CN107082895A - 可降解的纳米抑菌薄膜的制备方法 - Google Patents

可降解的纳米抑菌薄膜的制备方法 Download PDF

Info

Publication number
CN107082895A
CN107082895A CN201710289346.1A CN201710289346A CN107082895A CN 107082895 A CN107082895 A CN 107082895A CN 201710289346 A CN201710289346 A CN 201710289346A CN 107082895 A CN107082895 A CN 107082895A
Authority
CN
China
Prior art keywords
nano
tio
degradable
preparation
antibacterial film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710289346.1A
Other languages
English (en)
Inventor
岳进
查宝萍
徐国斌
尹浩
王丹凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201710289346.1A priority Critical patent/CN107082895A/zh
Publication of CN107082895A publication Critical patent/CN107082895A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明提供了一种可降解的纳米抑菌薄膜的制备方法,其包括如下步骤:制备纳米Si‑TiO2;将纳米Si‑TiO2、分散剂加入可降解聚合物水溶液中,混合均匀,脱气后得到制膜液;将所述制膜液进行流延成膜,得到所述可降解的纳米抑菌薄膜;其中,所述纳米Si‑TiO2的制备方法为:将纳米TiO2与硅烷偶联剂分散在丙酮中,在超声的条件下进行偶联,经过滤、水洗、真空干燥、研磨后制备成纳米Si‑TiO2。与现有技术相比,本发明具有如下的有益效果:本发明工艺步骤简单、包装材料的抑菌(大肠杆菌和金黄色葡萄球菌)效果显著;本发明的包装材料具有机械性强、渗透性小等优点;本发明工艺操作安全、高效无毒、绿色环保、易于推广等优点。

Description

可降解的纳米抑菌薄膜的制备方法
技术领域
本发明涉及一种可降解的纳米抑菌薄膜的制备方法,属于食品包装材料技术领域。
背景技术
目前,食品安全已经成为公众关注的焦点。除了食品链中的有害物质带来的食品安全问题之外,食品包装导致的食品安全问题也日益引起重视。为了进一步提高食品包装的安全和品质,我们必须从包装材料本身寻求突破,来逾越包装技术遇到的屏障。为了节约能源、保护环境、实现可持续发展,开发新型的可生物降解材料是食品包装的必由之路。
从材料上分,现有的食品包装有普通塑料包装(聚乙烯、聚丙烯、聚氯乙烯等),以及新型可降解包装(可降解聚合物,聚乳酸等)。可生物降解高分子可降解聚合物(PVA)安全无毒,具有优异的气体阻隔性、拉伸强度和机械强度,是良好的包装材料,但是单纯的PVA包装材料并不具有抑菌作用,且其耐水性较差,限制了其在食品包装中的应用。纳米包装材料主要是指运用纳米技术,通过对包装材料进行纳米合成、纳米添加、纳米改性,使其具有某一特性或功能的一类包装材料。纳米材料由于其结构的特殊性,如大比表面、小尺寸效应、界面效应、量子效应和量子隧道效应,因而表现出许多不同于传统材料的独特性能:较高的机械性能(强韧性,耐磨性和可塑性)、优异的物理化学性能(高阻隔性、光泽和透明度、抗磁防爆特性)、较好的生物活性(抑菌性、固定化酶、生物传感)。纳米TiO2安全无毒,已被美国食品药品监督管理局批准用于食品、药品、化妆品、以及与食品直接接触的物体表面,除了纳米材料的共性以外,纳米TiO2所具有的超亲水性在应用于包装时具有自清洁和防雾效果。因此,将纳米TiO2与可生物降解的PVA交联复合,不仅使包装材料具有抑菌性能,而且能够改善PVA的耐水性和力学性能。此外为了使TiO2在聚合物基质中更好的分散,将TiO2与硅烷偶联改性,此方法引入的Si-O键对CO2和O2具有吸附、溶解、扩散、释放作用,以上特性,恰好是对可生物降解高分子材料性能缺陷的弥补,使其用于食品包装成为可能。
然而,现有报道中还未见有可降解PVA/纳米Si-TiO2包装材料的任何报道,也未见其在抑菌方面的任何报道。
发明内容
本发明目的在于提供一种可降解纳米抑菌包装材料及其制备方法,与市面上现有的普通塑料包装(聚乙烯、聚丙烯、聚氯乙烯等)和传统可降解包装相比,可降解PVA/纳米Si-TiO2包装材料具有制备工艺简单、抑菌显著、机械性优、渗透性小、操作安全、高效无毒、绿色环保、易于推广等优点。
本发明是通过以下技术方案实现的:
本发明提供了一种可降解的纳米抑菌薄膜的制备方法,其包括如下步骤:
制备纳米Si-TiO2
