WO2018201616A1 - 一种智能显色抗菌抗氧化保鲜薄膜制备方法 - Google Patents

一种智能显色抗菌抗氧化保鲜薄膜制备方法 Download PDF

Info

Publication number
WO2018201616A1
WO2018201616A1 PCT/CN2017/093193 CN2017093193W WO2018201616A1 WO 2018201616 A1 WO2018201616 A1 WO 2018201616A1 CN 2017093193 W CN2017093193 W CN 2017093193W WO 2018201616 A1 WO2018201616 A1 WO 2018201616A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
nano
pva
tio
film
Prior art date
Application number
PCT/CN2017/093193
Other languages
English (en)
French (fr)
Inventor
谢晶
唐智鹏
陈晨伟
王金锋
张玉晗
Original Assignee
上海海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海洋大学 filed Critical 上海海洋大学
Priority to JP2018544307A priority Critical patent/JP6592612B2/ja
Priority to EP17900276.1A priority patent/EP3428222B1/en
Publication of WO2018201616A1 publication Critical patent/WO2018201616A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the invention patent belongs to the field of food packaging materials, and particularly relates to a preparation method of an intelligent color developing antibacterial anti-oxidation preservation film.
  • PSPC Purple sweet potato anthocyanin
  • PSPC is a natural anthocyanin extracted from the roots and stems of purple sweet potato, belonging to anthocyanins.
  • PSPC is bright, natural, non-toxic, and has no special odor. It has anti-mutation, anti-oxidation, liver dysfunction, anti-hyperglycemia and other nutritional, pharmacological and health functions. It is an ideal natural food coloring resource.
  • PSPC also has a special acid-base indicating performance, which can change color with the acidity and alkalinity of the environment, and is reddish when it is acidic, and bluish when it is alkaline.
  • Nano titanium dioxide has been widely used in the fields of pharmaceuticals, cosmetics, food and packaging industries due to its high stability, self-cleaning, self-sterilization, photocatalyst and antimicrobial properties. Moreover, due to its photocatalytic activity, TiO 2 has a larger band gap energy after visible light or ultraviolet irradiation, and generates electron-hole pairs on the surface of the TiO 2 particles, and those electron-hole pairs can induce oxidation. The reduction reaction kills or inhibits the growth of bacteria.
  • Polyvinyl alcohol is a widely used water-soluble polymer with unique strong adhesion, smoothness, gas barrier properties, abrasion resistance and water resistance after treatment. It can then be completely degraded by microorganisms in nature, so it is often used as a matrix for packaging materials and is widely used in the field of food packaging.
  • anthocyanins as chromogenic materials
  • polyvinyl alcohol is used as a substrate, and nano-TiO 2 and purple sweet potato anthocyanins are combined to prepare intelligent color development, antibacterial and anti-oxidation properties. The film has not been reported.
  • the object of the present invention is to provide a method for preparing an intelligent color-developing antibacterial and anti-oxidation fresh-keeping film.
  • the specific technical solution is as follows: preparing a polyvinyl alcohol mother liquor, and then adding nano titanium dioxide to prepare a PVA-nano-TiO 2 mixed solution, after fully stirring The solution was cast on a glass plate, dried in an oven to form a film, and its mechanical properties and antibacterial properties were measured. The optimum ratio of nano-TiO 2 was selected, and then the purple sweet potato anthocyanin solution was separately prepared and added to the optimum. The PVA-nano-TiO 2 mixed ratio solution is fully stirred and cast on the glass plate through the solution, and dried in an oven to form a film.
  • the specific steps include:
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and magnetic stirring was carried out for 2 hours in a water bath to avoid nanoparticles.
  • the PVA-nano-TiO 2 mixed solution was prepared, and the solution was cast on a 30 cm 30 cm glass plate, and dried naturally at room temperature. After peeling off the film, it was placed in a vacuum drying oven, and dried at 37 ° C for 5 h, and then loaded.
  • the vacuum barrier is placed in a high-barrier bag and placed in a desiccator for use; the optimum ratio of nano-TiO 2 is selected by mechanical properties and antibacterial properties.
  • the PVA-nano TiO 2 mixed solution was placed in a collecting thermostat heating magnetic stirrer at 40 ° C, the rotation speed was adjusted to 50 rpm, and the prepared purple sweet potato anthocyanin solution was added thereto while magnetically stirring in a water bath, and magnetic stirring was performed in a water bath. After 20 minutes, the blending solution was sonicated for 10 minutes to remove bubbles in the solution, and finally an anthocyanin/nano TiO 2 /PVA mother liquor was prepared.
  • the solution was cast on a 30 cm 30 cm glass plate, first in an oven at 40 ° C. After 12 h to remove the solvent, the solution was stored in a desiccator with a saturated sodium bromide solution for 48 h to obtain a final film. After peeling off the film, they were placed in a high-barrier bag and vacuum-sealed and placed in a desiccator. .
  • the material used had a polyvinyl alcohol polymerization degree of 1799; the nano TiO 2 was 30 nm.
  • the amount of nano TiO 2 added in the step (2) is 0.5% to 3% of the amount of the PVA.
  • the amount of nano TiO 2 added in the step (2) is 1% of the amount of PVA.
  • step (4) the amount of purple sweet potato anthocyanin added is 10% to 30% of the amount of PVA.
  • step (4) the amount of purple sweet potato anthocyanin added is 26% of the amount of PVA.
  • the film forming process employed in the present invention is easy to control, and the prepared polyvinyl alcohol mother liquor has suitable fluidity and viscosity.
  • the method for preparing and preserving the purple sweet potato anthocyanin solution used in the invention has negligible influence on its antioxidant performance and color development effect.
  • the collector type constant temperature heating magnetic stirrer used in the invention can well promote the thorough mixing of the polyvinyl alcohol and the active material.
  • the film combines color development, antibacterial and anti-oxidation properties and has a wide range of uses in food packaging.
  • the material used in the invention was purchased from Shanghai Jinghua Chemical Co., Ltd., and the degree of polymerization was 1799; the nano titanium dioxide was purchased from Shanghai Maite Chemical Co., Ltd., 30 nm; the purple sweet potato anthocyanin was purchased from Hebei Runbu Biotechnology Co., Ltd.
  • the preparation steps are as follows:
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 0.5% of the PVA amount. ⁇ 3%, magnetically stirred for 2 h in a water bath to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a PVA-nano TiO 2 mixed solution is prepared;
  • a mixed solution of PVA-nano-TiO 2 was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, and dried naturally at room temperature. After peeling off the film, it was placed in a vacuum drying oven, and dried at 37 ° C for 5 hours. It is placed in a high-barrier bag and vacuum-sealed and placed in a desiccator for standby; the optimal addition ratio of nano-TiO 2 is selected by mechanical properties and antibacterial properties.
  • the PVA-nano TiO 2 mixed solution was placed in a collecting thermostat heating magnetic stirrer at 40 ° C, the rotation speed was adjusted to 50 rpm, and the prepared purple sweet potato anthocyanin solution was added thereto while magnetically stirring in a water bath, and magnetic stirring was performed in a water bath. After 20 minutes, the blending solution was sonicated for 10 minutes to remove air bubbles in the solution, and finally an anthocyanin/nano TiO 2 /PVA mother liquor was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, first at 40 ° C.
