WO2018205307A1 - 一种表面具有电镀层的难熔金属或不锈钢,以及一种难熔金属或不锈钢表面的电镀工艺 - Google Patents

一种表面具有电镀层的难熔金属或不锈钢,以及一种难熔金属或不锈钢表面的电镀工艺 Download PDF

Info

Publication number
WO2018205307A1
WO2018205307A1 PCT/CN2017/085647 CN2017085647W WO2018205307A1 WO 2018205307 A1 WO2018205307 A1 WO 2018205307A1 CN 2017085647 W CN2017085647 W CN 2017085647W WO 2018205307 A1 WO2018205307 A1 WO 2018205307A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractory metal
stainless steel
substrate
plating
Prior art date
Application number
PCT/CN2017/085647
Other languages
English (en)
French (fr)
Inventor
郭振华
仇荣宗
郭嘉宝
黄国英
Original Assignee
永保纳米科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永保纳米科技(深圳)有限公司 filed Critical 永保纳米科技(深圳)有限公司
Priority to JP2020513383A priority Critical patent/JP7078232B2/ja
Publication of WO2018205307A1 publication Critical patent/WO2018205307A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/567Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the invention relates to the field of metal surface plating technology, in particular to a refractory metal or stainless steel having a plating layer on the surface, and a plating process of a refractory metal or stainless steel surface.
  • Refractory metals such as titanium, niobium and tantalum have good high temperature strength, corrosion resistance and processing plasticity, and are an important high temperature structural material in the industry. In terms of electronic applications, although the properties of the materials are excellent, due to the poor solderability of such metals, it is necessary to coat a layer of other metal on the surface, so that the finished product can simultaneously exhibit high strength, corrosion resistance, light weight and solderability. The advantages.
  • the properties of refractory metals are very active, and the surface is easily formed into a dense passivation film in air and water.
  • the passivation film needs to be destroyed before plating; however, since the passivation speed of such a metal is too fast, the passivation film is newly formed immediately after being removed, so that it is performed thereon. Plating can be very difficult.
  • the present invention provides a refractory metal or stainless steel having a plating layer on the surface, and a difficulty Electroplating process for molten metal or stainless steel surfaces.
  • the electroplated layer has good adhesion, corrosion resistance and solderability, and improves the welding force of the refractory metal product, which is advantageous for industrial application.
  • the present invention provides a refractory metal or stainless steel having a plating layer on a surface thereof, comprising a substrate, and a plating layer formed on a surface of the substrate, the substrate comprising a refractory metal substrate or a stainless steel base
  • the refractory metal substrate is titanium, tantalum, niobium, or an alloy thereof
  • the electroplated layer includes a tantalum alloy layer.
  • the tantalum alloy layer has a thickness of 0.01 to 10 ⁇ m, preferably a thickness of 0.1 to 2 ⁇ m.
  • the mass content of niobium is 20% or less, preferably, the mass content of niobium is 0.5% to 10%, and more preferably, the mass content of niobium is 3% to 5%.
  • the bismuth alloy layer has good adhesion and anti-corrosion performance, and has solderability, which is favorable for the wide application of the refractory metal in the industry. Controlling the ruthenium in the alloy to a small content is more conducive to the improvement of coating adhesion and corrosion resistance.
  • the plating layer further includes a layer disposed between the substrate and the bismuth alloy layer.
  • Gold layer, or copper layer, or nickel layer, or palladium layer has a thickness of 0.01 to 10 ⁇ m, preferably, the thickness is 0.1 to 2 ⁇ m; the copper layer and the nickel layer have a thickness of 0.01 to 200 ⁇ m, preferably, the thickness is 1 to 100 ⁇ m.
  • the arrangement of the gold layer and the palladium layer can further improve the corrosion resistance of the substrate, and the arrangement of the copper layer and the nickel layer can improve the conductivity of the substrate.
  • the plating layer further includes a gold layer, or a copper layer, or a nickel layer, or a palladium layer disposed on the surface of the tantalum alloy layer, and is disposed on the gold layer or the copper layer, or A nickel layer, or a second tantalum alloy layer on the surface of the palladium layer.
  • the gold layer, the palladium layer, and the second tantalum alloy layer have a thickness of 0.01 to 10 ⁇ m, preferably, the thickness is 0.1 to 2 ⁇ m; and the copper layer and the nickel layer have a thickness of 0.01 to 200 ⁇ m, preferably , the thickness is 1-100 ⁇ m, and the mass content of bismuth in the second bismuth alloy layer is less than or equal to 20%.
  • the cerium has a mass content of from 0.5% to 10%, more preferably, the cerium has a mass content of from 3% to 5%.
  • the plating layer may be further provided with a PVD coating, a decorative metal plating layer or Decorative non-metallic coating.
  • the first aspect of the present invention provides a refractory metal or stainless steel having a plating layer on the surface thereof, and the plating layer has good adhesion, corrosion resistance and solderability, and solves the problem in the prior art that it is difficult to perform on a refractory metal substrate. Safe and effective plating provides the problem of a plating layer with good adhesion, strong corrosion resistance, and high weldability.
  • the present invention provides a plating process for a refractory metal or stainless steel surface, comprising the steps of:
  • a refractory metal substrate or a stainless steel substrate Pre-treating a refractory metal substrate or a stainless steel substrate, the refractory metal substrate being titanium, tantalum, niobium, or an alloy thereof;
  • a ruthenium alloy layer is plated on the surface of the refractory metal substrate or the stainless steel substrate, followed by heat treatment to obtain a refractory metal or stainless steel having a plating layer on the surface, the plating layer including a ruthenium alloy layer.
  • a gold layer, a copper layer or a nickel layer may be further plated on the surface of the bismuth alloy layer. Or a palladium layer, and then plating a second bismuth alloy layer on the surface of the gold layer, the copper layer, the nickel layer or the palladium layer to obtain a refractory metal or stainless steel having a plating layer on the surface. After the second bismuth alloy layer is plated, it may be heat treated as needed or may not be heat treated.
  • the present invention provides a plating process for a refractory metal or stainless steel surface, comprising the steps of:
  • a refractory metal substrate or a stainless steel substrate Pre-treating a refractory metal substrate or a stainless steel substrate, the refractory metal substrate being titanium, tantalum, niobium, or an alloy thereof;