将纳米Si-TiO2、分散剂加入可降解聚合物水溶液中,混合均匀,脱气后得到制膜液;
将所述制膜液进行流延成膜,得到所述可降解的纳米抑菌薄膜;
其中,所述纳米Si-TiO2的制备方法为:将纳米TiO2与硅烷偶联剂分散在丙酮中,在超声的条件下进行偶联,经过滤、水洗、真空干燥、研磨后制备成纳米Si-TiO2
作为优选方案,所述纳米Si-TiO2的粒径为60~100nm。
作为优选方案,所述超声的功率为500~700W。超声功率过小,则会影响二氧化钛在PVA中的溶解,同时延长超声时间,功率过大则会造成能耗过大。
作为优选方案,所述纳米Si-TiO2和分散剂的总质量与可降解聚合物的质量比为(1~5):100。
作为优选方案,所述硅烷偶联剂为氨丙基三乙氧基硅烷,所述分散剂为聚乙二醇;所述可降解聚合物选自聚乙烯醇、聚维酮、淀粉、聚乳酸中的至少一种。
作为优选方案,所述聚乙二醇的平均分子量为400,聚乙烯醇为1797型,指的是聚合度为1700,醇解度为97%的聚乙烯醇。
作为优选方案,所述纳米TiO2与硅烷偶联剂的质量比为100:(5~20),纳米TiO2与丙酮的质量体积比为1g:100mL。
作为优选方案,所述可降解聚合物水溶液的制备方法为:
将3g可降解聚合物粉末加入97mL水中,在95℃下进行搅拌,得到质量分数为3%的可降解聚合物水溶液。
作为优选方案,所述流延成膜的温度为25℃,相对湿度为50%。
与现有技术相比,本发明具有如下的有益效果:
1、本发明工艺步骤简单、包装材料的抑菌(大肠杆菌和金黄色葡萄球菌)效果显著;
2、本发明的包装材料具有机械性强、渗透性小等优点;
3、本发明工艺操作安全、高效无毒、绿色环保、易于推广等优点。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及一种可降解的纳米抑菌薄膜的制备方法,其包括如下步骤:
硅烷偶联剂改性纳米TiO2:0.1g纳米TiO2(粒径为100nm)与0.01g硅烷偶联剂(氨丙基三乙氧基硅烷,APS)加入至10mL丙酮溶液中,在超声功率为600W的条件下超声偶联30分钟,纯水洗涤2次,过滤,真空干燥4h,干燥物研磨后即成改性纳米TiO2(Si-TiO2)。聚乙烯醇/纳米Si-TiO2包装材料的制备:3g聚乙烯醇(1797型)粉末加入97mL纯水中,于95℃下加热搅拌2小时,冷却得到3%聚乙烯醇水溶液。将0.06g纳米Si-TiO2和0.06g分散剂聚乙二醇400(PEG400)加入上述聚乙烯醇(PVA)水溶液中共混(Si-TiO2/PVA=2.00wt%),在超声功率为600W的条件下超声30分钟,经真空度为-0.1MPa的真空脱气装置中脱气30分钟,采用流延法在尺寸为25cm×25cm的玻璃模具中成膜,成膜环境温度为25℃,相对湿度为50%,并平衡7天,即制备一种可降解的PVA/纳米Si-TiO2抑菌包装材料。本实施例的可降解的PVA/纳米Si-TiO2抑菌包装材料的抑菌性结果见表1,机械性能和渗透性能结果见表2。
实施例2
本实施例涉及一种可降解的纳米抑菌薄膜的制备方法,其包括如下步骤:
硅烷偶联剂改性纳米TiO2:0.1g纳米TiO2(粒径为100nm)与0.02g硅烷偶联剂(氨丙基三乙氧基硅烷,APS)加入至10mL丙酮溶液中,在超声功率为500W的条件下超声偶联30分钟,纯水洗涤2次,过滤,真空干燥4h,干燥物研磨后即成改性纳米TiO2(Si-TiO2)。聚乙烯醇/纳米Si-TiO2包装材料的制备:3g聚乙烯醇(1797型)粉末加入97mL纯水中,于95℃下加热搅拌2小时,冷却得到3%聚乙烯醇水溶液。将0.04g纳米Si-TiO2和0.08g分散剂聚乙二醇400(PEG400)加入上述聚乙烯醇(PVA)水溶液中共混(Si-TiO2/PVA=2.67wt%),在超声功率为600W的条件下超声30分钟,经真空度为-0.1MPa的真空脱气装置中脱气30分钟,采用流延法在尺寸为25cm×25cm的玻璃模具中成膜,成膜环境温度为25℃,相对湿度为50%,并平衡7天,即制备一种可降解的PVA/纳米Si-TiO2抑菌包装材料。本实施例的可降解的PVA/纳米Si-TiO2抑菌包装材料的抑菌性结果见表1,机械性能和渗透性能结果见表2。
实施例3
本实施例涉及一种可降解的纳米抑菌薄膜的制备方法,其包括如下步骤:
硅烷偶联剂改性纳米TiO2:0.1g纳米TiO2(粒径为100nm)与0.01g硅烷偶联剂(氨丙基三乙氧基硅烷,APS)加入至10mL丙酮溶液中,在超声功率为600W的条件下超声偶联30分钟,纯水洗涤2次,过滤,真空干燥4h,干燥物研磨后即成改性纳米TiO2(Si-TiO2)。聚乙烯醇/纳米Si-TiO2包装材料的制备:3g聚乙烯醇(1797型)粉末加入97mL纯水中,于95℃下加热搅拌2小时,冷却得到3%聚乙烯醇水溶液。将0.04g纳米Si-TiO2和0.04g分散剂聚乙二醇400(PEG400)加入上述聚乙烯醇(PVA)水溶液中共混(Si-TiO2/PVA=1.33wt%),在超声功率为600W的条件下超声30分钟,经真空度为-0.1MPa的真空脱气装置中脱气30分钟,采用流延法在尺寸为25cm×25cm的玻璃模具中成膜,成膜环境温度为25℃,相对湿度为50%,并平衡7天,即制备一种可降解的PVA/纳米Si-TiO2抑菌包装材料。本实施例的可降解的PVA/纳米Si-TiO2抑菌包装材料的抑菌性结果见表1,机械性能和渗透性能结果见表2。