  • the oven was placed in an oven for 12 hours to remove the solvent, and then the solution was stored in a desiccator with a saturated sodium bromide solution for 48 hours to obtain a final film. After peeling off the film, they were placed in a high-barrier bag and vacuum-sealed and placed in a desiccator. Internal backup.
  • the measurement index of the invention and the determination method thereof are as follows:
  • the film was cut into a sample of about 35 mm and a width of 5 mm.
  • the measurement method was based on GB1040-79 "Plastic Tensile Test Method", and the LRX-PLUS type electronic material testing machine was used to set the test speed to 1 mm/s. (1) Calculate the tensile strength.
  • Ts is tensile strength / MPa
  • P is maximum tensile force / N
  • b is the width / mm of the film sample
  • d is the thickness / mm of the film sample.
  • the film sample was cut into a square of 1 cm ⁇ 1 cm, and then immersed in a hydrochloric acid solution having a pH range of 2.0 to 7.0 and a sodium hydroxide solution having a pH ranging from 8.0 to 11.0, and immersed for 5 minutes to observe the color development of the film. .
  • the film sample was cut into a size of 3 cm ⁇ 3 cm, placed in a beaker containing 100 ml of distilled water, placed on a thermostatic magnetic stirrer, the temperature was controlled at 25 ° C, the rotation speed was controlled at 150 r / min, and 1 ml of the solution was sampled.
  • the DPPH free radical scavenging rate (%) formula is as shown in formula (2):
  • a sample is the absorbance of the sample solution
  • a blank is the blank absorbance
  • LB medium peptone 1g, yeast extract 0.5g, sodium chloride 1g, distilled water 95ml, shake the container until the solute dissolves, adjust the pH to 7.4 with 5mol / L NaOH, dilute to 100ml with distilled water, sterilize at 125 ° C 25min.
  • Preparation of potato solid medium 20g of potato, peeled, cut into pieces and added to 100ml of distilled water, boil for 30min (note the control of fire control, can be properly hydrated), filter with gauze, add 2g of sucrose to the filtrate, agar 2g, pH Naturally (approx. 6.0), make up to 100 ml with distilled water, place in a triangular flask, and sterilize at 125 ° C for 25 min.
  • Enrichment culture of Escherichia coli The strain was connected to LB medium in a sterile room, and the parameters of the full temperature shaking incubator were set at 38 ° C, 100 r / min, and shake flask cultured for 16 h.
  • Inhibition zone experiment The cultured E. coli was inoculated on the surface of the sterilized potato solid medium with an inoculating loop and uniformly coated on the surface.
  • the puncher cuts the sample film into several small discs with a diameter of 1 cm and then spreads the small film disc on the flat plate so that it adheres tightly to the culture weight, covers the lid, and puts it into a constant temperature and humidity incubator at 38 ° C. In the 12 to 20 hours, observe the presence or absence of the inhibition zone and record.
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 0.5% of the PVA amount.
  • the water bath was magnetically stirred for 2 h to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a PVA-nano TiO 2 mixed solution is prepared;
  • a mixed solution of PVA-nano-TiO 2 was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, and dried naturally at room temperature. After peeling off the film, it was placed in a vacuum drying oven, and dried at 37 ° C for 5 hours. Put it into a high-barrier bag and vacuum seal it, then put it into the dryer for use.
  • the tensile strength and antibacterial properties of the nano-TiO 2 /polyvinyl alcohol film were measured.
  • the tensile strength of the film is shown in Table 1.
  • the antibacterial properties are shown in Table 2.
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 1% of the PVA amount.
  • the water bath was magnetically stirred for 2 h to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a PVA-nano TiO 2 mixed solution is prepared;
  • a mixed solution of PVA-nano-TiO 2 was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, and dried naturally at room temperature. After peeling off the film, it was placed in a vacuum drying oven, and dried at 37 ° C for 5 hours. Put it into a high-barrier bag and vacuum seal it, then put it into the dryer for use.
  • the tensile strength and antibacterial properties of the nano-TiO 2 /polyvinyl alcohol film were measured.
  • the tensile strength of the film is shown in Table 1.
  • the antibacterial properties are shown in Table 2.
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 2% of the PVA amount.
  • the water bath was magnetically stirred for 2 h to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a PVA-nano TiO 2 mixed solution is prepared;
  • a mixed solution of PVA-nano-TiO 2 was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, and dried naturally at room temperature. After peeling off the film, it was placed in a vacuum drying oven, and dried at 37 ° C for 5 hours. Put it into a high-barrier bag and vacuum seal it, then put it into the dryer for use.
  • the tensile strength and antibacterial properties of the nano-TiO 2 /polyvinyl alcohol film were measured.
  • the tensile strength of the film is shown in Table 1.
  • the antibacterial properties are shown in Table 2.
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 3% of the amount of PVA.
  • the water bath was magnetically stirred for 2 h to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a PVA-nano TiO 2 mixed solution is prepared;
  • a mixed solution of PVA-nano-TiO 2 was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, and dried naturally at room temperature. After peeling off the film, it was placed in a vacuum drying oven, and dried at 37 ° C for 5 hours. Put it into a high-barrier bag and vacuum seal it, then put it into the dryer for use.
  • the tensile strength and antibacterial properties of the nano-TiO 2 /polyvinyl alcohol film were measured.
  • the tensile strength of the film is shown in Table 1.
  • the antibacterial properties are shown in Table 2.
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 1% of the PVA amount.
  • the water bath was magnetically stirred for 2 h to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a mixed solution of PVA-nano-TiO 2 is prepared;
  • the magnetic stirring was carried out for 4 hours at room temperature, the rotation speed was adjusted to 30 rpm, and then wrapped with aluminum foil paper to avoid illumination;
  • the PVA-nano TiO 2 mixed solution was placed in a collecting thermostat heating magnetic stirrer at 40 ° C, the rotation speed was adjusted to 50 rpm, and the prepared purple sweet potato anthocyanin solution was added thereto while magnetically stirring in a water bath, and magnetic stirring was performed in a water bath. After 20 minutes, the blending solution was sonicated for 10 minutes to remove air bubbles in the solution, and finally an anthocyanin/nano TiO 2 /PVA mother liquor was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, first at 40 ° C.
  • the oven was placed in an oven for 12 hours to remove the solvent, and then the solution was stored in a desiccator with a saturated sodium bromide solution for 48 hours to obtain a final film. After peeling off the film, they were placed in a high-barrier bag and vacuum-sealed and placed in a desiccator. Internal backup.