  • the ruthenium alloy layer is obtained as a refractory metal or stainless steel having a plating layer on its surface.
  • the plating layer is the above-described two-layer structure
  • heat treatment may be performed as needed or may not be performed.
  • the pretreatment comprises: firstly immersing the refractory metal substrate or the stainless steel substrate with a phosphorus-containing cleaning agent, and then performing alkaline electric deoiling, and then acid or alkali. Electrolytic removal is performed in the liquid to remove the loose structural layer on the surface of the substrate, and then immersed in the fluorine-containing acid solution for activation, and finally electrolytically activated in the fluorine-containing alkali solution.
  • the immersion treatment is used to clean the surface of the substrate, so that the surface of the substrate is slightly corroded, thereby enhancing the adhesion of the plating layer.
  • the electric degreasing operation is to remove the grease/dirt on the surface of the substrate.
  • the substrate sample is placed on the cathode, and the subsequent acid or alkali electrolysis removal is to loosen the surface of the substrate by electrolysis. Partial stripping of the strip (i.e., removal of the loose structure layer) helps to enhance the adhesion of the coating.
  • the substrate sample is placed on the anode, which peels off the metal on the surface of the substrate.
  • the activation of the acid solution is such that in order to make the surface of the substrate in an activated state, the activation of the alkali liquid is to have a very thin protective layer on the surface of the substrate to prevent the substrate from being reoxidized again, so that the adhesion of the subsequent plating layer is deteriorated. .
  • the immersion treatment temperature is 40-80 ° C
  • the time is 1-10 min
  • the electric de-oiling temperature is 40-80 ° C
  • the current density is 5-20 ASD (ampere/square decimeter)
  • time The temperature is 1-10 min
  • the temperature of the acid electrolysis is 20-35 ° C
  • the current density is 1-10 ASD
  • the time is 20 s-10 min
  • the temperature of the lye electrolysis is 40-80 ° C
  • the current density is 0.5.
  • time is 20s-10min; acid solution soaking activation temperature is 20-35 °C, time is 30s-5min, lye electrolysis activation temperature is 20-35 °C, current density is 1-10ASD, time is 30s-10min .
  • the specific operation of the heat treatment involved in the above electroplating process is: heat treatment at 50-300 ° C for 1-60 min, and then heat treatment at 300-1300 ° C for 1-60 min. Further, the heat treatment is specifically performed by heat treatment at 80-150 ° C for 5-30 min and then heat treatment at 300-900 ° C for 5-30 min. Heat treatment operation Improve the adhesion of the coating well.
  • the electroplated gold layer is acid gold plating, the operating temperature is 30-50 ° C, the current density is 0.2-5 ASD;
  • the electroplated copper layer is acid copper plating, the operating temperature is 20-35 ° C, and the current density is 0.2-5 ASD;
  • the palladium layer is acid palladium plating, the operating temperature is 16-35 ° C, 0.2-5 ASD;
  • the electroplated nickel layer is acid nickel plating, the operating temperature is 50-70 ° C, the current density is 0.2-5 ASD; It is an acid rhodium plated with an operating temperature of 25-45 ° C and a current density of 0.2-5 ASD.
  • a new plating layer may be further disposed on the electroplating layer according to actual needs, including PVD (physical vapor deposition), decorative metal plating or decorative non-metal plating to make the substrate. It meets the functional needs of conductivity, wear resistance, anti-fingerprint, etc., as well as decorative needs such as different color appearance effects.
  • the electroplating process of the refractory metal or stainless steel surface provided by the above invention has the advantages of simple process, low equipment requirement, favorable industrial production, and electroplating layer with good adhesion, corrosion resistance and solderability.
  • a plating process for a refractory metal titanium surface comprising the steps of:
  • a gold layer having a thickness of 0.8 ⁇ m is electroplated on the surface of the titanium sheet, and the operation of electroplating the gold layer is acid gold plating, the operating temperature is 40 ° C, the current density is 0.5 ASD; It is placed in an oven for heat treatment under the conditions of baking at 100 ° C for 10 min and then at 400 ° C for 20 min.
  • a layer of bismuth alloy having a thickness of 0.8 ⁇ m is plated on the surface of the gold layer (alloy ratio ⁇ : ⁇ is 95%: 5%), after the plating is completed, the sample is placed in an oven for heat treatment, the conditions are: baking at 100 ° C for 10 min, then baking at 300 ° C for 10 min, to obtain a titanium sheet with a plating layer on the surface.
  • the electroplated layer includes a gold layer and a tantalum alloy layer sequentially formed on the surface of the titanium sheet, the electroplated tantalum alloy layer being an acid rhodium-plated layer having an operating temperature of 35 ° C and a current density of 1 ASD.
  • a plating process for a surface of a refractory metal crucible comprising the steps of:
  • the density is 5ASD
  • the time is 5min
  • immersed in the fluorine-containing acid solution for 1min the temperature is 25 ° C
  • activated by cathodic electrolysis in the fluorine-containing alkali solution for 2min the temperature is 25 ° C
  • the current density is 5ASD;
  • a layer of a bismuth alloy having a thickness of 0.8 ⁇ m is plated on the surface of the ruthenium, and the ratio of bismuth alloy (Rh:Ru) is 95%: 5%;
  • the oven is heat treated, prior to Baking at 100 ° C for 10 min, then baking at 300 ° C for 20 min.
  • a gold layer having a thickness of 0.5 ⁇ m is electroplated on the surface of the niobium alloy layer, and finally a second niobium alloy having a thickness of 0.2 ⁇ m is plated in the gold layer.
  • a layer (alloy ratio Rh:Ru is 95%: 5%) to obtain a ruthenium having a plating layer on the surface, the plating layer including a ruthenium alloy layer, a gold layer and a second ruthenium which are sequentially formed on the surface of the ruthenium sheet
  • the alloy layer wherein the gold plating layer is operated by acid gold plating, has an operating temperature of 40 ° C, a current density of 0.5 ASD, and an electroplated tantalum alloy layer which is an acid-plated rhodium, and has an operating temperature of 35 ° C and a current density of 1 ASD.
  • a plating process for a surface of a refractory metal crucible comprising the steps of:
  • the density is 1ASD
  • the time is 1min
  • immersed in the fluorine-containing acid solution for 1min the temperature is 25 ° C
  • activated by cathodic electrolysis in the fluorine-containing alkali solution for 2min the temperature is 25 ° C