表1
表1为可降解的PVA/纳米Si-TiO2抑菌包装材料的对大肠杆菌和金黄色葡萄球菌的抑制率。空白是纯PVA材料,PVA/纳米Si-TiO2材料分别添加不同量的纳米Si-TiO2,即Si-TiO2与PVA的质量比为1.33%,2.00%和2.67%。由表1可以看出,与空白相比,PVA/纳米Si-TiO2材料对大肠杆菌和金黄色葡萄球菌的抑制效果均明显,特别是Si-TiO2与PVA的质量比为2.00%时抑制率最高。
表2
表2为可降解的PVA/纳米Si-TiO2抑菌包装材料的机械性能和渗透性能结果。空白是纯PVA材料,PVA/纳米Si-TiO2材料分别添加不同量的纳米Si-TiO2,即Si-TiO2与PVA的质量比为1.33%,2.00%和2.67%。由表2可以看出,与空白相比,PVA/纳米Si-TiO2材料的拉伸强度、断裂伸长率增强,透湿性降低,特别是Si-TiO2与PVA的质量比2.67%时拉伸强度、断裂伸长率最强,透湿性最低。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (9)

1.一种可降解的纳米抑菌薄膜的制备方法,其特征在于,包括如下步骤:
制备纳米Si-TiO2
将纳米Si-TiO2、分散剂加入可降解聚合物水溶液中,混合均匀,脱气后得到制膜液;
将所述制膜液进行流延成膜,得到所述可降解的纳米抑菌薄膜;
其中,所述纳米Si-TiO2的制备方法为:将纳米TiO2与硅烷偶联剂分散在丙酮中,在超声的条件下进行偶联,经过滤、水洗、真空干燥、研磨后制备成纳米Si-TiO2
2.如权利要求1所述的可降解的纳米抑菌薄膜的制备方法,其特征在于,所述纳米Si-TiO2的粒径为60~100nm。
3.如权利要求1所述的可降解的纳米抑菌薄膜的制备方法,其特征在于,所述超声的功率为500~700W。
4.如权利要求1所述的可降解的纳米抑菌薄膜的制备方法,其特征在于,所述纳米Si-TiO2和分散剂的总质量与可降解聚合物的质量比为(1~5):100。
5.如权利要求1或4所述的可降解的纳米抑菌薄膜的制备方法,其特征在于,所述硅烷偶联剂为氨丙基三乙氧基硅烷,所述分散剂为聚乙二醇;所述可降解聚合物选自聚乙烯醇、聚维酮、淀粉、聚乳酸中的至少一种。
6.如权利要求5所述的可降解的纳米抑菌薄膜的制备方法,其特征在于,所述聚乙二醇的平均分子量为400,聚乙烯醇为1797型,指的是聚合度为1700,醇解度为97%的聚乙烯醇。
7.如权利要求1所述的可降解的纳米抑菌薄膜的制备方法,其特征在于,所述纳米TiO2与硅烷偶联剂的质量比为100:(5~20),纳米TiO2与丙酮的质量体积比为1g:100mL。
8.如权利要求1所述的可降解的纳米抑菌薄膜的制备方法,其特征在于,所述可降解聚合物水溶液的制备方法为:
将3g可降解聚合物粉末加入97mL水中,在95℃下进行搅拌,得到质量分数为3%的可降解聚合物水溶液。
9.如权利要求1所述的可降解的纳米抑菌薄膜的制备方法,其特征在于,所述流延成膜的温度为25℃,相对湿度为50%。
CN201710289346.1A 2017-04-27 2017-04-27 可降解的纳米抑菌薄膜的制备方法 Pending CN107082895A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710289346.1A CN107082895A (zh) 2017-04-27 2017-04-27 可降解的纳米抑菌薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710289346.1A CN107082895A (zh) 2017-04-27 2017-04-27 可降解的纳米抑菌薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN107082895A true CN107082895A (zh) 2017-08-22

Family

ID=59611756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710289346.1A Pending CN107082895A (zh) 2017-04-27 2017-04-27 可降解的纳米抑菌薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107082895A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109401155A (zh) * 2018-11-08 2019-03-01 安徽精乐塑业有限公司 一种可降解抗菌包装膜
