敏单元210,相邻的热敏单元210之间不会产生干扰,解决了上述问题,可以提高蒸镀装置的性能。
例如,在本公开至少一个实施例中,如图1~图4所示,蒸镀装置还可以包括设置在磁吸附层100的面向热敏层200一侧的冷却层500。在蒸镀装置工作时,冷却层500可以将基板300上的热量转移以防止基板300温度过高。例如,冷却层500中可以设置有多条导流管,该导流管中通入冷却液例如水等。
在本公开至少一个实施例中,冷却层500的设置位置可以根据实际需求来决定,本公开的实施例对此不做限制。下面通过几个实施例对冷却层500的几种设置位置进行说明。
例如,在本公开至少一个实施例中,图5为本公开一个实施例提供的另一种蒸镀装置的剖面图,其为局部示意图。例如图5所示,本公开实施例中的冷却层500的一侧可以位于热敏层200的远离磁吸附层100的一侧上,冷却层500的另一侧设置为朝向被蒸镀的基板300,即冷却层500可 以设置于热敏层200和基板300之间。
例如,在本公开至少一个实施例中,如图5所示,蒸镀装置还可以包括对磁吸附层100进行限位的限位层700,限位层700可以位于磁吸附层100和热敏层200之间。例如,限位层700可以在如图5中的水平面方向(X轴的方向)上固定磁吸附层100。例如,在磁吸附层100包括多个磁吸附单元110的情况下,限位层700可以用于对每个磁吸附单元110进行定位,以便于对磁吸附层100产生的磁场的分布进行调整。例如,在本公开至少一个实施例中,在图2C所示的热敏层200形变过程中,为避免限位层700对磁吸附层100的移动(例如B区域中的磁吸附单元110的移动)产生干扰,限位层700可以配置为柔性层。
例如,在本公开至少一个实施例中,图6为本公开一个实施例提供的另一种蒸镀装置的剖面图,其为局部示意图。如图6所示,蒸镀装置中的冷却层500设置在磁吸附层100和热敏层200之间。与图5所示的蒸镀装置中的冷却层500的设置位置相比,图6所示的热敏层200与基板300的距离更小。例如热敏层200还可以与基板300直接接触。在此情况下,热敏层200对基板300的温度变化的感应更加灵敏。为避免冷却层500对图2C所示中的磁吸附层100的移动(例如B区域中的磁吸附单元110的移动)产生干扰,可以将冷却层500设置为柔性冷却层。
例如,在本公开至少一个实施例中,图7为本公开一个实施例提供的另一种蒸镀装置的剖面图,其为局部示意图。如图7所示,冷却层500的远离热敏层200的表面设置有对磁吸附层100限位的凹槽510。凹槽510可以在例如图7中的水平方向(X轴的方向)上固定磁吸附层100。例如,在磁吸附层100包括多个磁吸附单元110的情况下,凹槽510可以用于对每个磁吸附单元110进行定位,以便于调整磁吸附层100产生的磁场的分布。
例如,在本公开至少一个实施例中,图8为本公开一个实施例提供的另一种蒸镀装置的剖面图,其为局部示意图。如图8所示,蒸镀装置还可以包括安装部800,安装部800位于热敏层200和蒸发源600之间且设置为依次安装被蒸镀的基板300以及用于蒸镀的掩膜板400。例如,该安装部800可以固定并且限位基板300,而且安装部800可以将掩膜板400和基板300对准,以保证基板蒸镀的精度。
本公开至少一个实施例提供一种显示器件制造设备,该显示器件制造设备可以包括上述任一实施例中的蒸镀装置。例如,该显示器件制造设备还可以包括真空泵、蒸发材料传输管线等结构。
在本公开至少一个实施例中,对显示器件制造设备的应用领域不做限制。例如,该显示器件制造设备可以应用于显示器件中的制备工艺中。例如,该显示器件制造设备可以应用于制备有机发光二极管(OLED)显示面板中的有机发光器件等结构,例如可以制备有机发光器件中的阴极、阳极以及位于阴极和阳极之间的发光层等。
本公开至少一个实施例提供一种蒸镀装置的蒸镀方法,该方法可以包括:在热敏层的远离磁吸附层的一侧依次安装被蒸镀的基板以及覆盖基板的掩膜板;在基板的远离热敏层的一侧,加热蒸发材料并通过掩膜板对基板进行蒸镀。蒸镀装置的具体化结构可以参考前述实施例(关于蒸镀装置的实施例)中的相关内容,在此不做赘述。
被便于解释本公开实施例中蒸镀装置的蒸镀方法,以本公开实施例的至少一个示例对该蒸镀方法的过程进行说明,图9A~图9C为本公开一个实施例提供的一种蒸镀装置的蒸镀方法的过程图。如图9A~图9C所示,本公开一个示例中的蒸镀装置的蒸镀方法可以包括如下过程:
如图9A所示,提供一个蒸镀装置,该蒸镀装置包括磁吸附层100、冷却板500以及位于磁吸附层100和冷却板500之间的热敏层200。磁吸附层100、冷却板500以及热敏层200的设置方式及具体结构可以参考前述实施例中的相关说明,在此不做赘述。