  • the color reaction and oxidation resistance of the purple sweet potato anthocyanin/nano-TiO 2 /polyvinyl alcohol film were measured.
  • the color reaction of the film is shown in Table 3.
  • the oxidation resistance is shown in Table 4.
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 1% of the PVA amount.
  • the water bath was magnetically stirred for 2 h to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a mixed solution of PVA-nano-TiO 2 is prepared;
  • the magnetic stirring was carried out for 4 hours at room temperature, the rotation speed was adjusted to 30 rpm, and then wrapped with aluminum foil paper to avoid illumination;
  • the PVA-nano TiO 2 mixed solution was placed in a collecting thermostat heating magnetic stirrer at 40 ° C, the rotation speed was adjusted to 50 rpm, and the prepared purple sweet potato anthocyanin solution was added thereto while magnetically stirring in a water bath, and magnetic stirring was performed in a water bath. After 20 minutes, the blending solution was sonicated for 10 minutes to remove air bubbles in the solution, and finally an anthocyanin/nano TiO 2 /PVA mother liquor was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, first at 40 ° C.
  • the oven was placed in an oven for 12 hours to remove the solvent, and then the solution was stored in a desiccator with a saturated sodium bromide solution for 48 hours to obtain a final film. After peeling off the film, they were placed in a high-barrier bag and vacuum-sealed and placed in a desiccator. Internal backup.
  • the color reaction and oxidation resistance of the purple sweet potato anthocyanin/nano-TiO 2 /polyvinyl alcohol film were measured.
  • the color reaction of the film is shown in Table 3.
  • the oxidation resistance is shown in Table 4.
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 1% of the PVA amount.
  • the water bath was magnetically stirred for 2 h to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a mixed solution of PVA-nano-TiO 2 is prepared;
  • the magnetic stirring was carried out for 4 hours at room temperature, the rotation speed was adjusted to 30 rpm, and then wrapped with aluminum foil paper to avoid illumination;
  • the PVA-nano TiO 2 mixed solution was placed in a collecting thermostat heating magnetic stirrer at 40 ° C, the rotation speed was adjusted to 50 rpm, and the prepared purple sweet potato anthocyanin solution was added thereto while magnetically stirring in a water bath, and magnetic stirring was performed in a water bath. After 20 minutes, the blending solution was sonicated for 10 minutes to remove air bubbles in the solution, and finally an anthocyanin/nano TiO 2 /PVA mother liquor was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, first at 40 ° C.
  • the oven was placed in an oven for 12 hours to remove the solvent, and then the solution was stored in a desiccator with a saturated sodium bromide solution for 48 hours to obtain a final film. After peeling off the film, they were placed in a high-barrier bag and vacuum-sealed and placed in a desiccator. Internal backup.
  • the color reaction and oxidation resistance of the purple sweet potato anthocyanin/nano-TiO 2 /polyvinyl alcohol film were measured.
  • the color reaction of the film is shown in Table 3.
  • the oxidation resistance is shown in Table 4.
  • the PVA mother liquor was placed in a collector-type constant-temperature heating magnetic stirrer at 40 ° C, and the rotation speed was adjusted to 50 rpm.
  • a certain proportion of nano-TiO 2 was added to the PVA mother liquor while magnetically stirring in a water bath, and the addition amount was 1% of the PVA amount.
  • the water bath was magnetically stirred for 2 h to avoid polymerization of the nanoparticles.
  • the blending solution is sonicated for 10 minutes to remove bubbles in the solution, and finally a mixed solution of PVA-nano-TiO 2 is prepared;
  • the magnetic stirring was carried out for 4 hours at room temperature, the rotation speed was adjusted to 30 rpm, and then wrapped with aluminum foil paper to avoid illumination;
  • the PVA-nano TiO 2 mixed solution was placed in a collecting thermostat heating magnetic stirrer at 40 ° C, the rotation speed was adjusted to 50 rpm, and the prepared purple sweet potato anthocyanin solution was added thereto while magnetically stirring in a water bath, and magnetic stirring was performed in a water bath. After 20 minutes, the blending solution was sonicated for 10 minutes to remove air bubbles in the solution, and finally an anthocyanin/nano TiO 2 /PVA mother liquor was prepared, and the solution was cast on a glass plate of 30 cm ⁇ 30 cm, first at 40 ° C.
  • the oven was placed in an oven for 12 hours to remove the solvent, and then the solution was stored in a desiccator with a saturated sodium bromide solution for 48 hours to obtain a final film. After peeling off the film, they were placed in a high-barrier bag and vacuum-sealed and placed in a desiccator. Internal backup.
  • the color reaction and oxidation resistance of the purple sweet potato anthocyanin/nano-TiO 2 /polyvinyl alcohol film were measured.
  • the color reaction of the film is shown in Table 3.
  • the oxidation resistance is shown in Table 4.
  • the tensile strength of the nano TiO 2 /polyvinyl alcohol film ranges from 28.7 to 35.1 MPa, which has good mechanical properties compared to other saccharide and protein films, and when the amount of nano TiO 2 added is When the amount of polyvinyl alcohol added is 1%, the mechanical properties are the best. It can be seen from Table 2 that through the inhibition zone experiment, the inhibition zone appeared, indicating that the film has antibacterial properties.
  • the amount of nano TiO 2 added is 1% of the amount of polyvinyl alcohol added, which is the optimum addition amount.
  • the amount of nano TiO 2 added is 1% of the amount of polyvinyl alcohol added, and the amount of purple sweet potato anthocyanin added is 26% of the amount of polyvinyl alcohol added.
  • the prepared film has the best mechanical properties and oxidation resistance, and has good color development and antibacterial properties.
  • the invention relates to an intelligent color developing antibacterial anti-oxidation fresh-keeping film, which has good mechanical properties compared with ordinary film, and the film combines color development, antibacterial and anti-oxidation properties, which not only greatly prolongs the food
  • the shelf life is also able to intelligently monitor the rancidity of food and has a wide range of uses in food packaging.
  • Nano TiO 2 /polyvinyl alcohol 0.11 28.7 Nano TiO 2 /polyvinyl alcohol 0.22 35.1 Nano TiO 2 /polyvinyl alcohol 0.44 31.4 Nano TiO 2 /polyvinyl alcohol 0.66 29.7
  • Table 3 Color development properties of PVA-nano-TiO 2 film with different anthocyanin content of different purple sweet potato
  • the film has good mechanical properties compared to other saccharide and protein films, and its combination of antibacterial and anti-oxidant properties can better extend the shelf life of the food, and the film can exhibit different colors under different pH environments.
  • the acidity decreases, the color gradually becomes lighter.
  • the alkalinity increases, the color gradually becomes darker until the pH is lowered.
  • Dark blue of 11, the film combines color development, antibacterial and anti-oxidation properties and has a wide range of uses in food packaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Moulding By Coating Moulds (AREA)
  • Catalysts (AREA)