CN109824916A (zh) * 2019-02-19 2019-05-31 湖南工程学院 一种复合水凝胶、复合水凝胶膜及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583871A (zh) * 2004-06-11 2005-02-23 武汉大学 一种增强聚乙烯醇复合膜及其制备方法和用途
CN102408587A (zh) * 2011-11-10 2012-04-11 宁夏绿环生物降解制品开发有限公司 环保型可控降解农用地膜及其制备方法
CN102504454A (zh) * 2011-11-04 2012-06-20 郝喜海 一种抗紫外线聚乙烯醇水果袋膜制备配方及其工艺
CN102807682A (zh) * 2012-08-24 2012-12-05 东北林业大学 一种单面疏水改性聚乙烯醇薄膜的制备方法
CN104830001A (zh) * 2015-05-20 2015-08-12 湖南工程学院 一种透明聚乙烯醇复合水凝胶膜的制备方法
CN105602062A (zh) * 2015-12-23 2016-05-25 重庆乐乎科技有限公司 一种抗菌光降解纳米TiO2聚乙烯复合塑料
CN107082896A (zh) * 2017-05-02 2017-08-22 上海海洋大学 一种智能显色抗菌抗氧化保鲜薄膜制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583871A (zh) * 2004-06-11 2005-02-23 武汉大学 一种增强聚乙烯醇复合膜及其制备方法和用途
CN102504454A (zh) * 2011-11-04 2012-06-20 郝喜海 一种抗紫外线聚乙烯醇水果袋膜制备配方及其工艺
CN102408587A (zh) * 2011-11-10 2012-04-11 宁夏绿环生物降解制品开发有限公司 环保型可控降解农用地膜及其制备方法
CN102807682A (zh) * 2012-08-24 2012-12-05 东北林业大学 一种单面疏水改性聚乙烯醇薄膜的制备方法
CN104830001A (zh) * 2015-05-20 2015-08-12 湖南工程学院 一种透明聚乙烯醇复合水凝胶膜的制备方法
CN105602062A (zh) * 2015-12-23 2016-05-25 重庆乐乎科技有限公司 一种抗菌光降解纳米TiO2聚乙烯复合塑料
CN107082896A (zh) * 2017-05-02 2017-08-22 上海海洋大学 一种智能显色抗菌抗氧化保鲜薄膜制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
王杏: "《纳米二氧化钛的生产与应用》", 31 July 2014, 贵州科技出版社 *
王钦清: "二氧化钛改性及其性能研究", 《中国优秀硕士学位论文全文数据库:工程科技I辑》 *
郑水林: "《无机矿物填料加工技术基础》", 30 April 2010, 化学工业出版社 *
陈锋: "《表面活性剂性质、结构、计算与应用》", 31 March 2004, 中国科学技术出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109401155A (zh) * 2018-11-08 2019-03-01 安徽精乐塑业有限公司 一种可降解抗菌包装膜
CN109824916A (zh) * 2019-02-19 2019-05-31 湖南工程学院 一种复合水凝胶、复合水凝胶膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
Negim et al. Improving biodegradability of polyvinyl alcohol/starch blend films for packaging applications
Konwar et al. Green chitosan–carbon dots nanocomposite hydrogel film with superior properties
He et al. Modified natural halloysite/potato starch composite films
Rovera et al. Nano-inspired oxygen barrier coatings for food packaging applications: An overview
Yu et al. Reinforcement of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers
Sabbagh et al. Halloysite-based hybrid bionanocomposite hydrogels as potential drug delivery systems
Paranhos et al. Poly (vinyl alcohol)/clay‐based nanocomposite hydrogels: swelling behavior and characterization
