WO2018199248A1 - 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 - Google Patents
排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 Download PDFInfo
- Publication number
- WO2018199248A1 WO2018199248A1 PCT/JP2018/017023 JP2018017023W WO2018199248A1 WO 2018199248 A1 WO2018199248 A1 WO 2018199248A1 JP 2018017023 W JP2018017023 W JP 2018017023W WO 2018199248 A1 WO2018199248 A1 WO 2018199248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- exhaust gas
- neodymium
- less
- mass
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 106
- 238000000746 purification Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 30
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 190
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 131
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims abstract description 130
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 96
- 229910052703 rhodium Inorganic materials 0.000 claims description 55
- 239000010948 rhodium Substances 0.000 claims description 55
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 54
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 53
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 41
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 claims description 25
- 239000002131 composite material Substances 0.000 claims description 12
- 239000007789 gas Substances 0.000 abstract description 154
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 66
- 229930195733 hydrocarbon Natural products 0.000 abstract description 17
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 17
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 14
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 14
- 239000002002 slurry Substances 0.000 description 45
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 26
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 20
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 17
- 229910052726 zirconium Inorganic materials 0.000 description 17
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 16
- 239000000843 powder Substances 0.000 description 15
- 229910052684 Cerium Inorganic materials 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 229910052746 lanthanum Inorganic materials 0.000 description 14
- 229910052697 platinum Inorganic materials 0.000 description 14
- 239000004215 Carbon black (E152) Substances 0.000 description 13
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 13
- 229910000420 cerium oxide Inorganic materials 0.000 description 13
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 13
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 13
- 229910000510 noble metal Inorganic materials 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229910052809 inorganic oxide Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910052878 cordierite Inorganic materials 0.000 description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 4
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 4
- 239000011232 storage material Substances 0.000 description 4
- 229910000314 transition metal oxide Inorganic materials 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001553 barium compounds Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/038—Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/101—Three-way catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2063—Lanthanum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2068—Neodymium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/903—Multi-zoned catalysts
- B01D2255/9032—Two zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/018—Natural gas engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0682—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method using the same, and more particularly, to purify hydrocarbon (HC), carbon monoxide (CO) and nitrogen oxide (NOx) in exhaust gas at a low temperature.
- the present invention relates to an exhaust gas purification catalyst that can be used and an exhaust gas purification method using the same.
- Patent Documents 1 to 3 described above are merely sufficient to purify HC and NOx in the exhaust gas, and are not sufficient for application when the temperature of the exhaust gas is low.
- the present invention has been made in view of the above problems, and an exhaust gas purifying catalyst capable of efficiently purifying HC, CO and NOx in exhaust gas discharged at a low temperature at which the catalyst does not sufficiently act. It is another object of the present invention to provide an exhaust gas purification method using the same.
- the exhaust gas purifying catalyst and the exhaust gas purifying method using the same according to the present invention can purify NOx at a low temperature.
- a small amount of low-temperature exhaust gas is introduced into a state where a large amount of high-temperature exhaust gas is instantaneously introduced, that is, not only a sudden rise in the temperature of the exhaust gas, but also the space velocity relative to the catalyst.
- the exhaust gas purifying catalyst according to the present invention is a catalyst that can purify NOx for a long time and has durability.
- the exhaust gas purifying catalyst of the present invention is provided with a region containing palladium on the three-dimensional structure, and in order from the side containing the palladium to the side flowing out from the side into which the exhaust gas flows, A first region and a second region are provided, and the concentration of neodymium contained in the first region is the same as or higher than the concentration of neodymium contained in the second region.
- exhaust capable of efficiently purifying hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in exhaust gas discharged at low temperatures at which the catalyst does not sufficiently function.
- the gas purification catalyst and the exhaust gas purification method using the same can be provided.
- FIG. 1 is a front view showing a schematic configuration of an exhaust gas purifying catalyst according to an embodiment (Example 1).
- FIG. 2 is a front view showing a schematic configuration of a conventional exhaust gas purifying catalyst (Comparative Example 1).
- An exhaust gas purifying catalyst according to an embodiment of the present invention (hereinafter sometimes simply referred to as “catalyst”) is provided with a region containing palladium on a three-dimensional structure, and on the region containing palladium.
- the first region and the second region are provided in order from the exhaust gas inflow side to the outflow side, and the concentration of neodymium contained in the first region is the same as that of the neodymium contained in the second region. Same or higher than concentration.
- the concentration of neodymium contained in the first region is the same or higher than the concentration of neodymium contained in the second region, and (ii) the first region and the first region More preferably, the concentration of neodymium contained in the two regions is the same as or higher than the concentration of neodymium contained in the region containing palladium.
- the first region and the second region are neodymium-containing oxides. More preferably, zirconium is included, and (iv) it is preferable to use a plurality of neodymium-containing zirconium oxides in which the first region and the second region have different neodymium contents.
- the exhaust gas purification method according to an embodiment of the present invention purifies exhaust gas using the exhaust gas purification catalyst.
- the three-dimensional structure used in one embodiment of the present invention is not particularly limited as long as the three-dimensional structure can be coated with a catalyst on the surface thereof, but is not limited to, a flow-through honeycomb, a plug honeycomb, a corrugated honeycomb, A structure having a shape usually used as a catalyst carrier, such as a plate shape or a corrugated plate shape, is preferable, and a flow-through honeycomb structure is more preferable.
- the material of the three-dimensional structure is not particularly limited as long as it is a material having heat resistance, and ceramics such as iron metal such as stainless steel, cordierite, SiC, and alumina can be preferably used.
- the three-dimensional structure is commercially available as a three-dimensional structure for exhaust gas purification, it can be used.
- the size and shape of the three-dimensional structure can be appropriately selected according to the amount of exhaust gas to be processed.
- the length of the three-dimensional structure is 200 mm or less, preferably 160 mm or less, more preferably 120 mm or less, most preferably 100 mm or less, and 30 mm or more, preferably 50 mm or more, more preferably 60 mm or more, most preferably 70 mm or more.
- the equivalent diameter of the cross section of the three-dimensional structure is 60 mm or more, preferably 70 mm or more, and 120 mm or less, preferably 100 mm or less.
- the volume of the three-dimensional structure is 0.4 liter (hereinafter sometimes referred to as “L”) or more, preferably 0.5 L or more, more preferably 0.6 L or more, and 2.0 L or less. , Preferably 1.6 L or less, more preferably 1.4 L or less.
- the shape of the hole may be any shape such as a triangle, a quadrangle, a hexagon, and a circle, but is preferably a quadrangle or a hexagon.
- the number of holes is preferably 15 holes / cm 2 to 190 holes / cm 2, more preferably 60 holes / cm 2 to 140 holes / cm 2 .
- the region containing palladium is provided on the three-dimensional structure.
- the region containing palladium only needs to contain at least palladium.
- the amount of palladium contained in the region is 0.1 g / L or more in terms of metal with respect to the three-dimensional structure (hereinafter, each component amount per liter of the three-dimensional structure is “g / L”). The same applies to the scope of claims.), More preferably 0.2 g / L or more, still more preferably 0.4 g / L or more, and most preferably 2 g / L or more.
- the amount of palladium is less than 0.1 g / L, the reaction sites in the three-dimensional structure are insufficient.
- the amount of palladium contained in the region is 20 g / L or less, more preferably 15 g / L or less, further preferably 10 g / L or less, and most preferably 5 g in terms of metal relative to the three-dimensional structure. / L or less.
- the amount of palladium exceeds 20 g / L, the reaction efficiency decreases.
- the concentration of palladium contained in the palladium-containing region is preferably 1% by mass or more, more preferably 2% by mass or more, and preferably 10% by mass or less, more preferably 8% by mass or less.
- concentration is a percentage (%) of the mass of the corresponding component with respect to the total mass of all components contained in the target region.
- concentration is the same for the corresponding components in other regions.
- palladium, rhodium, and platinum are converted into metals, and other components are converted into oxides, and each is shown as a percentage.
- platinum and rhodium may be contained as necessary, but in order to make the effect of palladium stand out, it is preferable that the amount of platinum and rhodium is small.