Abstract

一种智能显色抗菌抗氧化保鲜薄膜制备方法,步骤为:先制备聚乙烯醇母液,再加入纳米二氧化钛制备成PVA-纳米TiO2混合溶液,充分搅拌后通过溶液流延在玻璃平板上,烘箱干燥成膜,测其力学性能和抑菌性能,筛选出最优纳米TiO2加入比例,然后单独制备紫甘薯花青素溶液,并将其加入到最优PVA-纳米TiO2混合比例的溶液中,充分搅拌后通过溶液流延在玻璃平板上,烘箱干燥成膜。该薄膜相对于其他糖类和蛋白质类薄膜具有良好的力学性能,其抗菌性能和抗氧化性能的结合能够更好的延长食品的货架期,并且该薄膜能在不同pH环境下表现出不同的颜色变化该薄膜结合了显色、抗菌、抗氧化的性能,在食品包装方面具有广泛的用途。

Description

一种智能显色抗菌抗氧化保鲜薄膜制备方法 技术领域:
本发明专利属于食品包装材料领域,具体涉及一种智能显色抗菌抗氧化保鲜薄膜的制备方法。
背景技术:
食品由于发生腐败变质,导致食品营养价值降低,从而缩短了食品货架期。近年来,活性包装技术的运用越来越广泛,将抗菌剂、抗氧化剂直接加入或涂布于塑料薄膜上,形成具有抗菌、抗氧化功能的功能型包装薄膜,利用在食品贮藏过程中从薄膜内向食品中释放活性物质,起到抑制微生物生长繁殖、防止食品氧化腐败、延长食品货架期的作用。但是,当用保鲜膜包装食品时,并不能直观的看出食品是否已发生腐败,从而达不到及时处理食品的效果。因此,开发一种当食品开始发生变质时,能够显色的保鲜膜,具有重要的市场应用价值。
紫甘薯花青素(PSPC)是从紫甘薯的块根和茎叶中浸提出来的一种天然花青素,属于花色苷类物质。PSPC色泽鲜艳自然、无毒、无特殊气味,具有抗突变、抗氧化、缓解肝功能障碍、抗高血糖等营养、药理和保健功能,是一种理想的天然食用色素资源。并且,PSPC还具有特殊的酸碱指示性能,可以随着环境的酸碱改变颜色,遇酸性则偏红,遇碱性则偏蓝。
纳米二氧化钛(TiO2)由于其稳定性高、自清洁、自消毒、光催化剂、抗微生物性能而被广泛研究应用于药品、化妆品、食品和包装工业等领域。并且,由于其本身的光催化活性,TiO2在可见光或紫外线照射后具有更大的带隙能,并在TiO2颗粒的表面上产生电子-空穴对,那些电子-空穴对可以诱导氧化还原反应杀死或者抑制细菌的生长。
聚乙烯醇(PVA)是一种用途相当广泛的水溶性高分子聚合物,具有独特的强力粘接性、平滑性、气体阻隔性、耐磨性以及经过处理后具有耐水性的功能,且使用之后能被自然界中的微生物完全降解,因此通常用做为包装材料的基质,被广泛应用于食品包装领域。虽然也有研究通过以花青素为显色材料制备的薄膜,但是以聚乙烯醇为基材,同时结合纳米TiO2和紫甘薯花青素,制备出同时具有智能显色、抗菌、抗氧化性能的薄膜尚未见报道。
发明内容:
本发明的目的是提供一种智能显色抗菌抗氧化保鲜薄膜的制备方法,具体的技术方案在于:先制备聚乙烯醇母液,再加入纳米二氧化钛制备成PVA-纳米TiO2 混合溶液,充分搅拌后通过溶液流延在玻璃平板上,烘箱干燥成膜,测其力学性能和抑菌性能,筛选出最优纳米TiO2加入比例,然后单独制备紫甘薯花青素溶液,并将其加入到最优PVA-纳米TiO2混合比例的溶液中,充分搅拌后通过溶液流延在玻璃平板上,烘箱干燥成膜,其具体步骤包含:
(1)聚乙烯醇母液的制备:
准确称取22g PVA放于烧杯中,加入200ml去离子水,121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液。
(2)PVA-TiO2混合溶液的制备:
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,水浴磁力搅拌2h,以避免纳米粒子的聚合;将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2混合溶液。
(3)纳米TiO2/聚乙烯醇薄膜的制备以及最优纳米TiO2的添加比例的确定:
将制备得到PVA-纳米TiO2混合溶液,溶液流延于30cm 30cm的玻璃平板上,室温条件下自然干燥,揭膜后将其放入真空干燥箱内,37℃烘干5h后,将它们装入高阻隔袋中抽真空密封后放入干燥器内备用;通过力学性能和抑菌性能筛选出最优的纳米TiO2的添加比例。
(4)紫甘薯花青素溶液的制备:
用5~10ml,pH=3的盐酸分别溶解不同质量的紫甘薯花青素,在室温下磁力搅拌4h,调整转速为30rpm,获得紫甘薯花青素溶液,将溶液放于锥形瓶并用铝箔纸包裹以避免光照。
(5)紫甘薯花青素/纳米TiO2/聚乙烯醇薄膜的制备:
将PVA-纳米TiO2混合溶液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向其中加入制备好的紫甘薯花青素溶液,水浴磁力搅拌20分钟后将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到花青素/纳米TiO2/PVA母液,溶液流延于30cm30cm的玻璃平板上,先在40℃下的烘箱中放置12h以除去溶剂,然后将溶液与饱和溴化钠溶液,一起在干燥器中储存48h后得到最终的薄膜,揭膜后将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
所用材料聚乙烯醇聚合度为1799;纳米TiO2为30nm。
步骤(2)中纳米TiO2添加量为PVA用量的0.5%~3%。
步骤(2)中纳米TiO2添加量为PVA用量的1%。
步骤(4)中紫甘薯花青素添加量为PVA用量的10%~30%。
步骤(4)中紫甘薯花青素添加量为PVA用量的26%。
本发明的有益效果与已有的技术相比,本发明所采用的制膜工艺易于控制、所制备的聚乙烯醇母液流动性、粘度合适。
本发明采用的制备和保存紫甘薯花青素溶液的方法对其抗氧化性能、显色效果的影响可忽略。
本发明采用的集热式恒温加热磁力搅拌器,能够很好地促进聚乙烯醇与活性物质的充分混合。
本发明相对于其他糖类和蛋白质类薄膜具有良好的力学性能,其抗菌性能和抗氧化性能的结合能够更好地延长食品的货架期,并且该薄膜能在不同pH环境下表现出不同的颜色变化,能够直观地知道被包装食品是否已开始发生酸败,具体表现为从pH=2的深红色,随着酸性的减弱,颜色逐渐变浅,当至pH=7时变为淡紫红色,随着碱性的增强,颜色逐渐变深,直至pH=11的深蓝色,该薄膜结合了显色、抗菌、抗氧化的性能,在食品包装方面具有广泛的用途。
具体实施方式
为使本发明实现的操作流程与创作特征易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明所用材料聚乙烯醇购于上海精析化工有限公司,聚合度为1799;纳米二氧化钛购于上海迈特化工有限公司,30nm;紫甘薯花青素购于河北润步生物科技有限公司。制备步骤如下:
(1)聚乙烯醇母液的制备:
准确称取22g PVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
(2)PVA-TiO2混合溶液的制备:
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的0.5%~3%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2混合溶液;
(3)纳米TiO2/聚乙烯醇薄膜的制备:
将制备得到PVA-纳米TiO2混合溶液,溶液流延于30cm×30cm的玻璃平板上,室温条件下自然干燥,揭膜后将其放入真空干燥箱内,37℃烘干5h后,将它们装入高阻隔袋中抽真空密封后放入干燥器内备用;通过力学性能和抑菌性能筛选出最优的纳米TiO2的添加比例。