CN102504345B (zh) 一次性使用可控完全降解塑料包装袋及其制备方法
CN104194064B (zh) 一种玉米淀粉复合膜及其制备方法及应用
Chi et al. Enhanced dispersion and interface compatibilization of crystalline nanocellulose in polylactide by surfactant adsorption
Mallakpour et al. An eco-friendly approach for the synthesis of biocompatible poly (vinyl alcohol) nanocomposite with aid of modified CuO nanoparticles with citric acid and vitamin C: mechanical, thermal and optical properties
Zhou et al. Sustainable, high-performance, and biodegradable plastics made from chitin
CN107082895A (zh) 可降解的纳米抑菌薄膜的制备方法
Yun et al. Preparation of functional chitosan-based nanocomposite films containing ZnS nanoparticles
Zhang et al. Preparation and thermomechanical properties of nanocrystalline cellulose reinforced poly (lactic acid) nanocomposites
Swain et al. Poly (acrylamide‐co‐vinyl alcohol)—Superabsorbent materials reinforced by modified clay
Yan et al. Fabrication of homogeneous and enhanced soybean protein isolate-based composite films via incorporating TEMPO oxidized nanofibrillated cellulose stablized nano-ZnO hybrid
Wang et al. Structure-controlled lignin complex for PLA composites with outstanding antibacterial, fluorescent and photothermal conversion properties
CN115449199A (zh) 一种高分子新材料耐菌塑料气泡袋及其制备方法
Li et al. Acacia mangium tannin functionalized graphene nanoplatelets produced via ball-milling for sustainable soy protein-based film
Jiao et al. Supramolecular cross-linking affords chitin nanofibril nanocomposites with high strength and water resistance
Yu et al. Preparation and characterization of hydroxypropyl methylcellulose/hydroxypropyl starch composite films reinforced by chitosan nanoparticles of different sizes
Sheeja et al. Polyethylene‐g‐starch nanoparticle biocomposites: Physicochemical properties and biodegradation studies
Xu et al. High strength nanocomposite hydrogels with outstanding UV‐shielding property
Li et al. Multifunctional composite films based on polyvinyl alcohol, quaternary ammonium salt modified cellulose nanofibers and tannic acid-iron ion coordination complexes for food packaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170822