- nitrates As raw materials for palladium, platinum, and rhodium (sometimes referred to as “noble metals” generically), nitrates, chloride salts, and the like can be used, and nitrates are more preferable.
- the length of the region is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, and most preferably 80% or more of the length of the three-dimensional structure starting from the exhaust gas inflow side. It is preferably 85% or less, more preferably 90% or less, still more preferably 95% or less, and most preferably 100% or less.
- the components other than the noble metal contained in the region include alumina such as ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina that are usually used in the catalyst, silica, titania, zirconia, or a mixture thereof, or a composite oxide thereof.
- Refractory inorganic oxides such as alkali metal oxides, Mg, alkaline earth metal oxides, rare earth metal oxides such as La, Ce, and Nd, and transition metal oxides.
- alumina or zirconia which is a refractory inorganic oxide, an oxygen storage material capable of storing oxygen (for example, cerium oxide) or lanthanum for improving fire resistance is more preferable.
- the oxide a commercially available oxide can be used as appropriate.
- cerium has an oxide that interacts with palladium as an oxygen storage material, and can improve NOx purification performance at low temperatures.
- the amount of cerium oxide contained in the region is 1 g / L or more, more preferably 5 g / L or more in terms of CeO 2 with respect to the three-dimensional structure.
- the amount of cerium oxide is 50 g / L or less, more preferably 30 g / L or less in terms of CeO 2 with respect to the three-dimensional structure.
- the amount of cerium oxide exceeds 50 g / L, the heat resistance of the region is insufficient.
- lanthanum When lanthanum is used, it is 1 g / L or more, preferably 3 g / L or more, more preferably 8 g / L or more, and preferably 30 g / L or less, in terms of La 2 O 3 with respect to the three-dimensional structure. Is 20 g / L or less. In the region containing palladium, when neodymium is contained, the amount is preferably smaller than the amount of neodymium contained in the first region or the second region.
- the amount of the refractory inorganic oxide used in the region is 5 g / L or more, more preferably 30 g / L or more, still more preferably 50 g / L or more, and 150 g / L with respect to the three-dimensional structure. Hereinafter, it is more preferably 120 g / L or less, and still more preferably 100 g / L or less.
- the amount of the alkaline earth metal oxide used in the region is 1 g / L or more, more preferably 5 g / L or more, and 25 g / L or less, more preferably 15 g / L with respect to the three-dimensional structure. L or less.
- the amount of the rare earth metal oxide excluding cerium and lanthanum used in the region is 1 g / L or more, more preferably 5 g / L or more, more preferably 25 g / L or less, based on the three-dimensional structure. Preferably it is 15 g / L or less.
- the amount of the transition metal oxide used in the region is 1 g / L or more, more preferably 5 g / L or more, and 25 g / L or less, more preferably 15 g / L or less with respect to the three-dimensional structure. It is.
- the amount of zirconium oxide used in the region is 5 g / L or more, more preferably 10 g / L or more with respect to the three-dimensional structure in terms of ZrO 2 .
- the amount of zirconium oxide is less than 5 g / L, the heat resistance of the region is insufficient.
- the amount of zirconium oxide is 50 g / L or less, more preferably 40 g / L or less, and still more preferably 30 g / L or less with respect to the three-dimensional structure.
- the amount of zirconium oxide exceeds 50 g / L, the concentration of other components becomes dilute, and the effect of other components tends to be low.
- the amount of all components provided in the region containing palladium is 10 g / L or more, preferably 50 g / L or more, more preferably 70 g / L or more, and still more preferably, with respect to 1 liter (L) of the three-dimensional structure.
- 90 g / L or more most preferably 100 g / L or more, and 220 g / L or less, preferably 200 g / L or less, more preferably 150 g / L or less.
- the first region is provided on the region containing palladium and on the side into which the exhaust gas flows.
- the first region only needs to contain at least neodymium. Since neodymium can suppress the migration and aggregation of rhodium, it is effective that rhodium is contained in the region containing neodymium. It is preferable that the amount of neodymium increases as the amount of rhodium contained increases.
- the amount of neodymium is 0.1 g / L or more, more preferably 2 g / L or more in terms of Nd 2 O 3 with respect to the three-dimensional structure.
- the amount of neodymium is less than 0.1 g / L, the effect of suppressing the movement of the noble metal, particularly the effect of suppressing the movement of rhodium is reduced, which is not preferable.
- the amount of neodymium is 20 g / L or less, more preferably 10 g / L or less, further preferably 9 g / L or less, and most preferably 7 g / L in terms of Nd 2 O 3 with respect to the three-dimensional structure. is there.
- the amount of neodymium exceeds 20 g / L, it is difficult to obtain the effect of suppressing the movement of the noble metal according to the amount of added neodymium.
- neodymium contained in the first region preferably forms a composite oxide with other metals.
- a complex oxide (neodymium-containing complex oxide) formed of neodymium and zirconium, aluminum, titanium, or the like can be used, and a neodymium-containing zirconium oxide formed of neodymium and zirconium is preferable. More preferably, at least one of neodymium-containing zirconium oxide (1) having a high neodymium content and neodymium-containing zirconium oxide (2) having a low neodymium content is used.
- the neodymium-containing zirconium oxide (1 ) And the neodymium-containing zirconium oxide (2) are preferably identical to the neodymium-containing composite oxide (1) having a high neodymium content.
- the neodymium (Nd 2 O 3 equivalent) contained in the neodymium-containing composite oxide (1) having a high neodymium content is 15% by mass or more, preferably 20% by mass or more, and 40% by mass or less, preferably 30%. It is below mass.
- neodymium (in terms of Nd 2 O 3 ) contained in the neodymium-containing composite oxide (2) having a low neodymium content is 1% by mass or more, preferably 3% by mass or more, and 10% by mass or less, preferably Is 7% by mass or less.
- the components other than neodymium contained in the first region usually include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, etc. alumina used in the catalyst, silica, titania, zirconia, or a mixture thereof, and a composite oxidation thereof.
- Refractory inorganic oxides such as alkali metals, alkaline earth metal oxides, rare earth metal oxides (excluding neodymium), and transition metal oxides.
- alumina or zirconia that is a refractory inorganic oxide oxygen storage materials that can store oxygen (for example, cerium oxide) or lanthanum that improves fire resistance are more preferable, ⁇ -alumina, ⁇ -alumina, zirconia, and cerium oxide are more preferable.
- the amount of zirconium oxide used in the first region is 2 g / L or more, more preferably 3 g / L or more, further preferably 5 g / L or more with respect to the three-dimensional structure.
- the amount of zirconium oxide is less than 2 g / L, the heat resistance of the first region is insufficient.
- the amount of zirconium oxide is 50 g / L or less, more preferably 30 g / L or less with respect to the three-dimensional structure.
- the amount of zirconium oxide exceeds 50 g / L, the concentration of other components becomes dilute, and the effect of other components tends to be low.
- the first region may further contain a noble metal such as platinum, palladium, or rhodium.
- a noble metal such as platinum, palladium, or rhodium.
- platinum and rhodium are more preferable, and rhodium is more preferable.
- the amount of platinum or palladium used in the first region may be substantially 0 g / L, which is such an amount that platinum or palladium does not produce an effect depending on the state of the exhaust gas, and depending on the state of the exhaust gas.
- each in terms of metal exceeds 0 g / L, preferably 0.01 g / L or more, more preferably 0.02 g / L or more, and more preferably 12 g / L or less. Is 10 g / L or less.
- the amount of rhodium used in the first region is 0.05 g / L or more, more preferably 0.1 g / L or more, and further preferably 0.12 g / L or more in terms of metal with respect to the three-dimensional structure. Moreover, it is 1.2 g / L or less, More preferably, it is 1.0 g / L or less, More preferably, it is 0.5 g / L or less.
- the concentration of rhodium contained in the first region is 0.2% by mass or more, preferably 0.25% by mass or more, and 0.5% by mass or less, preferably 0.4% by mass or less. .
- the amount of palladium contained in the first region is 0.1 g / L or more, preferably 0.13 g / L or more, and less than 1 g / L, preferably with respect to the three-dimensional structure. 0.7 g / L or less, more preferably 0.5 g / L or less.
- the concentration of palladium contained in the first region is 0.2% by mass or more, preferably 0.25% by mass or more, and 0.5% by mass or less, preferably 0.4% by mass or less. .
- the amount of all components provided in the first region is 21 g / L or more, preferably 30 g / L or more, more preferably 50 g / L or more with respect to 1 liter (L) of the three-dimensional structure. 120 g / L or less, preferably less than 100 g / L, more preferably less than 90 g / L, still more preferably less than 70 g / L.
- the length of the first region is preferably 20 mm or more, more preferably 25 mm or more, and further preferably 30 mm or more, starting from the side into which the exhaust gas flows. If the length of the first region is shorter than 20 mm, there is not enough precious metal on the exhaust gas inflow side, so the exhaust gas purification rate becomes low.
- the length of the first region is preferably 50 mm or less, more preferably 40 mm or less, and further preferably 35 mm or less, starting from the side into which the exhaust gas flows. When the length of the first region is longer than 50 mm, noble metals are not intensively supported on the exhaust gas inflow side, so that the exhaust gas purification rate becomes low.
- the length of each region is obtained by dividing the completed catalyst or the three-dimensional structure covering each region, and the average value of the shortest value L min and the longest value L max inside the region. “(L min + L max ) / 2”.
- each slurry is applied in advance under some application conditions. It is possible to use a method of destroying the formed catalyst and measuring the above-described length, thickness, and amount using a microscope such as a caliper, an electronic balance, and a three-dimensional (3D) microscope. Moreover, the above-mentioned length, thickness, and quantity can be measured using an X-ray CT apparatus without destroying the catalyst.
- a suitable catalyst can be easily produced by applying each slurry described below under application conditions that have been confirmed to be applied in a desired length, thickness, and amount.
- the second region is provided on the region containing palladium and on the side from which the exhaust gas flows out. Preferably, it is provided on the area containing palladium and on the side from which exhaust gas flows out, where the first area is not provided.
- the second region only needs to contain neodymium. Since neodymium can suppress the migration and aggregation of rhodium, it is effective that rhodium is contained in the region containing neodymium. It is preferable that the amount of neodymium increases as the amount of rhodium contained increases.
- the amount of the neodymium is 0.1 g / L or more, more preferably 1 g / L or more, still more preferably 2 g / L or more in terms of Nd 2 O 3 with respect to the three-dimensional structure.
- the amount of the neodymium is 20 g / L or less, more preferably 10 g / L or less, further preferably 9 g / L or less, and most preferably 7 g / L in terms of Nd 2 O 3 with respect to the three-dimensional structure. It is as follows. When the amount of neodymium exceeds 20 g / L, neodymium becomes excessive with respect to the amount of noble metal contained in the second region, and the effect commensurate with the amount of neodymium is reduced.
- neodymium contained in the second region preferably forms a composite oxide with other metals.
- a neodymium-containing composite oxide formed with neodymium and zirconium, aluminum, or titanium can be used, and a neodymium-containing zirconium oxide formed with neodymium and zirconium is preferable. More preferably, at least one of neodymium-containing zirconium oxide (1) having a high neodymium content and neodymium-containing zirconium oxide (2) having a low neodymium content is used.
- the neodymium-containing zirconium oxide (1 ) And the neodymium-containing zirconium oxide (2) are preferably identical to the neodymium-containing composite oxide (1) having a high neodymium content.
- the neodymium (Nd 2 O 3 equivalent) contained in the neodymium-containing composite oxide (1) having a high neodymium content is 15% by mass or more, preferably 20% by mass or more, and 40% by mass or less, preferably 30%. It is below mass%.
- neodymium (in terms of Nd 2 O 3 ) contained in the neodymium-containing composite oxide (2) having a low neodymium content is 1% by mass or more, preferably 3% by mass or more, and 10% by mass or less, preferably Is 7% by mass or less.
- the amount of all components provided in the second region is 21 g / L or more, preferably 30 g / L or more, more preferably 50 g / L or more with respect to 1 liter (L) of the three-dimensional structure. 120 g / L or less, preferably less than 100 g / L, more preferably less than 90 g / L, still more preferably less than 70 g / L.
- the length of the second region is preferably the length from the end portion on the side where the exhaust gas flows out in the first region to the end portion on the side where the exhaust gas flows out in the three-dimensional structure.
- Components other than neodymium contained in the second region usually include alumina such as ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina used for the catalyst, silica, titania, zirconia, or a mixture thereof, and a composite oxidation thereof.
- Refractory inorganic oxides such as alkali metals, alkaline earth metal oxides, rare earth metal oxides (excluding neodymium), and transition metal oxides.
- alumina or zirconia that is a refractory inorganic oxide oxygen storage materials that can store oxygen (for example, cerium oxide) or lanthanum that improves fire resistance are more preferable, ⁇ -alumina, ⁇ -alumina, zirconia, and cerium oxide are more preferable.
- the amount of zirconium oxide used in the second region is 1 g / L or more, more preferably 3 g / L or more, and further preferably 4 g / L or more with respect to the three-dimensional structure.
- the amount of zirconium oxide is less than 1 g / L, the heat resistance of the second region is insufficient.
- the amount of zirconium oxide is 50 g / L or less, more preferably 30 g / L or less, and still more preferably 17 g / L or less with respect to the three-dimensional structure.
- the amount of zirconium oxide exceeds 50 g / L, the effect commensurate with the amount of zirconium oxide is reduced.
- the second region may further contain a noble metal such as platinum, palladium, or rhodium.
- a noble metal such as platinum, palladium, or rhodium.
- platinum and rhodium are more preferable, and rhodium is more preferable.
- the amount of platinum or palladium used in the first region may be substantially 0 g / L, which is such an amount that platinum or palladium does not produce an effect depending on the state of the exhaust gas, and depending on the state of the exhaust gas.
- each in terms of metal exceeds 0 g / L, preferably 0.01 g / L or more, more preferably 0.02 g / L or more, and more preferably 12 g / L or less. Is 10 g / L or less.
- the amount of rhodium used in the first region is 0.01 g / L or more, more preferably 0.02 g / L or more, and further preferably 0.04 g / L or more in terms of metal relative to the three-dimensional structure. In addition, it is 0.2 g / L or less, more preferably less than 0.1 g / L, still more preferably 0.08 g / L or less.
- the concentration of rhodium contained in the second region is 0.01% by mass or more, preferably 0.5% by mass or more, and less than 0.2% by mass, preferably 0.15% by mass or less. .
- the amount of palladium contained in the second region is 0.01 g / L or more, preferably 0.03 g / L or more, and less than 0.1 g / L, preferably, relative to the three-dimensional structure. It is 0.08 g / L or less.
- the concentration of palladium contained in the second region is 0.01% by mass or more, preferably 0.05% by mass or more, and less than 0.2% by mass, preferably 0.15% by mass or less. .
- the concentration of neodymium contained in the first region and the second region is the same as or higher than the concentration of neodymium contained in the region containing palladium. It is preferable. More preferably, the concentration of neodymium contained in the first region and the second region is higher than the concentration of neodymium contained in the region containing palladium.
- the concentration of neodymium contained in the first region is 0.1% by mass or more, more preferably 0.8% by mass or more, more preferably 3% by mass in terms of Nd 2 O 3 when cerium is present in the first region. % Or more, most preferably 5% by mass or more, 20% by mass or less, more preferably 17% by mass or less, still more preferably 15% by mass or less, and most preferably 10% by mass or less.
- the concentration of neodymium contained in the second region is 0.1% by mass or more, more preferably 0.7% by mass or more, further preferably 3% by mass or more, and most preferably 5 in terms of Nd 2 O 3. It is 20 mass% or less, More preferably, it is 17 mass% or less, More preferably, it is 15 mass% or less, Most preferably, it is 10 mass% or less.
- concentration of neodymium contained in the second region exceeds 20% by mass, the effect of suppressing the movement of rhodium according to the concentration cannot be obtained.
- Neodium can suppress the migration and aggregation of rhodium. Therefore, it is preferable to include a large amount of neodymium in a region where the amount of rhodium is high or the rhodium concentration is high in the above-described neodymium concentration range included in the first region and the second region. More preferably, a large amount of rhodium and a high rhodium concentration are contained in a region having a high rhodium concentration within the above-described neodymium concentration range contained in the first region and the second region.
- the concentration of rhodium contained in the first region is preferably higher than the concentration of rhodium contained in the second region.
- the concentration of rhodium contained in each region refers to the percentage of the mass of rhodium (in metal conversion) with respect to the total mass of rhodium and components other than rhodium in each region.
- the amount of all components provided in each region is not particularly limited as long as the amount improves the catalytic activity.
- the palladium-containing region has an amount equivalent to or greater than that of the second region and / or the first region, and (2) more preferably the second region and the first region. The amount is larger than the area.
- the amount of all components provided in each region can be obtained by appropriately selecting from the amount of each component provided in each region described above.
- the method for preparing the exhaust gas purifying catalyst according to one embodiment of the present invention may be a normal preparation method used for the exhaust gas purifying catalyst, and is not particularly limited. This will be described in detail.
- slurry a for forming a region containing palladium, slurry b for forming a first region, and slurry for forming a second region c the slurry a is brought into contact with the three-dimensional structure, and then the excess slurry is removed and dried or fired. Then, the slurry b is brought into contact with the portion that becomes the first region on the region containing palladium. Then, the excess slurry is removed and dried or fired. Subsequently, the slurry c is brought into contact with the portion to be the second region on the palladium-containing region, and then the excess slurry is removed and dried or fired.
- slurry a, b, and c are prepared, and a region containing palladium is formed, and then placed on the region containing palladium.
- the excess slurry is removed and dried or fired, and then the slurry b is brought into contact with the portion to be the first region on the region containing palladium.
- a method of obtaining a catalyst by removing or drying excess slurry and (3) a slurry d containing a component specific to the region containing palladium, a slurry e containing a component specific to the first region, and a second region
- the slurry f containing the components peculiar to the above and the solution containing the components common to the respective regions are prepared, the slurry d is brought into contact with the three-dimensional structure, and then the excess slurry is removed and dried or fired.
- the excess slurry is removed or dried or fired, and then the slurry f is brought into contact with the portion that becomes the second region, and then the excess slurry.
- the solution is impregnated into the three-dimensional structure after firing, followed by drying or baking, a method of obtaining a catalyst; and the like.
- the drying temperature is preferably from room temperature to about 150 ° C, and the firing temperature is preferably from about 150 to 600 ° C.
- the conditions for drying and firing can be appropriately changed according to the object.
- Examples of a method for producing the above-mentioned slurries a to f include, for example, (1) a method in which powders of respective components are wet-pulverized to form a slurry; ), And then drying or baking to obtain a mixed powder, and then wet-pulverizing the mixed powder to form a slurry; (3) adding a liquid (precursor) of another component to a powder of a certain component; And a method of mixing and wet-pulverizing to make a slurry.
- a slurry can be prepared by mixing the fine powder with an appropriate medium.
- the exhaust gas targeted (applied) by the exhaust gas purification method according to an embodiment of the present invention may be any exhaust gas discharged from an internal combustion engine such as a gasoline engine, a diesel engine, or a gas turbine. Although not limited, exhaust gas discharged from a gasoline engine is more preferable. Hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxide in exhaust gas by bringing the exhaust gas purifying catalyst according to one embodiment of the present invention into contact with exhaust gas discharged from an internal combustion engine (NOx) can be purified.
- the exhaust gas purifying catalyst according to an embodiment of the present invention can purify the exhaust gas more effectively when the exhaust gas has a temperature higher than 500 ° C., but the exhaust gas is preferably 500.
- the purification rate of the exhaust gas can be 50% or more.
- T50 the temperature at which the exhaust gas purification rate reaches 50%
- the exhaust gas has a space velocity of preferably 80000 h ⁇ 1 or more, more preferably 100000 h ⁇ 1 or more, and further preferably 120,000 h ⁇ 1 or more. Also, the exhaust gas can be effectively purified.
- the upper limit of the space velocity of the exhaust gas is preferably 500,000 h ⁇ 1 or less, although it depends on the displacement of an internal combustion engine such as an engine.
- the exhaust gas purification catalyst works effectively even when exposed to exhaust gas at 800 to 1000 ° C. for 40 to 450 hours, and can purify HC, CO and NOx in the exhaust gas.
- NOx can be purified over a long period of time and has durability.
- the exhaust gas can be efficiently purified even when the temperature of the exhaust gas is low and the space velocity is high.
- low temperature means that the temperature of the exhaust gas at the end of the three-dimensional structure into which the exhaust gas flows is 100 ° C. or more and 400 ° C. or less
- the space velocity is fast It means 80000h ⁇ 1 or more.
- the present invention includes the inventions described in [1] to [16] below.
- a region containing palladium is provided on the three-dimensional structure, and the first region and the second region are sequentially arranged on the palladium-containing region from the exhaust gas inflow side to the outflow side.
- An exhaust gas purification catalyst provided, wherein the concentration of neodymium contained in the first region is the same as or higher than the concentration of neodymium contained in the second region.
- the concentration of neodymium contained in the first region and / or the second region is the same as or higher than the concentration of neodymium contained in the region containing palladium
- the exhaust gas purification catalyst according to any one of the above.
- the concentration of neodymium contained in the first region and / or the second region is 0.8% by mass or more and 17% by mass or less in terms of Nd 2 O 3 [1] ] Or the exhaust gas purifying catalyst according to [2].
- a plurality of neodymium-containing zirconium oxides having different neodymium contents are used as the neodymium-containing zirconium oxide contained in the first region and / or the second region.
- the concentration of palladium contained in the region containing palladium is 1% by mass or more and 10% by mass or less, and the concentration of rhodium contained in the first region is 2% by mass or more and 5% by mass.
- the concentration of rhodium contained in the second region is 0.01% by mass or more and less than 2% by mass, according to any one of [1] to [8], Exhaust gas purification catalyst.
- the concentration of palladium contained in the first region is 0.2% by mass or more and 0.5% by mass or less, and the concentration of palladium contained in the second region is 0.01% by mass.
- the exhaust gas purifying catalyst according to any one of [1] to [10], wherein the exhaust gas purifying catalyst is less than 0.2% by mass.
- the amount of all components provided in each region is 90 g / L or more and 220 g / L or less in the region containing palladium, and 21 g in the first region with respect to 1 liter of the three-dimensional structure.
- the exhaust gas as set forth in any one of [1] to [11], wherein the exhaust gas is 21 g / L or more and less than 90 g / L in the second region. Purification catalyst.
- the three-dimensional structure is 30 mm or more and 200 mm or less, the region containing palladium is 60% or more and 100% or less with respect to the length of the three-dimensional structure, and the first region is 20 mm The first region is 50 mm or less, and the second region is provided on the region containing palladium and on the side where the exhaust gas flows out and the first region is not provided [1] to [12]
- the exhaust gas purifying catalyst according to any one of [12].
- An exhaust gas purification method comprising purifying exhaust gas using the exhaust gas purification catalyst according to any one of [1] to [13].
- Example 1 (Palladium-containing region) An aqueous solution containing palladium and an oxide containing barium compound and zirconium (in addition, containing cerium and lanthanum) were mixed, dried and fired to obtain a powder. This powder and an oxide containing aluminum (aluminum containing 97% by mass in terms of Al 2 O 3 and other lanthanum) are mixed, water is added, and wet pulverization is performed to form a region containing palladium. A slurry for was obtained. Next, a cordierite honeycomb (three-dimensional structure) having a length of 100 mm was immersed in the slurry, and then the excess slurry was removed and dried and fired to provide a region containing palladium in the honeycomb.
- a cordierite honeycomb three-dimensional structure
- neodymium is 5 g in terms of neodymium oxide (in terms of Nd 2 O 3 )
- zirconium is in terms of zirconium oxide (in terms of ZrO 2 )
- 29 g and aluminum is in terms of aluminum oxide 13 g in terms of Al 2 O 3 and 6 g of cerium in terms of cerium oxide (in terms of CeO 2 ) were contained.
- concentration of neodymium in this region is 8.4% by mass.
- the rhodium concentration in the region is 0.3% by mass
- the palladium concentration is 0.3% by mass.
- the region is provided with 56 g of the total amount of components per liter of the three-dimensional structure.
- the honeycomb having the first region is dipped in slurry for forming the second region from the other end to a predetermined position (position that is a boundary with the first region), and then the surplus The second region was provided 50 mm from the exhaust gas outlet side of the honeycomb on the region containing palladium.
- neodymium is 5 g in terms of neodymium oxide (in terms of Nd 2 O 3 )
- zirconium is in terms of zirconium oxide (in terms of ZrO 2 )
- 29 g and aluminum is in terms of aluminum oxide 13 g in terms of Al 2 O 3 and 6 g of cerium in terms of cerium oxide (in terms of CeO 2 ) were contained.
- the concentration of neodymium in this region is 8.4% by mass.
- the rhodium concentration in the region is 0.1% by mass
- the palladium concentration is 0.1% by mass.
- the region is provided with 56 g of the total amount of components per liter of the three-dimensional structure.
- FIG. 1 A schematic configuration of the exhaust gas purifying catalyst A is shown in FIG. 1
- the exhaust gas purifying catalyst A of this example is provided with a region 2 containing palladium on a honeycomb 1 made of cordierite, and the exhaust gas is on the region 2 containing palladium.
- the first region 3 and the second region 4 were sequentially provided from the inflow side to the outflow side.
- Comparative Example 1 (Palladium-containing region) An aqueous solution containing palladium was mixed with lanthanum oxide, barium oxide, an oxide containing aluminum and an oxide containing cerium (in addition to zirconium), and then dried and fired to obtain a powder. Water was added to this powder and wet pulverized to obtain a slurry for forming a region containing palladium. Next, a cordierite honeycomb having a length of 80 mm was immersed in the slurry, and then the excess slurry was removed and dried and fired to provide a region containing palladium in the honeycomb.
- rhodium is 0.6 g
- zirconium is 21 g in terms of zirconium oxide (ZrO 2 )
- lanthanum is 9 g in terms of La 2 O 3
- aluminum is 37 g in terms of aluminum oxide (Al 2 O 3 )
- cerium is oxidized 8 g in terms of cerium (CeO 2 ) was contained.
- a total of 81 g of components are provided per liter of the three-dimensional structure.
- FIG. 1 A schematic configuration of the exhaust gas purifying catalyst C is shown in FIG. 1
- the exhaust gas purifying catalyst B of the comparative example is provided with a region 2 containing palladium on a cordierite honeycomb 1 and a surface region 5 provided on the region 2 containing palladium. It was the structure that has been.
- Exhaust gas purification catalysts A and B prepared in Example 1 and Comparative Example 1 are separately supplied to an exhaust pipe of a gasoline engine in which control having an A / F amplitude is performed by stoichiometry A / F (air / fuel). installed. Then, the exhaust gas purification catalysts A and B are exposed to 1000 ° C. exhaust gas for 80 hours, and then 100 ° C. exhaust gas is allowed to pass through. After the catalyst is sufficiently kept at 100 ° C., the exhaust gas temperature is adjusted. Raised at a constant speed. Since catalysts having different catalyst lengths are used, the catalyst to be evaluated was evaluated by controlling the amount of exhaust gas so that the space velocities are the same. Exhaust gas was circulated at a space velocity of 125000 h ⁇ 1 with respect to the catalyst, and the temperature (T50) at which the conversion of HC, CO, and NOx reached 50% was measured. The results are shown in Table 1.
- the exhaust gas purifying catalyst according to one embodiment of the present invention has a HC (comparative example 1) as compared with a catalyst (Comparative Example 1) whose surface region is often found in the prior art.
- the exhaust gas purifying catalyst and the exhaust gas purifying method using the same according to the present invention can be suitably used for purifying exhaust gas discharged from an internal combustion engine such as a gasoline engine, a diesel engine, or a gas turbine.
- an internal combustion engine such as a gasoline engine, a diesel engine, or a gas turbine.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
本発明の一実施の形態に用いられる三次元構造体は、その表面に触媒を被覆することができる構造体であればよく、特に限定されないものの、フロースルー型ハニカム、プラグハニカム、コルゲート型ハニカム、板状、波板状などの、触媒担体として通常用いられる形状の構造体が好ましく、フロースルー型ハニカム形状の構造体がより好ましい。三次元構造体の材質は、耐熱性を有する材質であればよく、特に限定されないものの、ステンレスなどの鉄系の金属、コージェライト、SiC、アルミナなどのセラミックスを好適に用いることができる。
パラジウムを含む領域は三次元構造体上に設けられる。該パラジウムを含む領域には、少なくともパラジウムが含まれていればよい。該領域中に含まれるパラジウムの量は、三次元構造体に対して、金属換算で、0.1g/L以上(以下、三次元構造体1リットル当たりの各成分量を「g/L」と記載する場合がある。特許請求の範囲についても同様である。)、より好ましくは0.2g/L以上、さらに好ましくは0.4g/L以上、最も好ましくは2g/L以上である。パラジウムの量が0.1g/L未満である場合には、三次元構造体における反応サイトが不足する。また、該領域中に含まれるパラジウムの量は、三次元構造体に対して、金属換算で、20g/L以下、より好ましくは15g/L以下、さらに好ましくは10g/L以下、最も好ましくは5g/L以下である。パラジウムの量が20g/Lを超える場合には、反応効率が低下する。
第一領域は、パラジウムを含む領域上であって、排気ガスが流入する側に設けられる。該第一領域には、少なくともネオジウムが含まれていればよい。ネオジウムは、ロジウムの移動および凝集を抑制することができるので、ネオジウムが含まれる領域にロジウムが含まれていることが有効である。ロジウムが含まれる量が多くなるほど、ネオジウムの量も多くなることが好ましい。ネオジウムの量は、三次元構造体に対して、Nd2O3換算で、0.1g/L以上、より好ましくは2g/L以上である。ネオジウムの量が0.1g/L未満である場合には、貴金属の移動を抑制する効果、特に、ロジウムの移動を抑制する効果が少なくなるので好ましくない。また、ネオジウムの量は、三次元構造体に対して、Nd2O3換算で、20g/L以下、より好ましくは10g/L以下、さらに好ましくは9g/L以下、最も好ましくは7g/Lである。ネオジウムの量が20g/Lを超える場合には、加えたネオジウムの量に応じた、貴金属の移動を抑制する効果が得られ難い。
第二領域は、パラジウムを含む領域上であって、排気ガスが流出する側に設けられる。好ましくは該パラジウムを含む領域上かつ排気ガスが流出する側であって該第一領域が設けられていない部分に設けられる。該第二領域には、ネオジウムが含まれていればよい。ネオジウムは、ロジウムの移動および凝集を抑制することができるので、ネオジウムが含まれる領域にロジウムが含まれていることが有効である。ロジウムが含まれる量が多くなるほど、ネオジウムの量も多くなることが好ましい。該ネオジウムの量は、三次元構造体に対して、Nd2O3換算で、0.1g/L以上、より好ましくは1g/L以上、さらに好ましくは2g/L以上である。耐火性無機酸化物の量が多い場合において、ネオジウムの量が0.1g/L未満であると、貴金属の移動を抑制する効果が少なくなる。また、該ネオジウムの量は、三次元構造体に対して、Nd2O3換算で、20g/L以下、より好ましくは10g/L以下、さらに好ましくは9g/L以下、最も好ましくは7g/L以下である。ネオジウムの量が20g/Lを超える場合には、該第二領域中に含まれる貴金属の量に対してネオジウムが過剰になり、ネオジウムの量に見合う効果が少なくなる。
本発明の一実施の形態に係る排気ガス浄化用触媒は、第一領域および第二領域中に含まれるネオジウムの濃度がパラジウムを含む領域中に含まれるネオジウムの濃度に比べて同じかまたは高くなっていることが好ましい。さらに好ましくは、第一領域および第二領域中に含まれるネオジウムの濃度がパラジウムを含む領域中に含まれるネオジウムの濃度に比べて高くなっている。各領域中に含まれるネオジウムの濃度とは、各領域においてネオジウム(Nd2O3換算)とネオジウム以外の成分(領域中に含まれる化合物の質量)との合計の質量に対する、ネオジウム(Nd2O3換算)の質量の百分率を指す。
本発明の一実施の形態に係る排気ガス浄化用触媒は、該第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて高いことが好ましい。各領域中に含まれるロジウムの濃度とは、各領域においてロジウムとロジウム以外の成分との合計の質量に対する、ロジウム(金属換算)の質量の百分率を指す。第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて低くなっている場合には、触媒の低温での着火特性が低下する。なお、着火特性とは、特定温度の排気ガスにおいて触媒のHC、CO、NOxの浄化率が50%(T50)に達する時間(着火時間)で表される特性である。
各領域に設けられる全成分の量は、触媒活性を向上させる量であれば特に制限はない。(1)好ましくは、該パラジウムを含む領域が、該第二領域および/または該第一領域に比べて同等かまたは多い量であり、(2)より好ましくは、該第二領域および該第一領域に比べて多い量である。なお、各領域に設けられる全成分の量は、上述した各領域に設けられる各成分の量から適宜選択して得ることができる。
本発明の一実施の形態に係る排気ガス浄化用触媒の調製方法は、排気ガス浄化用触媒に用いられる通常の調製方法であればよく、特に限定されないものの、より好ましい調製方法の一例を、以下に具体的に説明する。
本発明の一実施の形態に係る排気ガス浄化方法が対象とする(適用される)排気ガスは、ガソリンエンジン、ディーゼルエンジン、ガスタービンなどの内燃機関から排出される排気ガスであればよく、特に限定されないものの、ガソリンエンジンから排出される排気ガスがより好ましい。本発明の一実施の形態に係る排気ガス浄化用触媒を、内燃機関から排出される排気ガスと接触させることで、排気ガス中の炭化水素(HC)、一酸化炭素(CO)および窒素酸化物(NOx)を浄化することができる。特に、本発明の一実施の形態に係る排気ガス浄化用触媒は、排気ガスが500℃よりも高温である方が該排気ガスをより有効に浄化することができるものの、排気ガスが好ましくは500℃以下、より好ましくは400℃以下、さらに好ましくは350℃以下の低温であっても、該排気ガスの浄化率を50%以上にすることができる。ここで、排気ガスの浄化率が50%に達する温度をT50とすると、T50に達する温度が低いほど、排気ガスが迅速に浄化されることを意味する。
以上のように、本発明は、以下の〔1〕~〔16〕に記載の発明を含む。
(パラジウムを含む領域)
パラジウムを含む水溶液と、バリウム化合物およびジルコニウムを含む酸化物(他にセリウム、ランタンを含む)とを混合した後、乾燥および焼成して粉体を得た。この粉体およびアルミニウムを含む酸化物(アルミニウムをAl2O3換算で97質量%、他にランタンを含む)を混合し、さらに水を添加し、湿式粉砕して、パラジウムを含む領域を成形するためのスラリーを得た。次に、長さ100mmのコージェライト製のハニカム(三次元構造体)を該スラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、上記ハニカムにパラジウムを含む領域を設けた。ハニカム1リットル当たり、パラジウムが3g、ジルコニウムが酸化ジルコニウム換算(ZrO2換算)で20g、アルミニウムが酸化アルミニウム換算(Al2O3換算)で50g、ランタンがLa2O3換算で11g、バリウムをBaO換算で12g、セリウムが酸化セリウム換算(CeO2換算)で21g含まれていた。該領域中に含まれるパラジウムの濃度は2.4質量%である。該領域には、ネオジウムが含まれていない。該領域には、三次元構造体1リットル当たり、成分が全量で124g設けられている。
次いで、パラジウムとロジウムを含む水溶液と、ランタンを含む化合物、ネオジウムを含む酸化物(ネオジウムの含有率はNd2O3換算で27質量%、他にジルコニウムを含む)、ネオジウムを含む酸化物(ネオジウムの含有率はNd2O3換算で5質量%、他にジルコニウム、セリウムを含む)およびアルミニウムを含む酸化物(アルミニウムをAl2O3換算で97質量%含む)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、第一領域を形成するためのスラリーを得た。次に、パラジウムを含む領域を設けた上記ハニカムを、その一方の端部から所定の位置(第二領域との境目となる位置)まで、第一領域を形成するためのスラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、パラジウムを含む領域上でハニカムの排気ガスの入口側から50mmに第一領域を設けた。ハニカム1リットル当たり、パラジウムが0.17g、ロジウムが0.14g、ネオジウムが酸化ネオジウム換算(Nd2O3換算)で5g、ジルコニウムが酸化ジルコニウム換算(ZrO2換算)で29g、アルミニウムが酸化アルミニウム換算(Al2O3換算)で13g、セリウムが酸化セリウム換算(CeO2換算)で6g含まれていた。該領域のネオジウムの濃度(Nd2O3換算)は8.4質量%である。また、該領域のロジウムの濃度は0.3質量%であり、パラジウムの濃度は0.3質量%である。該領域には、三次元構造体1リットル当たり、成分が全量で56g設けられている。
続いて、パラジウムとロジウムを含む水溶液と、ランタンを含む化合物、ネオジウムを含む酸化物(ネオジウムの含有率はNd2O3換算で27質量%、他にジルコニウムを含む)、ネオジウムを含む酸化物(ネオジウムの含有率はNd2O3換算で5質量%、他にジルコニウム、セリウムを含む)およびアルミニウムを含む酸化物(アルミニウムをAl2O3換算で97質量%含む)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、第二領域を形成するためのスラリーを得た。次に、第一領域を設けた上記ハニカムを、その他方の端部から所定の位置(第一領域との境目となる位置)まで、第二領域を形成するためのスラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、パラジウムを含む領域上でハニカムの排気ガスの出口側から50mmに第二領域を設けた。ハニカム1リットル当たり、パラジウムが0.06g、ロジウムが0.05g、ネオジウムが酸化ネオジウム換算(Nd2O3換算)で5g、ジルコニウムが酸化ジルコニウム換算(ZrO2換算)で29g、アルミニウムが酸化アルミニウム換算(Al2O3換算)で13g、セリウムが酸化セリウム換算(CeO2換算)で6g含まれていた。該領域のネオジウムの濃度(Nd2O3換算)は8.4質量%である。また、該領域のロジウムの濃度は0.1質量%であり、パラジウムの濃度は0.1質量%である。該領域には、三次元構造体1リットル当たり、成分が全量で56g設けられている。
(パラジウムを含む領域)
パラジウムを含む水溶液と、酸化ランタン、酸化バリウム、アルミニウムを含む酸化物およびセリウムを含む酸化物(他にジルコニウムを含む)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、パラジウムを含む領域を成形するためのスラリーを得た。次に、長さ80mmのコージェライト製のハニカムを該スラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、上記ハニカムにパラジウムを含む領域を設けた。ハニカム1リットル当たり、パラジウムが5g、ジルコニウムが酸化ジルコニウム(ZrO2)換算で20g、アルミニウムが酸化アルミニウム(Al2O3)換算で58g、セリウムが酸化セリウム(CeO2)換算で20g、バリウムがBaO換算で12g、ランタンがLa2O3換算で10g含まれていた。該領域には、成分が全量で三次元構造体1リットル当たり125g設けられている。
次いで、ロジウムを含む水溶液と、アルミニウムを含む酸化物およびセリウムを含む酸化物(他にジルコニウム、ランタンを含む)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、表面領域を形成するためのスラリーを得た。次に、パラジウムを含む領域を設けた上記ハニカムを、表面領域を形成するためのスラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、パラジウムを含む領域上に表面領域を設けた。ハニカム1リットル当たり、ロジウムが0.6g、ジルコニウムが酸化ジルコニウム(ZrO2)換算で21g、ランタンがLa2O3換算で9g、アルミニウムが酸化アルミニウム(Al2O3)換算で37g、セリウムが酸化セリウム(CeO2)換算で8g含まれていた。該領域には、三次元構造体1リットル当たり、成分が全量で81g設けられている。
実施例1および比較例1で調製した排気ガス浄化用触媒AおよびBを別個に、ストイキオメトリA/F(空気/燃料)でA/F振幅がある制御が行われるガソリンエンジンの排気管に設置した。そして、該排気ガス浄化用触媒AおよびBを1000℃の排気ガスに80時間、曝した後、100℃の排気ガスを通過させ、触媒が十分に100℃で保たれた後、排気ガス温度を一定速度で上昇させた。なお、触媒の長さが異なる触媒を用いるので、評価する触媒について、空間速度が同一になるように排気ガスの量を制御して評価した。排気ガスを触媒に対する空間速度125000h-1で流通させ、HC、CO、NOxの転化率が50%に達した温度(T50)を測定した。その結果を表1に示す。
2 パラジウムを含む領域
3 第一領域
4 第二領域
5 表面領域
Claims (16)
- 三次元構造体上にパラジウムを含む領域が設けられ、該パラジウムを含む領域上であって排気ガスが流入する側から流出する側に向けて順に、第一領域と第二領域とが設けられ、
第一領域中に含まれるネオジウムの濃度が第二領域中に含まれるネオジウムの濃度に比べて同じかまたは高くなっていることを特徴とする排気ガス浄化用触媒。 - 該第一領域および/または該第二領域中に含まれるネオジウムの濃度がパラジウムを含む領域中に含まれるネオジウムの濃度に比べて同じかまたは高くなっていることを特徴とする請求項1記載の排気ガス浄化用触媒。
- 該第一領域および/または該第二領域中に含まれるネオジウムの濃度が、Nd2O3換算で、0.8質量%以上、17質量%以下であることを特徴とする請求項1または2に記載の排気ガス浄化用触媒。
- 該第一領域および該第二領域がネオジウム含有複合酸化物を有することを特徴とする請求項1~3の何れか1項に記載の排気ガス浄化用触媒。
- 該第一領域および該第二領域がネオジウム含有酸化ジルコニウムを有することを特徴とする請求項1~4の何れか1項に記載の排気ガス浄化用触媒。
- 該第一領域および/または該第二領域中に含まれる該ネオジウム含有酸化ジルコニウムとして、異なるネオジウム含有率を有する複数のネオジウム含有酸化ジルコニウムが用いられることを特徴とする請求項5に記載の排気ガス浄化用触媒。
- 該ネオジウム含有酸化ジルコニウムとして、
Nd2O3換算でネオジウム含有率が15質量%以上、40質量%以下であるネオジウム含有酸化ジルコニウム(1)、および、
Nd2O3換算でネオジウム含有率が1質量%以上、10質量%以下であるネオジウム含有酸化ジルコニウム(2)の少なくとも何れかが用いられることを特徴とする請求項6に記載の排気ガス浄化用触媒。 - 該第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて高いことを特徴とする請求項1~7の何れか1項に記載の排気ガス浄化用触媒。
- 該パラジウムを含む領域中に含まれるパラジウムの濃度は、1質量%以上、10質量%以下であり、
該第一領域中に含まれるロジウムの濃度は、0.2質量%以上、0.5質量%以下であり、
該第二領域中に含まれるロジウムの濃度は、0.01質量%以上、0.2質量%未満であることを特徴とする請求項1~8の何れか1項に記載の排気ガス浄化用触媒。 - 該第一領域および/または該第二領域がパラジウムを含むことを特徴とする請求項1~9の何れか1項に記載の排気ガス浄化用触媒。
- 該第一領域中に含まれるパラジウムの濃度が、0.2質量%以上、0.5質量%以下であり、
該第二領域中に含まれるパラジウムの濃度が、0.01質量%以上、0.2質量%未満であることを特徴とする請求項1~10の何れか1項に記載の排気ガス浄化用触媒。 - 各領域に設けられる全成分の量は、
三次元構造体1リットルに対して、
該パラジウムを含む領域では、90g/L以上、220g/L以下であり、
該第一領域では、21g/L以上、90g/L未満であり、
該第二領域では、21g/L以上、90g/L未満であることを特徴とする請求項1~11の何れか1項に記載の排気ガス浄化用触媒。 - 該三次元構造体が30mm以上、200mm以下であり、該パラジウムを含む領域が該三次元構造体の長さに対して60%以上、100%以下であり、該第一領域が20mm以上、50mm以下であり、該第二領域が該パラジウムを含む領域上かつ排気ガスが流出する側であって該第一領域が設けられていない部分に設けられることを特徴とする請求項1~12の何れか1項に記載の排気ガス浄化用触媒。
- 請求項1~13の何れか1項に記載の排気ガス浄化用触媒を用いて排気ガスを浄化することを特徴とする排気ガス浄化方法。
- 100℃以上、500℃以下の排気ガスを浄化することを特徴とする請求項14に記載の排気ガス浄化方法。
- 空間速度が80000h-1以上の排気ガスを浄化することを特徴とする請求項14または15に記載の排気ガス浄化方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880041449.9A CN110785231B (zh) | 2017-04-28 | 2018-04-26 | 废气净化用催化剂及使用其的废气净化方法 |
US16/607,392 US11143072B2 (en) | 2017-04-28 | 2018-04-26 | Exhaust gas purification catalyst and exhaust gas purification method using the same |
JP2019514630A JP6811851B2 (ja) | 2017-04-28 | 2018-04-26 | 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 |
EP18791565.7A EP3616790A4 (en) | 2017-04-28 | 2018-04-26 | EXHAUST GAS PURIFICATION CATALYZER AND EXHAUST GAS PURIFICATION METHOD USING IT |
CA3061300A CA3061300A1 (en) | 2017-04-28 | 2018-04-26 | Exhaust gas purification catalyst and exhaust gas purification method using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-090252 | 2017-04-28 | ||
JP2017090252 | 2017-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018199248A1 true WO2018199248A1 (ja) | 2018-11-01 |
Family
ID=63918523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017023 WO2018199248A1 (ja) | 2017-04-28 | 2018-04-26 | 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11143072B2 (ja) |
EP (1) | EP3616790A4 (ja) |
JP (1) | JP6811851B2 (ja) |
CN (1) | CN110785231B (ja) |
CA (1) | CA3061300A1 (ja) |
WO (1) | WO2018199248A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3889404A1 (en) * | 2020-03-30 | 2021-10-06 | Johnson Matthey Public Limited Company | Multi-region twc catalysts for gasoline engine exhaust gas treatments with improved h2s attenuation |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500570A (ja) * | 1993-06-25 | 1997-01-21 | エンゲルハード・コーポレーシヨン | 層状触媒複合体 |
JP2003200049A (ja) * | 2001-11-01 | 2003-07-15 | Nissan Motor Co Ltd | 排気ガス浄化用触媒 |
JP2005505403A (ja) | 2001-10-01 | 2005-02-24 | エンゲルハード・コーポレーシヨン | 内燃機関用排気装置製品 |
JP2009061437A (ja) * | 2007-09-10 | 2009-03-26 | Tokyo Roki Co Ltd | 排ガス浄化用触媒 |
JP2010005590A (ja) | 2008-06-30 | 2010-01-14 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2010264371A (ja) * | 2009-05-14 | 2010-11-25 | Mazda Motor Corp | 排気ガス浄化装置 |
JP2013006179A (ja) | 2005-07-15 | 2013-01-10 | Basf Corp | 自動車排ガス処理用高リン被毒耐性触媒 |
JP2013136032A (ja) * | 2011-12-28 | 2013-07-11 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2015066516A (ja) * | 2013-09-30 | 2015-04-13 | マツダ株式会社 | 排気ガス浄化用触媒 |
JP2015073943A (ja) * | 2013-10-09 | 2015-04-20 | トヨタ自動車株式会社 | 触媒コンバーター |
JP2016179451A (ja) * | 2015-03-24 | 2016-10-13 | マツダ株式会社 | 排気ガス浄化触媒装置及び排気ガス浄化方法 |
JP2017006905A (ja) * | 2015-06-19 | 2017-01-12 | マツダ株式会社 | 排気ガス浄化用触媒 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868148A (en) * | 1987-08-24 | 1989-09-19 | Allied-Signal Inc. | Layered automotive catalytic composite |
CA1319141C (en) * | 1987-11-07 | 1993-06-15 | Makoto Horiuchi | Exhaust gas purification catalyst |
JP2730750B2 (ja) * | 1989-02-16 | 1998-03-25 | マツダ株式会社 | 排気ガス浄化用触媒およびその製造方法 |
JP2716205B2 (ja) * | 1989-05-08 | 1998-02-18 | 株式会社日本触媒 | 排ガス浄化用触媒 |
JP2979809B2 (ja) * | 1992-01-10 | 1999-11-15 | 日産自動車株式会社 | 排ガス浄化用触媒及びその製造方法 |
JP3129377B2 (ja) * | 1994-08-12 | 2001-01-29 | 三菱重工業株式会社 | 排気ガス浄化用触媒 |
US5948723A (en) * | 1996-09-04 | 1999-09-07 | Engelhard Corporation | Layered catalyst composite |
JP3506316B2 (ja) * | 1997-08-20 | 2004-03-15 | 日産自動車株式会社 | 排気ガス浄化用触媒及び排気ガス浄化装置 |
JP3489048B2 (ja) * | 2000-02-01 | 2004-01-19 | 日産自動車株式会社 | 排気ガス浄化用触媒 |
US6764665B2 (en) * | 2001-10-26 | 2004-07-20 | Engelhard Corporation | Layered catalyst composite |
EP1810738B8 (en) * | 2004-10-28 | 2017-09-27 | Cataler Corporation | Catalyst for exhaust gas purification |
US7923047B2 (en) * | 2006-06-30 | 2011-04-12 | Conagra Foods Rdm, Inc. | Seasoning and method for seasoning a food product while reducing dietary sodium intake |
US7550124B2 (en) * | 2006-08-21 | 2009-06-23 | Basf Catalysts Llc | Layered catalyst composite |
US20080044330A1 (en) * | 2006-08-21 | 2008-02-21 | Shau-Lin Franklin Chen | Layered catalyst composite |
US8067330B2 (en) * | 2007-02-15 | 2011-11-29 | Mazda Motor Corporation | Catalytic material and catalyst for purifying exhaust gas component |
JP5422087B2 (ja) * | 2008-08-08 | 2014-02-19 | 本田技研工業株式会社 | 低貴金属担持三元触媒 |
US8568675B2 (en) * | 2009-02-20 | 2013-10-29 | Basf Corporation | Palladium-supported catalyst composites |
US10773209B2 (en) * | 2009-02-20 | 2020-09-15 | Basf Corporation | Aging-resistant catalyst article for internal combustion engines |
JP5903205B2 (ja) * | 2010-01-04 | 2016-04-13 | 株式会社キャタラー | 排ガス浄化用触媒 |
JP5287884B2 (ja) * | 2011-01-27 | 2013-09-11 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP5746318B2 (ja) * | 2011-03-04 | 2015-07-08 | ユミコア日本触媒株式会社 | 排ガス浄化用触媒、その製造方法およびそれを用いた排ガス浄化方法 |
EP2758643A4 (en) * | 2011-09-23 | 2015-12-23 | Shubin Inc | MIXED-PHASE OXID CATALYSTS |
JP5982987B2 (ja) * | 2012-04-23 | 2016-08-31 | マツダ株式会社 | 排気ガス浄化用触媒材を含有する排気ガス浄化用触媒 |
US9522360B2 (en) * | 2012-06-06 | 2016-12-20 | Umicore Ag & Co. Kg | Three-way-catalyst system |
GB2514177A (en) * | 2013-05-17 | 2014-11-19 | Johnson Matthey Plc | Oxidation catalyst for a compression ignition engine |
GB2530129B (en) * | 2014-05-16 | 2016-10-26 | Johnson Matthey Plc | Catalytic article for treating exhaust gas |
US9579604B2 (en) * | 2014-06-06 | 2017-02-28 | Clean Diesel Technologies, Inc. | Base metal activated rhodium coatings for catalysts in three-way catalyst (TWC) applications |
-
2018
- 2018-04-26 JP JP2019514630A patent/JP6811851B2/ja active Active
- 2018-04-26 CA CA3061300A patent/CA3061300A1/en not_active Abandoned
- 2018-04-26 CN CN201880041449.9A patent/CN110785231B/zh active Active
- 2018-04-26 EP EP18791565.7A patent/EP3616790A4/en active Pending
- 2018-04-26 WO PCT/JP2018/017023 patent/WO2018199248A1/ja active Application Filing
- 2018-04-26 US US16/607,392 patent/US11143072B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500570A (ja) * | 1993-06-25 | 1997-01-21 | エンゲルハード・コーポレーシヨン | 層状触媒複合体 |
JP2005505403A (ja) | 2001-10-01 | 2005-02-24 | エンゲルハード・コーポレーシヨン | 内燃機関用排気装置製品 |
JP2003200049A (ja) * | 2001-11-01 | 2003-07-15 | Nissan Motor Co Ltd | 排気ガス浄化用触媒 |
JP2013006179A (ja) | 2005-07-15 | 2013-01-10 | Basf Corp | 自動車排ガス処理用高リン被毒耐性触媒 |
JP2009061437A (ja) * | 2007-09-10 | 2009-03-26 | Tokyo Roki Co Ltd | 排ガス浄化用触媒 |
JP2010005590A (ja) | 2008-06-30 | 2010-01-14 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2010264371A (ja) * | 2009-05-14 | 2010-11-25 | Mazda Motor Corp | 排気ガス浄化装置 |
JP2013136032A (ja) * | 2011-12-28 | 2013-07-11 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2015066516A (ja) * | 2013-09-30 | 2015-04-13 | マツダ株式会社 | 排気ガス浄化用触媒 |
JP2015073943A (ja) * | 2013-10-09 | 2015-04-20 | トヨタ自動車株式会社 | 触媒コンバーター |
JP2016179451A (ja) * | 2015-03-24 | 2016-10-13 | マツダ株式会社 | 排気ガス浄化触媒装置及び排気ガス浄化方法 |
JP2017006905A (ja) * | 2015-06-19 | 2017-01-12 | マツダ株式会社 | 排気ガス浄化用触媒 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3616790A4 |
Also Published As
Publication number | Publication date |
---|---|
US11143072B2 (en) | 2021-10-12 |
CN110785231B (zh) | 2022-09-23 |
US20200049041A1 (en) | 2020-02-13 |
CN110785231A (zh) | 2020-02-11 |
CA3061300A1 (en) | 2019-10-23 |
EP3616790A1 (en) | 2020-03-04 |
JPWO2018199248A1 (ja) | 2020-03-12 |
EP3616790A4 (en) | 2021-01-13 |
JP6811851B2 (ja) | 2021-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102536415B1 (ko) | 층상 자동차 촉매 복합체 | |
JP6449785B2 (ja) | 二金属層を有する自動車用触媒複合体 | |
JP5996538B2 (ja) | 改善されたno酸化活性度を有するリーン燃焼ガソリンエンジン用の触媒 | |
JP5021188B2 (ja) | 排ガス浄化用触媒 | |
JP5910833B2 (ja) | 排ガス浄化触媒 | |
JP6855445B2 (ja) | 排ガス浄化用触媒 | |
JPWO2015182726A1 (ja) | 内燃機関排ガス浄化用触媒およびそのシステム | |
JP2021528247A (ja) | 燃料カットNOx制御用TWCシステム | |
JP2012035206A (ja) | 排ガス浄化触媒 | |
JP6889252B2 (ja) | 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 | |
JPWO2017203863A1 (ja) | ガソリンエンジン排気ガスの浄化用三元触媒 | |
JP6440771B2 (ja) | 排ガス浄化触媒装置 | |
JP5876475B2 (ja) | Rh負荷が低減されたNOx貯蔵触媒 | |
WO2018199250A1 (ja) | 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 | |
WO2018199248A1 (ja) | 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 | |
JP4805031B2 (ja) | 排ガス浄化触媒、その製造方法及び使用方法 | |
WO2022209154A1 (ja) | 排ガス浄化用触媒及び排ガス浄化システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791565 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019514630 Country of ref document: JP Kind code of ref document: A Ref document number: 3061300 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018791565 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018791565 Country of ref document: EP Effective date: 20191128 |