(4)紫甘薯花青素溶液的制备:
用5~10mlpH=3的盐酸分别溶解不同质量的紫甘薯花青素,其添加量为PVA用量的14%~26%,在室温下磁力搅拌4h,调整转速为30rpm,获得紫甘薯花青素溶液,将溶液放于锥形瓶并用铝箔纸包裹以避免光照。
(5)紫甘薯花青素/纳米TiO2/聚乙烯醇薄膜的制备:
将PVA-纳米TiO2混合溶液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向其中加入制备好的紫甘薯花青素溶液,水浴磁力搅拌20分钟后将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到花青素/纳米TiO2/PVA母液,溶液流延于30cm×30cm的玻璃平板上,先在40℃下的烘箱中放置12h以除去溶剂,然后将溶液与饱和溴化钠溶液,一起在干燥器中储存48h后得到最终的薄膜,揭膜后将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
本发明测定指标及其测定方法如下:
1.拉伸性能测定
测试时薄膜被裁成长约35mm,宽为5mm的试样,测定方法根据GB1040-79《塑料拉伸实验方法》,采用LRX-PLUS型电子材料试验机,设置测试速度为1mm/s,由式(1)计算抗拉伸强度。
Figure PCTCN2017093193-appb-000001
式中,Ts为抗拉强度/MPa、P为最大拉力/N、b为薄膜样品的宽度/mm、d为薄膜样品的厚度/mm。
2.显色反应
将薄膜样品裁切成1cm×1cm的正方形,然后将其浸没在pH范围为2.0~7.0的盐酸溶液和pH范围为8.0~11.0的氢氧化钠溶液中,浸没5分钟,观察薄膜的显色情况。
3.抗氧化性能测定
在避光条件下,将3mg DPPH加入到100ml无水甲醇中,配制成75μmol/L的DPPH-甲醇溶液,放入冰箱冷藏(4℃)备用。
将薄膜样品裁剪成3cm×3cm大小,放入盛有100ml蒸馏水的烧杯中,置于恒温磁力搅拌器上,温度控制在25℃,转速控制在150r/min,取样1ml溶液 加入到4ml的DPPH-甲醇(75umol/L)溶液中混均匀,避光静置50min,使自由基清除反应充分反应,用紫外分光光度计测定516nm处的吸光度值。DPPH自由基清除率(%)公式如式(2)下:
Figure PCTCN2017093193-appb-000002
其中:A样品为样品溶液的吸光度;A空白为空白的吸光度。
4.抗菌性能测定
LB培养基的制备:蛋白胨1g,酵母提取物0.5g,氯化钠1g,蒸馏水95ml,摇动容器直至溶质溶解,用5mol/L NaOH调pH至7.4,用蒸馏水定容至100ml,125℃灭菌25min。
马铃薯固体培养基的制备:马铃薯20g,去皮,切成块加入到100ml蒸馏水中,煮沸30min(注意控制火力的控制,可适当补水),用纱布过滤,滤液中加入蔗糖2g,琼脂2g,pH自然(约为6.0),用蒸馏水定容至100ml,装入三角瓶,125℃灭菌25min。
大肠杆菌的富集培养:在无菌室中将菌种接到LB培养基中,设置全温振荡培养箱参数为38℃,100r/min,摇瓶培养16h。
抑菌圈实验:将培养的大肠杆菌用接种环接种在灭菌的马铃薯固体培养基表面,且在其表面涂布均匀。打孔器将样品薄膜打成若干个直径为1cm的小圆片然后将小薄膜圆片铺在平板上,使其紧密附着在培养斤上,盖上盖子,放入38℃恒温恒湿培养箱中12~20h,观察有无抑菌圈并记录。
实施例1:
准确称取22gPVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的0.5%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2混合溶液;
将制备得到PVA-纳米TiO2混合溶液,溶液流延于30cm×30cm的玻璃平板上,室温条件下自然干燥,揭膜后将其放入真空干燥箱内,37℃烘干5h后,将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
测定纳米TiO2/聚乙烯醇薄膜的拉伸强度和抗菌性能,薄膜的拉伸强度见表 1、抗菌性能见表2。
实施例2:
准确称取22gPVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的1%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2混合溶液;
将制备得到PVA-纳米TiO2混合溶液,溶液流延于30cm×30cm的玻璃平板上,室温条件下自然干燥,揭膜后将其放入真空干燥箱内,37℃烘干5h后,将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
测定纳米TiO2/聚乙烯醇薄膜的拉伸强度和抗菌性能,薄膜的拉伸强度见表1、抗菌性能见表2。
实施例3:
准确称取22gPVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的2%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2混合溶液;
将制备得到PVA-纳米TiO2混合溶液,溶液流延于30cm×30cm的玻璃平板上,室温条件下自然干燥,揭膜后将其放入真空干燥箱内,37℃烘干5h后,将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
测定纳米TiO2/聚乙烯醇薄膜的拉伸强度和抗菌性能,薄膜的拉伸强度见表1、抗菌性能见表2。
实施例4:
准确称取22gPVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使 用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的3%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2混合溶液;
将制备得到PVA-纳米TiO2混合溶液,溶液流延于30cm×30cm的玻璃平板上,室温条件下自然干燥,揭膜后将其放入真空干燥箱内,37℃烘干5h后,将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
测定纳米TiO2/聚乙烯醇薄膜的拉伸强度和抗菌性能,薄膜的拉伸强度见表1、抗菌性能见表2。
实施例5:
准确称取22gPVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的1%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2的混合溶液;
用5.5ml pH=3的盐酸溶解紫甘薯花青素,其添加量为PVA用量的14%,在室温下磁力搅拌4h,调整转速为30rpm,之后用铝箔纸包裹以避免光照;
将PVA-纳米TiO2混合溶液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向其中加入制备好的紫甘薯花青素溶液,水浴磁力搅拌20分钟后将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到花青素/纳米TiO2/PVA母液,溶液流延于30cm×30cm的玻璃平板上,先在40℃下的烘箱中放置12h以除去溶剂,然后将溶液与饱和溴化钠溶液,一起在干燥器中储存48h后得到最终的薄膜,揭膜后将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