如图9B所示,通过安装部800将掩膜板400设置在基板300上,并且将设置有掩膜板400的基板300固定于蒸镀装置上,其中,基板300位于热敏层200的远离磁吸附层100的一侧,以及掩膜板400位于基板300的远离磁吸附层100的一侧。
如图9C所示,提供蒸发源600。加热蒸发源600中的蒸发材料,并通过掩膜板400在基板300的远离热敏层200一侧的表面上沉积形成蒸发材料的蒸镀图案。蒸发源600的设置方式可以参考前述实施例中的相关内容,在此不做赘述。
本公开至少一个实施例提供一种蒸镀装置以及显示器件制造设备,并且可以具有以下至少一项有益效果:
(1)本公开至少一个实施例提供一种蒸镀装置,该蒸镀装置中的热敏层可以根据温度变化调节自身厚度以调控磁吸附层与掩膜板的间距,可以缓解或消除掩膜板的褶皱问题。
(2)在本公开至少一个实施例中,蒸镀装置可以实时调节掩膜板和磁吸附层之间的间隔距离,在蒸镀过程中,可以保证掩膜板和基板之间紧密贴合,提高基板的蒸镀良率。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种用于基板蒸镀的蒸镀装置,所述基板的一侧设置有掩膜板,所述蒸镀装置包括:
    磁吸附层;
    热敏层,位于所述磁吸附层的一侧的;
    其中,所述热敏层位于所述磁吸附层和所述基板的远离所述掩膜板的一侧之间,并且所述热敏层配置为调节所述掩膜板和所述磁吸附层之间的距离。
  2. 根据权利要求1所述的蒸镀装置,其中,
    所述热敏层的线膨胀系数的范围包括约10 -5-10 -3米/度。
  3. 根据权利要求1或2所述的蒸镀装置,其中,
    在垂直于所述磁吸附层所在面的方向上,所述热敏层的厚度范围包括约1毫米~10厘米。
  4. 根据权利要求1-3中任一项所述的蒸镀装置,其中,所述磁吸附层包括多个按阵列布置的磁吸附单元。
  5. 根据权利要求4所述的蒸镀装置,其中,每个所述磁吸附单元通过弹性元件安装。
  6. 根据权利要求4或5所述的蒸镀装置,其中,
    所述热敏层包括多个按阵列布置的热敏单元,每个所述热敏单元对应于一个或多个所述磁吸附单元。
  7. 根据权利要求1-6中任一项所述的蒸镀装置,还包括位于所述磁吸附层的面向所述热敏层一侧的冷却层。
  8. 根据权利要求7所述的蒸镀装置,其中,
    所述冷却层的一侧位于所述热敏层的远离所述磁吸附层的一侧上,所述冷却层的另一侧安装所述被蒸镀的基板。
  9. 根据权利要求8所述的蒸镀装置,还包括:对所述磁吸附层进行限位的限位层;
    其中,所述限位层为柔性层,并且所述限位层位于所述热敏层和所述磁吸附层之间。
  10. 根据权利要求7所述的蒸镀装置,其中,
    所述冷却层位于所述磁吸附层和所述热敏层之间,并且所述冷却层为柔性冷却层。
  11. 根据权利要求10所述的蒸镀装置,其中,
    所述冷却层的远离所述热敏层的表面设置有对所述磁吸附层限位的凹槽。
  12. 根据权利要求1-11中任一项所述的蒸镀装置,还包括蒸发源,所述蒸发源位于所述热敏层的远离所述磁吸附层的一侧并且与所述热敏层间隔预定距离,其中,所述蒸发源用于容纳被蒸发材料。
  13. 根据权利要求12所述的蒸镀装置,还包括安装部,其中,所述安装部位于所述热敏层与所述蒸发源之间且设置为用于安装所述基板和所述掩膜板。
  14. 一种显示器件制造设备,包括权利要求1-13中任一项所述的蒸镀装置。
PCT/CN2018/071775 2017-05-11 2018-01-08 蒸镀装置以及显示器件制造设备 WO2018205667A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/080,454 US20190256964A1 (en) 2017-05-11 2018-01-08 Evaporation device and manufacturing apparatus of display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710331390.4A CN107012433B (zh) 2017-05-11 2017-05-11 蒸镀装置及其蒸镀方法、显示器件制造设备
CN201710331390.4 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018205667A1 true WO2018205667A1 (zh) 2018-11-15

