WO2014050501A1 - 蒸着装置並びに蒸着方法 - Google Patents

蒸着装置並びに蒸着方法 Download PDF

Info

Publication number
WO2014050501A1
WO2014050501A1 PCT/JP2013/074065 JP2013074065W WO2014050501A1 WO 2014050501 A1 WO2014050501 A1 WO 2014050501A1 JP 2013074065 W JP2013074065 W JP 2013074065W WO 2014050501 A1 WO2014050501 A1 WO 2014050501A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
vapor deposition
mask frame
substrate
holder
Prior art date
Application number
PCT/JP2013/074065
Other languages
English (en)
French (fr)
Inventor
博之 田村
正直 藤塚
信朗 塩入
俊光 狩谷
松本 栄一
高橋 賢
Original Assignee
キヤノントッキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノントッキ株式会社 filed Critical キヤノントッキ株式会社
Publication of WO2014050501A1 publication Critical patent/WO2014050501A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to a vapor deposition apparatus and a vapor deposition method for forming a vapor deposition film having a film formation pattern using a vapor deposition mask on a substrate.
  • This organic EL display device has a structure in which an electrode layer and a plurality of organic light emitting layers are laminated on a substrate, and a sealing layer is further formed on the substrate. Corners and high contrast can be realized.
  • Such an organic EL device is generally manufactured by a vacuum vapor deposition method, in which a substrate and a vapor deposition mask are aligned and closely adhered in a vacuum chamber, and a vapor deposition film having a desired film formation pattern is formed on the substrate by the vapor deposition mask. Is formed.
  • the vapor deposition mask for obtaining a desired film formation pattern is enlarged with an increase in the size of the substrate.
  • tension was applied to the vapor deposition mask. Since it must be manufactured by welding and fixing to the mask frame in the state, it is not easy to manufacture a large evaporation mask, and if this tension is not sufficient, the mask will be distorted and the center of the mask will be distorted. The degree of adhesion of the substrate is reduced, and the mask frame becomes large in order to take these into consideration, and the increase in thickness and weight becomes remarkable.
  • the substrate and the vapor deposition mask are spaced apart from each other, and the organic light-emitting layer is formed with high accuracy by an opening that generates vapor particles having directivity from the evaporation source.
  • the evaporation source and the opening for generating directivity have an integrated structure, and the integrated structure is heated to a high temperature to generate evaporated particles from the opening. Therefore, radiation heat from the evaporation source is received by the vapor deposition mask, and it is impossible to prevent a decrease in position accuracy of the film formation pattern due to thermal expansion of the vapor deposition mask.
  • Japanese Patent Application Laid-Open No. 2010-270396 proposes a thin film deposition apparatus having a barrier wall assembly including a plurality of barrier walls, in which a space between a vapor deposition source and a vapor deposition mask is divided into a plurality of vapor deposition spaces.
  • a barrier wall assembly in this deposition apparatus is directed to a high temperature deposition source and the temperature rises to 100 ° C. or more at maximum, the barrier wall assembly is prevented from being conducted to the deposition mask.
  • the assembly and the deposition mask are separated.
  • the vapor deposition mask continues to face the high temperature vapor deposition source, it always receives radiant heat and the temperature rises.
  • the temperature rise of the vapor deposition mask can suppress film formation pattern deviation by holding the vapor deposition mask in a tensile state, but the temperature of the mask frame also rises as the temperature of the vapor deposition mask rises. There is a problem that a film forming pattern shift occurs due to expansion.
  • the inventor attaches a vapor deposition mask to a mask holder having a scattering restricting portion that restricts the scattering direction of evaporated particles of a film forming material evaporated from an evaporation source, and at least one of the mask holder and the vapor deposition mask Has proposed a vapor deposition device that can suppress the temperature rise of the mask frame by suppressing the temperature rise of the mask frame and suppress the occurrence of film formation pattern shift due to the thermal expansion of the mask frame. It takes time to process the medium path for internal temperature control (for cooling), and it is difficult to manufacture. Furthermore, since it is necessary to prepare a plurality of vapor deposition masks for mass production equipment, including replacement, cleaning, and spare parts, it is necessary to prepare the same number of mask holders to which the vapor deposition masks are attached. And the cost is high.
  • JP 2010-511784 gazette JP 2010-270396 A WO2012 / 108426
  • Vapor deposition mask can be deposited with a deposition pattern, and it can be deposited in a relatively simple and efficient manner by moving relative to each other in a separated state.
  • a mask holder with a limiting part between the evaporation source and the evaporation mask, the evaporation direction of the evaporated particles is limited to prevent the evaporated particles from passing through the adjacent or remote evaporation port.
  • a mask frame provided with a vapor deposition mask is placed in contact with a mask holder having a scattering restriction portion provided with the restriction opening.
  • the cooling effect of the mask frame holder having the temperature control unit can be conducted to the mask frame, and the temperature of the mask frame can be kept constant.
  • a mask frame holder having a medium path inside is provided. Since there is no need to manufacture a plurality of layers, the vapor deposition system can perform high-precision vapor deposition without shifting the vapor deposition pattern due to the temperature rise of the low-cost and lightweight mask frame, while having a structure in which the substrate and the vapor deposition mask are moved relative to each other in a separated state.
  • An object of the present invention is to provide a vapor deposition method.
  • a film forming material evaporated from the evaporation source 1 is deposited on the substrate 4 through the mask opening 3 of the vapor deposition mask 2, and a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4.
  • the scattering direction of the evaporated particles of the film-forming material evaporated from the evaporation source 1 is limited between the evaporation source 1 and the substrate 4 disposed opposite to the evaporation source 1.
  • a mask holder 6 having a scattering restricting portion provided with a restricting opening 5 is provided, and the vapor deposition mask 2 provided in a separated state from the substrate 4 is attached to the mask holder 6.
  • a temperature control mechanism 9 for maintaining the temperature of the vapor deposition mask 2
  • the substrate 4 is separated from the vapor deposition mask 2 with respect to the mask holder 6 and the evaporation source 1 provided with the vapor deposition mask 2.
  • Relative movement while holding A vapor deposition apparatus configured such that a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4 in a range wider than the vapor deposition mask 2 by the relative movement, the mask holder 6 is divided into a mask frame 6A provided with the vapor deposition mask 2 and a mask frame holder 6B provided with the scattering restricting portion, and the mask frame 6A disposed in contact with the mask frame holder 6B is detached.
  • the vapor deposition apparatus is characterized in that the temperature control mechanism 9 is provided in the mask frame holder 6B.
  • the evaporation source 1 containing the film forming material and the mask through which the evaporation particles of the film forming material evaporated from the evaporation port 8 of the evaporation source 1 pass in the film forming chamber 7 having a reduced pressure atmosphere.
  • the vapor deposition mask 2 provided with the opening 3 is disposed, a plurality of the evaporation ports 8 are arranged in parallel, and the substrate 4 aligned with the vapor deposition mask 2 in a separated state is connected to the substrate 4 from the plurality of evaporation ports 8.
  • the vaporized particles that scatter are deposited through the mask opening 3, and a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4.
  • the vaporization source 1 and the vaporization source The scattering restricting portion is provided with the restricting opening 5 that does not allow the evaporation particles from the evaporation port 8 located adjacent to or away from the substrate 4 disposed in a state of being opposed to the substrate 1 to pass through.
  • the mask frame holder 6B is disposed;
  • the mask frame 6A attached to the mask frame holder 6B with the deposition mask 2 disposed in a separated state from the substrate 4 is placed in contact with the mask frame holder 6B, and the mask frame holder 6B is attached to the mask frame 6A.
  • the temperature control mechanism 9 that suppresses the temperature increase of the attached deposition mask 2 and keeps the temperature constant is provided, and the substrate 4 is attached to the mask frame 6A and the mask frame holder 6B to which the deposition mask 2 is attached.
  • the deposition is smaller than the substrate 4 by moving relative to the source 1 while keeping the state separated from the deposition mask 2, and continuously depositing the deposition film of the deposition pattern of the deposition mask 2 in the relative movement direction.
  • the vapor deposition apparatus according to claim 1, wherein the mask 2 is configured to form a vapor deposition film over a wide range.
  • a plurality of the evaporation port portions 8 of the evaporation source 1 are arranged in parallel in a lateral direction orthogonal to the relative movement direction of the substrate 4, and the restriction opening is formed in the mask frame holder 6 B of the mask holder 6.
  • a plurality of parts 5 are arranged in parallel in the lateral direction to constitute the scattering restriction part, and the evaporated particles evaporating from the respective evaporation port parts 8 pass only through the restriction opening parts 5 facing each other, and further this restriction.
  • a vapor deposition film of the film formation pattern defined by the mask opening 3 is formed on the substrate 4 through the mask opening 3 of the vapor deposition mask 2 covering the frame opening 18 communicating with the opening 5 for use.
  • the evaporation particles from the evaporation port 8 at adjacent or remote positions are attached and trapped, and the scattering direction of the evaporation particles is limited by the scattering restriction unit.
  • Motomeko 2 wherein.
  • the mask frame holder 6B has a configuration in which an evaporation trapping surface 10 for the evaporated particles is formed on the side of the evaporation source 1 side of the restriction opening 5 of the scattering restriction portion. This relates to the vapor deposition apparatus according to Item 1.
  • the vapor deposition apparatus according to claim 1, wherein the vapor deposition mask 2 is stretched by applying tension to the mask frame 6A.
  • the vapor deposition apparatus according to claim 5, wherein the vapor deposition mask 2 is stretched by applying tension to the mask frame 6A in the relative movement direction of the substrate 4.
  • the mask frame 6A is detachably attached to the end of the mask frame holder 6B provided with the temperature control mechanism 9 on the substrate 4 side so as to be removable from the mask frame moving means.
  • the temperature control mechanism 9 provided in the holder 6B is configured to hold the temperature of the vapor deposition mask 2 stretched on the mask frame 6A, and the mask frame 6A not provided with the temperature control mechanism 9 is set to this temperature.
  • a film forming chamber 7 for forming the vapor deposition film on the substrate 4 and an exchange chamber 11 disposed adjacent to the lateral direction perpendicular to the transport direction of the substrate 4 are provided.
  • the mask frame 6A has a moving means recess 13 held by the mask frame moving means for moving the film forming chamber 7 and the exchange chamber 11 back and forth in the front and rear direction of the substrate 4 in the transport direction.
  • the vapor deposition mask 2 is divided into a plurality of pieces in the lateral direction perpendicular to the relative movement direction of the substrate 4, and the divided vapor deposition mask 2 is attached to the mask frame 6 ⁇ / b> A in the horizontal direction. It concerns on the vapor deposition apparatus of Claim 1 characterized by the above-mentioned.
  • a plurality of the evaporation ports 8 of the evaporation source 1 are arranged side by side in a lateral direction perpendicular to the relative movement direction of the substrate 4, and the limiting openings 5 are opposed to each of the plurality of evaporation ports 8.
  • the mask frame 6A provided with the vapor deposition mask 2 so as to cover the frame opening 18 that communicates with the restriction opening 5 of the mask frame 6A or becomes a part of the restriction opening 5 is provided.
  • the frame opening 18 communicates with the restriction opening 5 so as to be detachable from the end of the mask frame holder 6B fixed in the film forming chamber 7 on the substrate 4 side.
  • a rib portion 14 is provided between the frame opening 18 of the mask frame 6A so as to protrude in the direction extending to the substrate 4 side, and the front end surface of the rib portion 14 on the substrate 4 side and the periphery of the mask frame 6A.
  • a mask mounting support surface 15 for supporting the vapor deposition mask 2 disposed so as to cover the frame opening 18 communicating with the restriction opening 5 is provided on the part surface. It concerns the device.
  • the frame opening 18 formed between the rib portions 14 of the mask frame 6A is configured to communicate with the restriction opening 5 of the scattering restricting portion, and the opening communicating with the restricting opening 5 is provided.
  • the mask mounting support surface 15 provided on the front end surface of the rib 4 has a smaller shape than the opening forming area inside the rib portion 14 forming the portion. 13.
  • the temperature control mechanism 9 has a configuration in which a medium path 16 is provided between the peripheral portion of the mask frame holder 6B or the restriction opening 5 to distribute a medium whose temperature is controlled by heat exchange.
