WO2018205665A1 - 一种用于锂离子电池的蚁巢状多孔硅的制备方法 - Google Patents
一种用于锂离子电池的蚁巢状多孔硅的制备方法 Download PDFInfo
- Publication number
- WO2018205665A1 WO2018205665A1 PCT/CN2018/071691 CN2018071691W WO2018205665A1 WO 2018205665 A1 WO2018205665 A1 WO 2018205665A1 CN 2018071691 W CN2018071691 W CN 2018071691W WO 2018205665 A1 WO2018205665 A1 WO 2018205665A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- porous silicon
- magnesium
- ant
- lithium ion
- ion battery
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/037—Purification
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/02—Particle morphology depicted by an image obtained by optical microscopy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the field of lithium ion battery related components, and more particularly to a method for preparing nested porous silicon for a lithium ion battery.
- the theoretical lithium storage capacity of silicon (Si) is as high as 4200 mA h/g, which is 11 times the theoretical capacity of commercial graphite anode.
- the voltage platform of Si is slightly higher than graphite, which is not easy to cause lithium precipitation on the surface during charging.
- silicon is expected to replace graphite as the negative electrode material for next-generation high-energy lithium-ion batteries.
- the nano Si can reduce the damage of the material structure caused by the stress generated during the deintercalation of lithium due to the reduction of the absolute expansion volume, and improve the electrochemical cycle performance of the Si material.
- the nano Si The lithium ion deintercalation depth and diffusion path can also be shortened, resulting in a kinetic advantage.
- the preparation methods of silicon nano materials or nanoporous silicon mainly include physical methods and chemical methods, and the physical methods mainly include pulverization method, mechanical alloying method, evaporative condensation method, etc.; chemical methods mainly include gas phase precipitation method, magnesium heat reduction method, wet Chemical reduction aerosol method and the like.
- these methods for preparing porous silicon materials are not only harsh, expensive, complicated in steps, but also have serious pollution, involve many toxic substances, and are harmful to humans.
- a nanoporous silicon lithium battery anode material and its preparation method and application (CN104701491A)
- the silicon substrate material is ball-milled and placed in a liquid containing hydrofluoric acid and nitric acid for chemical etching to form porous nano-silicon.
- the hydrofluoric acid used in this method is extremely corrosive, the operation difficulty coefficient is large, and the pore structure is difficult to be effectively controlled.
- Another example is the method for preparing a nanoporous silicon (CN105399100A), which uses a de-alloying method to physically dissolve or chemically remove another component of the alloy to prepare porous silicon.
- a metal chloride molten salt is used.
- the porous silicon obtained by this method is deposited by silicon nanoparticles, and the overall structure is unstable.
- capacity is sharply attenuated due to volume expansion during repeated cycles, which limits the limitation.
- metal chloride molten salt is easy to absorb water, has strong corrosiveness and pollutes the atmosphere.
- Another method for preparing porous silicon by desalting magnesium silicide in the literature is to dissolve the magnesium atoms in the magnesium silicide at a high temperature in the melt of the noble metal ruthenium, and then wash away the excess ruthenium with a nitric acid solution to obtain porous silicon, such as
- the document "Bulk Nanoporous Silicon Negative Electrode with Extremely High Cyclability for Lithium-Ion Batteries Prepared Using a Top-Down Process” (Nano Lett. 2014, 14, 4505-4510), which requires high reaction to use expensive helium, The price of the melt is also very expensive, and the equipment is highly demanded and cannot be widely applied on a large scale.
- an object of the present invention is to provide a method for preparing ant nested porous silicon for a lithium ion battery, wherein the overall process flow and various reactions of the key preparation method for porous silicon are adopted.
- the parameter conditions of the step (such as the type and ratio of the reactants, the reaction temperature and the time, etc.) are improved, and compared with the prior art, the preparation method has the outstanding advantages of being simple and easy, and only the obtained magnesium silicide is required to be in the ammonia gas.
- reaction equation is 3Mg 2 Si+4NH 3 ⁇ 3Si+2Mg 3 N 2 +6H 2 ), and the yield is high;
- the raw material of the method is cheap commercial silicon or magnesium silicide.
- the obtained micron silicon has an ant nest-like porous structure and the morphology and pore structure are easy to control, and the concentration of the ammonia gas can be controlled to change the pore size (generally, the higher the ammonia concentration is, The larger the pore size; the concentration of ammonia gas can be 5-95 vol%), and the depth of the pore can be controlled by the reaction time and the reaction temperature (the longer the reaction time is, the higher the reaction temperature is, the more the pore depth is. Of course, the reaction temperature can not exceed 900 °C).
- the ant nest-shaped porous structure is a continuous pore structure, which provides internal expansion space and electrolyte flow passage for the lithiation process. It can reduce the lithium battery expansion while improving the lithium storage performance of the lithium battery. It is widely used in high-energy lithium-ion battery anodes. field.
- a method for preparing an ant nested porous silicon for a lithium ion battery comprising the steps of:
- the magnesium silicide raw material is reacted at 600-900 ° C for 2-24 h in an atmosphere containing ammonia gas to obtain a crude product containing porous silicon; the magnesium silicide raw material has a particle diameter of 0.2 to 10 ⁇ m;
- the reaction is 3Mg 2 Si+4NH 3 ⁇ 3Si+2Mg 3 N 2 +6H 2 .
- the magnesium silicide raw material is prepared by uniformly mixing silicon powder with magnesium powder and then thermally reacting in an inert atmosphere; the thermal reaction is at 400-900 ° C. The temperature is maintained for 1-12 h; preferably, the mass ratio of the silicon powder to the magnesium powder is 1: (1.8-3).