Family

ID=59449593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071775 WO2018205667A1 (zh) 2017-05-11 2018-01-08 蒸镀装置以及显示器件制造设备

Country Status (3)

Country Link
US (1) US20190256964A1 (zh)
CN (1) CN107012433B (zh)
WO (1) WO2018205667A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107012433B (zh) * 2017-05-11 2019-02-22 京东方科技集团股份有限公司 蒸镀装置及其蒸镀方法、显示器件制造设备
CN109957762B (zh) 2017-12-14 2020-11-27 京东方科技集团股份有限公司 蒸镀方法以及蒸镀装置
CN108330462A (zh) * 2018-03-05 2018-07-27 京东方科技集团股份有限公司 一种蒸镀装置和蒸镀方法
CN108385058B (zh) * 2018-05-31 2020-06-09 京东方科技集团股份有限公司 掩膜板和掩膜板的制造方法
CN109868452B (zh) * 2019-03-19 2021-01-01 武汉华星光电半导体显示技术有限公司 冷却板和真空蒸镀装置
CN112750379B (zh) * 2021-01-06 2023-04-07 Tcl华星光电技术有限公司 一种显示模组及其制备方法
CN113005400A (zh) * 2021-02-23 2021-06-22 京东方科技集团股份有限公司 吸附装置和蒸镀设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259598A (ja) * 2003-02-26 2004-09-16 Hitachi High-Tech Electronics Engineering Co Ltd 真空蒸着方法及び真空蒸着装置、並びにこの真空蒸着方法により製造したelパネル
JP2008127593A (ja) * 2006-11-17 2008-06-05 Tokki Corp マスク保持装置及びマスク着脱方法
US20100080891A1 (en) * 2008-09-30 2010-04-01 Canon Anelva Corporation Holding mechanism, processing apparatus including holding mechanism, deposition method using processing apparatus, and method of manufacturing image display device
JP2010084204A (ja) * 2008-09-30 2010-04-15 Canon Anelva Corp 保持装置、基板処理装置及び表示素子の製造方法
CN203807547U (zh) * 2014-04-30 2014-09-03 京东方科技集团股份有限公司 一种蒸镀装置
CN104419892A (zh) * 2013-08-22 2015-03-18 三星显示有限公司 薄膜沉积装置和使用该薄膜沉积装置的薄膜沉积方法
CN105132860A (zh) * 2015-09-23 2015-12-09 京东方科技集团股份有限公司 一种金属掩膜冷却装置及金属掩膜蒸镀装置
CN205368488U (zh) * 2016-02-29 2016-07-06 上海和辉光电有限公司 一种蒸镀装置
CN107012433A (zh) * 2017-05-11 2017-08-04 京东方科技集团股份有限公司 蒸镀装置及其蒸镀方法、显示器件制造设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259598A (ja) * 2003-02-26 2004-09-16 Hitachi High-Tech Electronics Engineering Co Ltd 真空蒸着方法及び真空蒸着装置、並びにこの真空蒸着方法により製造したelパネル
JP2008127593A (ja) * 2006-11-17 2008-06-05 Tokki Corp マスク保持装置及びマスク着脱方法
US20100080891A1 (en) * 2008-09-30 2010-04-01 Canon Anelva Corporation Holding mechanism, processing apparatus including holding mechanism, deposition method using processing apparatus, and method of manufacturing image display device
JP2010084204A (ja) * 2008-09-30 2010-04-15 Canon Anelva Corp 保持装置、基板処理装置及び表示素子の製造方法
CN104419892A (zh) * 2013-08-22 2015-03-18 三星显示有限公司 薄膜沉积装置和使用该薄膜沉积装置的薄膜沉积方法
CN203807547U (zh) * 2014-04-30 2014-09-03 京东方科技集团股份有限公司 一种蒸镀装置
CN105132860A (zh) * 2015-09-23 2015-12-09 京东方科技集团股份有限公司 一种金属掩膜冷却装置及金属掩膜蒸镀装置
CN205368488U (zh) * 2016-02-29 2016-07-06 上海和辉光电有限公司 一种蒸镀装置
CN107012433A (zh) * 2017-05-11 2017-08-04 京东方科技集团股份有限公司 蒸镀装置及其蒸镀方法、显示器件制造设备