测定紫甘薯花青素/纳米TiO2/聚乙烯醇薄膜的显色反应和抗氧化性性能。薄膜的显色反应见表3、抗氧化性能见表4。
实施例6:
准确称取22gPVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃ 的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的1%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2的混合溶液;
用6.5mlpH=3的盐酸溶解紫甘薯花青素,其添加量为PVA用量的18%,在室温下磁力搅拌4h,调整转速为30rpm,之后用铝箔纸包裹以避免光照;
将PVA-纳米TiO2混合溶液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向其中加入制备好的紫甘薯花青素溶液,水浴磁力搅拌20分钟后将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到花青素/纳米TiO2/PVA母液,溶液流延于30cm×30cm的玻璃平板上,先在40℃下的烘箱中放置12h以除去溶剂,然后将溶液与饱和溴化钠溶液,一起在干燥器中储存48h后得到最终的薄膜,揭膜后将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
测定紫甘薯花青素/纳米TiO2/聚乙烯醇薄膜的显色反应和抗氧化性性能。薄膜的显色反应见表3、抗氧化性能见表4。
实施例7:
准确称取22gPVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的1%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2的混合溶液;
用7.5mlpH=3的盐酸溶解紫甘薯花青素,其添加量为PVA用量的22%,在室温下磁力搅拌4h,调整转速为30rpm,之后用铝箔纸包裹以避免光照;
将PVA-纳米TiO2混合溶液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向其中加入制备好的紫甘薯花青素溶液,水浴磁力搅拌20分钟后将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到花青素/纳米TiO2/PVA母液,溶液流延于30cm×30cm的玻璃平板上,先在40℃下的烘箱中放置12h以除去溶剂,然后将溶液与饱和溴化钠溶液,一 起在干燥器中储存48h后得到最终的薄膜,揭膜后将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
测定紫甘薯花青素/纳米TiO2/聚乙烯醇薄膜的显色反应和抗氧化性性能。薄膜的显色反应见表3、抗氧化性能见表4。
实施例8:
准确称取22gPVA于烧杯中,加入200ml去离子水,于121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,其添加量为PVA用量的1%,水浴磁力搅拌2h以避免纳米粒子的聚合。将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2的混合溶液;
用8.5mlpH=3的盐酸溶解紫甘薯花青素,其添加量为PVA用量的26%,在室温下磁力搅拌4h,调整转速为30rpm,之后用铝箔纸包裹以避免光照;
将PVA-纳米TiO2混合溶液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向其中加入制备好的紫甘薯花青素溶液,水浴磁力搅拌20分钟后将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到花青素/纳米TiO2/PVA母液,溶液流延于30cm×30cm的玻璃平板上,先在40℃下的烘箱中放置12h以除去溶剂,然后将溶液与饱和溴化钠溶液,一起在干燥器中储存48h后得到最终的薄膜,揭膜后将它们装入高阻隔袋中抽真空密封后放入干燥器内备用。
测定紫甘薯花青素/纳米TiO2/聚乙烯醇薄膜的显色反应和抗氧化性性能。薄膜的显色反应见表3、抗氧化性能见表4。
由表1可以看出,该纳米TiO2/聚乙烯醇薄膜的拉伸强度范围为28.7~35.1MPa,相对于其他糖类、蛋白质类薄膜具有良好的力学性能,且当纳米TiO2添加量为聚乙烯醇添加量的1%时,其力学性能最佳。由表2可以看出,通过抑菌圈实验,发现都出现的抑菌圈,说明该薄膜具有抗菌性能。
结合表1、表2可以筛选出,纳米TiO2添加量为聚乙烯醇添加量的1%时为最优添加量。
由表3可以看出,该紫甘薯花青素/纳米TiO2/聚乙烯醇薄膜能在不同pH环境下发生不同的显色反应,具体表现为pH=2时显深红色,随着酸性的减弱,颜色逐渐变浅,pH=3时显浅红色,pH为4~6时显浅粉色,当至pH=7时变为淡紫 红色,随着碱性的增强,颜色逐渐变深,pH为8~10时显蓝色,直至pH=11时显深蓝色。
由表4可以看出,随着紫甘薯花青素的添加量增加,DPPH自由基清除率逐渐增强,其中含有26%紫甘薯花青素的PVA-纳米TiO2薄膜的抗氧化能力最强,含有14%紫甘薯花青素的PVA-纳米TiO2薄膜的抗氧化能力最弱,从DPPH自由基清除能力评价试验可以看出,紫甘薯花青素从薄膜中逐渐释放出来,从而起到清除DPPH自由基的作用,具有抗氧化能力。
结合表1、表2、表3、表4可以得出以下结论,以纳米TiO2添加量为聚乙烯醇添加量的1%,紫甘薯花青素添加量为聚乙烯醇添加量的26%制备的薄膜,其力学性能和抗氧化性能最佳,且具有良好的显色反映和抗菌性能。
本发明所述的一种智能显色抗菌抗氧化保鲜薄膜,该薄膜相对于普通薄膜具有良好的力学性能,并且该薄膜同时结合了显色、抗菌、抗氧化的性能,不仅极大地延长了食品的货架期,还能够智能地监测食品的酸败情况,在食品包装方面具有广泛的用途。
表1:不同纳米TiO2添加量的PVA薄膜的拉伸性能
名称 纳米TiO2的添加量(g) 拉伸强度(MPa)
纳米TiO2/聚乙烯醇 0.11 28.7
纳米TiO2/聚乙烯醇 0.22 35.1
纳米TiO2/聚乙烯醇 0.44 31.4
纳米TiO2/聚乙烯醇 0.66 29.7
表2:不同纳米TiO2添加量的PVA薄膜的抗菌性能
名称 纳米Tio2的添加量(g) 是否出现抑菌圈
纳米TiO2/聚乙烯醇 0.11
纳米TiO2/聚乙烯醇 0.22
纳米TiO2/聚乙烯醇 0.44
纳米TiO2/聚乙烯醇 0.66
表3:不同紫甘薯花青素添加量的PVA-纳米TiO2薄膜的显色性能
Figure PCTCN2017093193-appb-000003
表4:不同紫甘薯花青素添加量的PVA-纳米TiO2薄膜的抗氧化性能
Figure PCTCN2017093193-appb-000004
该薄膜相对于其他糖类和蛋白质类薄膜具有良好的力学性能,其抗菌性能和抗氧化性能的结合能够更好的延长食品的货架期,并且该薄膜能在不同pH环境下表现出不同的颜色变化,具体表现为从pH=2的深红色,随着酸性的减弱,颜色逐渐变浅,当至pH=7时变为淡紫红色,随着碱性的增强,颜色逐渐变深,直至pH=11的深蓝色,该薄膜结合了显色、抗菌、抗氧化的性能,在食品包装方面具有广泛的用途。