  • the current density is 5ASD;
  • a layer of a bismuth alloy having a thickness of 0.5 ⁇ m is plated on the surface of the ruthenium, and the proportion of the bismuth alloy (Rh:Ru) is 97%: 3%;
  • the oven is subjected to heat treatment, first baked at 100 ° C for 10 min, and then baked at 500 ° C for 10 min.
  • a crucible having a plating layer on the surface is obtained, and the electroplated layer includes a niobium alloy formed on the surface of the tantalum sheet.
  • the layer, wherein the electroplated tantalum alloy layer is an acid rhodium plated has an operating temperature of 35 ° C and a current density of 1 ASD.
  • a plating process for a stainless steel surface comprising the steps of:
  • the stainless steel is pretreated as follows: first, ultrasonic soaking treatment is performed using a phosphorus-containing cleaning agent at a temperature of 70 ° C for 2 minutes, and then the stainless steel is placed at the cathode for alkali.
  • the electric oil is de-oiled, the temperature is 70 ° C, the current density is 5 ASD, the time is 2 min, then the stainless steel is placed on the anode, and the electrolysis is removed in the alkali solution to remove the loose structural layer on the surface of the substrate, the temperature is 70 ° C, the current The density is 1ASD, the time is 1min, and then immersed in the fluorine-containing acid solution for 1min, the temperature is 25 ° C, and finally activated by cathodic electrolysis in the fluorine-containing alkali solution for 2min, the temperature is 25 ° C, the current density is 5ASD;
  • a layer of a bismuth alloy having a thickness of 0.8 ⁇ m is plated on the surface of the stainless steel, and the proportion of the bismuth alloy (Rh:Ru) is 95%: 5%; then the stainless steel sample is placed in an oven.
  • the heat treatment is first baked at 100 ° C for 10 min and then baked at 300 ° C for 20 min.
  • a gold layer having a thickness of 0.8 ⁇ m is electroplated on the surface of the tantalum alloy layer, and finally a thickness of 1 ⁇ m is plated on the gold layer.
  • a tantalum alloy layer (alloy ratio Rh:Ru is 97%: 3%), a stainless steel having a plating layer on the surface, the plating layer including a tantalum alloy layer, a gold layer, and a second layer sequentially formed on the surface of the stainless steel
  • the bismuth alloy layer wherein the gold plating layer is operated by acid gold plating, the operating temperature is 40 ° C, the current density is 0.5 ASD, the electroplated yttrium alloy layer is acid chrome plating, the operating temperature is 35 ° C, and the current density is 1ASD.
  • a plating process for a surface of a refractory metal crucible comprising the steps of:
  • the density is 5ASD
  • the time is 5min
  • immersed in the fluorine-containing acid solution for 1min the temperature is 25 ° C
  • activated by cathodic electrolysis in the fluorine-containing alkali solution for 2min the temperature is 25 ° C
  • the current density is 5ASD;
  • a nickel layer having a thickness of 1 ⁇ m is electroplated on the surface of the ruthenium, and the operation of electroplating the nickel layer is acid nickel plating, the operating temperature is 60 ° C, the current density is 0.5 ASD; It is placed in an oven for heat treatment under the conditions of baking at 100 ° C for 10 min and then at 300 ° C for 20 min.
  • a surface of the nickel layer is plated with a thickness of 1 ⁇ m of a bismuth alloy layer (alloy ratio: ⁇ : 95%: 5%) to obtain a ruthenium having a plating layer on the surface, the plating layer including A nickel layer and a tantalum alloy layer formed on the surface of the tantalum sheet, the plated tantalum alloy layer being an acid rhodium plated, having an operating temperature of 35 ° C and a current density of 1 ASD.
  • a plating process for a surface of a refractory metal crucible comprising the steps of:
  • the density is 1ASD
  • the time is 1min
  • immersed in the fluorine-containing acid solution for 1min the temperature is 25 ° C
  • activated by cathodic electrolysis in the fluorine-containing alkali solution for 2min the temperature is 25 ° C
  • the current density is 5ASD;
  • a copper layer having a thickness of 2 ⁇ m is electroplated on the surface of the ruthenium plate, and the operation of electroplating the copper layer is acid copper plating, the operation temperature is 25 ° C, the current density is 0.5 ASD; It is placed in an oven for heat treatment under the conditions of baking at 100 ° C for 10 min and then at 300 ° C for 20 min.
  • a surface of the copper layer is plated with a thickness of 1 ⁇ m of a niobium alloy layer (alloy ratio: ⁇ is 95%: 5%), a ruthenium having an electroplated layer on the surface, the electroplated layer comprising a copper layer and a ruthenium alloy layer sequentially formed on the surface of the ruthenium, the electroplated ruthenium alloy layer being acid plated Helium, its operating temperature is 35 ° C, and the current density is 1 ASD.
  • a plating process for a stainless steel surface comprising the steps of:
  • the stainless steel is pretreated as follows: first, ultrasonic soaking treatment is performed using a phosphorus-containing cleaning agent at a temperature of 70 ° C for 2 minutes, and then the stainless steel is placed at the cathode for alkali.
  • the electric oil is de-oiled, the temperature is 70 ° C, the current density is 5 ASD, the time is 2 min, then the stainless steel is placed on the anode, and the electrolysis is removed in the alkali solution to remove the loose structural layer on the surface of the substrate, the temperature is 70 ° C, the current The density is 1ASD, the time is 1min, and then immersed in the fluorine-containing acid solution for 1min, the temperature is 25 ° C, and finally activated by cathodic electrolysis in the fluorine-containing alkali solution for 2min, the temperature is 25 ° C, the current density is 5ASD;
  • a surface of the stainless steel is plated with a palladium layer having a thickness of 0.5 ⁇ m, and the operation of electroplating the palladium layer is acid palladium plating at an operating temperature of 25 ° C and a current density of 0.5 ASD;
  • the heat treatment is carried out in an oven under the conditions of baking at 100 ° C for 10 min and then baking at 300 ° C for 20 min.
  • a surface of the palladium layer is plated with a thickness of 2 ⁇ m of a niobium alloy layer (alloy ratio: ⁇ is 95%: 5%), obtaining a stainless steel having a plating layer on the surface, the plating layer comprising a palladium layer and a ruthenium alloy layer sequentially formed on the surface of the stainless steel, the electroplated ruthenium alloy layer being acid ruthenium
  • the operating temperature is 35 ° C and the current density is 1 ASD.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明提供了一种表面具有电镀层的难熔金属或不锈钢,包括基材,以及形成在所述基材表面的电镀层,所述基材包括难熔金属基材或不锈钢基材,其中,所述难熔金属基材为钛、钽、铌、或其合金,所述电镀层包括铑钌合金层。该电镀层具有良好的附着力,抗腐蚀性和可焊性,提高了难熔金属制品的焊接力,使其有利于在工业上应用,本发明还提供了一种难熔金属或不锈钢表面的电镀工艺。