  • the mask frame 6A and the mask frame holder 6B are disposed in contact with each other with a heat conductor 17 formed of a member having higher thermal conductivity than the mask frame 6A and the mask frame holder 6B interposed therebetween. It concerns on the vapor deposition apparatus of Claim 1 characterized by these.
  • the thermal conductor 17 includes at least one of copper, aluminum, silver, indium, molybdenum, tungsten, carbon, and aluminum nitride, according to the vapor deposition apparatus according to claim 15.
  • the deposition apparatus according to claim 1, wherein the film forming material is an organic material.
  • a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4 using the vapor deposition apparatus according to any one of claims 1 to 17. It concerns the method.
  • the deposition mask is widely used by relatively moving the substrate in a separated state even if the deposition mask is smaller than the substrate.
  • Vapor deposition film with film formation pattern can be deposited, and the structure can be simply and efficiently deposited by moving relative to each other in the separated state, and the scattering restricting portion provided with the restriction opening can be provided even in the separated state.
  • the vapor deposition mask is attached to a mask holder having a scattering restriction portion provided with the restriction opening, and the vapor deposition mask is attached to the mask holder.
  • this mask holder not only serves as a scattering limiting part, but also exhibits a temperature holding function that suppresses the incidence of radiant heat from the evaporation source and suppresses the temperature rise of the vapor deposition mask and mask holder.
  • the temperature of the vapor deposition mask and the mask holder can be kept constant, thereby preventing distortion of the vapor deposition mask due to heat.
  • the mask holder is provided with a mask frame on which the vapor deposition mask is attached, a scattering limiting portion and a temperature.
  • the mask frame As a configuration divided into a mask frame holder equipped with a control mechanism, the mask frame is placed in contact with the mask frame holder equipped with this temperature control mechanism, and the mask frame is removed from the mask frame holder during replacement or cleaning.
  • Removable and removable, low-cost, lightweight and easy-to-replace mask It serves as a mask holder with a frame, while a structure for relatively moving the substrate and the deposition mask with the separated state, a vapor deposition apparatus and deposition method allows highly accurate deposition.
  • the organic light emitting layer can be deposited with high accuracy, and the substrate, vapor deposition mask, and vapor deposition film can be prevented from being damaged by the mask contact. It becomes the vapor deposition apparatus and vapor deposition method for organic EL device manufacture which can implement
  • the vapor deposition mask by applying a tension higher than the thermal stress to the vapor deposition mask, even if the vapor deposition mask rises in temperature, the vapor deposition mask can be vapor-deposited without being bent. .
  • the mask holder is divided into a mask frame and a mask frame holder, a temperature control mechanism is provided on the mask frame holder, and a mask frame without this temperature control mechanism is provided.
  • the temperature rise of the vapor deposition mask can be suppressed by allowing the vapor deposition mask to be freely taken out and placed on the surface, while the mask frame structure can be simplified, so that the vapor deposition mask can be easily stretched on the mask frame.
  • the function and effect of the present invention can be exhibited more satisfactorily, and the vapor deposition apparatus is extremely excellent in practicality.
  • the mask frame provided with the vapor deposition mask can be moved between the film formation chamber and the exchange chamber, thereby facilitating the insertion and removal of the vapor deposition mask.
  • the stop time of the film forming process is shortened, and the operating rate of the vapor deposition apparatus is improved.
  • the mask frame is provided with the recess for moving means, it is easy to hold the mask frame for moving between the film forming chamber and the exchange chamber (by the moving means).
  • the mask frame is disposed in contact with the substrate frame end portion of the mask frame holder provided with the temperature control mechanism, thereby achieving the scattering restriction function and the heat of the mask frame. Is transmitted to the mask frame holder, the temperature rise of the mask frame is suppressed, and the configuration that can suppress the film formation pattern deviation due to the thermal expansion of the mask frame can be easily realized with a simpler configuration and is extremely practical. Vapor deposition equipment.
  • the rib portion provided on the mask frame can prevent deformation of the mask frame due to the tension of the vapor deposition mask, can maintain the tension of the vapor deposition mask, and is provided with a mask mounting support surface. As a result, the deposition mask can be firmly supported and joined to the mask frame.
  • the temperature control of the mask frame holder is very good and can be easily realized.
  • the heat of the mask frame is easily conducted to the mask frame holder, and the temperature rise of the mask frame can be further suppressed.
  • the heat of the mask frame is more easily conducted to the mask frame holder.
  • FIG. 3 is a schematic sectional front view illustrating a schematic configuration showing that the mask frame of the present embodiment is removed from the mask frame holder and moved to and from the exchange chamber. It is a description sectional side view of a present Example. It is a description perspective view of the mask frame holder of a present Example. It is an explanatory top view which shows the distribution path of the medium path of the mask frame holder of a present Example.
  • the film-forming material evaporated from the evaporation source 1 passes through the restriction opening 5 of the mask holder 6, specifically, the restriction opening 5 and the mask frame 6A of the scattering restriction part of the mask frame holder 6B. And deposited on the substrate 4 through the mask opening 3 of the vapor deposition mask 2 attached to the mask frame 6A, and the vapor deposition film having a film formation pattern determined by the vapor deposition mask 2 Is formed on the substrate 4.
  • the substrate 4 and the vapor deposition mask 2 are disposed in a separated state, and the vapor deposition mask 2 is placed on the substrate 4 with respect to the mask frame 6A, the mask frame holder 6B and the evaporation source 1 to which the vapor deposition mask 2 is attached.
  • the deposition film having a deposition pattern defined by the deposition mask 2 in a wider range than the deposition mask 2 itself is formed by relatively moving the substrate 4 while maintaining the separated state. 4 is formed. Further, a mask holder 6 having a scattering restriction portion is provided between the vapor deposition mask 2 and the evaporation source 1, and specifically, a restriction for limiting the scattering direction of the evaporated particles of the film forming material evaporated from the evaporation source 1.
  • a mask frame holder 6B having a scattering restricting portion having an opening 5 for use is provided, so that the evaporated particles emitted from the evaporation port 8 at the adjacent or remote position do not reach the evaporation mask 2; Even when the substrate 4 is in a separated state, the overlapping of the film formation patterns is prevented.
  • the temperature control mechanism 9 is provided in the mask frame holder 6B. Even when receiving radiant heat from the evaporation source 1, the temperature of the mask frame 6A can be kept constant. That is, the heat of the mask frame 6A arranged in contact is conducted to the mask frame holder 6B and the temperature rise of the mask frame 6A can be suppressed, so that the mask frame 6A is thermally expanded and the position of the mask opening 3 is shifted. Thus, the film formation pattern can be prevented from shifting.
  • the temperature rise of the vapor deposition mask 2 is further increased. Can be suppressed.
  • the mask frame holder 6B having the scattering restriction portion serves not only the function of restricting the scattering direction of the evaporated particles but also the temperature holding function, and can suppress the temperature rise of the mask frame 6A and the vapor deposition mask 2, and the vapor deposition mask 2 due to heat. It is difficult for distortion to occur.
  • the mask holder 6 is divided into a mask frame 6A having the temperature control mechanism 9 and a mask frame holder 6B to which the vapor deposition mask 2 is attached, and the mask frame 6A is detached from the mask frame holder 6B. Since it is configured to be removable, a mask frame that moves frequently and is manufactured in large quantities can be manufactured at a low cost with a light weight.
  • the substrate 4 is separated from the vapor deposition mask 2 with respect to the vapor deposition mask 2, the mask frame 6 A provided with the vapor deposition mask 2, the mask frame holder 6 B provided with the temperature control mechanism 9 and the scattering restriction unit, and the evaporation source 1.
  • the vapor deposition film of the vapor deposition pattern by the vapor deposition mask 2 is continued in this relative movement direction, and the vapor deposition film 2 is formed over a wide range even with the vapor deposition mask 2 smaller than the substrate 4 and adjacent to each other.
  • the overlapping of the film formation patterns due to the incidence of the evaporated particles from the evaporation port portion 8 at a distant position, distortion due to heat, etc. are sufficiently suppressed, and a vapor deposition apparatus capable of performing vapor deposition with high accuracy at low cost.
  • a film forming material (for example, an organic material for manufacturing an organic EL device) evaporated from the evaporation source 1 is deposited on the substrate 4 through the mask opening 3 of the vapor deposition mask 2, and this vapor deposition is performed.
  • a vapor deposition apparatus configured such that a vapor deposition film having a film formation pattern defined by a mask 2 is formed on a substrate 4, for limiting the scattering direction of evaporated particles of the film formation material evaporated from the evaporation source 1
  • a mask holder 6 having a scattering restriction portion provided with an opening 5 is provided, and the vapor deposition mask 2 arranged in a separated state from the substrate 4 is attached to the mask holder 6, and the vapor deposition mask is attached to the mask holder 6.
  • the substrate 4 is kept in a state of being separated from the vapor deposition mask 2 with respect to the mask holder 6 and the evaporation source 1 provided with the vapor deposition mask 2.
  • Configured freely for mobile, deposited film deposition pattern defined by the deposition mask 2 in a range wider than the deposition mask 2 is configured to be formed on the substrate 4 by the relative movement.
  • the mask holder 6 is divided into a mask frame 6A provided with the vapor deposition mask 2 and a mask frame holder 6B provided with the scattering restricting portion, and is brought into contact with the mask frame holder 6B.
  • the mask frame 6A that has been disposed is detached and configured to be removable, and the temperature control mechanism 9 is provided in the mask frame holder 6B.
  • the scattering direction of the evaporated particles of the film forming material evaporated from the evaporation port 8 of the evaporation source 1 arranged in parallel in the horizontal direction between the evaporation mask 2 and the evaporation source 1 is limited.
  • a mask frame holder 6B provided with the scattering restricting portion configured by arranging a plurality of restricting openings 5 in the lateral direction so as to correspond to the evaporation port 8 is provided, and the evaporation particles incident on the mask opening 3 are provided.
  • the mask frame 6A provided by bonding the vapor deposition mask 2 to the mask frame holder 6B provided with the scattering restricting portion is disposed in contact with the mask frame holder 6B, and the temperature control portion 9A is provided on the mask frame holder 6B. Even if the mask frame 6A is not provided with the temperature control mechanism 9, the mask frame 6A is configured to conduct heat to the mask frame holder 6B, so that the mask frame holder 6B has a function of restricting the scattering direction of the evaporated particles. At the same time, the mask frame 6A is cooled.
  • the evaporation source 1 in which the film forming material (for example, an organic material for manufacturing an organic EL device) is housed in the film forming chamber 7 (for example, the vacuum chamber 7) in a reduced pressure atmosphere.
  • a vapor deposition mask 2 provided with a mask opening 3 through which vaporized particles of the film forming material evaporating from a plurality of vaporization openings 8 of the evaporation source 1 pass. Evaporated particles scattered from the plurality of evaporation ports 8 pass through the mask opening 3 and are deposited on the substrate 4 that is positioned in the separated state, and a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on this substrate.
  • the limiting opening 5 is configured to be formed on the substrate 4 so as to prevent evaporation particles from the evaporation port 8 located adjacent to or away from the substrate 4 and the evaporation source 1 from passing therethrough.
  • a mask frame holder 6B that constitutes a plurality of scattering restriction portions arranged side by side as described above is provided, and the mask frame 6A provided by bonding the deposition mask 2 provided in a separated state from the substrate 4 to the mask frame holder 6B.
  • a temperature control mechanism 9 that absorbs heat from the evaporation source 1 and suppresses the temperature rise of the mask frame 6A.
  • a plurality of the evaporation port portions 8 of the evaporation source 1 are arranged side by side in a lateral direction orthogonal to the relative movement direction of the substrate 4, and the evaporation port portion is mounted on the mask frame holder 6 B of the mask holder 6.