Also Published As

Publication number Publication date
CN107012433A (zh) 2017-08-04
CN107012433B (zh) 2019-02-22
US20190256964A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2018205667A1 (zh) 蒸镀装置以及显示器件制造设备
JP7345397B2 (ja) 基板支持装置
JP6500103B2 (ja) 基板保持装置及び成膜装置
KR102245762B1 (ko) 홀더, 홀더를 갖는 캐리어, 및 기판을 고정시키기 위한 방법
JP6526795B2 (ja) 基板の保持方法
WO2017173875A1 (zh) 一种线性蒸发源、蒸发源系统及蒸镀装置
TW201909237A (zh) 多層式遮罩
JP6586535B2 (ja) 蒸発源及び成膜装置
WO2020140776A1 (zh) 掩膜板的制备方法、掩膜板和利用掩膜板的蒸镀方法
JP2010209459A (ja) 有機elデバイス製造装置及び成膜装置並びに有機elデバイス製造方法及び成膜方法
WO2018214515A1 (zh) 用于蒸镀装置的载板及其蒸镀装置
US20120160419A1 (en) Substrate-supporting unit and substrate-processing apparatus comprising same
EP3399069B1 (en) Crucible for accommodating and heating material, and system comprising arranged crucible and heater
JP6268198B2 (ja) 基板用キャリア
JP2010180438A (ja) マスクユニットおよびマスクユニットを有する蒸着装置
TW201823854A (zh) 用於使遮罩保持平面位置之裝置及方法
JP5311985B2 (ja) 蒸着装置および有機発光装置の製造方法
WO2014050501A1 (ja) 蒸着装置並びに蒸着方法
US20230279536A1 (en) Vapor deposition source for vacuum vapor deposition apparatus
CN113652633B (zh) 掩模板框架、掩模板组件及其制备方法
US20170191155A1 (en) Vapor disposition system
TW201250026A (en) Vapor-deposition device and vapor-deposition method
JP2012197467A5 (zh)
JP2020007587A (ja) 蒸着装置、および、蒸着方法
JP2005281784A (ja) 基板の冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18799333

Country of ref document: EP

Kind code of ref document: A1