Description

一种表面具有电镀层的难熔金属或不锈钢,以及一种难熔金属或不锈钢表面的电镀工艺 技术领域
本发明涉及金属的表面电镀技术领域,特别是涉及一种表面具有电镀层的难熔金属或不锈钢,以及一种难熔金属或不锈钢表面的电镀工艺。
背景技术
难熔金属如钛、钽、铌等具有良好的高温强度、耐腐蚀及加工塑性,是工业上一种重要的高温结构材料。在电子应用方面,虽然材料的特性优异,但由于此类金属之焊接性能差,因此需要在表面覆镀一层其他的金属,成品便因此能同时发挥高强度、耐腐蚀、轻量化及可焊接之优点。
然而,难熔金属的性质非常活泼,其表面在空气和水中都很容易生成一层致密的钝化膜。为要获得附着力较好的镀层,在电镀前需破坏其钝化膜;但由于此类金属之钝化速度太快,钝化膜刚被除掉后会马上再生成,因此在其上进行电镀会十分困难。
为了解决上述问题,有人将钛材先进行电解脱除,然后再电镀制备金层,但效果不是很理想;也有人将钽材于真空状态加温至1900℃,冷却后再电镀金层,然而这一技术所需要的设备及耗能均较高,难以应用于实际生产。
综上所述,寻求一种在难熔金属上进行有效、安全电镀,并获得具有良好附着力、抗腐蚀力及焊接力的镀层的电镀工艺是十分必要的。
发明内容
鉴于此,本发明提供一种表面具有电镀层的难熔金属或不锈钢,以及一种难 熔金属或不锈钢表面的电镀工艺。其电镀层具有良好的附着力,抗腐蚀性和可焊性,提高了难熔金属制品的焊接力,使其有利于在工业上应用。
第一方面,本发明提供了一种表面具有电镀层的难熔金属或不锈钢,包括基材,以及形成在所述基材表面的电镀层,所述基材包括难熔金属基材或不锈钢基材,所述难熔金属基材为钛、钽、铌、或其合金,所述电镀层包括铑钌合金层。
本发明实施方式中,所述铑钌合金层的厚度为0.01-10μm,优选地,厚度为0.1-2μm。所述铑钌合金层中,钌的质量含量小于等于20%,优选地,钌的质量含量为0.5%-10%,更优选地,钌的质量含量为3%-5%。本发明中,铑钌合金层具有良好的附着力和防腐性能,且具可焊性,有利于难熔金属实现在工业上的广泛应用。而将合金中的钌控制在较小含量,更有利于镀层附着力和防腐性能的提高。
本发明实施方式中,根据基材的用途需要,为了保证一定的电镀层厚度,提高基材的某些性能,所述电镀层还包括设置在所述基材与所述铑钌合金层之间的金层、或铜层、或镍层、或钯层。其中,所述金层、或钯层的厚度为0.01-10μm,优选地,厚度为0.1-2μm;所述铜层、所述镍层的厚度为0.01-200μm,优选地,厚度为1-100μm。其中,金层、钯层的设置可以进一步提高基材的防腐性能,而铜层、镍层的设置则可以提高基材的导电性能。
本发明实施方式中,所述电镀层还包括设置在所述铑钌合金层表面的金层、或铜层、或镍层、或钯层,以及设置在所述金层、或铜层、或镍层、或钯层表面的第二铑钌合金层。其中,所述金层、钯层、第二铑钌合金层的厚度为0.01-10μm,优选地,厚度为0.1-2μm;所述铜层、所述镍层的厚度为0.01-200μm,优选地,厚度为1-100μm,所述第二铑钌合金层中,钌的质量含量小于等于20%, 优选地,钌的质量含量为0.5%-10%,更优选地,钌的质量含量为3%-5%。
本发明实施方式中,根据实际需要,比如导电性、耐磨性、防指纹等功能性需要,外观颜色等装饰性需要等,所述电镀层上可进一步设置有PVD镀层、装饰性金属镀层或装饰性非金属镀层。
本发明第一方面提供的表面具有电镀层的难熔金属或不锈钢,其电镀层具有良好的附着力,抗腐蚀性和可焊性,解决了现有技术中难以在难熔金属基材上进行安全有效的电镀获得附着力好、抗腐蚀性强、且可焊性强的电镀层的问题。
第二方面,本发明提供了一种难熔金属或不锈钢表面的电镀工艺,包括以下步骤:
将难熔金属基材或不锈钢基材进行前处理,所述难熔金属基材为钛、钽、铌、或其合金;
在所述难熔金属基材或不锈钢基材表面电镀铑钌合金层,随后进行热处理,得到表面具有电镀层的难熔金属或不锈钢,所述电镀层包括铑钌合金层。
本发明实施方式中,根据基材的用途需要,为了保证一定的电镀层厚度,提高基材的某些性能,在所述铑钌合金层表面可进一步电镀金层、或铜层、或镍层、或钯层,再在所述金层、铜层、镍层或钯层表面电镀第二铑钌合金层,得到表面具有电镀层的难熔金属或不锈钢。电镀完第二铑钌合金层后,可根据需要进行热处理,也可不作热处理。
以及,本发明提供了一种难熔金属或不锈钢表面的电镀工艺,包括以下步骤:
将难熔金属基材或不锈钢基材进行前处理,所述难熔金属基材为钛、钽、铌、或其合金;
先在所述难熔金属基材或不锈钢基材表面电镀金层、或铜层、或镍层、或钯层,随后进行热处理,冷却后,再在所述金层、铜层、镍层或钯层表面电镀铑 钌合金层,得到表面具有电镀层的难熔金属或不锈钢。
此种情况下,即当电镀层为上述的双层结构时,电镀完铑钌合金层后,可根据需要进行热处理,也可不作热处理。
本发明上述电镀工艺中,所述前处理包括:将所述难熔金属基材或不锈钢基材先采用含磷清洗剂进行超声浸泡处理,然后进行碱性电解除油,再于酸液或碱液中做电解脱除以除去基材表面的疏松结构层,然后再于含氟酸液中浸泡活化,最后再在含氟碱液中电解活化。其中,浸泡处理用于清理基材表面,使基材表面呈现微腐蚀状态,从而增强电镀层的附着力。而电解除油操作是为了清除基材表面的油脂/脏物,该操作过程中将基材样本置于阴极,后续的酸液或碱液电解脱除是以电解的方式把基材表面的松脱的部分剥离(即除去疏松结构层),有助于增强镀层的附着力,该操作过程中将基材样本置于阳极,该操作会把基材表面的金属剥离。而酸液活化的操作使为了使基材表面处于活化的状态,碱液活化则是为了使基材表面有一层极薄的保护层,以防止基材再度氧化,使后续镀层的附着力变差。
本发明实施方式中,所述浸泡处理温度为40-80℃,时间为1-10min;所述电解除油温度为40-80℃,电流密度为5-20ASD(安培/平方分米),时间为1-10min;所述酸液电解脱除的温度为20-35℃,电流密度为1-10ASD,时间为20s-10min,碱液电解脱除的温度为40-80℃,电流密度为0.5-10ASD,时间为20s-10min;酸液浸泡活化温度为20-35℃,时间为30s-5min,碱液电解活化采用温度为20-35℃,电流密度为1-10ASD,时间为30s-10min。
上述电镀工艺中所涉及到的热处理的具体操作为:先于50-300℃热处理1-60min,再于300-1300℃热处理1-60min。进一步地,所述热处理具体操作为:先于80-150℃热处理5-30min,再于300-900℃热处理5-30min。热处理操作能 很好地提高镀层的附着力。
其中,电镀金层为酸性镀金,其操作温度为30-50℃,电流密度为0.2-5ASD;电镀铜层为酸性镀铜,其操作温度为20-35℃,电流密度为0.2-5ASD;所述钯层为酸性镀钯,其操作温度为16-35℃,0.2-5ASD;电镀镍层为酸性镀镍,其操作温度为50-70℃,电流密度为0.2-5ASD;电镀铑钌合金层为酸性镀铑钌,其操作温度为25-45℃,电流密度为0.2-5ASD。
上述电镀工艺完成后,可再根据实际需要继续在电镀层上设置新的镀层,包括PVD(physical vapor deposition,物理气相沉积)镀层、装饰性金属镀层或装饰性非金属镀层等,以使基材满足导电性、耐磨性、防指纹等功能性需要,以及不同颜色外观效果等装饰性需要。
本发明上述提供的难熔金属或不锈钢表面的电镀工艺,其过程简单,对设备要求低,利于工业化生产,可获得具有良好附着力,抗腐蚀性和可焊性的电镀层。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
实施例1
一种难熔金属钛表面的电镀工艺,包括以下步骤:
(1)取钛片作基材,将所述钛片进行如下前处理:先采用含磷清洗剂进行 超声浸泡处理,温度为70℃,时间为5min,然后将钛片置于阴极进行碱性电解除油,温度为70℃,电流密度为10ASD,时间为1min,再将钛片置于阳极,于碱液中做电解脱除以除去基材表面的疏松结构层,温度为70℃,电流密度为1ASD,时间为1min,然后再于含氟酸液中浸泡活化1min,温度为25℃,最后再在含氟碱液中阴极电解活化2min,温度为25℃,电流密度为5ASD;
(2)前处理完成后,在所述钛片表面电镀一层厚度为0.8μm的金层,电镀金层的操作为酸性镀金,其操作温度为40℃,电流密度为0.5ASD;然后将样品放入烘箱进行热处理,条件为先于100℃烘烤10min,然后于400℃烘烤20min,待样品冷却后,再在所述金层表面电镀厚度为0.8μm的铑钌合金层(合金比例铑:钌为95%:5%),电镀完成后,再将样品放入烘箱进行热处理,条件为先于100℃烘烤10min,然后于300℃烘烤10min,得到表面具有电镀层的钛片,所述电镀层包括依次形成在所述钛片表面的金层和铑钌合金层,所述电镀铑钌合金层为酸性镀铑钌,其操作温度为35℃,电流密度为1ASD。
实施例2
一种难熔金属钽表面的电镀工艺,包括以下步骤:
(1)取钽片作基材,将所述钽片进行如下前处理:先采用含磷清洗剂进行超声浸泡处理,温度为70℃,时间为10min,然后将钽片置于阴极进行碱性电解除油,温度为70℃,电流密度为10ASD,时间为5min,再将钽片置于阳极,于碱液中做电解脱除以除去基材表面的疏松结构层,温度为70℃,电流密度为5ASD,时间为5min,然后再于含氟酸液中浸泡活化1min,温度为25℃,最后再在含氟碱液中阴极电解活化2min,温度为25℃,电流密度为5ASD;
(2)前处理完成后,在所述钽片表面电镀一层厚度为0.8μm的铑钌合金层,铑钌合金比例(Rh:Ru)为95%:5%;然后将钽片样品放入烘箱进行热处理,先于 100℃烘烤10min,再于300℃烘烤20min,待样品冷却后,再在铑钌合金层表面电镀厚度为0.5μm的金层,最后在金层电镀厚度为0.2μm的第二铑钌合金层(合金比例Rh:Ru为95%:5%),得到表面具有电镀层的钽片,所述电镀层包括依次形成在所述钽片表面的铑钌合金层、金层和第二铑钌合金层,其中,电镀金层的操作为酸性镀金,其操作温度为40℃,电流密度为0.5ASD,电镀铑钌合金层为酸性镀铑钌,其操作温度为35℃,电流密度为1ASD。
实施例3
一种难熔金属铌表面的电镀工艺,包括以下步骤:
(1)取铌片作基材,将所述铌片进行如下前处理:先采用含磷清洗剂进行超声浸泡处理,温度为70℃,时间为10min,然后将铌片置于阴极进行碱性电解除油,温度为70℃,电流密度为10ASD,时间为5min,再将铌片置于阳极,于碱液中做电解脱除以除去基材表面的疏松结构层,温度为70℃,电流密度为1ASD,时间为1min,然后再于含氟酸液中浸泡活化1min,温度为25℃,最后再在含氟碱液中阴极电解活化2min,温度为25℃,电流密度为5ASD;
(2)前处理完成后,在所述铌片表面电镀一层厚度为0.5μm的铑钌合金层,铑钌合金比例(Rh:Ru)为97%:3%;然后将铌片样品放入烘箱进行热处理,先于100℃烘烤10min,再于500℃烘烤10min,待样品冷却后,得到表面具有电镀层的铌片,所述电镀层包括形成在所述铌片表面的铑钌合金层,其中,电镀铑钌合金层为酸性镀铑钌,其操作温度为35℃,电流密度为1ASD。
实施例4
一种不锈钢表面的电镀工艺,包括以下步骤:
(1)取不锈钢作基材,将所述不锈钢进行如下前处理:先采用含磷清洗剂进行超声浸泡处理,温度为70℃,时间为2min,然后将不锈钢置于阴极进行碱 性电解除油,温度为70℃,电流密度为5ASD,时间为2min,再将不锈钢置于阳极,于碱液中做电解脱除以除去基材表面的疏松结构层,温度为70℃,电流密度为1ASD,时间为1min,然后再于含氟酸液中浸泡活化1min,温度为25℃,最后再在含氟碱液中阴极电解活化2min,温度为25℃,电流密度为5ASD;
(2)前处理完成后,在所述不锈钢表面电镀一层厚度为0.8μm的铑钌合金层,铑钌合金比例(Rh:Ru)为95%:5%;然后将不锈钢样品放入烘箱进行热处理,先于100℃烘烤10min,再于300℃烘烤20min,待样品冷却后,再在铑钌合金层表面电镀厚度为0.8μm的金层,最后在金层上电镀厚度为1μm的第二铑钌合金层(合金比例Rh:Ru为97%:3%),得到表面具有电镀层的不锈钢,所述电镀层包括依次形成在所述不锈钢表面的铑钌合金层、金层和第二铑钌合金层,其中,电镀金层的操作为酸性镀金,其操作温度为40℃,电流密度为0.5ASD,电镀铑钌合金层为酸性镀铑钌,其操作温度为35℃,电流密度为1ASD。
实施例5
一种难熔金属钽表面的电镀工艺,包括以下步骤:
(1)取钽片作基材,将所述钽片进行如下前处理:先采用含磷清洗剂进行超声浸泡处理,温度为70℃,时间为10min,然后将钽片置于阴极进行碱性电解除油,温度为70℃,电流密度为10ASD,时间为5min,再将钽片置于阳极,于碱液中做电解脱除以除去基材表面的疏松结构层,温度为70℃,电流密度为5ASD,时间为5min,然后再于含氟酸液中浸泡活化1min,温度为25℃,最后再在含氟碱液中阴极电解活化2min,温度为25℃,电流密度为5ASD;
(2)前处理完成后,在所述钽片表面电镀一层厚度为1μm的镍层,电镀镍层的操作为酸性镀镍,其操作温度为60℃,电流密度为0.5ASD;然后将样品放入烘箱进行热处理,条件为先于100℃烘烤10min,然后于300℃烘烤20min, 待样品冷却后,再在所述镍层表面电镀厚度为1μm的铑钌合金层(合金比例铑:钌为95%:5%),得到表面具有电镀层的钽片,所述电镀层包括依次形成在所述钽片表面的镍层和铑钌合金层,所述电镀铑钌合金层为酸性镀铑钌,其操作温度为35℃,电流密度为1ASD。
实施例6
一种难熔金属铌表面的电镀工艺,包括以下步骤:
(1)取铌片作基材,将所述铌片进行如下前处理:先采用含磷清洗剂进行超声浸泡处理,温度为70℃,时间为5min,然后将铌片置于阴极进行碱性电解除油,温度为70℃,电流密度为10ASD,时间为1min,再将铌片置于阳极,于碱液中做电解脱除以除去基材表面的疏松结构层,温度为70℃,电流密度为1ASD,时间为1min,然后再于含氟酸液中浸泡活化1min,温度为25℃,最后再在含氟碱液中阴极电解活化2min,温度为25℃,电流密度为5ASD;
(2)前处理完成后,在所述铌片表面电镀一层厚度为2μm的铜层,电镀铜层的操作为酸性镀铜,其操作温度为25℃,电流密度为0.5ASD;然后将样品放入烘箱进行热处理,条件为先于100℃烘烤10min,然后于300℃烘烤20min,待样品冷却后,再在所述铜层表面电镀厚度为1μm的铑钌合金层(合金比例铑:钌为95%:5%),得到表面具有电镀层的铌片,所述电镀层包括依次形成在所述铌片表面的铜层和铑钌合金层,所述电镀铑钌合金层为酸性镀铑钌,其操作温度为35℃,电流密度为1ASD。
实施例7
一种不锈钢表面的电镀工艺,包括以下步骤:
(1)取不锈钢作基材,将所述不锈钢进行如下前处理:先采用含磷清洗剂进行超声浸泡处理,温度为70℃,时间为2min,然后将不锈钢置于阴极进行碱 性电解除油,温度为70℃,电流密度为5ASD,时间为2min,再将不锈钢置于阳极,于碱液中做电解脱除以除去基材表面的疏松结构层,温度为70℃,电流密度为1ASD,时间为1min,然后再于含氟酸液中浸泡活化1min,温度为25℃,最后再在含氟碱液中阴极电解活化2min,温度为25℃,电流密度为5ASD;
(2)前处理完成后,在所述不锈钢表面电镀一层厚度为0.5μm的钯层,电镀钯层的操作为酸性镀钯,其操作温度为25℃,电流密度为0.5ASD;然后将样品放入烘箱进行热处理,条件为先于100℃烘烤10min,然后于300℃烘烤20min,待样品冷却后,再在所述钯层表面电镀厚度为2μm的铑钌合金层(合金比例铑:钌为95%:5%),得到表面具有电镀层的不锈钢,所述电镀层包括依次形成在所述不锈钢表面的钯层和铑钌合金层,所述电镀铑钌合金层为酸性镀铑钌,其操作温度为35℃,电流密度为1ASD。
效果实施例
为对本发明实施例技术方案带来的有益效果进行有力支持,特提供以下性能测试:
(1)百格测试:将实施例1-7获得的样品进行百格测试,具体地,以百格刀刻划10×10个(1mm×1mm)网格,以毛刷将测试区域的碎片刷走,并把3M公司的600号胶纸牢牢黏在网格上;然后用手抓着胶带一端,并从垂直方向迅速扯下胶纸,于同一位置进行两次相同试验。当切口的边缘完全光滑,格子边缘没有任何剥落时,方为合格。结果显示,本发明实施例1-7的样品百格测试合格。
(2)180°折弯测试:将实施例1-7获得的样品进行百格测试,具体地,把3M 600号胶纸牢牢黏在样品上,按顺时针方向把样品折弯90°,然后反方向把 样品折弯至180°,再把胶纸从垂直方向迅速撕下。当胶纸没有残留镀层时,方为合格。结果显示,本发明实施例1-7的样品180°折弯测试合格。
(3)人工汗电解测试:将实施例1-7获得的样品进行人工汗电解测试,首先按以下配方开出人工汗溶液:氯化钠0.5wt%、乳酸0.1wt%、尿素0.1wt%、余量为纯水。溶液以反脱方式进行电解,观察样品电解前及电解后的差异。在人工汗溶液中,将样品置于阳极位置,铂金钛网则置于阴极位置,其阳极面积:阴极面积比例约为2:1,阳阴极距离约为5mm。实验以恒电压5V进行,并观察电解10min后样品的外观差异。结果发现,经过10min电解后,实施例1-7的样品外观均无明显差异,因此电解测试结果为合格。
上述测试结果显示,本发明实施例的样品表面由于设置有包含铑钌合金层的电镀层,从而具有良好的附着力和防腐性能。

Claims (12)

  1. 一种表面具有电镀层的难熔金属或不锈钢,其特征在于,包括基材,以及形成在所述基材表面的电镀层,所述基材包括难熔金属基材或不锈钢基材,所述难熔金属基材为钛、钽、铌、或其合金,所述电镀层包括铑钌合金层。
  2. 如权利要求1所述的表面具有电镀层的难熔金属或不锈钢,其特征在于,所述电镀层还包括设置在所述基材与所述铑钌合金层之间的金层、或铜层、或镍层、或钯层,所述金层、所述钯层的厚度为0.01-10μm,所述铜层、所述镍层的厚度为0.01-200μm。
  3. 如权利要求1所述的表面具有电镀层的难熔金属或不锈钢,其特征在于,所述电镀层还包括设置在所述铑钌合金层表面的金层、或铜层、或镍层、或钯层,以及设置在所述金层、或铜层、或镍层、或钯层表面的第二铑钌合金层,所述金层、所述钯层、所述第二铑钌合金层的厚度为0.01-10μm,所述铜层、所述镍层的厚度为0.01-200μm,所述第二铑钌合金层中,钌的质量含量小于等于20%。
  4. 如权利要求1所述的表面具有电镀层的难熔金属或不锈钢,其特征在于,所述铑钌合金层的厚度为0.01-10μm,所述铑钌合金层中,钌的质量含量小于等于20%。
  5. 如权利要求1-4任一项所述的表面具有电镀层的难熔金属或不锈钢,其特征在于,所述电镀层上进一步设置有PVD镀层、装饰性金属镀层或装饰性非金属镀层。
  6. 一种难熔金属或不锈钢表面的电镀工艺,其特征在于,包括以下步骤:
    将难熔金属基材或不锈钢基材进行前处理,所述难熔金属基材为钛、钽、铌、 或其合金;
    在所述难熔金属基材或不锈钢基材表面电镀铑钌合金层,随后进行热处理,得到表面具有电镀层的难熔金属或不锈钢,所述电镀层包括铑钌合金层。
  7. 如权利要求6所述的电镀工艺,其特征在于,在所述铑钌合金层表面进一步电镀金层、或铜层、或镍层、或钯层,再在所述金层、铜层、镍层或钯层表面电镀第二铑钌合金层,得到表面具有电镀层的难熔金属或不锈钢。
  8. 如权利要求6或7所述的电镀工艺,其特征在于,所述前处理包括:将所述难熔金属基材或不锈钢基材先采用含磷清洗剂进行超声浸泡处理,然后进行碱性电解除油,再于酸液或碱液中做电解脱除以除去基材表面的疏松结构层,然后再于含氟酸液中浸泡活化,最后再在含氟碱液中电解活化。
  9. 如权利要求6-8任一项所述的电镀工艺,其特征在于,所述热处理具体操作为:先于50-300℃热处理1-60min,再于300-1300℃热处理1-60min。
  10. 一种难熔金属或不锈钢表面的电镀工艺,其特征在于,包括以下步骤:
    将难熔金属基材或不锈钢基材进行前处理,所述难熔金属基材为钛、钽、铌、或其合金;
    先在所述难熔金属基材或不锈钢基材表面电镀金层、或铜层、或镍层、或钯层,随后进行热处理,冷却后,再在所述金层、铜层、镍层或钯层表面电镀铑钌合金层,得到表面具有电镀层的难熔金属或不锈钢。
  11. 如权利要求10所述的电镀工艺,其特征在于,所述前处理包括:将所述难熔金属基材或不锈钢基材先采用含磷清洗剂进行超声浸泡处理,然后进行碱性电解除油,再于酸液或碱液中做电解脱除以除去基材表面的疏松结构层,然后再于含氟酸液中浸泡活化,最后再在含氟碱液中电解活化。
  12. 如权利要求10或11任一项所述的电镀工艺,其特征在于,所述热处理 具体操作为:先于50-300℃热处理1-60min,再于300-1300℃热处理1-60min。
PCT/CN2017/085647 2017-05-08 2017-05-24 一种表面具有电镀层的难熔金属或不锈钢,以及一种难熔金属或不锈钢表面的电镀工艺 WO2018205307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020513383A JP7078232B2 (ja) 2017-05-08 2017-05-24 表面に電気めっき層を有する難溶融金属またはステンレス鋼、および難溶融金属またはステンレス鋼の表面の電気めっきプロセス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710318166.1 2017-05-08
CN201710318166.1A CN108866585B (zh) 2017-05-08 2017-05-08 一种表面具有电镀层的难熔金属或不锈钢,以及一种难熔金属或不锈钢表面的电镀工艺

Publications (1)

Publication Number Publication Date
WO2018205307A1 true WO2018205307A1 (zh) 2018-11-15

Family

ID=64104227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085647 WO2018205307A1 (zh) 2017-05-08 2017-05-24 一种表面具有电镀层的难熔金属或不锈钢,以及一种难熔金属或不锈钢表面的电镀工艺

Country Status (3)

Country Link
JP (1) JP7078232B2 (zh)
CN (1) CN108866585B (zh)
WO (1) WO2018205307A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416782A (zh) * 2019-08-27 2019-11-05 问问智能信息科技有限公司 一种充电触点组合结构及其制备方法
CN110829080B (zh) * 2019-10-30 2021-06-18 富士康(昆山)电脑接插件有限公司 导电端子
CN111466687A (zh) * 2020-05-20 2020-07-31 东莞美景实业有限公司 一种手机饰品制作工艺
CN113897648A (zh) * 2021-11-22 2022-01-07 东莞中探探针有限公司 一种连接器端子电镀工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1108051A (en) * 1964-03-04 1968-04-03 Int Nickel Ltd Electrodeposition of platinum metals and alloys
GB1356701A (en) * 1971-01-07 1974-06-12 Oxy Metal Finishing Europ Sa Method for depositing a metal coating on a titanium or titanium- alloy component and titanium or titanium-alloy components obtained by the carrying out of this method
JPS543825B1 (zh) * 1970-12-26 1979-02-27
US4203810A (en) * 1970-03-25 1980-05-20 Imi Marston Limited Electrolytic process employing electrodes having coatings which comprise platinum
CN1125491C (zh) * 1997-02-20 2003-10-22 三星航空产业株式会社 多层镀层引线架

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL241456A (zh) * 1958-07-22 1900-01-01
US3309292A (en) * 1964-02-28 1967-03-14 Richard L Andrews Method for obtaining thick adherent coatings of platinum metals on refractory metals
US3892638A (en) 1973-06-21 1975-07-01 Oxy Metal Industries Corp Electrolyte and method for electrodepositing rhodium-ruthenium alloys
JPS63310993A (ja) * 1987-06-10 1988-12-19 Bikutoria:Kk チタン系素材への貴金属メッキ方法
CN101096769A (zh) 2006-06-26 2008-01-02 比亚迪股份有限公司 一种电镀方法
CN103614752B (zh) * 2013-12-10 2016-03-30 西部新锆核材料科技有限公司 一种锆材表面镀铜方法
WO2016093329A1 (ja) * 2014-12-11 2016-06-16 田中貴金属工業株式会社 過酸化水素分解用触媒およびその製造方法ならびに該触媒を用いた過酸化水素を分解する方法
CN106245084A (zh) * 2016-07-29 2016-12-21 成都立威讯科技有限公司 一种半导体用钼片镀铑工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1108051A (en) * 1964-03-04 1968-04-03 Int Nickel Ltd Electrodeposition of platinum metals and alloys
US4203810A (en) * 1970-03-25 1980-05-20 Imi Marston Limited Electrolytic process employing electrodes having coatings which comprise platinum
JPS543825B1 (zh) * 1970-12-26 1979-02-27
GB1356701A (en) * 1971-01-07 1974-06-12 Oxy Metal Finishing Europ Sa Method for depositing a metal coating on a titanium or titanium- alloy component and titanium or titanium-alloy components obtained by the carrying out of this method
CN1125491C (zh) * 1997-02-20 2003-10-22 三星航空产业株式会社 多层镀层引线架

Also Published As

Publication number Publication date
JP7078232B2 (ja) 2022-05-31
CN108866585A (zh) 2018-11-23
JP2020523486A (ja) 2020-08-06
CN108866585B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2018205307A1 (zh) 一种表面具有电镀层的难熔金属或不锈钢,以及一种难熔金属或不锈钢表面的电镀工艺
JPH03501502A (ja) チタニウム上にメッキする方法
CN103484905B (zh) 一种电镀铑层的方法
JPH0347999A (ja) 改良された表面形態を有する支持体金属
Jiang Effect of cathodic current density on performance of tungsten coatings on molybdenum prepared by electrodeposition in molten salt
WO2013027842A1 (ja) めっき密着性の良好なSnめっきステンレス鋼板およびその製造法
CN109534460B (zh) 一种钛电极及其制备方法与应用
CN101235531B (zh) 再活化用于电解的电极的方法
CN110846697B (zh) 一种金属镀件镀镍层的返修方法
US3468765A (en) Method of plating copper on aluminum
TW200424326A (en) Stabilized aluminum laminate having aluminum and stabilizing layer laminated thereon
CN104593842B (zh) 一种钼基体上金属镀层的制备方法
US2092130A (en) Anodic cleaning process
RU2537346C1 (ru) Способ электролитно-плазменной обработки поверхности металлов
CN113802159A (zh) 一种提升钛合金焊接能力的表面处理方法
JP4609779B2 (ja) マグネシウム合金部材およびその高耐食被膜形成方法
JP6008068B1 (ja) 表面処理鋼板および表面処理鋼板の製造方法
WO2018166047A1 (zh) 端子料带的电镀方法
TWI806422B (zh) 高耐蝕層狀結構及其製備方法
US3410785A (en) Vacuum metallized electrode
JP2729835B2 (ja) アルミニウム基体表面にセラミックス皮膜を形成させる方法
US2330608A (en) Preparing stock for coating and electroplating
TWI247826B (en) Pre-treatment for plating on casting aluminum alloy
JP5333149B2 (ja) ステンレス基板への金めっき層の形成方法およびそれに用いるめっき装置
JPS5914100B2 (ja) 高ニツケルクロム合金への無電解ニツケルメツキ法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909282

Country of ref document: EP

Kind code of ref document: A1