- the atmosphere containing ammonia gas is a mixed atmosphere of ammonia gas and a protective gas, wherein the volume fraction of the ammonia gas in the atmosphere containing ammonia gas It is 5-95%; the protective gas is an inert gas.
- the magnesium silicide raw material is subjected to a ball milling treatment such that the magnesium silicide raw material has a particle diameter of 0.2 to 10 ⁇ m; and the ball milling treatment is in an inert gas. Under protection.
- the pickling treatment is acid washing with hydrochloric acid to remove magnesium nitride
- the magnesium nitride is the porous silicon obtained in the step (1). Reaction by-products in the crude product;
- the ammonia gas generated by the pickling treatment is collected, it is used to participate in the step (1); the magnesium salt produced by the pickling treatment is used to prepare a raw material of magnesium.
- the nest-shaped porous silicon obtained in the step (2) has a specific surface area of 30-56 m 2 /g, a tap density of 0.77-0.85 g/cm 3 , and a compact density of 1.64. -1.97g/cm 3 .
- the invention generates porous silicon by reacting magnesium silicide with ammonia gas (the by-product of the reaction is magnesium nitride), by controlling various reaction conditions (such as reaction temperature and time, etc.), especially by controlling silicidation during preparation of porous silicon crude product.
- the particle size of the magnesium raw material is such that the magnesium silicide raw material having a particle diameter of 0.2-10 ⁇ m is reacted with ammonia gas at 600-900 ° C for 2-24 hours to form a crude product containing porous silicon, and the synthesis method is simple and easy, and the yield is high. High purity and large scale production.
- the reaction product can be recycled and reused.
- the required magnesium powder can also be recycled from MgCl 2 for reuse.
- the ant nested porous silicon obtained by the method is micron-sized, and a large number of three-dimensional through-hole nano-holes exist in the silicon particles, forming a micro-structure composed of silicon nano-units, and the ant nest-shaped porous silicon pore structure is continuous, which is a kind
- the new silicon nanostructures are more stable with respect to the microparticles deposited by the nanoparticles, and have higher tap density than other nanostructures (such as nanoparticles, nanowires, etc.);
- the prepared ant nested porous silicon has the following advantages: the porous structure can not only facilitate the contact of the electrolyte, and the internal porous structure can expand the volume of the lithium intercalation process inward, thereby slowing the outward expansion of the electrode material, so that this
- the thickness of the electrode film is kept stable, the safety of the lithium ion battery is greatly improved, and the problem of electrode pulverization and capacity violent attenuation caused by volume expansion during deintercalation of lithium is effectively prevented; in addition, the high tap density of the structure can be increased.
- the volumetric energy density of the battery therefore, the structure is more favorable for meeting the requirements of large capacity, long life and high power of the battery, and has wide application prospects in the field of lithium batteries.
- the present invention provides a simple method for ammoniating magnesium silicide at a certain temperature to obtain Si and magnesium nitride, immersing in an acid, removing magnesium nitride, obtaining ant nested porous silicon, and simultaneously acidifying and nitriding.
- the NH 3 produced in the magnesium process can be recycled.
- raw material commercial silicon or magnesium silicide is used as raw material, has wide source, simple process, low energy consumption, low cost and easy continuous production, low reaction pollution and high yield, and the obtained micro silicon has ant nest-like porous structure and morphology.
- the characteristics of controllable regulation, etc. meet the harsh environment and demanding requirements of lithium ion batteries, and can be widely used in the field of anode materials for lithium ion batteries.
- Example 1 is an XRD pattern of the ant nested porous silicon prepared in Example 1 of the present invention.
- 2A and 2B are scanning electron micrographs of the ant nested porous silicon prepared in Example 1 of the present invention.
- Example 3 is a transmission electron micrograph of the ant nested porous silicon prepared in Example 1 of the present invention.
- Example 4 is a graph showing the electrochemical cycle performance of the ant nested porous silicon prepared in Example 1 of the present invention, and CE (ie, the first coulombic efficiency) was 78.7%.
- FIG. 5A and FIG. 5B are comparisons of electrode film thicknesses before and after the cycle of preparing ant nested porous silicon according to Example 1 of the present invention, wherein FIG. 5A corresponds to before the cycle, and FIG. 5B corresponds to after the cycle.
- the vessel containing the reactants is placed in a high-temperature furnace filled with an inert gas and heated to a temperature of 400 ° C to 700 ° C at a heating rate of 5 ° C / min, and the holding time is 6 h to obtain a product of magnesium silicide, and the product is cooled to room temperature with the furnace. After taking out;
- FIG. 5 is a comparative electron micrograph of the electrode film thickness before and after the preparation of the ant nest micron porous silicon in the first embodiment of the present invention, and it can be seen that the film before the cycle ( FIG. 5A ) ( FIG. 5B ) can be seen.
- the thickness does not change much, thus greatly reducing the expansion of the battery and improving the safety of the battery.
- the product had a specific surface area of 56 m 2 /g and a compacted density of 1.96 g/cm 3 .
- the obtained ant nested porous silicon had a specific surface area of 34 m 2 /g, a tap density of 0.78 g/cm 3 and a compact density of 1.78 g/cm 3 .
- the container containing the reactants is placed in a high-temperature furnace filled with an inert gas and heated to 500 ° C at a heating rate of 10 ° C / min, and the holding time is 10 h to obtain a product of magnesium silicide, and the product is taken out after cooling to room temperature with the furnace. ;
- the obtained ant nested porous silicon had a specific surface area of 46 m 2 /g, a tap density of 0.77 g/cm 3 and a compact density of 1.81 g/cm 3 .