Claims (6)

  1. 一种智能显色抗菌抗氧化保鲜薄膜制备方法,其特征在于:先制备聚乙烯醇母液,再加入纳米二氧化钛制备成PVA-纳米TiO2混合溶液,充分搅拌后通过溶液流延在玻璃平板上,烘箱干燥成膜,测其力学性能和抑菌性能,筛选出最优纳米TiO2加入比例,然后单独制备紫甘薯花青素溶液,并将其加入到最优PVA-纳米TiO2混合比例的溶液中,充分搅拌后通过溶液流延在玻璃平板上,烘箱干燥成膜,其具体步骤包含:
    (1)聚乙烯醇母液的制备:
    准确称取22g PVA放于烧杯中,加入200ml去离子水,121℃反压高温蒸煮锅中高压处理40min,待蒸煮锅中温度下降至90℃后,将烧杯取出后置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时使用移液枪加入1ml甘油作为增塑剂,最终得到PVA母液;
    (2)PVA-TiO2混合溶液的制备:
    将PVA母液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向PVA母液中加入一定比例的纳米TiO2,水浴磁力搅拌2h,以避免纳米粒子的聚合;将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到PVA-纳米TiO2混合溶液;
    (3)纳米TiO2/聚乙烯醇薄膜的制备以及最优纳米TiO2的添加比例的确定:
    将制备得到PVA-纳米TiO2混合溶液,溶液流延于30cm×30cm的玻璃平板上,室温条件下自然干燥,揭膜后将其放入真空干燥箱内,37℃烘干5h后,将它们装入高阻隔袋中抽真空密封后放入干燥器内备用;通过力学性能和抑菌性能筛选出最优的纳米TiO2的添加比例;
    (4)紫甘薯花青素溶液的制备:
    用5~10ml,pH=3的盐酸分别溶解不同质量的紫甘薯花青素,在室温下磁力搅拌4h,调整转速为30rpm,获得紫甘薯花青素溶液,将溶液放于锥形瓶并用铝箔纸包裹以避免光照;
    (5)紫甘薯花青素/纳米TiO2/聚乙烯醇薄膜的制备:
    将PVA-纳米TiO2混合溶液置于40℃的集热式恒温加热磁力搅拌器中,调整转速为50rpm,在水浴磁力搅拌的同时向其中加入制备好的紫甘薯花青素溶液,水浴磁力搅拌20分钟后将共混溶液超声处理10分钟以除去溶液中的气泡,最终制备得到花青素/纳米TiO2/PVA母液,溶液流延于30cm×30cm的玻璃平板上,先在40℃下的烘箱中放置12h以除去溶剂,然后将溶液与饱和溴化钠溶液,一起在干燥器中储存48h后得到最终的薄膜,揭膜后将它们装入高阻隔袋中抽真空 密封后放入干燥器内备用。
  2. 根据权利要求1所述的一种智能显色抗菌抗氧化保鲜薄膜制备方法,其特征在于:所用材料聚乙烯醇聚合度为1799;纳米二氧化钛为30nm。
  3. 根据权利要求1所述的一种智能显色抗菌抗氧化保鲜薄膜制备方法,其特征在于:步骤(2)中纳米TiO2添加量为PVA用量的0.5%~3%。
  4. 根据权利要求1所述的一种智能显色抗菌抗氧化保鲜薄膜制备方法,其特征在于:步骤(2)中纳米TiO2添加量为PVA用量的1%。
  5. 根据权利要求1所述的一种智能显色抗菌抗氧化保鲜薄膜制备方法,其特征在于:步骤(4)中紫甘薯花青素添加量为PVA用量的20%~30%。
  6. 根据权利要求1所述智能显色抗菌抗氧化保鲜薄膜的制备方法,其特征在于:步骤(4)中紫甘薯花青素添加量为PVA用量的26%。
PCT/CN2017/093193 2017-05-02 2017-07-17 一种智能显色抗菌抗氧化保鲜薄膜制备方法 WO2018201616A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018544307A JP6592612B2 (ja) 2017-05-02 2017-07-17 知的発色の抗菌抗酸化ラップの調製方法
EP17900276.1A EP3428222B1 (en) 2017-05-02 2017-07-17 Method for use in preparing intelligent chromogenic antibacterial anti-oxidation protective film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710301118.1A CN107082896A (zh) 2017-05-02 2017-05-02 一种智能显色抗菌抗氧化保鲜薄膜制备方法
CN201710301118.1 2017-05-02

Publications (1)

Publication Number Publication Date
WO2018201616A1 true WO2018201616A1 (zh) 2018-11-08

Family

ID=59612425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093193 WO2018201616A1 (zh) 2017-05-02 2017-07-17 一种智能显色抗菌抗氧化保鲜薄膜制备方法

Country Status (4)