  • a plurality of restriction openings 5 are arranged in parallel in the lateral direction so as to face 8 and constitute the scattering restriction part, and the restriction openings that the evaporated particles evaporating from the respective evaporation port parts 8 face each other. 5 is passed through the mask opening 3 of the vapor deposition mask 2 and covers the frame opening 18 communicating with the restriction opening 5, and is defined on the substrate 4 by the mask opening 3.
  • the vapor deposition film of the film formation pattern is formed, and the evaporation particles from the evaporation port portions 8 at adjacent or separated positions are attached and trapped, and the scattering direction of the evaporation particles is limited by the scattering limitation unit. Like It is configured.
  • the mask frame 6A is detachably contacted to the end of the mask frame holder 6B provided with the temperature control mechanism 9 by the mask frame moving means (not shown).
  • the temperature control mechanism 9 provided in the mask frame holder 6B holds the temperature of the vapor deposition mask 2 stretched on the mask frame 6A, and the mask frame 6A not provided with the temperature control mechanism 9 is used. Is configured to be removable from the mask frame holder 6B provided with the temperature control mechanism 9.
  • a film forming chamber 7 for forming the vapor deposition film on the substrate 4 and an exchange chamber 11 disposed adjacent to the lateral direction perpendicular to the transport direction of the substrate 4 are provided.
  • the mask frame 6A is moved between the exchange chambers 11, and the vapor deposition mask 2 attached to the mask frame 6A is configured to be exchangeable in the exchange chamber 11.
  • the mask frame holder 6B also serves as a pedestal for arranging the mask frame 6A in this way, and the rib portions 14 provided between the outer peripheral portions of the mask frame 6A and the mask frame holder 6B and between the frame openings 18 are provided. Since the restriction openings 5 are held in contact with each other, the heat conduction is further improved, and it is possible to prevent the mask frame 6A that is long in the lateral direction perpendicular to the transport direction of the substrate 4 from being bent. .
  • the vapor deposition mask 2 is stretched by applying a tension in the relative movement direction of the substrate 4 to the mask frame 6A.
  • the vapor deposition mask 2 is arranged in a state of facing the evaporation port 8 of the evaporation source 1 as described above, and is directly irradiated with the radiant heat from the evaporation source 1 and is formed of a thin metal foil, and has a heat capacity. Since it is small, the temperature rises during vapor deposition, and the mask opening 3 is distorted by thermal expansion, and tension is applied in the transport direction of the substrate 4 in order to prevent the film formation pattern accuracy from deteriorating.
  • the tension applied to the vapor deposition mask 2 can be reduced, and the mask frame 6A can be further prevented from being distorted.
  • the vapor deposition mask 2 is joined to the periphery of the mask frame 6A and between the frame openings 18 as usual, but it is joined to the mask frame 6A having a temperature lower than that of the vapor deposition mask 2 as described above. Therefore, the temperature rise of the vapor deposition mask 2 is suppressed.
  • the vapor deposition mask 2 is orthogonal to the relative movement direction of the substrate 4 when the substrate 4 on which the vapor deposition film is deposited and the film formation pattern is formed is, for example, a fifth generation glass substrate 4 (1100 mm ⁇ 1300 mm) or larger. It is necessary to form large in the lateral direction, making it difficult to manufacture. Therefore, the vapor deposition mask 2 of the present embodiment has a configuration in which the vapor deposition mask 2 of the mask frame 6A is divided into a plurality of restriction apertures 5 in the lateral direction orthogonal to the relative movement direction of the substrate 4.
  • the mask mounting support surface 15 formed on the end surface of the rib portion 14 provided between the frame openings 18 is divided into a plurality of pieces.
  • the side edges of the deposited evaporation mask 2 may be brought into contact with each other.
  • the vapor deposition mask covers the frame opening 18 that may be part of the restriction opening 5 and communicate with the restriction opening 5 of the mask frame 6A.
  • the frame opening 18 is provided on the substrate 4 side end of the mask frame holder 6B provided as a pedestal in the film forming chamber 7 so that the frame opening 18 is the limiting opening. 5 is configured to be in contact with each other so as to communicate with 5.
  • the rib portion 14 is provided between the frame opening 18 of the mask frame 6A so as to protrude in the direction extending to the substrate 4 side.
  • the front end surface of the rib portion 14 on the substrate 4 side and the mask frame 6A are provided.
  • the mask mounting support surface 15 for supporting the vapor deposition mask 2 disposed so as to cover the frame opening portion 18 communicating with the restriction opening portion 5 is provided on the peripheral surface.
  • the rib portion 14 provided between the frame openings 18 of the mask frame 6A can prevent the deformation of the mask frame 6A due to the tension of the vapor deposition mask 2, can maintain the tension of the vapor deposition mask 2, and can reflect the evaporation particles. Incidence of an unexpected film forming material such as reevaporation into the mask opening 3 is suppressed.
  • the rib portion 14 of the mask frame 6A may have a triangular shape from the mask mounting support surface 15 formed on the protruding front end surface on the substrate 4 side to the contact surface with the mask frame holder 6B. Then, by using a stepped shape with a step, workability is greatly improved, and it can be manufactured at low cost.
  • the frame opening portion 18 formed between the rib portions 14 of the mask frame 6A may be configured to form a part of the restriction opening portion 5 of the scattering restriction portion.
  • the area of the mask mounting support surface 15 provided on the front end surface of the rib 4 on the substrate 4 side is larger than the opening forming area on the inner side of the rib portion 14 that forms the opening communicating with the opening 5.
  • the rib portion 14 is formed so as to have a small shape.
  • the mask frame 6A has a shape in which the opening forming area inside the stepped rib portion 14 with the step is larger than the area of the mask mounting support surface 15 provided on the front end surface of the rib portion 14.
  • the ribs are strengthened and the deformation of the mask frame 6A can be further prevented, and heat is efficiently transferred from the mask frame 6A to the mask frame holder 6B, and the temperature rise of the mask frame 6A is further suppressed.
  • the deposition chamber 7 for forming the vapor deposition film on the substrate 4 and the exchange chamber 11 disposed adjacent to the lateral direction perpendicular to the transport direction of the substrate 4 are provided.
  • the mask frame 6A is moved between the film forming chamber 7 and the exchange chamber 11, and the vapor deposition mask 2 attached to the mask frame 6A is configured to be exchangeable in the exchange chamber 11, and the mask frame 6A includes: Moving means recesses 13 for holding the mask frame moving means (not shown) for moving the film forming chamber 7 and the exchange chamber 11 back and forth are provided before and after the substrate 4 in the transport direction. .
  • concave portions 13 are formed on the front and rear side surfaces of the mask frame 6A to form the concave portions 13 for moving means so that a robot arm that is wide and narrow can be suspended and conveyed. .
  • the mask frame 6A provided with the mask 2 must be periodically exchanged.
  • the exchange chamber is arranged in the lateral direction perpendicular to the transport direction of the substrate 4 in the film forming chamber 7. 11 is equipped.
  • Positioning pins 12 are provided on the mask frame holder 6B so that the mask frame 6A that is periodically replaced is disposed at the same position on the mask frame holder 6B after replacement.
  • a pressing member 21 is provided on the mask frame holder 6B, and the mask frame 6A is applied to the pressing member 21 and then fitted to the positioning pins 12. Thereby, positioning accuracy can be made into 100 micrometers or less.
  • the mask frame 6A to which the vapor deposition mask 2 that reciprocates between the film forming chamber 7 and the exchange chamber 11 is frequently exchanged during the vapor deposition is temperature-controlled by exchanging heat like the mask frame holder 6B. Since it is difficult to provide the temperature control mechanism 9 having the medium path 16 for circulating the medium, the temperature holding effect of the mask frame holder 6B is indirectly transmitted to suppress the temperature rise of the vapor deposition mask 2 and the mask frame 6A. It is configured as follows.
  • the moving means for moving between the film forming chamber 7 and the exchange chamber 11 can easily hold the mask frame 6A.
  • an evaporation source 1 provided for a host in the center and for dopants before and after the substrate 4 in the transport direction, and a reflector is provided around it.
  • the mask frame holder 6B is provided on the substrate 4 side upper portion of the evaporation source 1, and the mask frame holder is further provided.
  • the mask frame 6A is disposed in contact with the upper portion of 6B, and an evaporation source assembly including the mask frame 6A to which the evaporation source 1, the mask frame holder 6B, and the evaporation mask 2 are attached is provided outside the evaporation apparatus.
  • the evaporation source assembly is orthogonal to the transport direction of the substrate 4.
  • evaporation source assemblies may be configured so as to exchange of the mask frame 6A is possible.
  • the temperature control mechanism 9 has a configuration in which a medium path 16 for circulating a temperature-controlled medium by exchanging heat is provided between the peripheral portion of the mask frame holder 6B or the restriction opening 5.
  • the surface through which the medium flows is provided on both sides of the mask frame holder 6 ⁇ / b> B on the transport direction side of the substrate 4, and the inside of the scattering restriction part, that is, between the peripheral part and the restriction opening part 5.
  • the temperature control mechanism is provided with two stages of medium paths 16 respectively, and a lid (not shown) is welded on both sides to form a sealed structure so that the medium does not leak, and a cooling function is achieved by circulating the medium through the internal medium path 16 9 is provided on the mask frame holder 6B.
  • FIG. 7 shows a route through which the medium circulates through the medium path 16.
  • the medium that has entered from the pipe on the IN side of the mask frame holder 6B passes through the medium path 16 provided in the scattering restricting portion while filling the medium path 16 on the wall surface, and repeats the process of reaching the medium path 16 on the opposite surface.
  • the medium is filled in the space of the medium path 16 provided in the mask frame holder 6B without any gap, and the temperature holding function of the mask frame holder 6B can be further enhanced.
  • the shape of the scattering restriction portion of the mask frame holder 6B is set to a shape in which the volume of the scattering restriction portion is larger toward the evaporation source 1 side, thereby evaporating than the medium path 16 on the substrate 4 side.
  • the medium contact area of the medium path 16 on the evaporation source 1 side which is greatly affected by the radiant heat due to being close to the source 1, is configured to increase, thereby increasing the heat absorption capability and improving the temperature holding function.
  • the mask frame holder 6B has a configuration in which the evaporation particle adhesion capturing surface 10 is formed at the evaporation source 1 side edge of the restriction opening 5 of the scattering restriction portion. It is said.
  • the end portion is formed in a letter C shape toward the evaporation source side, and the adhesion capturing surface 10 facing outward is formed in a letter H shape at the evaporation source side end part of each restriction opening 5.
  • the adhesion capturing surface 10 is formed so as to face the adjacent evaporation port 8 so as to be able to capture and favorably capture the evaporated particles from the adjacent evaporation port 8 is doing.
  • a large amount of evaporated particles adheres by providing a screen portion 19 in the direction perpendicular to the transport direction of the substrate 4 on the surface of the scattering limit portion of the mask frame holder 6B on the evaporation source 1 side. This prevents the evaporation particles emitted from the adjacent evaporation port 8 from entering the restriction opening 5 and opens the mask from an unexpected angle due to re-evaporation from the evaporation source 1 and reflection from the scattering restriction. It is possible to prevent the evaporated particles from entering the portion 3.
  • the temperature control means provided outside the vacuum chamber 7 and the medium path 16 through which the medium provided in the mask frame holder 6B is circulated are connected via a flange provided on the wall surface of the vacuum chamber 7. Therefore, the medium whose temperature has risen by passing through the mask frame holder 6B is set to the set temperature by the heat exchanging unit 20 provided in the temperature control means (for example, the thermo-chiller). Since the process in which the medium again enters the mask frame holder 6B is repeated, the temperature of the mask frame holder 6B can be kept constant.
  • the heat conductor 17 may be provided so as to perform a surface treatment for forming a film by a technique such as thermal spraying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 基板と蒸着マスクとを離間状態で相対移動させる構成でありながら、低コストで軽量なマスクフレームとなり、蒸着マスクの交換などが極めて容易となると共に、また温度上昇も抑制でき温度上昇による蒸着パターンズレがない高精度な蒸着が行える蒸着装置を提供すること。蒸発粒子の飛散方向を制限する飛散制限部を備えたマスクホルダー6及び蒸発源1に対して、このマスクホルダー6に設けた蒸着マスク2との離間状態を保持したまま基板4を相対移動して、蒸着マスク2より広い範囲に蒸着する装置であって、マスクホルダー6を、蒸着マスク2を付設するマスクフレーム6Aと、前記飛散制限部及び温度制御機構9を備えたマスクフレームホルダー6Bとに分割した構成として、このマスクフレームホルダー6Bに接触配設させたマスクフレーム6Aを離脱させて取り外し自在に構成した蒸着装置。

Description

蒸着装置並びに蒸着方法
 本発明は、蒸着マスクによる成膜パターンの蒸着膜を基板上に形成させる蒸着装置並びに蒸着方法に関するものである。
 近年、有機エレクトロルミネッセンス素子を用いた有機EL表示装置が、CRTやLCDに替る表示装置として注目されている。
この有機EL表示装置は、基板に電極層と複数の有機発光層を積層形成し、更に封止層を被覆形成した構成であり、自発光で、LCDに比べて高速応答性に優れ、高視野角及び高コントラストを実現できるものである。
 このような有機ELデバイスは、一般に真空蒸着法により製造されており、真空チャンバー内で基板と蒸着マスクをアライメントして密着させ蒸着を行い、この蒸着マスクにより所望の成膜パターンの蒸着膜を基板に形成している。
 また、このような有機ELデバイスの製造においては、基板の大型化に伴い所望の成膜パターンを得るための蒸着マスクも大型化するが、この大型化のためには蒸着マスクにテンションをかけた状態でマスクフレームに溶接固定して製作しなければならないため、大型の蒸着マスクの製造は容易でなく、またこのテンションが十分でないとマスクの大型化に伴い、マスク中心に歪みが生じ蒸着マスクと基板の密着度が低下してしまうことや、これらを考慮するためにマスクフレームが大型となり、肉厚化や重量の増大が顕著となる。
 このように、基板サイズの大型化に伴って蒸着マスクの大型化が求められているが、高精細なマスクの大型化は困難で、また製作できても前記歪みの問題によって実用上様々な問題を生じている。
 また、例えば、特表2010-511784号などに示されるように、基板と蒸着マスクとを離間配設し、蒸発源と指向性を持った蒸発粒子を発生させる開口部により有機発光層を高精度に成膜させる方法もあるが、前記蒸発源と指向性を発生させる前記開口部が一体構造をしており、開口部から蒸発粒子を発生させるには前記一体構造を高温に加熱する構成となっているため、蒸発源からの輻射熱を蒸着マスクで受けることになり、蒸着マスクの熱膨張による成膜パターンの位置精度の低下を防ぐことができない。
 また、特開2010-270396号には、蒸着源と蒸着マスクとの間の空間を、複数の蒸着空間に区画する構成で、複数の遮断壁を備える遮断壁アセンブリーを備えた薄膜蒸着装置が提案されている。この蒸着装置における遮断壁アセンブリーは高温の蒸着源に向かっており、最大で100℃以上に温度が上昇するため、上昇した遮断壁アセンブリーの温度が蒸着マスクに伝導されないようにするために、遮断壁アセンブリーと蒸着マスクを分離している。しかし、蒸着マスクは高温の蒸着源に面しつづけているので、常に放射熱を受け、温度が上昇する。蒸着マスクの温度上昇は、蒸着マスクを引張状態に保持することで成膜パターンずれを抑制することができるが、蒸着マスクの温度上昇に伴い、マスクフレームも温度上昇することで、マスクフレームの熱膨張による成膜パターンずれが発生してしまう問題点がある。
 発明者は、WO2012/108426号において、蒸発源から蒸発した成膜材料の蒸発粒子の飛散方向を制限する飛散制限部を有するマスクホルダーに、蒸着マスクを付設し、マスクホルダー若しくは蒸着マスクの少なくとも一方に蒸着マスクの温度を保持する温度制御機構を備えることで、マスクフレームの温度上昇を抑制し、マスクフレームの熱膨張による成膜パターンずれの発生を抑制できる蒸着装置を提案したが、マスクホルダーは内部の温度制御用(冷却用)の媒体路加工に時間を要し、製作が困難である。さらに、量産製造装置における蒸着マスクは、交換、洗浄時及び予備分を含めて複数枚用意する必要があるため、蒸着マスクを付設するマスクホルダーも同等の数を用意する必要があり、製作に時間を要し、高コストになるという問題点がある。
特表2010-511784号公報 特開2010-270396号公報 WO2012/108426号公報
 本発明は、このような様々な問題を解決し、基板の大型化に伴って蒸着マスクを同等に大型化せず基板より小形の蒸着マスクでも、基板を離間状態で相対移動させることで広範囲に蒸着マスクによる成膜パターンの蒸着膜を蒸着でき、また、離間状態のまま相対移動させることで構造も簡易で効率良くスピーディーに蒸着でき、また、離間状態のままでも制限用開口部を設けた飛散制限部を備えたマスクホルダーを蒸発源と蒸着マスクとの間に設けることで、蒸発粒子の飛散方向を制限して隣接する若しくは離れた位置の蒸発口部からの蒸発粒子を通過させず成膜パターンの重なりを防止すると共に、この制限用開口部を設けた飛散制限部を有するマスクホルダーに、蒸着マスクを付設したマスクフレームを接触させて配設した構成とすることで、温度制御部を有するマスクフレームホルダーの冷却効果をマスクフレームに伝導させることができ、マスクフレームの温度を一定に保持することが可能になり、例えば内部に媒体路を有するマスクフレームホルダーを複数個製作する必要がなくなるので、基板と蒸着マスクとを離間状態で相対移動させる構成でありながら、低コストで軽量なマスクフレームの温度上昇による蒸着パターンズレがない高精度な蒸着が行える蒸着装置並びに蒸着方法を提供することを目的としている。
 添付図面を参照して本発明の要旨を説明する。
 蒸発源1から気化した成膜材料を、蒸着マスク2のマスク開口部3を介して基板4上に堆積して、この蒸着マスク2により定められた成膜パターンの蒸着膜が基板4上に形成されるように構成し、前記蒸発源1とこの蒸発源1に対向状態に配設する前記基板4との間に、前記蒸発源1から蒸発した前記成膜材料の蒸発粒子の飛散方向を制限する制限用開口部5を設けた飛散制限部を備えたマスクホルダー6を配設し、このマスクホルダー6に前記基板4と離間状態に配設する前記蒸着マスク2を付設し、このマスクホルダー6に蒸着マスク2の温度を保持する温度制御機構9を備え、前記基板4を、前記蒸着マスク2を付設した前記マスクホルダー6及び前記蒸発源1に対して、前記蒸着マスク2との離間状態を保持したまま相対移動自在に構成して、この相対移動により前記蒸着マスク2より広い範囲にこの蒸着マスク2により定められる成膜パターンの蒸着膜が基板4上に形成されるように構成した蒸着装置であって、前記マスクホルダー6を、前記蒸着マスク2を付設するマスクフレーム6Aと、前記飛散制限部を備えたマスクフレームホルダー6Bとに分割した構成として、このマスクフレームホルダー6Bに接触配設させた前記マスクフレーム6Aを離脱させて取り外し自在に構成し、前記マスクフレームホルダー6Bに前記温度制御機構9を設けた構成としたことを特徴とする蒸着装置に係るものである。
 また、減圧雰囲気とする成膜室7内に、前記成膜材料を収めた前記蒸発源1と、この蒸発源1の蒸発口部8から蒸発した前記成膜材料の蒸発粒子が通過する前記マスク開口部3を設けた前記蒸着マスク2とを配設し、前記蒸発口部8を複数並設し、前記蒸着マスク2と離間状態に位置合わせする基板4に、前記複数の蒸発口部8から飛散する蒸発粒子が前記マスク開口部3を通過して堆積し、蒸着マスク2により定められる成膜パターンの蒸着膜が前記基板4に形成されるように構成し、この蒸発源1とこの蒸発源1と対向状態に配設する前記基板4との間に、隣接する若しくは離れた位置の前記蒸発口部8からの蒸発粒子を通過させない前記制限用開口部5を設けた前記飛散制限部を構成する前記マスクフレームホルダー6Bを配設し、このマスクフレームホルダー6Bに、前記基板4と離間状態に配設する前記蒸着マスク2を接合させて付設したマスクフレーム6Aを接触させて配設し、前記マスクフレームホルダー6Bに、前記マスクフレーム6Aに付設した蒸着マスク2の温度上昇を抑制し温度を一定に保持する前記温度制御機構9を設け、前記基板4を、前記蒸着マスク2を付設した前記マスクフレーム6A及び前記マスクフレームホルダー6B及び前記蒸発源1に対してこの蒸着マスク2との離間状態を保持したまま相対移動させて、この相対移動方向に前記蒸着マスク2の前記成膜パターンの蒸着膜を連続させて前記基板4より小さい前記蒸着マスク2でも広範囲に蒸着膜が形成されるように構成したことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記基板4の相対移動方向に対して直交する横方向に前記蒸発源1の前記蒸発口部8を複数並設すると共に、前記マスクホルダー6の前記マスクフレームホルダー6Bに、前記制限用開口部5を前記横方向に沿って複数並設して前記飛散制限部を構成し、前記各蒸発口部8から蒸発する蒸発粒子が、対向する前記制限用開口部5のみを通過し更にこの制限用開口部5と連通するフレーム開口部18を覆う前記蒸着マスク2の前記マスク開口部3を通過して前記基板4上にこのマスク開口部3により定められた前記成膜パターンの蒸着膜が形成され、隣り合う若しくは離れた位置の前記蒸発口部8からの蒸発粒子は付着捕捉されるようにして、前記飛散制限部により前記蒸発粒子の飛散方向が制限されるように構成したことを特徴とする請求項2記載の蒸着装置に係るものである。
 また、前記マスクフレームホルダー6Bは、前記飛散制限部の前記制限用開口部5の前記蒸発源1側縁部に、前記蒸発粒子の付着捕捉面10を形成した構成としたことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記マスクフレーム6Aに、張力を付与して前記蒸着マスク2を張設したことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記マスクフレーム6Aに、前記基板4の相対移動方向に張力を付与して前記蒸着マスク2を張設したことを特徴とする請求項5記載の蒸着装置に係るものである。
 また、前記マスクフレーム6Aは、前記温度制御機構9を設けた前記マスクフレームホルダー6Bの前記基板4側端部に、離脱自在にしてマスクフレーム移動手段より取り外し自在に接触配設し、前記マスクフレームホルダー6Bに設けた前記温度制御機構9により前記マスクフレーム6Aに張設した前記蒸着マスク2の温度を保持する構成とすると共に、この温度制御機構9を備えていない前記マスクフレーム6Aを、この温度制御機構9を備えた前記マスクフレームホルダー6Bから取り外し自在に構成したことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記蒸着膜を基板4上に形成する成膜室7と、前記基板4の搬送方向と直交する横方向に隣接して配設した交換室11とを設けて、この成膜室7と交換室11間で前記マスクフレーム6Aを往来させ、このマスクフレーム6Aに付設した前記蒸着マスク2を前記交換室11で交換自在となるように構成したことを特徴とする請求項7記載の蒸着装置に係るものである。
 また、前記マスクフレーム6Aは、前記成膜室7と前記交換室11とを往来移動させるための前記マスクフレーム移動手段が保持するための移動手段用凹部13を、前記基板4の搬送方向の前後に設けたことを特徴とする請求項8記載の蒸着装置に係るものである。
 また、前記蒸着マスク2は、前記基板4の相対移動方向と直交する横方向に複数枚に分割した構成とし、この分割した蒸着マスク2を前記マスクフレーム6Aに前記横方向に並設状態に付設したことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記蒸発源1の前記蒸発口部8を前記基板4の相対移動方向と直交する横方向に複数並設し、この複数の蒸発口部8毎に夫々対向状態に前記制限用開口部5を設けた前記飛散制限部を備えた前記マスクホルダー6を、前記飛散制限部及び前記温度制御機構9を備えた前記マスクフレームホルダー6Bと、前記温度制御機構9を備えない前記マスクフレーム6Aとに分断した構成として、前記マスクフレーム6Aの前記制限用開口部5と連通する若しくは前記制限用開口部5の一部となるフレーム開口部18を覆うように前記蒸着マスク2を付設した前記マスクフレーム6Aを、前記成膜室7内に固定した前記マスクフレームホルダー6Bの前記基板4側端部に、取り外し自在にして前記フレーム開口部18が前記制限用開口部5と連通するように接触配設した構成としたことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記マスクフレーム6Aのフレーム開口部18間に、前記基板4側に延在する方向に突出するリブ部14を設け、このリブ部14の前記基板4側先端面と前記マスクフレーム6Aの周辺部面に、前記制限用開口部5と連通するフレーム開口部18を覆うように配設する前記蒸着マスク2を支承するマスク取付支承面15を設けたことを特徴とする請求項11記載の蒸着装置に係るものである。
 また、前記マスクフレーム6Aの前記リブ部14間に形成された前記フレーム開口部18と前記飛散制限部の制限用開口部5が連通するように構成し、この制限用開口部5と連通した開口部を形成する前記リブ部14の内側の開口部形成面積より、このリブ部14の前記基板4側先端面に設けられた前記マスク取付支承面15の面積の方が小さい形状となるように前記リブ部14を形成したことを特徴とする請求項12記載の蒸着装置に係るものである。
 また、前記温度制御機構9は、前記マスクフレームホルダー6Bの周辺部若しくは前記制限用開口部5間に、熱交換して温度制御される媒体を流通させる媒体路16を設けた構成としたことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記マスクフレーム6Aと前記マスクフレームホルダー6Bとの間に、前記マスクフレーム6A及び前記マスクフレームホルダー6Bより熱伝導率が高い部材で形成した熱伝導体17を介在して接触配設したことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記熱伝導体17は、銅、アルミニウム、銀、インジウム、モリブデン、タングステン、炭素、窒化アルミニウムの少なくとも1種類を含むことを特徴とする請求項15記載の蒸着装置に係るものである。
 また、前記成膜材料を、有機材料としたことを特徴とする請求項1記載の蒸着装置に係るものである。
 また、前記請求項1~17のいずれか1項に記載の蒸着装置を用いて、前記基板4上に前記蒸着マスク2により定められた成膜パターンの蒸着膜を形成することを特徴とする蒸着方法に係るものである。
 本発明は上述のように構成したから、基板の大型化に伴って蒸着マスクを同等に大型化せず基板より小形の蒸着マスクでも、基板を離間状態で相対移動させることで広範囲に蒸着マスクによる成膜パターンの蒸着膜を蒸着でき、また、離間状態のまま相対移動させることで構造も簡易で効率良くスピーディーに蒸着でき、また、離間状態のままでも制限用開口部を設けた飛散制限部を備えたマスクホルダーを蒸発源と蒸着マスクとの間に設けることで、蒸発粒子の飛散方向を制限して隣接する若しくは離れた位置の蒸発口部からの蒸発粒子を通過させず成膜パターンの重なりを防止すると共に、この制限用開口部を設けた飛散制限部を有するマスクホルダーに蒸着マスクを接触させて付設した構成とし、このマスクホルダーに蒸着マスクの温度を保持する温度制御機構を設けることで、このマスクホルダーは飛散制限部としてだけでなく蒸発源からの輻射熱の入射を抑制し蒸着マスク及びマスクホルダーの温度上昇を抑制する温度保持機能を発揮して、蒸着マスク及びマスクホルダーの温度を一定に保持させることができ、これにより蒸着マスクの熱による歪みを防止し、さらにこのマスクホルダーを、蒸着マスクを付設するマスクフレームと、飛散制限部及び温度制御機構を備えたマスクフレームホルダーとに分割した構成として、この温度制御機構を備えたマスクフレームホルダーに、マスクフレームを接触して配設し、交換時や洗浄時にこのマスクフレームホルダーからマスクフレームを離脱させて取り外し自在に構成したことで、低コストで軽量かつ交換が容易なマスクフレームを有するマスクホルダーとなり、基板と蒸着マスクとを離間状態で相対移動させる構成でありながら、高精度の蒸着が行える蒸着装置並びに蒸着方法となる。
 特に有機ELデバイスの製造にあたり、基板の大型化に対応でき、有機発光層の蒸着も精度良く行え、マスク接触による基板、蒸着マスク、蒸着膜の損傷も防止でき、基板より小さな蒸着マスクにより高精度の蒸着が実現できる有機ELデバイス製造用の蒸着装置並びに蒸着方法となる。
 また、請求項2,3記載の発明においては、一層本発明の作用・効果が良好に発揮され、一層実用性に優れた蒸着装置となる。
 また、請求項4記載の発明においては、飛散制限部の蒸発源側に蒸発粒子の付着捕捉面を形成することで、飛散制限部の蒸発源側面に付着する蒸発粒子を低減することができ、長時間の連続蒸着が可能になる。
 また、請求項5記載の発明においては、蒸着マスクに熱応力以上の張力を付与することで、蒸着マスクが温度上昇しても、蒸着マスクが撓むことなく、所望の成膜パターンを蒸着できる。
 また、請求項6記載の発明においては、蒸着マスクに対して基板の相対移動方向に張力を付与するので、基板の相対移動方向と直交する横方向に、蒸着マスクの撓みによるマスク開口部の歪みがなくなり、成膜誤差を抑制できる。
 また、請求項7記載の発明においては、マスクホルダーをマスクフレームとマスクフレームホルダーに分割して配設し、マスクフレームホルダーに温度制御機構を設け、この温度制御機構を設けていないマスクフレームをこれに接触配設して取り出し自在とすることで、蒸着マスクの温度上昇を抑制することができ、一方で、マスクフレームの構造を簡素化できるので、蒸着マスクのマスクフレームへの張設が容易になるなど一層本発明の作用・効果が良好に発揮され、極めて実用性に優れた蒸着装置となる。
 また、請求項8記載の発明においては、蒸着マスクが付設されたマスクフレームが、成膜室と交換室とを往来できるようにすることで蒸着マスクの投入、取出しが容易となり、マスクフレームの交換に伴う成膜工程の停止時間が短くなり、蒸着装置の稼動率が向上する。
 また、請求項9記載の発明においては、マスクフレームに移動手段用凹部を備えたことで、成膜室と交換室との移動するための(移動手段による)マスクフレームの保持が容易となる。
 また、請求項10記載の発明においては、複数枚に分割した小さな蒸着マスクでも大型の基板に成膜できるので、蒸着マスクの作成が容易となる。
 また、請求項11記載の発明においては、温度制御機構を備えたマスクフレームホルダーの基板側の端部に、マスクフレームを接触させて配設させることで、飛散制限機能を果たすと共にマスクフレームの熱がマスクフレームホルダーに伝導し、マスクフレームの温度上昇が抑制され、マスクフレームの熱膨張による成膜パターンずれを抑制することができる構成を、一層簡易な構成で容易に実現できる極めて実用性に優れた蒸着装置となる。
 また、請求項12記載の発明においては、マスクフレームに設けたリブ部によって、蒸着マスクの張力によるマスクフレームの変形が防止できると共に、蒸着マスクの張力が維持でき、かつ、マスク取付支承面を設けたことで、蒸着マスクのマスクフレームへの支承・接合が強固に行える。
 また、請求項13記載の発明においては、マスクフレームからマスクフレームホルダーへ効率的に熱が移動し、マスクフレームの温度上昇が一層抑制される。
 また、請求項14記載の発明においては、マスクフレームホルダーに温度制御機構として媒体路を設けることで、マスクフレームホルダーの温度制御が極めて良好にして容易に実現できる。
 また、請求項15記載の発明においては、マスクフレームの熱がマスクフレームホルダーへ伝導しやすくなり、一層マスクフレームの温度上昇を抑制することができる。
 また、請求項16記載の発明においては、マスクフレームの熱が一層マスクフレームホルダーへ伝導しやすくなる。
 また、請求項17記載の発明においては、有機材料の蒸発装置となり、一層実用性に優れる。
 また、請求項18記載の発明においては、前記作用・効果を発揮する優れた蒸着方法となる。
本実施例の要部の概略構成説明正断面図である。 本実施例のマスクフレームの説明斜視図である。 本実施例の分割構成の蒸着マスクの説明分解斜視図である。 本実施例のマスクフレームをマスクフレームホルダーから取り外し交換室と往来させることを示す概略構成説明正断面図である。 本実施例の説明側断面図である。 本実施例のマスクフレームホルダーの説明斜視図である。 本実施例のマスクフレームホルダーの媒体路の流通経路を示す説明平面図である。 本実施例の蒸発源側の体積が大きい形状とした飛散制限部を備えたマスクホルダーの別例を示す説明正断面図である。 本実施例の蒸発源側面に衝立部を設けたマスクホルダーの別例の説明正断面図である。 本実施例のマスクフレームとマスクフレームホルダーの間に熱伝導体を挿設したマスクホルダーの別例を示す説明正断面図である。
 好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。
 図1において、蒸発源1から気化した成膜材料は、マスクホルダー6の制限用開口部5を通過、具体的には、マスクフレームホルダー6Bの飛散制限部の制限用開口部5及びマスクフレーム6Aのフレーム開口部18を通過すると共に、このマスクフレーム6Aに付設した蒸着マスク2のマスク開口部3を介して基板4上に堆積して、この蒸着マスク2により定められた成膜パターンの蒸着膜が基板4上に形成される。この際、基板4と蒸着マスク2とを離間状態に配設し、この基板4を、前記蒸着マスク2が付設されたマスクフレーム6Aとマスクフレームホルダー6Bと蒸発源1に対して、蒸着マスク2との離間状態を保持したまま相対移動自在に構成して、この基板4を相対移動させることにより、蒸着マスク2自体よりも広い範囲にこの蒸着マスク2により定められる成膜パターンの蒸着膜が基板4上に形成される。また、この蒸着マスク2と蒸発源1との間に飛散制限部を備えたマスクホルダー6を設けて、具体的には蒸発源1から蒸発した成膜材料の蒸発粒子の飛散方向を制限する制限用開口部5を有する飛散制限部を備えたマスクフレームホルダー6Bを設けて、隣り合う若しくは離れた位置の蒸発口部8から射出された蒸発粒子を蒸着マスク2まで到達させず、蒸着マスク2と基板4とが離間状態にあっても成膜パターンの重なりを防止している。
 また更に、この飛散制限部を構成するマスクフレームホルダー6Bに、蒸着マスク2を付設したマスクフレーム6Aを接触させて配設した構成とし、そしてマスクフレームホルダー6Bには温度制御機構9を設けたから、蒸発源1からの輻射熱を受けてもマスクフレーム6Aの温度を一定に保つことができる。即ち、接触して配設されたマスクフレーム6Aの熱がマスクフレームホルダー6Bへ伝導し、マスクフレーム6Aの温度上昇を抑制できることから、マスクフレーム6Aが熱膨張してマスク開口部3の位置がずれて成膜パターンがずれることを防ぐことができる。
 更に、マスクフレーム6Aと蒸着マスク2は、外周部で接合され、更にフレーム開口部18間にも設けたマスク取付支承面15で接合若しくは接触する構成とすれば、蒸着マスク2の温度上昇は更に抑制できる。
 従って、この飛散制限部を有するマスクフレームホルダー6Bは、蒸発粒子の飛散方向の制限機能と同時に温度保持機能をも果たし、マスクフレーム6A及び蒸着マスク2の温度上昇を抑制でき、熱による蒸着マスク2の歪みも生じにくいこととなる。
 また、マスクホルダー6を、このように温度制御機構9を備えたマスクフレーム6Aと、蒸着マスク2を付設するマスクフレームホルダー6Bとに分割した構成とし、マスクフレームホルダー6Bからマスクフレーム6Aを離脱させて取り外し自在に構成したから、頻繁に移動しかつ大量に製作するマスクフレームが、軽量で低コストに製作できる。
 よって、基板4を、蒸着マスク2、この蒸着マスク2を付設したマスクフレーム6A、温度制御機構9及び飛散制限部を備えたマスクフレームホルダー6B及び蒸発源1に対して、この蒸着マスク2との離間状態を保持したまま相対移動させることで、この相対移動方向に蒸着マスク2による成膜パターンの蒸着膜を連続させて基板4より小さい蒸着マスク2でも広範囲に蒸着膜が形成され、且つ隣り合う若しくは離れた位置の蒸発口部8からの蒸発粒子の入射による成膜パターンの重なりも、熱による歪みなども十分に抑制され、安価で高精度の蒸着が行える蒸着装置となる。
 本発明の具体的な実施例について図面に基づいて説明する。
 本実施例は、蒸発源1から気化した成膜材料(例えば、有機ELデバイス製造のための有機材料)を、蒸着マスク2のマスク開口部3を介して基板4上に堆積して、この蒸着マスク2により定められた成膜パターンの蒸着膜が基板4上に形成されるように構成した蒸着装置において、前記蒸発源1から蒸発した前記成膜材料の蒸発粒子の飛散方向を制限する制限用開口部5を設けた飛散制限部を備えたマスクホルダー6を配設し、このマスクホルダー6に前記基板4と離間状態に配設する前記蒸着マスク2を付設し、このマスクホルダー6に蒸着マスク2の温度を保持する温度制御機構9を備え、前記基板4を、前記蒸着マスク2を付設した前記マスクホルダー6及び前記蒸発源1に対して、前記蒸着マスク2との離間状態を保持したまま相対移動自在に構成して、この相対移動により前記蒸着マスク2より広い範囲にこの蒸着マスク2により定められる成膜パターンの蒸着膜が基板4上に形成されるように構成している。
 また、本実施例では、前記マスクホルダー6を、前記蒸着マスク2を付設するマスクフレーム6Aと、前記飛散制限部を備えたマスクフレームホルダー6Bとに分割した構成として、このマスクフレームホルダー6Bに接触配設させた前記マスクフレーム6Aを離脱させて取り外し自在に構成し、前記マスクフレームホルダー6Bに前記温度制御機構9を設けた構成としている。
 即ち、本実施例では、この蒸着マスク2と蒸発源1との間に、横方向に複数並設した蒸発源1の蒸発口部8から蒸発した成膜材料の蒸発粒子の飛散方向を制限する制限用開口部5を前記蒸発口部8に対応するように横方向に複数並設して構成した前記飛散制限部を備えたマスクフレームホルダー6Bを設け、マスク開口部3へ入射する蒸発粒子の入射角度の大きい蒸発粒子を制限することで、各部材の熱膨張や搬送時のずれなどによる成膜パターンがずれた場合のずれ量が少なくなるように構成している。
 また更に、この飛散制限部を備えたマスクフレームホルダー6Bに、蒸着マスク2を接合させて付設したマスクフレーム6Aを接触させて配設し、またこのマスクフレームホルダー6Bに温度制御部9Aを設けることで、マスクフレーム6Aに温度制御機構9を備えなくても、マスクフレーム6Aの熱がマスクフレームホルダー6Bへ伝導するように構成することで、このマスクフレームホルダー6Bは蒸発粒子の飛散方向の制限機能と同時に、マスクフレーム6Aの冷却機能をも果たすようにしている。
 更に説明すると、具体的には、減圧雰囲気とする成膜室7内(例えば真空チャンバー7内)に、前記成膜材料(例えば有機ELデバイスの製造にあたっての有機材料)を収めた前記蒸発源1と、この蒸発源1の複数並設した蒸発口部8から蒸発する前記成膜材料の蒸発粒子が通過するマスク開口部3を設けた前記蒸着マスク2とを配設し、この蒸着マスク2と離間状態に位置合わせする基板4に、前記複数の蒸発口部8から飛散する蒸発粒子が前記マスク開口部3を通過して堆積し、蒸着マスク2により定められる成膜パターンの蒸着膜がこの基板4上に形成されるように構成し、この基板4と蒸発源1との間に隣り合う若しくは離れた位置の蒸発口部8からの蒸発粒子を通過させないようにする制限用開口部5を前記蒸発口部8と対向するように複数並設した飛散制限部を構成するマスクフレームホルダー6Bを配設し、このマスクフレームホルダー6Bに、基板4と離間状態に配設する前記蒸着マスク2を接合させて付設したマスクフレーム6Aを接触させ配設し、このマスクフレームホルダー6Bに蒸発源1からの熱を吸収し、マスクフレーム6Aの温度上昇を抑制する温度制御機構9を設けている。
 即ち、前記基板4の相対移動方向に対して直交する横方向に前記蒸発源1の前記蒸発口部8を複数並設すると共に、前記マスクホルダー6の前記マスクフレームホルダー6Bに、前記蒸発口部8と対向するように前記制限用開口部5を前記横方向に複数並設して前記飛散制限部を構成し、前記各蒸発口部8から蒸発する蒸発粒子が、対向する前記制限用開口部5のみを通過し更にこの制限用開口部5と連通するフレーム開口部18を覆う前記蒸着マスク2の前記マスク開口部3を通過して、前記基板4上にこのマスク開口部3により定められた前記成膜パターンの蒸着膜が形成され、隣り合う若しくは離れた位置の前記蒸発口部8からの蒸発粒子は付着捕捉されるようにして、前記飛散制限部により前記蒸発粒子の飛散方向が制限されるように構成している。
 また、前記マスクフレーム6Aを、前記温度制御機構9を設けた前記マスクフレームホルダー6Bの前記基板4側端部に、離脱自在にしてマスクフレーム移動手段(不図示)により取り外し自在に接触配設し、前記マスクフレームホルダー6Bに設けた前記温度制御機構9により前記マスクフレーム6Aに張設した前記蒸着マスク2の温度を保持する構成とすると共に、この温度制御機構9を備えていない前記マスクフレーム6Aを、この温度制御機構9を備えた前記マスクフレームホルダー6Bから取り外し自在に構成している。
 また、前記蒸着膜を基板4上に形成する成膜室7と、前記基板4の搬送方向と直交する横方向に隣接して配設した交換室11とを設けて、この成膜室7と交換室11間で前記マスクフレーム6Aを往来させ、このマスクフレーム6Aに付設した前記蒸着マスク2を前記交換室11で交換自在となるように構成している。
 更に、マスクフレームホルダー6Bは、このようにマスクフレーム6Aを配設する台座の役割も果たし、マスクフレーム6Aとマスクフレームホルダー6Bとの外周部同士及びフレーム開口部18間に設けたリブ部14と制限用開口部5間とが互いに接触して保持されているため、熱伝導も一層良好となり、また基板4の搬送方向と直交する横方向に長いマスクフレーム6Aが撓むことを防ぐことができる。
 また、本実施例では、前記マスクフレーム6Aに、前記基板4の相対移動方向に張力を付与して前記蒸着マスク2を張設している。
 またこの蒸着マスク2は、このように蒸発源1の蒸発口部8と対向状態に配設されていて、蒸発源1からの輻射熱が直接入射され、且つ薄い金属箔で形成されていて熱容量が小さいため、蒸着中に温度が上昇し、熱膨張によりマスク開口部3が歪み成膜パターン精度が低下することを防ぐために、基板4の搬送方向に張力を付与している。
 従って、蒸着マスク2の温度上昇を抑制できれば、蒸着マスク2に付与する張力が小さくすることができ、マスクフレーム6Aが歪むことを一層防ぐことができる。
 また、本実施例では、蒸着マスク2は、従来通りマスクフレーム6A周辺部やフレーム開口部18間と接合されているが、前述のように蒸着マスク2より温度が低いマスクフレーム6Aと接合しているため、蒸着マスク2の温度上昇が抑制されるように構成されている。
 また、蒸着マスク2は、蒸着膜を堆積させ成膜パターンを形成する基板4が、例えば第5世代ガラス基板4(1100mm×1300mm)以降の大判になると、それに伴い基板4の相対移動方向と直交する横方向に大きく形成する必要があり、製作が困難である。よって、本実施例の蒸着マスク2は、基板4の相対移動方向と直交する横方向に制限用開口部5単位で複数枚に分割した構成とし、この分割した蒸着マスク2を、マスクフレーム6Aの前記横方向に並設状態に付設し、マスクフレーム6A周辺部で接合するが、フレーム開口部18間に設けたリブ部14の先端面に形成したマスク取付支承面15上でも、複数枚に分割した蒸着マスク2の側端部同士をつき合わせて接合するようにしてもよい。
 また、本実施例では、前述のように前記マスクフレーム6Aの前記制限用開口部5と連通し前記制限用開口部5の一部となる場合もあるフレーム開口部18を覆うように前記蒸着マスク2を付設した前記マスクフレーム6Aを、前記成膜室7内に台座として設けた前記マスクフレームホルダー6Bの前記基板4側端部に、取り外し自在にして前記フレーム開口部18が前記制限用開口部5と連通するように接触配設した構成としている。
 また、この前記マスクフレーム6Aのフレーム開口部18間に、前記基板4側に延在する方向に突出する前記リブ部14を設け、このリブ部14の前記基板4側先端面と前記マスクフレーム6Aの周辺部面に、前記制限用開口部5と連通するフレーム開口部18を覆うように配設する前記蒸着マスク2を支承する前記マスク取付支承面15を設けた構成としている。
 従って、マスクフレーム6Aのフレーム開口部18間に設けたリブ部14によって、蒸着マスク2の張力によるマスクフレーム6Aの変形が防止できると共に、蒸着マスク2の張力が維持でき、且つ蒸発粒子の反射及び再蒸発などの予期せぬ成膜材料のマスク開口部3への入射を抑制している。
 また、このマスクフレーム6Aのリブ部14の形状は、基板4側の突出先端面に形成したマスク取付支承面15からマスクフレームホルダー6Bとの接触面にかけて三角形の形状としてもよいが、本実施例では、段差をつけた階段形状とすることで、加工性が大幅に向上し、安価に製作することができる。
 また、前記マスクフレーム6Aの前記リブ部14間に形成された前記フレーム開口部18が、前記飛散制限部の制限用開口部5の一部を形成するように構成しても良く、この制限用開口部5と連通する開口部を形成する前記リブ部14の内側の開口部形成面積より、このリブ部14の前記基板4側先端面に設けられた前記マスク取付支承面15の面積の方が小さい形状となるように前記リブ部14を形成している。
 即ち、マスクフレーム6Aは、リブ部14の先端面に設けられたマスク取付支承面15の面積より、この段差を付けた階段形状のリブ部14の内側の開口部形成面積の方が大きい形状に形成したことで、リブが強固になり一層マスクフレーム6Aの変形が防止できると共に、マスクフレーム6Aからマスクフレームホルダー6Bへ効率的に熱が移動し、マスクフレーム6Aの温度上昇が一層抑制される。
 また、前述のように、前記蒸着膜を基板4上に形成する成膜室7と、前記基板4の搬送方向と直交する横方向に隣接して配設した交換室11とを設けて、この成膜室7と交換室11間で前記マスクフレーム6Aを往来させ、このマスクフレーム6Aに付設した前記蒸着マスク2を前記交換室11で交換自在となるように構成し、前記マスクフレーム6Aは、前記成膜室7と前記交換室11とを往来移動させるための前記マスクフレーム移動手段(不図示)を保持するための移動手段用凹部13を、前記基板4の搬送方向の前後に設けている。
 具体的には、例えば広狭するロボットアームが係止して吊下げ搬送することができるようにマスクフレーム6Aの前後の辺面に凹条を形成して前記移動手段用凹部13を形成している。
 更に説明すると、成膜パターンを連続して蒸着していると、蒸着マスク2に蒸着膜が堆積してマスク開口部3が狭まり、基板4上に所望の成膜パターンが形成できなくなるため、蒸着マスク2が付設したマスクフレーム6Aは定期的に交換しなくてはならず、図4に示すように、本実施例では、成膜室7の基板4の搬送方向と直交する横方向に交換室11を備えている。定期的に交換されるマスクフレーム6Aが、交換後にマスクフレームホルダー6B上の同じ位置に配設されるように、マスクフレームホルダー6Bには位置決めピン12が設けられている。
 更に、マスクフレーム6A交換時の位置決め精度を向上させるために、マスクフレームホルダー6Bに押し当て部材21を設けて、マスクフレーム6Aを押し当て部材21に当ててから、位置決めピン12にはめるようにすることで、位置決め精度を100μm以下にすることができる。
 また、蒸着中に頻繁に交換が必要で、成膜室7と交換室11とを往復する蒸着マスク2が付設したマスクフレーム6Aは、マスクフレームホルダー6Bのように熱交換して温度制御される媒体を流通させる媒体路16を有する温度制御機構9を備えることが困難なため、マスクフレームホルダー6Bの温度保持効果を間接的に伝えることで、蒸着マスク2及びマスクフレーム6Aの温度上昇を抑制するように構成している。
 更に、前述のようにマスクフレーム6Aに移動手段用凹部13を備えたことで、成膜室7と交換室11との移動するための移動手段が、マスクフレーム6Aを保持しやすくなる。
 更に具体的に説明すると、本実施例は例えば図5に示すように、中央にホスト用と、基板4の搬送方向の前後にドーパント用を備えた蒸発源1があり、その周囲に反射板が複数枚配設されていて、反射板の周囲を水冷板が備えられている構造とした場合、その蒸発源1の基板4側上部に前記マスクフレームホルダー6Bを配設し、更にこのマスクフレームホルダー6Bの上部に前記マスクフレーム6Aを接触して配設し、この蒸発源1、マスクフレームホルダー6B及び蒸着マスク2が付設されたマスクフレーム6Aからなる蒸発源集合体は、蒸着装置の外に設けられたアライメントステージに連結されていて、マスクフレーム移動手段がマスクフレーム6Aの移動手段用凹部13を保持したら、蒸発源集合体が基板4の搬送方向と直交する直交方向に下降することで、マスクフレーム6Aと蒸発源集合体が切り離され、マスクフレーム6Aの交換が可能となるように構成しても良い。
 また、前記温度制御機構9は、前記マスクフレームホルダー6Bの周辺部若しくは前記制限用開口部5間に、熱交換して温度制御される媒体を流通させる媒体路16を設けた構成としている。
 具体的には、図6に示すように、マスクフレームホルダー6Bの基板4の搬送方向側の両面に、媒体が流通する面を設け、飛散制限部内部、即ち周辺部及び制限用開口部5間に媒体路16を夫々二段備え、媒体が漏れないように両面に不図示の蓋を溶接し密閉構造とし、この内部媒体路16に媒体を流通させて冷却機能を果たす構成とした温度制御機構9をこのマスクフレームホルダー6Bに設けている。
 また、媒体が媒体路16を流通する経路を図7に示す。マスクフレームホルダー6BのIN側の配管から進入した媒体は、壁面の媒体路16を満たしながらこの飛散制限部内に設けられた媒体路16を通過し、反対面の媒体路16に到達する過程を繰り返すことで、マスクフレームホルダー6B内部に設けられた媒体路16の空間に隙間なく媒体が満たされ、マスクフレームホルダー6Bの温度保持機能を一層高めることができる。
 また、図8に示すように、マスクフレームホルダー6Bの飛散制限部の形状を、飛散制限部の体積が蒸発源1側程大きい形状とすることで、基板4側の媒体路16よりも、蒸発源1に近いことによる輻射熱の影響が大きい蒸発源1側の媒体路16の媒体接触面積が大きくなるように構成して、熱吸収能力を高め、温度保持機能を向上させている。
 また、この図8に示すように、前記マスクフレームホルダー6Bは、前記飛散制限部の前記制限用開口部5の前記蒸発源1側縁部に、前記蒸発粒子の付着捕捉面10を形成した構成としている。
 具体的には、蒸発源側に向かって端部をハ字状に形成して、各制限用開口部5の蒸発源側端部に、夫々外方に向いた付着捕捉面10をハ字状(逆V字状)に形成し、隣り合う蒸発口部8からの蒸発粒子に対向してこれを良好に捕捉できるように隣りの蒸発口部8に向くように傾斜した付着捕捉面10を形成している。
 また、図9に示すように、マスクフレームホルダー6Bの飛散制限部の蒸発源1側の面に、基板4の搬送方向の垂直方向に衝立部19を設けることで、蒸発粒子が大量に付着することを防ぎ、且つ隣接する蒸発口部8から射出された蒸発粒子が制限用開口部5に進入し、蒸発源1からの再蒸発及び飛散制限部からの反射などによる予期せぬ角度からマスク開口部3へ蒸発粒子が入射することを防ぐことができる。
 また、本実施例では、真空チャンバー7外に設けられた温度制御手段と、マスクフレームホルダー6Bに設けられた媒体を流通させる媒体路16が、真空チャンバー7壁面に設けられたフランジを介して配管で接続されているため、温度制御手段(例えばサーモチラー)内部に備えられている熱交換部20によって、マスクフレームホルダー6B内を通過して温度が上昇した媒体は設定温度になり、設定温度になった媒体がまたマスクフレームホルダー6B内へ入っていく過程が繰り返されるため、マスクフレームホルダー6Bの温度を一定に保持することができる。
 また、図10に示すように、蒸着マスク2が付設されたマスクフレーム6Aとマスクフレームホルダー6Bを接触させて配設される際に、熱伝導率が高い部材で形成した熱伝導体17を挿設することで、マスクフレーム6Aの熱をマスクフレームホルダー6B側に効率よく伝導させることができ、マスクフレーム6Aの温度上昇を一層抑制できる。
 具体的に言うと、マスクフレームホルダー6Bの基板4側マスクフレーム接触面に、銅、アルミニウム、銀、インジウム、モリブデン、タングステン、炭素、窒化アルミニウムの少なくとも1種類を含む熱伝導率が高いシート状部材を前記熱伝導体17として配設するようにしてもよいし、マスクホルダー6の基板4側若しくはマスクフレーム6Aの蒸発源1側の少なくとも一方の接触面に、上述した熱伝導率が高い金属で、溶射などの手法によって皮膜を形成する表面処理を施すように熱伝導体17を設けてもよい。
 尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。

Claims (18)

  1.  蒸発源から気化した成膜材料を、蒸着マスクのマスク開口部を介して基板上に堆積して、この蒸着マスクにより定められた成膜パターンの蒸着膜が基板上に形成されるように構成し、前記蒸発源とこの蒸発源に対向状態に配設する前記基板との間に、前記蒸発源から蒸発した前記成膜材料の蒸発粒子の飛散方向を制限する制限用開口部を設けた飛散制限部を備えたマスクホルダーを配設し、このマスクホルダーに前記基板と離間状態に配設する前記蒸着マスクを付設し、このマスクホルダーに蒸着マスクの温度を保持する温度制御機構を備え、前記基板を、前記蒸着マスクを付設した前記マスクホルダー及び前記蒸発源に対して、前記蒸着マスクとの離間状態を保持したまま相対移動自在に構成して、この相対移動により前記蒸着マスクより広い範囲にこの蒸着マスクにより定められる成膜パターンの蒸着膜が基板上に形成されるように構成した蒸着装置であって、前記マスクホルダーを、前記蒸着マスクを付設するマスクフレームと、前記飛散制限部を備えたマスクフレームホルダーとに分割した構成として、このマスクフレームホルダーに接触配設させた前記マスクフレームを離脱させて取り外し自在に構成し、前記マスクフレームホルダーに前記温度制御機構を設けた構成としたことを特徴とする蒸着装置。
  2.  減圧雰囲気とする成膜室内に、前記成膜材料を収めた前記蒸発源と、この蒸発源の蒸発口部から蒸発した前記成膜材料の蒸発粒子が通過する前記マスク開口部を設けた前記蒸着マスクとを配設し、前記蒸発口部を複数並設し、前記蒸着マスクと離間状態に位置合わせする基板に、前記複数の蒸発口部から飛散する蒸発粒子が前記マスク開口部を通過して堆積し、蒸着マスクにより定められる成膜パターンの蒸着膜が前記基板に形成されるように構成し、この蒸発源とこの蒸発源と対向状態に配設する前記基板との間に、隣接する若しくは離れた位置の前記蒸発口部からの蒸発粒子を通過させない前記制限用開口部を設けた前記飛散制限部を構成する前記マスクフレームホルダーを配設し、このマスクフレームホルダーに、前記基板と離間状態に配設する前記蒸着マスクを接合させて付設したマスクフレームを接触させて配設し、前記マスクフレームホルダーに、前記マスクフレームに付設した蒸着マスクの温度上昇を抑制し温度を一定に保持する前記温度制御機構を設け、前記基板を、前記蒸着マスクを付設した前記マスクフレーム及び前記マスクフレームホルダー及び前記蒸発源に対してこの蒸着マスクとの離間状態を保持したまま相対移動させて、この相対移動方向に前記蒸着マスクの前記成膜パターンの蒸着膜を連続させて前記基板より小さい前記蒸着マスクでも広範囲に蒸着膜が形成されるように構成したことを特徴とする請求項1記載の蒸着装置。
  3.  前記基板の相対移動方向に対して直交する横方向に前記蒸発源の前記蒸発口部を複数並設すると共に、前記マスクホルダーの前記マスクフレームホルダーに、前記制限用開口部を前記横方向に沿って複数並設して前記飛散制限部を構成し、前記各蒸発口部から蒸発する蒸発粒子が、対向する前記制限用開口部のみを通過し更にこの制限用開口部と連通するフレーム開口部を覆う前記蒸着マスクの前記マスク開口部を通過して前記基板上にこのマスク開口部により定められた前記成膜パターンの蒸着膜が形成され、隣り合う若しくは離れた位置の前記蒸発口部からの蒸発粒子は付着捕捉されるようにして、前記飛散制限部により前記蒸発粒子の飛散方向が制限されるように構成したことを特徴とする請求項2記載の蒸着装置。
  4.  前記マスクフレームホルダーは、前記飛散制限部の前記制限用開口部の前記蒸発源側縁部に、前記蒸発粒子の付着捕捉面を形成した構成としたことを特徴とする請求項1記載の蒸着装置。
  5.  前記マスクフレームに、張力を付与して前記蒸着マスクを張設したことを特徴とする請求項1記載の蒸着装置。
  6.  前記マスクフレームに、前記基板の相対移動方向に張力を付与して前記蒸着マスクを張設したことを特徴とする請求項5記載の蒸着装置。
  7.  前記マスクフレームは、前記温度制御機構を設けた前記マスクフレームホルダーの前記基板側端部に、離脱自在にしてマスクフレーム移動手段より取り外し自在に接触配設し、前記マスクフレームホルダーに設けた前記温度制御機構により前記マスクフレームに張設した前記蒸着マスクの温度を保持する構成とすると共に、この温度制御機構を備えていない前記マスクフレームを、この温度制御機構を備えた前記マスクフレームホルダーから取り外し自在に構成したことを特徴とする請求項1記載の蒸着装置。
  8.  前記蒸着膜を基板上に形成する成膜室と、前記基板の搬送方向と直交する横方向に隣接して配設した交換室とを設けて、この成膜室と交換室間で前記マスクフレームを往来させ、このマスクフレームに付設した前記蒸着マスクを前記交換室で交換自在となるように構成したことを特徴とする請求項7記載の蒸着装置。
  9.  前記マスクフレームは、前記成膜室と前記交換室とを往来移動させるための前記マスクフレーム移動手段が保持するための移動手段用凹部を、前記基板の搬送方向の前後に設けたことを特徴とする請求項8記載の蒸着装置。
  10.  前記蒸着マスクは、前記基板の相対移動方向と直交する横方向に複数枚に分割した構成とし、この分割した蒸着マスクを前記マスクフレームに前記横方向に並設状態に付設したことを特徴とする請求項1記載の蒸着装置。
  11.  前記蒸発源の前記蒸発口部を前記基板の相対移動方向と直交する横方向に複数並設し、この複数の蒸発口部毎に夫々対向状態に前記制限用開口部を設けた前記飛散制限部を備えた前記マスクホルダーを、前記飛散制限部及び前記温度制御機構を備えた前記マスクフレームホルダーと、前記温度制御機構を備えない前記マスクフレームとに分断した構成として、前記マスクフレームの前記制限用開口部と連通する若しくは前記制限用開口部の一部となるフレーム開口部を覆うように前記蒸着マスクを付設した前記マスクフレームを、前記成膜室内に固定した前記マスクフレームホルダーの前記基板側端部に、取り外し自在にして前記フレーム開口部が前記制限用開口部と連通するように接触配設した構成としたことを特徴とする請求項1記載の蒸着装置。
  12.  前記マスクフレームのフレーム開口部間に、前記基板側に延在する方向に突出するリブ部を設け、このリブ部の前記基板側先端面と前記マスクフレームの周辺部面に、前記制限用開口部と連通するフレーム開口部を覆うように配設する前記蒸着マスクを支承するマスク取付支承面を設けたことを特徴とする請求項11記載の蒸着装置。
  13.  前記マスクフレームの前記リブ部間に形成された前記フレーム開口部と前記飛散制限部の制限用開口部が連通するように構成し、この制限用開口部と連通した開口部を形成する前記リブ部の内側の開口部形成面積より、このリブ部の前記基板側先端面に設けられた前記マスク取付支承面の面積の方が小さい形状となるように前記リブ部を形成したことを特徴とする請求項12記載の蒸着装置。
  14.  前記温度制御機構は、前記マスクフレームホルダーの周辺部若しくは前記制限用開口部間に、熱交換して温度制御される媒体を流通させる媒体路を設けた構成としたことを特徴とする請求項1記載の蒸着装置。
  15.  前記マスクフレームと前記マスクフレームホルダーとの間に、前記マスクフレーム及び前記マスクフレームホルダーより熱伝導率が高い部材で形成した熱伝導体を介在して接触配設したことを特徴とする請求項1記載の蒸着装置。
  16.  前記熱伝導体は、銅、アルミニウム、銀、インジウム、モリブデン、タングステン、炭素、窒化アルミニウムの少なくとも1種類を含むことを特徴とする請求項15記載の蒸着装置。
  17.  前記成膜材料を、有機材料としたことを特徴とする請求項1記載の蒸着装置。
  18.  前記請求項1~17のいずれか1項に記載の蒸着装置を用いて、前記基板上に前記蒸着マスクにより定められた成膜パターンの蒸着膜を形成することを特徴とする蒸着方法。
PCT/JP2013/074065 2012-09-25 2013-09-06 蒸着装置並びに蒸着方法 WO2014050501A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012210851A JP2014065936A (ja) 2012-09-25 2012-09-25 蒸着装置並びに蒸着方法
JP2012-210851 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014050501A1 true WO2014050501A1 (ja) 2014-04-03

Family

ID=50387909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074065 WO2014050501A1 (ja) 2012-09-25 2013-09-06 蒸着装置並びに蒸着方法

Country Status (3)

Country Link
JP (1) JP2014065936A (ja)
TW (1) TW201425608A (ja)
WO (1) WO2014050501A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636192A (zh) * 2015-06-16 2018-01-26 株式会社爱发科 成膜方法和成膜装置
WO2019048367A1 (de) * 2017-09-06 2019-03-14 Aixtron Se Vorrichtung zum abscheiden einer strukturierten schicht auf einem substrat unter verwendung einer maske

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847741B (zh) * 2016-12-30 2019-11-22 深圳市华星光电技术有限公司 一种薄膜晶体管阵列基板制造方法、真空气相蒸发台及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281745A (ja) * 2004-03-29 2005-10-13 Seiko Epson Corp 膜形成装置、蒸着装置
JP2005350712A (ja) * 2004-06-09 2005-12-22 Canon Components Inc 蒸着用のメタルマスク構造体
WO2011129043A1 (ja) * 2010-04-12 2011-10-20 シャープ株式会社 蒸着装置及び蒸着方法
WO2012043487A1 (ja) * 2010-09-29 2012-04-05 シャープ株式会社 蒸着装置
WO2012090717A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 蒸着装置、蒸着方法、及び有機el表示装置
WO2012108426A1 (ja) * 2011-02-10 2012-08-16 キヤノントッキ株式会社 蒸着装置並びに蒸着方法
WO2012121139A1 (ja) * 2011-03-10 2012-09-13 シャープ株式会社 蒸着装置、蒸着方法、及び有機el表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281745A (ja) * 2004-03-29 2005-10-13 Seiko Epson Corp 膜形成装置、蒸着装置
JP2005350712A (ja) * 2004-06-09 2005-12-22 Canon Components Inc 蒸着用のメタルマスク構造体
WO2011129043A1 (ja) * 2010-04-12 2011-10-20 シャープ株式会社 蒸着装置及び蒸着方法
WO2012043487A1 (ja) * 2010-09-29 2012-04-05 シャープ株式会社 蒸着装置
WO2012090717A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 蒸着装置、蒸着方法、及び有機el表示装置
WO2012108426A1 (ja) * 2011-02-10 2012-08-16 キヤノントッキ株式会社 蒸着装置並びに蒸着方法
WO2012121139A1 (ja) * 2011-03-10 2012-09-13 シャープ株式会社 蒸着装置、蒸着方法、及び有機el表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636192A (zh) * 2015-06-16 2018-01-26 株式会社爱发科 成膜方法和成膜装置
CN107636192B (zh) * 2015-06-16 2020-12-18 株式会社爱发科 成膜方法和成膜装置
WO2019048367A1 (de) * 2017-09-06 2019-03-14 Aixtron Se Vorrichtung zum abscheiden einer strukturierten schicht auf einem substrat unter verwendung einer maske

Also Published As

Publication number Publication date
TW201425608A (zh) 2014-07-01
JP2014065936A (ja) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5616812B2 (ja) 蒸着装置並びに蒸着方法
US8536057B2 (en) Thin film deposition apparatus and method of manufacturing organic light emitting device by using the same
KR101671489B1 (ko) 유기물 증발원 및 그를 포함하는 증착 장치
US20100297349A1 (en) Thin film deposition apparatus
JP6633185B2 (ja) 材料堆積装置、真空堆積システム及びそのための方法
KR101958499B1 (ko) 증착 장치 및 증착 방법
JP2017509796A5 (ja)
TWI616547B (zh) 用於金屬或金屬合金之蒸發源、具有用於金屬或金屬合金之蒸發源之蒸發源陣列、及用以操作用於金屬或金屬合金之一蒸發源陣列之方法
US8882920B2 (en) Thin film deposition apparatus
WO2014050501A1 (ja) 蒸着装置並びに蒸着方法
US8906731B2 (en) Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
JP2012193391A5 (ja)
KR102319998B1 (ko) 볼륨 가변형 도가니를 구비한 증착원
KR20180014084A (ko) 증착률을 측정하기 위한 측정 어셈블리 및 이를 위한 방법
WO2012127993A1 (ja) 蒸着装置並びに蒸着方法
KR20210074343A (ko) 재료를 증발시키기 위한 증발 장치 및 증발 장치를 이용하여 재료를 증발시키기 위한 방법
WO2012127957A1 (ja) 蒸着装置並びに蒸着方法
JP2012197467A5 (ja)
JP7026143B2 (ja) 蒸着装置
KR20230132853A (ko) 도가니, 분배 파이프, 재료 증착 어셈블리, 진공 증착 시스템 및 디바이스를 제조하는 방법
JP2013237915A (ja) 蒸発源及び真空蒸着装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842334

Country of ref document: EP

Kind code of ref document: A1