- the vessel containing the reactants is placed in a high-temperature furnace filled with an inert gas and heated to 600 ° C at a heating rate of 1 ° C / min, and the holding time is 12 h to obtain a product of magnesium silicide, and the product is taken out after cooling to room temperature with the furnace. ;
- the obtained ant nested porous silicon had a specific surface area of 49 m 2 /g, a tap density of 0.80 g/cm 3 and a compact density of 1.77 g/cm 3 .
- the vessel containing the reactants is placed in a high-temperature furnace filled with an inert gas and heated to 700 ° C at a heating rate of 5 ° C / min, and the holding time is 6 h to obtain a product of magnesium silicide, and the product is taken out after cooling to room temperature with the furnace. ;
- the obtained ant nested porous silicon had a specific surface area of 51 m 2 /g, a tap density of 0.81 g/cm 3 and a compact density of 1.92 g/cm 3 .
- magnesium silicide was placed in an argon-protected ball mill jar for ball milling, and then screened to obtain magnesium silicide microparticles of different sizes having a particle size of 1-3 ⁇ m.
- the obtained ant nested porous silicon had a specific surface area of 56 m 2 /g, a tap density of 0.84 g/cm 3 and a compact density of 1.94 g/cm 3 .
- the ball-milled magnesium silicide in (1) is placed in a tube furnace in a mixed atmosphere of ammonia and argon (the volume fraction of ammonia gas is 50%) heated to a reaction temperature of 780 ° C, and kept for 6 h, waiting for the product. Take out after cooling to room temperature with the furnace;
- the obtained ant nested porous silicon had a specific surface area of 56 m 2 /g, a tap density of 0.85 g/cm 3 and a compact density of 1.97 g/cm 3 .
- the ball-milled magnesium silicide in (1) is placed in a tube furnace and heated to a reaction temperature of 850 ° C in an atmosphere of ammonia and argon gas, and kept for 6 hours, and the product is taken out after being cooled to room temperature with the furnace; Medium, the volume fraction of ammonia gas is 90%;
- the obtained ant nested porous silicon had a specific surface area of 30 m 2 /g, a tap density of 0.79 g/cm 3 and a compact density of 1.7 g/cm 3 .
- magnesium silicide was placed in an argon-protected ball mill jar for ball milling, and then screened to obtain magnesium silicide microparticles of different sizes having a particle size of 0.2 to 1 ⁇ m.
- the ball-milled magnesium silicide in (1) is placed in a tube furnace and heated to a reaction temperature of 780 ° C in an atmosphere of ammonia gas and argon gas, and kept for 6 hours, and the product is taken out after being cooled to room temperature with the furnace; Medium, the volume fraction of ammonia gas is 70%;
- the obtained ant nested porous silicon had a specific surface area of 51 m 2 /g, a tap density of 0.73 g/cm 3 and a compact density of 1.64 g/cm 3 .
- the main component is magnesium silicide, and a certain amount of magnesium impurities may also be contained.
- the ratio of the magnesium raw material may be larger than the corresponding ratio in the ideal reaction equation, except for the above-mentioned embodiment, for example, the mass ratio of the silicon powder to the magnesium powder may be 1: (1.8-3), so that there is a certain amount of magnesium surplus.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
Abstract
提供一种用于锂离子电池的蚁巢状多孔硅的制备方法,包括(1)将硅化镁原料在含有氨气的气氛中于600-900℃反应2-24h,得到含多孔硅的粗产物,反应式为:3Mg 2Si+4NH 3→3Si+2Mg 3N 2+6H 2;其中硅化镁原料的颗粒粒径为0.2-10微米;(2)将步骤(1)中得到的含有多孔硅的粗产物经酸洗处理后得到用于锂离子电池的蚁巢状多孔硅。该方法简单易行,只需将硅化镁在氨气或者氨气与惰性气体的混合气体中直接加热即可得到大量多孔微米硅,且产率高。
Description
本发明属于锂离子电池相关组件领域,更具体地,涉及一种用于锂离子电池的蚁巢状多孔硅的制备方法。
硅(Si)的理论储锂容量高达4200mA h/g,是商业上石墨负极理论容量的11倍,且Si的电压平台略高于石墨,在充电时不易引起表面析锂的现象,安全性能优于石墨类C负极材料,因而硅有望替代石墨成为下一代高能锂离子电池的负极材料。相比于块体Si材料,纳米Si由于绝对膨胀体积的减小,可减小脱嵌锂过程中产生的应力对材料结构的破坏,改善Si材料的电化学循环性能;另一方面,纳米Si也可缩短锂离子脱嵌深度和扩散路径,带来动力学上的优势。
目前硅纳米材料或纳米多孔硅的制备方法主要有物理法和化学法,物理法主要包括粉碎法、机械合金化法、蒸发冷凝法等;化学法主要包括气相沉淀法、镁热还原法、湿化学还原气溶胶法等。但是目前这些制备多孔硅材料的方法,不仅条件苛刻、成本昂贵,步骤复杂,而且污染严重、涉及很多有毒物质、对人危害性较大。例如专利“一种纳米多孔硅锂电池负极材料及其制备方法与应用”(CN104701491A)中,将硅衬底材料球磨后放入含氢氟酸、硝酸的液体里进行化学腐蚀,形成多孔纳米硅,此方法使用的氢氟酸腐蚀性极大,操作难度系数大,孔结构难以有效控制。又如专利“一种纳米多孔硅的制备方法”(CN105399100A)中,使用去合金法物理溶解或者化学腐蚀去除合金中另一组元的方法来制备多孔硅,此专利中采用金属氯化物熔盐对硅化镁去合金化,此方法得到的多孔硅是由硅纳米颗粒堆积起来的,整体结构不稳定,作为锂离子电池的负极材料,在反复循环 过程中由于体积膨胀导致容量急剧衰减,限制了其应用,此外高温下金属氯化物熔盐易吸水,具有强烈的腐蚀性,污染大气。文献中另外一种利用硅化镁去合金制备多孔硅的方法是用贵金属铋的熔体高温下将硅化镁中的镁原子溶解掉,再用硝酸溶液洗掉多余的铋,从而得到多孔硅,如文献“Bulk Nanoporous Silicon Negative Electrode with Extremely High Cyclability for Lithium-Ion Batteries Prepared Using a Top-Down Process”(Nano Lett.2014,14,4505-4510),这种方法反应要求高要使用昂贵的氦气,铋熔体价格也很昂贵,对设备要求较高,无法大规模广泛应用。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明的目的在于提供一种用于锂离子电池的蚁巢状多孔硅的制备方法,其中通过对多孔硅关键制备方法的整体工艺流程、以及各个反应步骤的参数条件(如反应物的种类及配比、反应温度及时间等)进行改进,与现有技术相比,具有制备方法简单易行的突出优点,只需要将得到的硅化镁在氨气(或者氨气与惰性气体的混合气体)中直接加热便可得到大量多孔微米硅(反应方程式为3Mg
2Si+4NH
3→3Si+2Mg
3N
2+6H
2),产率高;此外,该方法的原料为廉价的商业硅或者硅化镁,得到的微米硅具有蚂蚁巢状多孔结构且形貌和孔结构易调控,可以控制氨气的浓度来改变孔的大小(一般氨气浓度越高,孔径越大;氨气的浓度可以为5-95vol%),孔的深度可以由反应时间与反应温度来控制(一般反应时间越长、反应温度越高,孔的深度越深,当然,反应温度最高不能超过900℃)。蚂蚁巢状多孔结构为连续的孔道结构,为锂化过程提供内膨胀的空间和电解液流动的通道,在提高硅储锂性能的同时能降低锂电池的膨胀,广泛应用于高能锂离子电池负极领域。
为实现上述目的,按照本发明,提供了一种用于锂离子电池的蚁巢状多孔硅的制备方法,其特征在于,包括以下步骤:
(1)将硅化镁原料在含有氨气的气氛中于600-900℃反应2-24h,得 到含有多孔硅的粗产物;所述硅化镁原料其颗粒粒径为0.2-10微米;
(2)将所述步骤(1)中得到的所述含有多孔硅的粗产物经酸洗处理后得到用于锂离子电池的蚁巢状多孔硅。
作为本发明的进一步优选,所述步骤(1)中,所述反应为3Mg
2Si+4NH
3→3Si+2Mg
3N
2+6H
2。
作为本发明的进一步优选,所述步骤(1)中,所述硅化镁原料是通过将硅粉与镁粉均匀混合后在惰性气氛中热反应制备得到的;该热反应是在400-900℃的温度下保温1-12h;优选的,所述硅粉与所述镁粉两者的质量比为1:(1.8-3)。
作为本发明的进一步优选,所述步骤(1)中,所述含有氨气的气氛为氨气与保护性气体的混合气氛,其中,所述氨气在该含有氨气的气氛中的体积分数为5-95%;所述保护性气体为惰性气体。
作为本发明的进一步优选,所述步骤(1)中,所述硅化镁原料是经过球磨处理,从而使得该硅化镁原料的颗粒粒径为0.2-10微米;所述球磨处理是在惰性气体的保护下进行的。
作为本发明的进一步优选,所述步骤(2)中,所述酸洗处理是采用盐酸酸洗以除去氮化镁,所述氮化镁为所述步骤(1)得到的所述含有多孔硅的粗产物中的反应副产物;
优选的,该酸洗处理产生的氨气被收集后,用于参与所述步骤(1);该酸洗处理产生的镁盐被用于制取镁单质原料。
作为本发明的进一步优选,所述步骤(2)得到的所述蚁巢状多孔硅,比表面积为30-56m
2/g,振实密度为0.77-0.85g/cm
3,压实密度为1.64-1.97g/cm
3。
通过本发明所构思的以上技术方案,与现有技术相比,具有以下有益效果:
(1)原料廉价,利用商业上微米硅粉或者硅化镁微粉为原料,通过简 单的氨化反应,得到蚁巢状多孔硅,为硅去合金化制备多孔结构提供了新方法(即采用3Mg
2Si+4NH
3→3Si+2Mg
3N
2+6H
2这种反应合成原理),未有其他的文献或专利报道;
(2)该方法合成方法简单易行,产率高,纯度高,可大规模生产;
本发明通过使硅化镁与氨气反应生成多孔硅(该反应的副产物为氮化镁),通过控制各个反应条件(如反应温度及时间等),尤其通过控制多孔硅粗产物制备过程中硅化镁原料的粒径大小,使颗粒粒径为0.2-10微米的硅化镁原料与氨气在600-900℃反应2-24h生成含有多孔硅的粗产物,合成方法简单易行,产率高,纯度高,可大规模生产。此外,本发明制备过程中,反应产物可以回收重复使用,例如产物副氮化镁与盐酸反应可以回收等量的氨气可以循环使用(Mg
3N
2+6HCl=3MgCl
2+2NH
3),反应所需的镁粉也可从MgCl
2回收再利用。
(3)该方法获得的蚂蚁巢状多孔硅是微米级别的,硅颗粒内部存在大量三维贯穿的纳米孔洞,形成了硅纳米单元组成的微米结构,蚁巢状多孔硅孔道结构连续,是一种新的硅纳米结构,相对于纳米颗粒堆积成的微米粒子,蚁巢状多孔硅结构更加稳定,相对于其他纳米结构(如纳米颗粒,纳米线等)具有更高的振实密度;
(4)所制备出的蚂蚁巢状多孔硅具有以下优点:多孔结构既能有利电解液接触,且内部多孔结构能够使嵌锂过程体积向内膨胀,从而减缓了电极材料向外膨胀,使这个电极膜的厚度保持稳定,大大提高锂离子电池的安全性,还能有效防止脱嵌锂过程中体积膨胀带来的电极粉化和容量剧烈衰减问题;此外,该结构高的振实密度能够增加了电池的体积能量密度;因此这种结构更有利于满足电池的大容量、长寿命和高功率的要求,在锂电池领域应用前景广泛。
总体而言,本发明提供一种简单的方法,在一定温度下氨化硅化镁,得到Si和氮化镁,在酸中浸泡,除去氮化镁,得到蚂蚁巢状多孔硅,同时 酸化氮化镁过程中产生的NH
3可以回收利用。此外该发明原料商业硅或者硅化镁为原料,来源广泛、工艺简单、能耗低、成本低且易于连续生产、反应污染小、产率高,得到的微米硅具有蚂蚁巢状多孔结构且形貌可控调节等特点,满足锂离子电池使用的恶劣环境及其苛刻要求,可以广泛应用于锂离子电池负极材料领域。
图1为本发明实施例1制备得到蚂蚁巢状多孔硅的XRD图谱。
图2A、图2B均为本发明实施例1制备得到蚂蚁巢状多孔硅的扫描电镜图。
图3为本发明实施例1制备得到蚂蚁巢状多孔硅的透射电镜图。
图4为本发明实施例1制备得到蚂蚁巢状多孔硅的电化学循环性能图,CE(即,首次库伦效率)为78.7%。
图5A、图5B为本发明实施例1制备得到蚂蚁巢状多孔硅的循环前后电极膜厚对比,其中图5A对应循环前,图5B对应循环后。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明中用于锂离子电池的蚁巢状多孔硅,其制备方法包括以下步骤:将商业上购买的硅化镁(尺度1-50微米),或硅粉与适量的镁粉均匀混合后在惰性气氛中热反应制备硅化镁(2Mg+Si=Mg
2Si)颗粒(1-50微米),在惰性气体气氛保护下球磨,制备出0.2-10微米的颗粒,然后在氨气中或者一定体积比例氨气与惰性气体(如,氩气)的混合气体中(氨气含量为5-95%),在600-900度的温度下发生热反应(3Mg
2Si+4NH
3=3Si+2Mg
3N
2 +6H
2)得到蚁巢状多孔硅和氮化镁副产物,将反应物酸洗处理后(Mg
3N
2+6HCl=3MgCl
2+2NH
3)得到高产率的蚂蚁巢状多孔硅。
以下为具体实施例:
实施例1
该实施例包括以下步骤:
(1)将商业硅颗粒与镁粉按质量比1:1.8混合均匀放入容器中;
(2)将装有反应物的容器放入充满惰性气体的高温炉中以5℃/min的升温速度加热到400-700℃,保温时间为6h得到产物硅化镁,待产物随炉冷却至室温后取出;
(3)将(2)中所得产物放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为0.2-10微米。
(4)将(3)中球磨好的硅化镁放在管式炉中在氨气气氛中加热到600-900℃反应温度,保温2-24h,待产物随炉冷却至室温后取出;
(5)将(4)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
由图1中酸洗后样品XRD衍射图谱可知,在28.4°、47.3°和56.1°的三强峰与硅(JCPDS No.27-1402)的三强峰相对应,并基本无杂相;由图2(包括图2A、图2B)的扫描电镜图可知,本实施例制备得到的产物为微米级的多孔结构;由图3的透射电镜图可知,本实施例制备得到的纳米单元构成的三维贯通多孔硅,具有丰富的孔道结构。由此可知,所得产物为具有纳米级别孔洞结构的微米颗粒,产物的振实密度为0.83g/cm
3。图4为多孔硅的循环性能,循环1000次后多孔硅的容量可达1200mA h/g,表现出突出的循环稳定性。图5(包括图5A、图5B)为本发明实施例1制备得到蚂蚁巢状微米多孔硅循环前后电极膜厚的对比电镜图,可以看出循环前(图5A)后(图5B)的膜厚变化不大,因此大大减少了电池的膨胀和提高电池的安全性。此外,该产物的比表面积为56m
2/g,压实密度为1.96g/cm
3。
实施例2
该实施例包括以下步骤:
(1)将商业硅颗粒与镁粉按质量比1:1.9混合均匀后放进容器中;
(2)将装有反应物的容器放入充满惰性气体的高温炉中以3℃/min的升温速度加热到400℃,保温时间为12h得到产物硅化镁,待产物随炉冷却至室温后取出;
(3)将(2)中所得产物放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为1-8微米。
(4)将(3)中球磨好的硅化镁放在管式炉中在氨气气氛中加热到650℃反应温度,保温4h,待产物随炉冷却至室温后取出;
(5)将(4)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
得到的蚂蚁巢状多孔硅,其比表面积为34m
2/g,振实密度为0.78g/cm
3,压实密度为1.78g/cm
3。
实施例3
该实施例包括以下步骤:
(1)将商业硅颗粒与镁粉按质量比1:2混合均匀后放进容器中;
(2)将装有反应物的容器放入充满惰性气体的高温炉中以10℃/min的升温速度加热到500℃,保温时间为10h得到产物硅化镁,待产物随炉冷却至室温后取出;
(3)将(2)中所得产物放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为0.5-4微米。
(4)将(3)中球磨好的硅化镁放在管式炉中在氨气气氛中加热到600℃反应温度,保温6h,待产物随炉冷却至室温后取出;
(5)将(4)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
得到的蚂蚁巢状多孔硅,其比表面积为46m
2/g,振实密度为0.77g/cm
3,压实密度为1.81g/cm
3。
实施例4
该实施例包括以下步骤:
(1)将商业硅颗粒与镁粉按质量比1:2.2混合均匀后放进容器中;
(2)将装有反应物的容器放入充满惰性气体的高温炉中以1℃/min的升温速度加热到600℃,保温时间为12h得到产物硅化镁,待产物随炉冷却至室温后取出;
(3)将(2)中所得产物放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为1-5微米。
(4)将(3)中球磨好的硅化镁放在管式炉中在氨气气氛中加热到700℃反应温度,保温12h,待产物随炉冷却至室温后取出;
(5)将(4)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
得到的蚂蚁巢状多孔硅,其比表面积为49m
2/g,振实密度为0.80g/cm
3,压实密度为1.77g/cm
3。
实施例5
该实施例包括以下步骤:
(1)将商业硅颗粒与镁粉按质量比1:1.9混合均匀后放进容器中;
(2)将装有反应物的容器放入充满惰性气体的高温炉中以5℃/min的升温速度加热到700℃,保温时间为6h得到产物硅化镁,待产物随炉冷却至室温后取出;
(3)将(2)中所得产物放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为0.2-3微米。
(4)将(3)中球磨好的硅化镁放在管式炉中在氨气气氛中加热到800℃反应温度,保温4h,待产物随炉冷却至室温后取出;
(5)将(4)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
得到的蚂蚁巢状多孔硅,其比表面积为51m
2/g,振实密度为0.81g/cm
3,压实密度为1.92g/cm
3。
实施例6
该实施例包括以下步骤:
(1)将买来的商业硅化镁放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为1-3微米。
(2)将(1)中球磨好的硅化镁放在管式炉中在氨气气氛中加热到750℃反应温度,保温6h,待产物随炉冷却至室温后取出;
(3)将(2)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
得到的蚂蚁巢状多孔硅,其比表面积为56m
2/g,振实密度为0.84g/cm
3,压实密度为1.94g/cm
3。
实施例7
该实施例包括以下步骤:
(1)将买来的商业硅化镁放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为3-5微米。
(2)将(1)中球磨好的硅化镁放在管式炉中在氨气与氩气混合气氛中(氨气的体积分数为50%)加热到780℃反应温度,保温6h,待产物随炉冷却至室温后取出;
(3)将(2)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
得到的蚂蚁巢状多孔硅,其比表面积为56m
2/g,振实密度为0.85g/cm
3,压实密度为1.97g/cm
3。
实施例8
该实施例包括以下步骤:
(1)将买来的商业硅化镁放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为5-8微米。
(2)将(1)中球磨好的硅化镁放在管式炉中在氨气与氩气混合气氛中加热到850℃反应温度,保温6h,待产物随炉冷却至室温后取出;混合气体中,氨气的体积分数为90%;
(3)将(2)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
得到的蚂蚁巢状多孔硅,其比表面积为30m
2/g,振实密度为0.79g/cm
3,压实密度为1.7g/cm
3。
实施例9
该实施例包括以下步骤:
(1)将买来的商业硅化镁放入氩气保护的球磨罐中进行球磨,然后进行筛选,获得不同尺寸的硅化镁微米颗粒,颗粒大小为0.2-1微米。
(2)将(1)中球磨好的硅化镁放在管式炉中在氨气与氩气混合气氛中加热到780℃反应温度,保温6h,待产物随炉冷却至室温后取出;混合气体中,氨气的体积分数为70%;
(3)将(2)中所得产物用盐酸酸洗除去氮化镁后,清洗、过滤、干燥后得到蚂蚁巢状多孔硅。
得到的蚂蚁巢状多孔硅,其比表面积为51m
2/g,振实密度为0.73g/cm
3,压实密度为1.64g/cm
3。
本发明中的硅化镁原料,若采用商业购得的硅化镁原料,则主要成分为硅化镁,也可能含有一定量的镁杂质。对于采用硅粉与镁粉热反应制备硅化镁的情况,除上述实施例外,镁原料的比例可以大于理想反应方程式下对应的比例,例如,硅粉与所述镁粉两者的质量比可以为1:(1.8-3),使得具有一定量的镁富余。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (7)
- 一种用于锂离子电池的蚁巢状多孔硅的制备方法,其特征在于,包括以下步骤:(1)将硅化镁原料在含有氨气的气氛中于600-900℃反应2-24h,得到含有多孔硅的粗产物;所述硅化镁原料其颗粒粒径为0.2-10微米;(2)将所述步骤(1)中得到的所述含有多孔硅的粗产物经酸洗处理后得到用于锂离子电池的蚁巢状多孔硅。
- 如权利要求1所述用于锂离子电池的蚁巢状多孔硅的制备方法,其特征在于,所述步骤(1)中,所述反应为3Mg 2Si+4NH 3→3Si+2Mg 3N 2+6H 2。
- 如权利要求1所述用于锂离子电池的蚁巢状多孔硅的制备方法,其特征在于,所述步骤(1)中,所述硅化镁原料是通过将硅粉与镁粉均匀混合后在惰性气氛中热反应制备得到的;该热反应是在400-900℃的温度下保温1-12h;优选的,所述硅粉与所述镁粉两者的质量比为1:(1.8-3)。
- 如权利要求1所述用于锂离子电池的蚁巢状多孔硅的制备方法,其特征在于,所述步骤(1)中,所述含有氨气的气氛为氨气与保护性气体的混合气氛,其中,所述氨气在该含有氨气的气氛中的体积分数为5-95%;所述保护性气体为惰性气体。
- 如权利要求1所述用于锂离子电池的蚁巢状多孔硅的制备方法,其特征在于,所述步骤(1)中,所述硅化镁原料是经过球磨处理,从而使得该硅化镁原料的颗粒粒径为0.2-10微米;所述球磨处理是在惰性气体的保护下进行的。
- 如权利要求1所述用于锂离子电池的蚁巢状多孔硅的制备方法,其特征在于,所述步骤(2)中,所述酸洗处理是采用盐酸酸洗以除去氮化镁,所述氮化镁为所述步骤(1)得到的所述含有多孔硅的粗产物中的反应副产 物;优选的,该酸洗处理产生的氨气被收集后,用于参与所述步骤(1);该酸洗处理产生的镁盐被用于制取镁单质原料。
- 如权利要求1所述用于锂离子电池的蚁巢状多孔硅的制备方法,其特征在于,所述步骤(2)得到的所述蚁巢状多孔硅,比表面积为30-56m 2/g,振实密度为0.77-0.85g/cm 3,压实密度为1.64-1.97g/cm 3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/075,332 US11245112B2 (en) | 2017-05-09 | 2018-01-08 | Preparation method of ant nest like porous silicon for lithium-ion battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710322917.7A CN107215874B (zh) | 2017-05-09 | 2017-05-09 | 一种用于锂离子电池的蚁巢状多孔硅的制备方法 |
CN201710322917.7 | 2017-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018205665A1 true WO2018205665A1 (zh) | 2018-11-15 |
Family
ID=59944045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/071691 WO2018205665A1 (zh) | 2017-05-09 | 2018-01-08 | 一种用于锂离子电池的蚁巢状多孔硅的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11245112B2 (zh) |
CN (1) | CN107215874B (zh) |
WO (1) | WO2018205665A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112645308A (zh) * | 2020-12-17 | 2021-04-13 | 哈尔滨工程大学 | 一种铜碳原子级均匀共复合的超细多孔纳米硅的合成方法 |
CN114420912A (zh) * | 2022-01-24 | 2022-04-29 | 武汉科技大学 | 一种陶瓷相硅氮层包覆硅负级材料、制备方法及其应用 |
CN115893420A (zh) * | 2022-09-19 | 2023-04-04 | 华宇新能源科技有限公司 | 一种中空三维多孔硅材料及其制备方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107215874B (zh) | 2017-05-09 | 2020-03-10 | 武汉科技大学 | 一种用于锂离子电池的蚁巢状多孔硅的制备方法 |
CN108039485B (zh) * | 2017-12-05 | 2019-03-15 | 桂林电器科学研究院有限公司 | 泡沫状硅粉与其制备方法以及应用其的锂离子电池 |
CN108190892A (zh) * | 2018-02-09 | 2018-06-22 | 武汉科技大学 | 一种无酸化大规模制备纳米硅的方法 |
CN109301228B (zh) * | 2018-10-31 | 2021-01-12 | 深圳市德方纳米科技股份有限公司 | 一种锂离子电池用硅材料及其制备方法 |
CN109941998B (zh) * | 2019-04-04 | 2022-08-05 | 武汉科技大学 | 一种相分离去合金化提纯硅的方法 |
CN110400928A (zh) * | 2019-08-13 | 2019-11-01 | 上海电气集团股份有限公司 | 一种硅基复合材料的制备方法 |
CN111564615B (zh) * | 2020-05-11 | 2021-04-27 | 中国科学院化学研究所 | 非金属掺杂正极、二次掺杂正极及制备方法 |
CN112397702A (zh) * | 2020-11-27 | 2021-02-23 | 武汉科技大学 | 一种FeSix嵌入多孔硅复合材料及其制备方法和应用 |
JP7477119B2 (ja) * | 2020-12-11 | 2024-05-01 | 貝特瑞新材料集団股▲ふん▼有限公司 | 負極材料及びその製造方法、リチウムイオン電池 |
CN113003577A (zh) * | 2021-02-24 | 2021-06-22 | 山东大学 | 一种孔隙率可控多孔硅的绿色的制备方法及其应用 |
CN114094087B (zh) * | 2021-11-25 | 2024-03-05 | 武汉科技大学 | 一种外包覆多孔硅材料、制备方法及其应用 |
CN114105145B (zh) * | 2021-11-25 | 2023-10-10 | 武汉科技大学 | 碳外包覆三维多孔硅负极材料及其制备方法和应用 |
CN114477184B (zh) * | 2022-01-12 | 2023-05-26 | 浙江工业大学 | 一种碳化硅粉体的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105047892A (zh) * | 2015-08-03 | 2015-11-11 | 中国科学院宁波材料技术与工程研究所 | 多孔硅材料、其制备方法与应用 |
CN105347346A (zh) * | 2015-12-08 | 2016-02-24 | 武汉科技大学 | 一种空气辅助制备多孔纳米硅的方法 |
CN105845918A (zh) * | 2016-03-22 | 2016-08-10 | 浙江大学 | 一种高容量的多孔硅材料及其制备方法和应用 |
CN107215874A (zh) * | 2017-05-09 | 2017-09-29 | 武汉科技大学 | 一种用于锂离子电池的蚁巢状多孔硅的制备方法 |
CN107539990A (zh) * | 2016-07-22 | 2018-01-05 | 南京大学 | 一种多孔硅纳米材料及其制备方法和用途 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102237519B (zh) * | 2011-07-11 | 2013-05-08 | 三峡大学 | 锂离子电池三维多孔硅粉负极材料无氟化制备方法 |
CN104701491A (zh) | 2015-03-31 | 2015-06-10 | 吕铁铮 | 一种纳米多孔硅锂电池负极材料及其制备方法与应用 |
CN105399100A (zh) | 2015-12-14 | 2016-03-16 | 东南大学 | 一种纳米多孔硅的制备方法 |
CN105826527B (zh) * | 2016-03-22 | 2018-07-06 | 浙江大学 | 一种多孔硅-碳复合材料及其制备方法和应用 |
-
2017
- 2017-05-09 CN CN201710322917.7A patent/CN107215874B/zh active Active
-
2018
- 2018-01-08 US US16/075,332 patent/US11245112B2/en active Active
- 2018-01-08 WO PCT/CN2018/071691 patent/WO2018205665A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105047892A (zh) * | 2015-08-03 | 2015-11-11 | 中国科学院宁波材料技术与工程研究所 | 多孔硅材料、其制备方法与应用 |
CN105347346A (zh) * | 2015-12-08 | 2016-02-24 | 武汉科技大学 | 一种空气辅助制备多孔纳米硅的方法 |
CN105845918A (zh) * | 2016-03-22 | 2016-08-10 | 浙江大学 | 一种高容量的多孔硅材料及其制备方法和应用 |
CN107539990A (zh) * | 2016-07-22 | 2018-01-05 | 南京大学 | 一种多孔硅纳米材料及其制备方法和用途 |
CN107215874A (zh) * | 2017-05-09 | 2017-09-29 | 武汉科技大学 | 一种用于锂离子电池的蚁巢状多孔硅的制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112645308A (zh) * | 2020-12-17 | 2021-04-13 | 哈尔滨工程大学 | 一种铜碳原子级均匀共复合的超细多孔纳米硅的合成方法 |
CN114420912A (zh) * | 2022-01-24 | 2022-04-29 | 武汉科技大学 | 一种陶瓷相硅氮层包覆硅负级材料、制备方法及其应用 |
CN115893420A (zh) * | 2022-09-19 | 2023-04-04 | 华宇新能源科技有限公司 | 一种中空三维多孔硅材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107215874B (zh) | 2020-03-10 |
CN107215874A (zh) | 2017-09-29 |
US20200287210A1 (en) | 2020-09-10 |
US11245112B2 (en) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018205665A1 (zh) | 一种用于锂离子电池的蚁巢状多孔硅的制备方法 | |
Li et al. | Revisiting the preparation progress of nano‐structured Si anodes toward industrial application from the perspective of cost and scalability | |
CN108269989B (zh) | 一种碳包覆微米硅、其制备方法和应用 | |
US10069139B2 (en) | Methods for mass-producing silicon nano powder and graphene-doped silicon nano powder | |
Qin et al. | A top‐down strategy toward SnSb in‐plane nanoconfined 3D N‐doped porous graphene composite microspheres for high performance Na‐ion battery anode | |
JP7094957B2 (ja) | 複合体、その調製方法およびリチウムイオン二次電池における使用 | |
JP6306767B1 (ja) | リチウム二次電池陰極材用シリコン複合酸化物及びその製造方法 | |
Lee et al. | Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs) | |
Chen et al. | SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries | |
JP2022518585A (ja) | シリコン複合物負極材料、その調製方法及びリチウムイオン電池 | |
Peng et al. | Magnesium nanostructures for energy storage and conversion | |
CN108023076B (zh) | 一种蜂窝状硅碳复合材料、其制备方法和应用 | |
JP7477119B2 (ja) | 負極材料及びその製造方法、リチウムイオン電池 | |
CN104900858B (zh) | 一种钠离子电池蛋黄‑蛋壳结构锑/碳负极复合材料的制备方法 | |
Yi et al. | Integrating Si nanoscale building blocks into micro-sized materials to enable practical applications in lithium-ion batteries | |
Epur et al. | A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity | |
JP2018523630A (ja) | ポーラスシリコンの作製方法および二次電池電極用の原料としてのその使用 | |
CN111793824B (zh) | 一种表面修饰高镍正极材料及其制备方法和应用 | |
CN114725327A (zh) | 复合负极材料及其制备方法、锂离子电池 | |
CN102491335A (zh) | 一种纳米硅颗粒的制备方法及含有该纳米硅颗粒的负极材料及锂离子电池 | |
CN109473665A (zh) | 一种纳米硅基材料及其制备方法和应用 | |
CN109841814A (zh) | 一种硅碳负极材料的制备方法 | |
JP2024518777A (ja) | ナノチタン酸塩、ナノチタン酸、ナノTiO2の製造方法、及びその用途 | |
Zhang et al. | Fabrication of porous Si/nitrogen doped carbon composite and its enhanced lithium storage capability | |
Xie et al. | Critical SiO2 nanolayers for improving corrosion resistance and lithium storage performances of core-shell nano-Si/C composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18798734 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18798734 Country of ref document: EP Kind code of ref document: A1 |