Country Link
EP (1) EP3428222B1 (zh)
JP (1) JP6592612B2 (zh)
CN (1) CN107082896A (zh)
WO (1) WO2018201616A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637878A (zh) * 2019-11-15 2020-01-03 泉州市洛江奎芳保洁有限公司 一种高稳定型抗菌果蔬被膜剂的制备方法
CN111004406A (zh) * 2019-12-30 2020-04-14 北京林业大学 一种新型抗紫外防氧化薄膜的制备方法
CN112898923A (zh) * 2021-01-29 2021-06-04 安徽美邦树脂科技有限公司 一种高性能pvb隔热胶膜的制备方法
CN113717415A (zh) * 2021-09-18 2021-11-30 东莞市伟嘉新材料科技有限公司 一种多孔透气的纳米抗菌果蔬保鲜膜的制备方法
CN115322579A (zh) * 2022-08-25 2022-11-11 河北农业大学 一种纳米氧化铈/黄嘌呤氧化酶/明胶复合膜及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082895A (zh) * 2017-04-27 2017-08-22 上海交通大学 可降解的纳米抑菌薄膜的制备方法
CN108285916A (zh) * 2018-01-15 2018-07-17 中科宜康(北京)生物科技有限公司 用花青素检验益生菌活性的方法
CN109749136A (zh) * 2019-02-25 2019-05-14 牟富书 一种可降解抗菌保鲜膜制品及其制备方法
CN109793039A (zh) * 2019-03-26 2019-05-24 成都健心食品有限公司 一种天然环保防腐剂、制备方法及肉质环保保鲜膜
CN111096332B (zh) * 2019-12-10 2022-03-15 四川农业大学 一种聚乙烯醇/纳米TiO2/BTDA复合膜的制备方法及其产品
CN113211924B (zh) * 2020-11-27 2023-05-09 天津科技大学 速冻食品降温防结露的保温包装袋
CN112849777B (zh) * 2020-11-27 2022-04-15 天津科技大学 高效解冻嫩化型保温抑菌包装袋及其制备方法
CN112661969A (zh) * 2020-12-02 2021-04-16 张茜茜 一种抗菌性的海胆状TiO2接枝聚乙烯膜材料及制备方法
CN113337014A (zh) * 2021-04-25 2021-09-03 广西民族大学 Pva/木薯淀粉/lae/花青素智能显色活性复合膜的制备及其在包装抑菌方面的应用
CN113729037B (zh) * 2021-09-28 2022-07-05 北京化工大学 植物真菌抗菌剂、抗菌膜及其制备方法
CN114133628A (zh) * 2022-01-10 2022-03-04 海南热带海洋学院 一种玫瑰茄素可降解保鲜复合膜、制备工艺及其应用
CN115386144B (zh) * 2022-04-14 2023-09-19 河北科技大学 一种抗氧化保鲜膜及其制备方法
CN114905816B (zh) * 2022-05-26 2023-12-08 仲恺农业工程学院 一种多层复合薄膜及其制备方法和应用
CN115558140B (zh) * 2022-10-12 2023-08-18 扬州大学 一种基于不同热处理紫薯粉制备新鲜度指示膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221555A (ja) * 1996-02-15 1997-08-26 Tousero Kk ポリビニルアルコールフィルムおよびその積層体
CN104718272A (zh) * 2012-09-24 2015-06-17 弗劳恩霍夫应用研究促进协会 热致变色材料、包含所述材料的模型制品及其用途
CN104987635A (zh) * 2015-05-19 2015-10-21 上海海洋大学 一种聚乙烯醇抗菌包装薄膜及其制备方法
CN105924864A (zh) * 2016-05-08 2016-09-07 河南科技学院新科学院 一种食品保鲜膜及其制备方法
CN106133034A (zh) * 2014-04-11 2016-11-16 佐治亚-太平洋消费产品有限合伙公司 具有矿物填料和小纤维素颗粒的聚乙烯醇纤维和薄膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296427C (zh) * 2004-06-11 2007-01-24 武汉大学 一种增强聚乙烯醇复合膜及其制备方法和用途
CN103113603B (zh) * 2013-03-05 2015-09-02 中国农业大学 一种指示食物酸败的可食用包装膜及其制备方法
CN105694320B (zh) * 2016-03-22 2017-06-16 华南农业大学 一种植物源提取物抗菌保鲜膜及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221555A (ja) * 1996-02-15 1997-08-26 Tousero Kk ポリビニルアルコールフィルムおよびその積層体
CN104718272A (zh) * 2012-09-24 2015-06-17 弗劳恩霍夫应用研究促进协会 热致变色材料、包含所述材料的模型制品及其用途
CN106133034A (zh) * 2014-04-11 2016-11-16 佐治亚-太平洋消费产品有限合伙公司 具有矿物填料和小纤维素颗粒的聚乙烯醇纤维和薄膜
CN104987635A (zh) * 2015-05-19 2015-10-21 上海海洋大学 一种聚乙烯醇抗菌包装薄膜及其制备方法
CN105924864A (zh) * 2016-05-08 2016-09-07 河南科技学院新科学院 一种食品保鲜膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428222A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637878A (zh) * 2019-11-15 2020-01-03 泉州市洛江奎芳保洁有限公司 一种高稳定型抗菌果蔬被膜剂的制备方法
CN111004406A (zh) * 2019-12-30 2020-04-14 北京林业大学 一种新型抗紫外防氧化薄膜的制备方法
CN112898923A (zh) * 2021-01-29 2021-06-04 安徽美邦树脂科技有限公司 一种高性能pvb隔热胶膜的制备方法
CN113717415A (zh) * 2021-09-18 2021-11-30 东莞市伟嘉新材料科技有限公司 一种多孔透气的纳米抗菌果蔬保鲜膜的制备方法
CN115322579A (zh) * 2022-08-25 2022-11-11 河北农业大学 一种纳米氧化铈/黄嘌呤氧化酶/明胶复合膜及其制备方法和应用
CN115322579B (zh) * 2022-08-25 2024-01-12 河北农业大学 一种纳米氧化铈/黄嘌呤氧化酶/明胶复合膜及其制备方法和应用

Also Published As

Publication number Publication date
EP3428222B1 (en) 2020-02-26
JP2019520429A (ja) 2019-07-18
JP6592612B2 (ja) 2019-10-16
EP3428222A4 (en) 2019-05-15
CN107082896A (zh) 2017-08-22
EP3428222A1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2018201616A1 (zh) 一种智能显色抗菌抗氧化保鲜薄膜制备方法
Li et al. Facile fabrication of sandwich-like anthocyanin/chitosan/lemongrass essential oil films via 3D printing for intelligent evaluation of pork freshness
US11306186B2 (en) Method for preparing intelligent antibacterial and antioxidative film
CN110237782B (zh) 一种高强度抗氧化壳聚糖/聚多巴胺复合水凝胶的制备方法
Deng et al. A self-matching, ultra-fast film forming and washable removal bio-crosslinked hydrogel films for perishable fruits
WO2024001264A1 (zh) 一种保护型淀粉基膜及其制备方法与应用
CN110105612A (zh) 一种可降解复合多功能包装膜的制备方法
CN110606996A (zh) 一种颜色指示型食品保鲜膜及其制备方法
KR101451330B1 (ko) 겔 형성 천연 고분자를 이용한 내수성 산소 지시계 및 이의 제조방법
Gaikwad et al. Fabrication of natural colorimetric indicators for monitoring freshness of ready‐to‐cook idli batter
Yu et al. Antimicrobial activity of gamma-poly (glutamic acid), a preservative coating for cherries
CN114316224A (zh) 一种人造脓黑素纳米材料的制备方法及应用
CN111647373B (zh) 一种具有除甲醛和防霉性能的糯米胶及其制备方法
CN110999947A (zh) 一种水产品的防腐保鲜涂膜
CN107604752B (zh) 一种显色抗菌蔗糖包装纸的制备方法
CN113024892B (zh) 一种具有光动力抑菌活性的纤维素基膜、其制备及其应用
CN110625720B (zh) 一种脱氢枞胺(取代)苯甲醛Schiff碱衍生物的用途
Wu et al. Fabrication of multifunctional ethyl cellulose/gelatin-based composite nanofilm for the pork preservation and freshness monitoring
CN116218236B (zh) 一种基于绿原酸纳米颗粒的功能性食品包装膜
CN115368640B (zh) 负载茶多酚的普鲁兰多糖与海藻糖果蔬保鲜膜的制备方法
Guo et al. Intelligent carboxymethyl cellulose composite films containing Garcinia mangostana shell anthocyanin with improved antioxidant and antibacterial properties
CN111165487B (zh) 一种pH响应性海洋防污药物控释材料及其制备方法
CN109767688B (zh) 一种监控食品氧化程度的颜色指示标签及其制备方法
CN115216998A (zh) 一种基于多孔纤维素活性炭吸附精油微乳的抗菌纸的制备方法
CN118146552A (zh) 一种高强度壳聚糖茶多酚肉桂醛抑菌抗氧化膜及制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544307

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE