WO2018198406A1 - モータ制御装置及びモータ制御方法 - Google Patents

モータ制御装置及びモータ制御方法 Download PDF

Info

Publication number
WO2018198406A1
WO2018198406A1 PCT/JP2017/039139 JP2017039139W WO2018198406A1 WO 2018198406 A1 WO2018198406 A1 WO 2018198406A1 JP 2017039139 W JP2017039139 W JP 2017039139W WO 2018198406 A1 WO2018198406 A1 WO 2018198406A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
fixed phase
detection signal
electrical angle
motor
Prior art date
Application number
PCT/JP2017/039139
Other languages
English (en)
French (fr)
Inventor
一成 金澤
猛 富崎
伸昌 後
真 丸山
優司 小川
Original Assignee
シンフォニアテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンフォニアテクノロジー株式会社 filed Critical シンフォニアテクノロジー株式会社
Priority to US16/607,449 priority Critical patent/US10931215B2/en
Priority to CN201780088961.4A priority patent/CN110463022B/zh
Priority to EP17907800.1A priority patent/EP3618262B1/en
Publication of WO2018198406A1 publication Critical patent/WO2018198406A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/22Arrangements for starting in a selected direction of rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/186Circuit arrangements for detecting position without separate position detecting elements using difference of inductance or reluctance between the phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/01Motor rotor position determination based on the detected or calculated phase inductance, e.g. for a Switched Reluctance Motor

Definitions

  • the present invention relates to a motor control device and a motor control method for controlling the driving of a motor by using a detection signal output every 180 degrees in electrical angle according to the rotation of a rotor when the motor starts rotating.
  • the estimated phase detection device disclosed in Patent Document 1 is determined corresponding to H or L of the position sensor signal in the first period until the switching of the position sensor signal is detected twice.
  • the phase is estimated from the sum of the reference phase and the interpolation phase obtained by second-order integration of the starting acceleration.
  • the estimated phase detector is an interpolation obtained by integrating the reference phase based on the switched position sensor signal and the rotation speed detected before switching in the second period after the first period has elapsed.
  • the phase is estimated from the sum of the phase.
  • the rotation speed (detection speed) for calculating the phase cannot be obtained in the first period until the position sensor signal switching is detected twice.
  • the phase is estimated using acceleration.
  • the rotor may reversely rotate at the start, so that the responsiveness at the start of rotation of the rotor is not so high.
  • the phase is estimated from the sum of the reference phase and the interpolation phase, so that the calculation load is high.
  • An object of the present invention is to provide a motor control device having a rotation position detection unit capable of detecting the rotation position of the rotor every 180 degrees in electrical angle, and to easily obtain the phase when the rotor starts rotating, The object is to obtain a configuration with high responsiveness at the start of rotation of the child.
  • a motor control device is a motor control device that controls driving of a motor.
  • the motor control device includes: a rotation position detection unit that outputs two types of detection signals according to the rotation position of the rotor of the motor every electrical angle of the motor of 180 degrees; and the motor according to the detection signals.
  • a fixed phase setting unit for setting a fixed phase, an estimated phase calculation unit for calculating an estimated phase using the detection signal and the fixed phase, and rotation of the rotor based on the fixed phase or the estimated phase
  • a motor drive control unit for controlling the motor.
  • the estimated phase calculation unit performs the second time and the time when the type of the detection signal is switched first.
  • An interpolation phase calculation unit that calculates an interpolation phase using the time when the type of the detection signal is switched, and a reference phase determined according to the detection signal after the type of the detection signal is switched for the second time,
  • An arithmetic unit that calculates the estimated phase by adding the interpolation phases.
  • the electrical angle of the motor is output from the rotational position detector according to the rotational position of the rotor of the motor every 180 degrees.
  • the rotor has a stable stop point of -90 degrees or more with respect to the maximum electrical angle stable stop point and 90 degrees or less with respect to the minimum electrical angle stable stop point.
  • the type of the detection signal output from the rotational position detection unit when a predetermined time has elapsed since the driving of the motor is controlled by the rotation of the rotor and the second fixed phase is set.
  • a fourth fixed phase setting step of setting an electrical angle greater than 0 degree and 90 degrees or less with respect to the second fixed phase as a fourth fixed phase, and using the fourth fixed phase,
  • the drive of the motor is controlled by the motor drive control unit, and the type of the detection signal output from the rotational position detection unit is switched again by the rotation of the rotor, the time when the detection signal is switched first
  • An interpolation phase calculation step for calculating an interpolation phase using the time when the detection signal is switched for the second time, and a reference phase determined according to the detection signal after the type of the detection signal is switched for the second time.
  • an estimated phase calculating step of calculating an estimated phase by adding the interpolation phases.
  • the fixed phase setting unit determines the stable stop point of the rotor according to the detection signal output from the rotational position detection unit when the rotor starts rotating.
  • the first fixed phase having an electrical angle of ⁇ 90 degrees or more with respect to the stable stop point of the maximum electrical angle and 90 degrees or less of electrical angle with respect to the stable stop point of the minimum electrical angle is set as a fixed phase,
  • the maximum electrical angle is stabilized among the stable stop points of the rotor according to the detection signal after switching.
  • a second fixed phase having an electrical angle of ⁇ 90 degrees or more with respect to the stop point and an electrical angle of 90 degrees or less with respect to the stable stop point having the minimum electrical angle is set as the fixed phase.
  • FIG. 1 is a control block diagram illustrating a schematic configuration of the motor control device according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating the relationship between the electrical angle, the cogging torque, and the detection signal.
  • FIG. 3 is a diagram schematically showing the relationship between the error between the fixed phase and the actual phase and the torque generated in the rotor.
  • FIG. 4 is a flowchart showing an example of the operation of the motor control device.
  • FIG. 5 is a flowchart showing an example of the operation of the motor control device.
  • FIG. 6 is a diagram schematically showing a change in torque generated in the rotor by rotation of the rotor when a fixed phase is set.
  • FIG. 7 is a view corresponding to FIG. 1 of the motor control device according to the second embodiment.
  • FIG. 1 is a control block diagram illustrating a schematic configuration of the motor control device according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating the relationship between the electrical angle, the cogging
  • FIG. 8 is a flowchart showing an example of the operation of the motor control device.
  • FIG. 9 is a flowchart showing an example of the operation of the motor control device.
  • FIG. 10 is a diagram schematically showing a change in torque generated in the rotor due to the rotation of the rotor when the fixed phase is set.
  • FIG. 11 is a diagram schematically illustrating a change in torque generated in the rotor due to the rotation of the rotor when the auxiliary fixed phase is changed.
  • a motor control device is a motor control device that controls driving of a motor.
  • the motor control device includes: a rotation position detection unit that outputs two types of detection signals according to the rotation position of the rotor of the motor every electrical angle of the motor of 180 degrees; and the motor according to the detection signals.
  • a fixed phase setting unit for setting a fixed phase, an estimated phase calculation unit for calculating an estimated phase using the detection signal and the fixed phase, and rotation of the rotor based on the fixed phase or the estimated phase
  • a motor drive control unit for controlling the motor.
  • the fixed phase setting unit when starting the rotation of the rotor, has an electrical angle of ⁇ 90 degrees or more with respect to a stable stop point of the maximum electrical angle among the stable stop points of the rotor according to the detection signal, and A first fixed phase with an electrical angle of 90 degrees or less with respect to the stable stop point of the minimum electrical angle is set as the fixed phase, and the detection signal output from the rotational position detector by the rotation of the rotor When the type is switched, according to the detection signal after switching, the electrical angle is ⁇ 90 degrees or more with respect to the stable stop point of the maximum electrical angle among the stable stop points of the rotor, and the minimum electrical angle is A second fixed phase having an electrical angle of 90 degrees or less with respect to the stable stop point is set as the fixed phase.
  • the estimated phase calculation unit performs the second time and the time when the type of the detection signal is switched first.
  • An interpolation phase calculation unit that calculates an interpolation phase using the time when the type of the detection signal is switched, and a reference phase determined according to the detection signal after the type of the detection signal is switched for the second time,
  • a calculation unit that calculates the estimated phase by adding the interpolation phases (first configuration).
  • the fixed phase is set as the second fixed phase.
  • the second fixed phase is, for example, an electrical angle of 270 degrees when the first fixed phase is 90 degrees in electrical angle, and an electrical angle when the first fixed phase is 270 degrees in electrical angle. 90 degrees.
  • the fixed phase setting unit is configured to rotate the rotor when a predetermined time elapses after the first fixed phase or the second fixed phase is set as the fixed phase.
  • an auxiliary fixed phase that is greater than 0 degree and 90 degrees or less in electrical angle with respect to the set fixed phase is used as the fixed phase.
  • the error between the fixed phase and the actual phase can be more reliably reduced to 90 degrees or less in absolute value of the electrical angle.
  • the motor can be started more quickly.
  • the electrical angle of the motor is output from the rotational position detector according to the rotational position of the rotor of the motor every 180 degrees.
  • the rotor has a stable stop point of -90 degrees or more with respect to the maximum electrical angle stable stop point and 90 degrees or less with respect to the minimum electrical angle stable stop point.
  • the electrical angle with respect to the stable stop point of the maximum electrical angle among the stable stop points of the rotor is ⁇ More than 90 degrees
  • a second fixed phase setting step of setting an electrical angle of 90 degrees or less in electrical angle with respect to a stable stop point of the electrical angle to a second fixed phase, and the motor drive control unit using the second fixed phase When the type of the detection signal output from the rotational position detection unit is controlled again by controlling the driving of the motor and the rotation of the rotor, the detection signal is switched for the first time and the detection signal at the second time.
  • the electrical angle of the motor is output from the rotational position detector according to the rotational position of the rotor of the motor every 180 degrees.
  • the rotor has a stable stop point of -90 degrees or more with respect to the maximum electrical angle stable stop point and 90 degrees or less with respect to the minimum electrical angle stable stop point.
  • the first fixed phase is greater than 0 degree and 90 degrees.
  • the electrical angle is -90 degrees or more with respect to the stable stop point of the maximum electrical angle among the stable stop points of the rotor in accordance with the detection signal after switching.
  • the type of the detection signal output from the rotational position detection unit when a predetermined time has elapsed since the driving of the motor is controlled by the rotation of the rotor and the second fixed phase is set.
  • a fourth fixed phase setting step of setting an electrical angle greater than 0 degree and 90 degrees or less with respect to the second fixed phase as a fourth fixed phase, and using the fourth fixed phase,
  • the drive of the motor is controlled by the motor drive control unit, and the type of the detection signal output from the rotational position detection unit is switched again by the rotation of the rotor, the time when the detection signal is switched first
  • An interpolation phase calculation step for calculating an interpolation phase using the time when the detection signal is switched for the second time, and a reference phase determined according to the detection signal after the type of the detection signal is switched for the second time.
  • an estimated phase calculating step of calculating an estimated phase by adding the interpolation phases (second method).
  • FIG. 1 is a block diagram showing a schematic configuration of a motor control device 1 according to Embodiment 1 of the present invention.
  • the motor control device 1 outputs a control signal to the drive circuit 3 that drives the motor 2. That is, the motor control device 1 controls the driving of the motor 2.
  • the motor 2 includes a rotor 51, a stator 55, and a detected part 60.
  • reference numeral 13 denotes a position detection sensor described later that detects the rotational position of the detected portion 60.
  • the motor 2 is, for example, a so-called inner rotor type motor in which a rotor 51 is disposed inside a cylindrical stator 55.
  • the motor may be a so-called outer rotor type motor in which the rotor rotates in the radially outward direction of the stator.
  • the rotor 51 has a rotor core 52 and a field magnet 53 arranged in the circumferential direction on the outer periphery of the rotor core 52.
  • a field magnet 53 arranged in the circumferential direction on the outer periphery of the rotor core 52.
  • four field magnets 53 are arranged on the outer periphery of the rotor core 52. That is, the motor 2 of this embodiment has 4 poles.
  • the field magnet 53 may be disposed inside the rotor core.
  • the stator 55 includes a substantially cylindrical yoke 56, a plurality (six in this embodiment) of teeth 57 extending inward from the inner peripheral surface of the yoke 56, and a coil 58 wound around the teeth 57.
  • the yoke 56 and the plurality of teeth 57 are integrally formed.
  • the motor 2 of the present embodiment is, for example, a motor having 4 poles and 6 slots.
  • the motor 2 may have a number of poles other than 4 or may have a slot number other than 6.
  • the detected unit 60 rotates integrally with the rotor 51.
  • the detected part 60 is made of a magnetic material.
  • the detected portion 60 includes a main body portion 61 and a pair of protruding portions 62 that protrude from the main body portion 61 toward one and the other in the radial direction of the motor 2. That is, the pair of protrusions 62 are provided on the outer peripheral side of the main body 61 at an interval of 180 degrees. Thereby, the to-be-detected part 60 has an unevenness
  • the drive circuit 3 is a switching circuit provided with a plurality of switching elements (not shown) constituting a three-phase bridge circuit so as to drive the motor 2. Since the drive circuit 3 has the same configuration as a general switching circuit, a detailed description thereof is omitted.
  • the motor control device 1 includes a motor drive control unit 11, a phase setting unit 12, and a rotational position detection unit 13.
  • the motor drive control unit 11 generates a control signal for driving the motor 2 according to the phase set by the phase setting unit 12.
  • the motor drive control unit 11 outputs the generated control signal to the drive circuit 3. Since the configuration of the motor drive control unit 11 is the same as the conventional configuration, detailed description thereof is omitted.
  • the rotational position detector 13 includes a magnet that generates a magnetic flux between the rotor 51 and the detected part 60 that rotates together with the rotor 51.
  • the rotational position detection unit 13 detects a change in magnetic flux between the detected part 60 and the detected part 60 when the detected part 60 having irregularities on the outer peripheral surface rotates together with the rotor 51, and detects two types of detection signals. (High signal, Low signal) is output.
  • the rotational position detection unit 13 switches the type of the detection signal when detecting a change in magnetic flux with the detected unit 60.
  • the phase setting unit 12 sets the phase used by the motor drive control unit 11 in accordance with the detection signal output from the rotational position detection unit 13.
  • the phase setting unit 12 sets the first fixed phase according to the detection signal output from the rotation position detection unit 13 when the motor 2 is started, that is, when the rotation of the rotor 51 is started.
  • the phase setting unit 12 sets the second fixed phase when the type of the detection signal output from the rotational position detection unit 13 is switched by the rotation of the rotor 51 after the setting of the first fixed phase. .
  • These first fixed phase and second fixed phase are used for drive control of the motor 2 while being set by the phase setting unit 12.
  • the phase setting unit 12 calculates an estimated phase when the detection signal output from the rotational position detection unit 13 is switched again. This estimated phase is used for drive control of the motor 2 until a new phase is set by the phase setting unit 12.
  • the phase setting unit 12 includes a detection signal determination unit 21, a fixed phase setting unit 22, and an estimated phase calculation unit 23.
  • the fixed phase setting unit 22 sets 90 degrees in electrical angle as the first fixed phase.
  • the fixed phase setting unit 22 sets 270 degrees in electrical angle to the first fixed phase.
  • the first fixed phase is used for drive control of the motor 2.
  • the fixed phase setting unit 22 is configured to detect the first edge of the detection signal output from the rotational position detection unit 13 by the detection signal determination unit 21 after setting the first fixed phase.
  • the fixed phase is 90 degrees in electrical angle
  • 270 degrees in electrical angle is set to the second fixed phase
  • 90 degrees in electrical angle is fixed to the second.
  • the second fixed phase is used for drive control of the motor 2.
  • the rotor 51 when the error is larger than ⁇ 90 degrees in electrical angle and smaller than 90 degrees, the rotor 51 has a positive torque, that is, a torque that causes the rotor 51 to rotate forward. Arise.
  • negative torque that is, torque that reversely rotates the rotor 51 is generated in the rotor 51.
  • FIG. 2 shows the relationship between the detection signal output from the rotational position detector 13 and the electrical angle. As shown in FIG. 2, when the detection signal is a Low signal, the electrical angle is between 0 degrees and 180 degrees, and when the detection signal is a High signal, the electrical angle is 180 degrees to 360 degrees. Between.
  • the detection signal is a Low signal
  • the first fixed phase is set to the electrical angle as described above.
  • the error between the actual phase at the stop position of the rotor 51 and the first fixed phase can be made 90 degrees or less in absolute value of the electrical angle.
  • the first fixed phase when the detection signal is a Low signal, the first fixed phase is set to 90 degrees in electrical angle, and when the detection signal is a High signal, the first fixed phase is set to 270 degrees in electrical angle.
  • the fixed phase setting unit 22 sets 90 degrees or 270 degrees in electrical angle as the fixed phase according to the detection signal when the rotor 51 starts to rotate.
  • the error between the fixed phase and the actual phase becomes 90 degrees or less in absolute value of the electrical angle. Therefore, it is possible to prevent the rotor 51 of the motor 2 from rotating in the reverse direction.
  • the estimated phase calculation unit 23 calculates the estimated phase when the detection signal determination unit 21 detects the second edge based on the detection signal and outputs the calculation instruction signal.
  • the estimated phase calculation unit 23 calculates an interpolation phase using the time when the edge of the detection signal output from the rotational position detection unit 13 is detected, and sets the interpolation phase to a reference phase determined based on the detection signal.
  • the estimated phase is calculated by addition.
  • the estimated phase calculation unit 23 includes a reference phase setting unit 30, an interpolation phase calculation unit 31, and a calculation unit 32.
  • the reference phase setting unit 30 sets the reference phase according to the detection signal output from the rotational position detection unit 13. Specifically, the reference phase setting unit 30 sets an electrical angle of 0 degrees as a reference phase when the detection signal is a Low signal, and sets an electrical angle of 180 degrees when the detection signal is a High signal. Set to reference phase.
  • the interpolation phase calculation unit 31 uses the detection time t1 of the edge of the detection signal (time when the type of the detection signal is first switched) and the detection time t2 of the edge of the detection signal for the second time (time when the type of the detection signal is switched for the second time).
  • the interpolation phase is calculated. Specifically, the interpolation phase calculation unit 31 determines the difference (180 degrees in electrical angle) between the rotational position when the edge of the first detection signal is detected and the rotational position when the edge of the second detection signal is detected. ) Is divided by the difference (t2 ⁇ t1) between the detection time t1 and the detection time t2 to obtain the rotational speed of the motor 2. And the interpolation phase calculation part 31 acquires an interpolation phase by integrating the said rotational speed.
  • the interpolation phase calculation unit 31 each time the detection signal edge is detected by the detection signal determination unit 21, the detection time and the previous detection time. Is used to obtain the rotational speed of the motor 2 and integrate the rotational speed to obtain an interpolation phase.
  • step SA1 the fixed phase setting unit 22 determines whether or not the detection signal output from the rotational position detection unit 13 is a Low signal (L in FIG. 4).
  • step SA1 If it is determined in step SA1 that the detection signal is a low signal (in the case of YES), the process proceeds to step SA2, and the fixed phase setting unit 22 sets 90 degrees in electrical angle to the first fixed phase. On the other hand, if it is determined in step SA1 that the detection signal is not a low signal (in the case of NO), that is, if the detection signal is a high signal, the process proceeds to step SA3, where the fixed phase setting unit 22 is an electrical angle. 270 degrees is set as the first fixed phase.
  • step SA5 when it is determined in step SA5 that the edge of the detection signal has not been detected (in the case of NO), the process returns to step SA4 to continue the drive control of the motor 2.
  • step SA8 it is determined whether or not the detection signal output from the rotational position detector 13 is a low signal.
  • the process proceeds to step SA9, and the reference phase setting unit 30 sets the electrical angle of 0 degrees as the reference phase.
  • step SA11 following step SA9, SA10, the interpolation phase calculation unit 31 calculates the interpolation phase by integrating the rotational speed calculated in step SA7.
  • step SA12 the calculation unit 32 obtains an estimated phase by adding the interpolation phase to the reference phase.
  • step SA13 the motor drive control unit 11 generates a control signal for controlling the drive of the motor 2 using the estimated phase obtained in step SA12. Accordingly, the motor 2 is driven and controlled based on the estimated phase obtained in step SA12.
  • the motor control device 101 includes a motor drive control unit 11 and a phase setting unit 112.
  • the phase setting unit 112 includes a detection signal determination unit 21, a fixed phase setting unit 122, and a timer unit 124.
  • the third fixed phase is larger than 0 degree and 90 degrees or less in electrical angle with respect to the first fixed phase. In the present embodiment, the third fixed phase is a value advanced by 60 degrees in electrical angle with respect to the first fixed phase.
  • the fourth fixed phase is greater than 0 degree and 90 degrees or less in electrical angle with respect to the second fixed phase. In the present embodiment, the fourth fixed phase is a value advanced by 60 degrees in electrical angle with respect to the second fixed phase.
  • the fixed phase setting unit 122 receives the third fixed phase or the fourth fixed phase. Set a fixed phase.
  • the motor drive control unit 11 drives the motor 2 using the fixed phases (first fixed phase, second fixed phase, third fixed phase, and fourth fixed phase) set by the fixed phase setting unit 122. Generate a control signal. Thereby, the motor 2 is driven and controlled based on the fixed phase.
  • step SB5 the detection signal determination unit 21 determines whether the edge of the detection signal output from the rotational position detection unit 13 has been detected. If it is determined in step SB5 that the edge of the detection signal has been detected (in the case of YES), the process proceeds to step SB6 to determine whether or not the detection of the edge of the detection signal is the second time.
  • step SB7 if it is determined in step SB7 that the predetermined time has not elapsed since the fixed phase setting unit 122 set the first fixed phase (in the case of NO), the process returns to step SB4, and the first The drive control of the motor 2 based on the fixed phase is continued.
  • step SB8 When it is determined in step SB8 that the detection signal is a low signal (in the case of YES), the process proceeds to step SB9, and the fixed phase setting unit 122 sets 120 degrees in electrical angle to the third fixed phase. To do. On the other hand, if it is determined in step SB8 that the detection signal is not a low signal (in the case of NO), that is, if the detection signal is a high signal, the process proceeds to step SB10, where the fixed phase setting unit 122 is an electrical angle. 300 degrees is set as the third fixed phase.
  • step SB12 which proceeds after step SB11, the detection signal determination unit 21 determines whether an edge of the detection signal is detected.
  • the process proceeds to step SB13, and the detection signal determination unit 21 determines whether the detection of the edge of the detection signal is the second time. .
  • the process returns to step SB11 to drive and control the motor 2 based on the third fixed phase.
  • step SB5 it is determined whether or not the edge of the detection signal is detected by the detection signal determination unit 21, and when it is determined that the edge of the detection signal is detected (in the case of YES), the process proceeds to step SB6.
  • step SB6 it is determined whether or not the edge detection of the detection signal is the second time. In this case, since the edge detection of the detection signal is the second time, the process proceeds to step SB14 and subsequent steps.
  • Steps SB1 to SB3 correspond to the first fixed phase setting step.
  • Steps SB1 to SB3, SB12, and SB13 correspond to the second fixed phase setting step.
  • Steps SB11 to SB14 and SB18 correspond to the interpolation phase calculation step.
  • Steps SB15 to SB17 and SB19 correspond to the estimated phase calculation step.
  • FIG. 10 shows the case of pattern 2 by (2). In pattern 2, a positive torque that causes the rotor 51 to rotate forward is generated.
  • the first fixed phase and the third fixed phase, or the second fixed phase and the fourth fixed phase are used until the edge of the detection signal output from the rotational position detector 13 is detected.
  • the fixed phase setting unit 22 sets the first fixed phase to 90 degrees in electrical angle
  • the fixed phase setting unit 122 sets the first fixed phase to 60 degrees in electrical angle.
  • the first fixed phase is the stable stop point of the maximum electrical angle among the stable stop points of the rotor 51 (150 degrees in this embodiment).
  • the electrical angle of ⁇ 90 degrees or more and a stable stopping point of the minimum electrical angle (30 degrees in the present embodiment).
  • the first fixed phase is the stable stop point of the maximum electrical angle (330 degrees in this embodiment) among the stable stop points of the rotor 51.
  • electrical angle of ⁇ 90 degrees or more and a stable stop point of the minimum electrical angle may be 90 degrees or less in electrical angle.
  • the second fixed phase is based on the detection signal after switching, and the stability of the rotor 51 is stabilized.
  • an electrical angle of ⁇ 90 degrees or more with respect to the stable stopping point with the maximum electrical angle and an electrical angle of 90 degrees or less with respect to the stable stopping point with the minimum electrical angle may be set.
  • the fixed phase setting unit 122 sets the first fixed phase or the second fixed phase by detecting the edge of the detection signal output from the rotational position detection unit 13, and the first fixed phase or the second fixed phase.
  • the third fixed phase or the fourth fixed phase is set as the auxiliary fixed phase after a predetermined time has elapsed from the setting of the fixed phase.
  • the fixed phase setting unit may set a plurality of auxiliary fixed phases until an edge of the detection signal is detected.
  • the fixed phase setting unit may set the auxiliary fixed phase after the first predetermined time has elapsed after setting the first fixed phase, and then set another auxiliary fixed phase after the second predetermined time has elapsed. .
  • the fixed phase setting unit sets the second fixed phase when the edge of the detection signal is detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

モータの回転位置を電気角で90度毎に検出可能な回転位置検出部を備えたモータ制御装置において、回転子の回転始動時の位相が容易に得られるとともに、回転子の回転始動時の応答性が高い構成を得る。モータ制御装置1は、回転位置検出部13から出力される検出信号に応じてモータ2の固定位相を設定する固定位相設定部22を備える。固定位相設定部22は、回転子51の回転始動時に、前記検出信号に応じて、回転子51の最大電気角の安定停止点に対して-90度以上で且つ最小電気角の安定停止点に対して90度以下の第1固定位相を、前記固定位相として設定し、回転子51の回転によって前記検出信号の種類が切り替わった後の前記検出信号に応じて、回転子51の最大電気角の安定停止点に対して-90度以上で且つ最小電気角の安定停止点に対して90度以下の第2固定位相を、前記固定位相として設定する。

Description

モータ制御装置及びモータ制御方法
 本発明は、モータの回転始動時に、回転子の回転に応じて電気角で180度毎に出力される検出信号を用いて、モータの駆動を制御するモータ制御装置及びモータ制御方法に関する。
 モータの回転始動時に、回転子の回転に応じて電気角で180度毎に出力される検出信号を用いて、モータの駆動を制御するモータ制御装置が知られている。このようなモータ制御装置として、例えば特許文献1には、回転子側に取り付けられたセンサターゲットとの周方向の相対位置関係に応じて出力されるHまたはLの位置センサ信号と、該位置センサ信号が切り替わる時間間隔から検出される前記回転子の回転速度とに基づいて、前記回転子の位相を推定する推定位相検出装置が開示されている。
 詳しくは、前記特許文献1に開示されている推定位相検出装置は、前記位置センサ信号の切り替わりが2回検出されるまでの第一期間では、前記位置センサ信号のHまたはLに対応して定まる基準位相と始動加速度を2階積分して得られる補間位相との和から位相を推定する。一方、前記推定位相検出装置は、前記第一期間経過後の第二期間において、切り替わった前記位置センサ信号に基づく前記基準位相と、切り替わり前に検出された回転速度を積分することにより得られる補間位相との和から位相を推定する。
特開2015-100142号公報
 上述の特許文献1に開示されている構成では、位置センサ信号の切り替わりが2回検出されるまでの第一期間において、位相を算出する際の回転速度(検出速度)が得られないため、始動加速度を用いて、位相を推定している。
 しかしながら、上述のように位相を推定する方法では、回転子の停止位置によっては、始動時に回転子が逆回転する可能があるため、回転子の回転始動時の応答性があまり高くない。また、上述のように位相を推定する方法では、基準位相及び補間位相の和から位相を推定しているため、演算の負荷が高い。
 本発明の目的は、回転子の回転位置を電気角で180度毎に検出可能な回転位置検出部を備えたモータ制御装置において、回転子の回転始動時の位相が容易に得られるとともに、回転子の回転始動時の応答性が高い構成を得ることにある。
 本発明の一実施形態に係るモータ制御装置は、モータの駆動を制御するモータ制御装置である。このモータ制御装置は、前記モータの電気角が180度毎に、前記モータの回転子の回転位置に応じて2種類の検出信号を出力する回転位置検出部と、前記検出信号に応じて前記モータの固定位相を設定する固定位相設定部と、前記検出信号及び前記固定位相を用いて、推定位相を算出する推定位相算出部と、前記固定位相または前記推定位相に基づいて、前記回転子の回転を制御するモータ駆動制御部と、を備える。前記固定位相設定部は、前記回転子の回転始動時に、前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第1固定位相を、前記固定位相として設定し、前記回転子の回転によって、前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第2固定位相を、前記固定位相として設定する。前記推定位相算出部は、前記回転子の回転によって、前記回転位置検出部から出力される前記検出信号の種類が再度、切り替わった際に、最初に前記検出信号の種類が切り替わった時刻と2回目に前記検出信号の種類が切り替わった時刻とを用いて補間位相を算出する補間位相算出部と、前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、前記推定位相を算出する演算部と、を備える。
 本発明の一実施形態に係るモータ制御方法は、前記モータの回転子の回転始動時に、前記モータの電気角が180度毎に前記モータの回転子の回転位置に応じて回転位置検出部から出力される2種類の検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して-90度以上で且つ最小電気角の安定停止点に対して90度以下の電気角を、第1固定位相に設定する第1固定位相設定工程と、前記第1固定位相を用いてモータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の電気角を、第2固定位相に設定する第2固定位相設定工程と、前記第2固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が再度切り替わった際に、最初に前記検出信号が切り替わった時刻と2回目に前記検出信号が切り替わった時刻とを用いて、補間位相を算出する補間位相算出工程と、前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、推定位相を算出する推定位相算出工程と、を有する。
 本発明の一実施形態に係るモータ制御方法は、前記モータの回転子の回転始動時に、前記モータの電気角が180度毎に前記モータの回転子の回転位置に応じて回転位置検出部から出力される2種類の検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して-90度以上で且つ最小電気角の安定停止点に対して90度以下の電気角を、第1固定位相に設定する第1固定位相設定工程と、前記第1固定位相を用いてモータ駆動制御部によって前記モータの駆動を制御し、前記第1固定位相を設定してから所定時間が経過した際に、且つ、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わる前に、前記第1固定位相に対して0度よりも大きく且つ90度以下の電気角を、第3固定位相として設定する第3固定位相設定工程と、前記第3固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の電気角を、第2固定位相に設定する第2固定位相設定工程と、前記第2固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記第2固定位相を設定してから所定時間が経過した際に、且つ、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わる前に、前記第2固定位相に対して0度よりも大きく且つ90度以下の電気角を、第4固定位相として設定する第4固定位相設定工程と、前記第4固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が再度切り替わった際に、最初に前記検出信号が切り替わった時刻と2回目に前記検出信号が切り替わった時刻とを用いて、補間位相を算出する補間位相算出工程と、前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、推定位相を算出する推定位相算出工程と、を有する。
 本発明の一実施形態に係るモータ制御装置によれば、固定位相設定部は、回転子の回転始動時に、回転位置検出部から出力される検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第1固定位相を、固定位相として設定し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第2固定位相を、前記固定位相として設定する。
 これにより、固定位相を用いてモータの始動制御を容易に行うことができるとともに、固定位相と実位相との誤差を電気角の絶対値で90度以下にすることができる。よって、モータの回転子が逆回転することなく、モータを応答性良く迅速に始動させることができる。したがって、回転子の回転始動時の位相が容易に得られるとともに、回転子の回転始動時の応答性が高い構成を実現できる。
図1は、実施形態1に係るモータ制御装置の概略構成を示す制御ブロック図である。 図2は、電気角と、コギングトルク及び検出信号との関係を模式的に示す図である。 図3は、固定位相と実位相との誤差と、回転子に生じるトルクとの関係を模式的に示す図である。 図4は、モータ制御装置の動作の一例を示すフローである。 図5は、モータ制御装置の動作の一例を示すフローである。 図6は、固定位相を設定した場合に、回転子の回転によって該回転子に生じるトルクの変化を模式的に示す図である。 図7は、実施形態2に係るモータ制御装置の図1相当図である。 図8は、モータ制御装置の動作の一例を示すフローである。 図9は、モータ制御装置の動作の一例を示すフローである。 図10は、固定位相を設定した場合に、回転子の回転によって該回転子に生じるトルクの変化を模式的に示す図である。 図11は、補助固定位相に変更した場合に、回転子の回転によって該回転子に生じるトルクの変化を模式的に示す図である。
 本発明の一実施形態に係るモータ制御装置は、モータの駆動を制御するモータ制御装置である。このモータ制御装置は、前記モータの電気角が180度毎に、前記モータの回転子の回転位置に応じて2種類の検出信号を出力する回転位置検出部と、前記検出信号に応じて前記モータの固定位相を設定する固定位相設定部と、前記検出信号及び前記固定位相を用いて、推定位相を算出する推定位相算出部と、前記固定位相または前記推定位相に基づいて、前記回転子の回転を制御するモータ駆動制御部と、を備える。前記固定位相設定部は、前記回転子の回転始動時に、前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第1固定位相を、前記固定位相として設定し、前記回転子の回転によって、前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第2固定位相を、前記固定位相として設定する。前記推定位相算出部は、前記回転子の回転によって、前記回転位置検出部から出力される前記検出信号の種類が再度、切り替わった際に、最初に前記検出信号の種類が切り替わった時刻と2回目に前記検出信号の種類が切り替わった時刻とを用いて補間位相を算出する補間位相算出部と、前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、前記推定位相を算出する演算部と、を備える(第1の構成)。
 以上の構成により、回転子の回転始動時には、モータの駆動制御に固定位相を用いるため、従来構成のように始動加速度を用いた位相の演算が不要になる。よって、回転子の回転始動時の位相が容易に得られる。
 しかも、上述の構成では、従来構成のように位相を推定する時間よりも前の始動加速度を用いないため、モータ始動時の応答性を向上することができる。
 ところで、前記固定位相とモータの実際の位相(以下、実位相)との誤差が、電気角の絶対値で90度よりも大きい場合には、図3に示すように、回転子に負のトルクが生じる。これは、モータを駆動制御する際に、実位相に対して固定子コイルに印加する電流の位相が電気角の絶対値で90度よりも大きくずれた場合、回転子のマグネットが受けるトルク(以下、マグネットトルク)が逆方向であることを意味している。一方、前記固定位相と実位相との誤差が電気角の絶対値で90度以下であれば、マグネットトルクは逆方向ではない。
 これに対し、上述の構成では、回転子の回転始動時には、前記固定位相を、回転位置検出部から出力される検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第1固定位相とする。これにより、安定停止点で停止していた前記回転子の回転位置での位相に対し、前記固定位相の誤差を電気角の絶対値で90度以下にすることができる。
 しかも、前記回転子の回転によって、前記回転位置検出部から出力される前記検出信号の種類が切り替わった際には、前記固定位相を、第2固定位相とする。この第2固定位相は、例えば、前記第1固定位相が電気角で90度の場合には電気角で270度であり、前記第1固定相が電気角で270度の場合には電気角で90度である。これにより、実位相に対する前記固定位相の誤差を電気角の絶対値で90度以下にすることができる。
 したがって、上述の構成により、前記固定位相を用いてモータの始動制御を行った場合でも、回転子が逆方向に回転することを防止できる。したがって、モータを迅速に始動させることが可能になる。
 前記第1の構成において、前記固定位相設定部は、前記第1固定位相または前記第2固定位相を前記固定位相として設定してから所定時間が経過した際に、且つ、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わる前に、前記設定された固定位相に対して電気角で0度よりも大きく且つ90度以下の補助固定位相を、前記固定位相として設定する(第2の構成)。
 これにより、固定位相と実位相との誤差を、より確実に電気角の絶対値で90度以下にすることができる。
 しかも、前記固定位相を電気角で90度または270度に設定する場合に比べて、前記誤差が小さくなるため、より大きなマグネットトルクが得られる。よって、モータをより迅速に始動させることができる。
 本発明の一実施形態に係るモータ制御方法は、前記モータの回転子の回転始動時に、前記モータの電気角が180度毎に前記モータの回転子の回転位置に応じて回転位置検出部から出力される2種類の検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して-90度以上で且つ最小電気角の安定停止点に対して90度以下の電気角を、第1固定位相に設定する第1固定位相設定工程と、前記第1固定位相を用いてモータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の電気角を、第2固定位相に設定する第2固定位相設定工程と、前記第2固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が再度切り替わった際に、最初に前記検出信号が切り替わった時刻と2回目に前記検出信号が切り替わった時刻とを用いて、補間位相を算出する補間位相算出工程と、前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、推定位相を算出する推定位相算出工程と、を有する(第1の方法)。
 本発明の一実施形態に係るモータ制御方法は、前記モータの回転子の回転始動時に、前記モータの電気角が180度毎に前記モータの回転子の回転位置に応じて回転位置検出部から出力される2種類の検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して-90度以上で且つ最小電気角の安定停止点に対して90度以下の電気角を、第1固定位相に設定する第1固定位相設定工程と、前記第1固定位相を用いてモータ駆動制御部によって前記モータの駆動を制御し、前記第1固定位相を設定してから所定時間が経過した際に、且つ、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わる前に、前記第1固定位相に対して0度よりも大きく且つ90度以下の電気角を、第3固定位相として設定する第3固定位相設定工程と、前記第3固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の電気角を、第2固定位相に設定する第2固定位相設定工程と、前記第2固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記第2固定位相を設定してから所定時間が経過した際に、且つ、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わる前に、前記第2固定位相に対して0度よりも大きく且つ90度以下の電気角を、第4固定位相として設定する第4固定位相設定工程と、前記第4固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が再度切り替わった際に、最初に前記検出信号が切り替わった時刻と2回目に前記検出信号が切り替わった時刻とを用いて、補間位相を算出する補間位相算出工程と、前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、推定位相を算出する推定位相算出工程と、を有する(第2の方法)。
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。
 [実施形態1]
 図1は、本発明の実施形態1に係るモータ制御装置1の概略構成を示すブロック図である。このモータ制御装置1は、モータ2を駆動させる駆動回路3に対して、制御信号を出力する。すなわち、モータ制御装置1は、モータ2の駆動を制御する。モータ2は、回転子51と、固定子55と、被検出部60とを備える。図1において、符号13は、被検出部60の回転位置を検出する後述の位置検出センサである。
 モータ2は、例えば、円筒形の固定子55の内方に回転子51が配置された、いわゆるインナーロータタイプのモータである。なお、モータは、回転子が固定子の径方向外方で回転する、いわゆるアウターロータタイプのモータであってもよい。
 回転子51は、回転子コア52と、回転子コア52の外周部に周方向に並んで配置される界磁用マグネット53とを有する。本実施形態では、界磁用マグネット53は、回転子コア52の外周部に4つ配置されている。すなわち、本実施形態のモータ2は、極数が4である。なお、界磁用マグネット53は、回転子コアの内部に配置されていてもよい。
 固定子55は、略円筒状のヨーク56と、ヨーク56の内周面から内方に向かって延びる複数(本実施形態では6つ)のティース57と、ティース57に巻かれたコイル58とを有する。ヨーク56及び複数のティース57は、一体形成されている。
 本実施形態のモータ2は、例えば、極数が4で、スロット数が6のモータである。なお、モータ2は、極数が4以外であってもよいし、スロット数が6以外であってもよい。
 被検出部60は、回転子51と一体で回転する。被検出部60は、磁性材料によって構成されている。被検出部60は、本体部61と、本体部61からモータ2の径方向一方及び他方に向かってそれぞれ突出する一対の突出部62とを有する。すなわち、一対の突出部62は、本体部61の外周側に180度の間隔で設けられている。これにより、被検出部60は、外周面に凹凸を有する。
 駆動回路3は、モータ2を駆動させるように、3相のブリッジ回路を構成する複数のスイッチング素子(図示省略)を備えたスイッチング回路である。駆動回路3は、一般的なスイッチング回路と同様の構成を有するため、詳しい説明は省略する。
 モータ制御装置1は、入力されるモータ駆動指令に応じて、駆動回路3に対し、スイッチング素子を駆動させる制御信号を出力する。また、モータ制御装置1は、前記モータ駆動指令に応じて、モータ2の回転子51の回転位置に基づく位相制御を行うことによって、モータ2の駆動を制御する。なお、前記モータ駆動指令は、図示しない上位のコントローラからモータ制御装置1に入力される。
 具体的には、モータ制御装置1は、モータ駆動制御部11と、位相設定部12と、回転位置検出部13とを備える。モータ駆動制御部11は、位相設定部12で設定された位相に応じて、モータ2を駆動させるための制御信号を生成する。モータ駆動制御部11は、生成した前記制御信号を、駆動回路3に対して出力する。なお、モータ駆動制御部11の構成は、従来の構成と同様なので、詳しい説明を省略する。
 回転位置検出部13は、回転子51と一体で回転する被検出部60との間で磁束を生じさせる磁石を有する。回転位置検出部13は、外周面に凹凸を有する被検出部60が回転子51と一体で回転した際に、被検出部60との間の磁束の変化を検出して、2種類の検出信号(High信号、Low信号)を出力する。回転位置検出部13は、被検出部60との間の磁束の変化を検出した際に、前記検出信号の種類を切り替える。
 具体的には、回転位置検出部13は、径方向内方に被検出部60の一対の突出部62のいずれか一方が位置する場合には、前記検出信号としてHigh信号を出力する一方、径方向内方に被検出部60の一対の突出部62以外が位置する場合には、前記検出信号としてLow信号を出力する。回転位置検出部13から出力された検出信号は、モータ制御装置1内の位相設定部12に入力される。なお、回転位置検出部13は、モータ2の始動時にも、被検出部60の回転位置に応じて2種類の検出信号(High信号、Low信号)のうち一方の検出信号を出力する。
 位相設定部12は、回転位置検出部13から出力された検出信号に応じて、モータ駆動制御部11で用いる位相を設定する。位相設定部12は、モータ2の始動時、すなわち回転子51の回転始動時には、回転位置検出部13から出力される検出信号に応じて、第1固定位相を設定する。また、位相設定部12は、前記第1固定位相の設定後、回転子51の回転によって回転位置検出部13から出力される前記検出信号の種類が切り替わった際に、第2固定位相を設定する。これらの第1固定位相及び第2固定位相は、位相設定部12によって設定されている間、モータ2の駆動制御に用いられる。さらに、位相設定部12は、回転位置検出部13から出力される前記検出信号が再度切り替わった際に、推定位相を算出する。この推定位相は、位相設定部12で新たな位相が設定されるまで、モータ2の駆動制御に用いられる。
 具体的には、位相設定部12は、検出信号判定部21と、固定位相設定部22と、推定位相算出部23とを有する。
 検出信号判定部21は、回転位置検出部13から出力される検出信号がLow信号とHigh信号との間で切り替えられた際に、信号の切り替わり(以下、エッジという)を検出する。また、検出信号判定部21は、回転位置検出部13から出力される検出信号のエッジをカウントして、エッジが所定回数(本実施形態では2回)に達した場合に、算出指示信号を出力する。後述するように、推定位相算出部23は、前記算出指示信号に応じて、推定位相を算出する。
 固定位相設定部22は、モータ2の始動時から、検出信号判定部21によって前記算出指示信号が出力されるまでの間、回転位置検出部13から出力される検出信号に応じて、第1固定位相または第2固定位相を設定する。
 詳しくは、固定位相設定部22は、モータ2の始動時に、回転位置検出部13から出力される検出信号がLow信号の場合には、電気角で90度を第1固定位相に設定する。一方、固定位相設定部22は、モータ2の始動時に、回転位置検出部13から出力される検出信号がHigh信号の場合には、電気角で270度を第1固定位相に設定する。前記第1固定位相は、モータ2の駆動制御に用いられる。
 また、固定位相設定部22は、前記第1固定位相の設定後、検出信号判定部21によって、回転位置検出部13から出力される検出信号の1回目のエッジを検出した場合に、前記第1固定位相が電気角で90度の場合には電気角で270度を第2固定位相に設定し、前記第1固定位相が電気角で270度の場合には電気角で90度を第2固定位相に設定する。第2固定位相は、モータ2の駆動制御に用いられる。
 ここで、モータ2の回転子51は、モータ2に生じるコギングトルクの影響によって、停止する回転位置が決まっている。すなわち、回転子51は、コギングトルクがゼロで且つ電気角に対するコギングトルクの傾きが負である電気角の位置(安定停止点)で停止する。図2に、モータ2に生じるコギングトルクと回転子51の安定停止点との関係を示す。図2に示すように、前記安定停止点は、電気角が0度から180度の範囲内で、30度(最小電気角の安定停止点)、90度、150度(最大電気角の安定停止点)であり、電気角が180度から360度の範囲内で、210度(最小電気角の安定停止点)、270度、330度(最大電気角の安定停止点)である。
 なお、図2において、回転位置検出部13から出力される検出信号がHigh信号からLow信号に切り替わる位置が、電気角0度である。よって、図2では、回転位置検出部13から出力される検出信号がLow信号からHigh信号に切り替わる位置が、電気角で180度である。
 ところで、モータ2の駆動制御に用いる位相と、モータ2の実際の位相(実位相)とに誤差がある場合、その誤差に応じて回転子51に生じるトルクも変化する。前記誤差と回転子51に生じるトルクとの関係を、図3に示す。なお、図3において、マグネットトルク(以下、単にトルクともいう)の正の値は、モータ2を駆動させる際に、回転子51をモータ駆動指令における回転方向に回転(以下、正回転という)させるトルクである。一方、図3において、トルクの負の値は、モータ2を駆動させる際に、回転子51をモータ駆動指令における回転方向とは逆方向に回転(以下、逆回転という)させるトルクである。また、以下の説明において、位相の誤差は、実位相からモータ2の駆動制御に用いる位相を減算した値である。
 図3に示すように、前記誤差が電気角で-90度よりも大きく且つ90度よりも小さい範囲内では、回転子51には、正のトルク、すなわち、回転子51を正回転させるトルクが生じる。一方、前記誤差が電気角で90度よりも大きい範囲または電気角で-90度よりも小さい範囲では、回転子51には、負のトルク、すなわち、回転子51を逆回転させるトルクが生じる。
 したがって、モータ2の駆動制御に用いる位相と、モータ2の実際の位相との誤差が、電気角の絶対値で90度よりも小さければ、回転子51を正回転させることができるため、モータ2を迅速に始動させることができる。
 図2に、回転位置検出部13から出力される検出信号と、電気角との関係を示す。図2に示すように、前記検出信号がLow信号の場合には、電気角は0度から180度の間であり、前記検出信号がHigh信号の場合には、電気角は180度から360度の間である。
 よって、前記検出信号がLow信号の場合、回転子51の停止位置が電気角で30度、90度、150度のいずれであるかは不明だが、既述のように第1固定位相を電気角で90度にすることで、回転子51の停止位置における実際の位相と、前記第1固定位相との誤差を電気角の絶対値で90度以下にすることができる。
 同様に、前記検出信号がHigh信号の場合、回転子51の停止位置が電気角で210度、270度、330度のいずれであるかは不明だが、既述のように第1固定位相を電気角で270度にすることで、回転子51の停止位置における実際の位相と、前記第1固定位相との誤差を電気角の絶対値で90度以下にすることができる。
 以上のように、前記検出信号がLow信号の場合に、第1固定位相を電気角で90度に設定するとともに、前記検出信号がHigh信号の場合に、第1固定位相を電気角で270度に設定することにより、モータ2の始動時に、回転子51を正回転させることができる。すなわち、固定位相設定部22は、回転子51の回転始動時に、前記検出信号に応じて、電気角で90度または270度を前記固定位相とする。これにより、固定位相と実位相との誤差が電気角の絶対値で90度以下になる。よって、モータ2の回転子51が逆方向に回転することを防止できる。
 推定位相算出部23は、検出信号判定部21が検出信号に基づいて2回目のエッジを検出して前記算出指示信号を出力した際に、推定位相を算出する。推定位相算出部23は、回転位置検出部13から出力される検出信号のエッジを検出した時刻を用いて、補間位相を算出し、該補間位相を、前記検出信号に基づいて決められる基準位相に加算することにより、推定位相を算出する。
 具体的には、推定位相算出部23は、基準位相設定部30と、補間位相算出部31と、演算部32とを有する。基準位相設定部30は、回転位置検出部13から出力された検出信号に応じて、基準位相を設定する。具体的には、基準位相設定部30は、前記検出信号がLow信号の場合に、電気角で0度を基準位相に設定し、前記検出信号がHigh信号の場合に、電気角で180度を基準位相に設定する。
 補間位相算出部31は、検出信号判定部21から前記算出指示信号が出力された際に、すなわち、検出信号判定部21によって前記検出信号の2回目のエッジが検出された際に、1回目の検出信号のエッジの検出時刻t1(最初に検出信号の種類が切り替わった時刻)と、2回目の検出信号のエッジの検出時刻t2(2回目に検出信号の種類が切り替わった時刻)とを用いて、補間位相を算出する。詳しくは、補間位相算出部31は、1回目の検出信号のエッジが検出された際の回転位置と2回目の検出信号のエッジが検出された際の回転位置との差(電気角で180度)を、検出時刻t1と検出時刻t2との差(t2-t1)で除することにより、モータ2の回転速度を求める。そして、補間位相算出部31は、前記回転速度を積分することにより、補間位相を得る。
 また、補間位相算出部31は、検出信号判定部21から前記算出指示信号が出力された後、検出信号判定部21によって検出信号のエッジが検出される毎に、その検出時刻と直前の検出時刻とを用いてモータ2の回転速度を求めるとともに、該回転速度を積分することにより、補間位相を得る。
 演算部32は、検出信号判定部21から前記算出指示信号が出力された際に、すなわち、検出信号判定部21によって前記検出信号の2回目のエッジが検出された際に、前記基準位相に前記補間位相を加算した値を、推定位相とする。また、演算部32は、検出信号判定部21から前記算出指示信号が出力された後は、前記検出信号のエッジの検出毎に補間位相算出部31によって算出された補間位相を、基準位相設定部30によって設定された基準位相に加算することにより、推定位相を求める。前記推定位相は、モータ2の駆動制御に用いられる。
 (モータ制御方法)
 次に、上述のような構成を有するモータ制御装置1を動作させることにより実現されるモータ制御方法について、図4に示すフローを用いて説明する。
 図4に示すフローがスタートすると、まずステップSA1において、固定位相設定部22は、回転位置検出部13から出力される検出信号がLow信号(図4においてL)かどうかを判定する。
 ステップSA1で前記検出信号がLow信号であると判定された場合(YESの場合)には、ステップSA2に進んで、固定位相設定部22が電気角で90度を第1固定位相に設定する。一方、ステップSA1で前記検出信号がLow信号でないと判定された場合(NOの場合)、すなわち前記検出信号がHigh信号の場合には、ステップSA3に進んで、固定位相設定部22が電気角で270度を第1固定位相に設定する。
 ステップSA2,SA3において固定位相設定部22が第1固定位相を設定した後、ステップSA4に進んで、モータ駆動制御部11が、前記第1固定位相を用いてモータ2の駆動を制御するための制御信号を生成する。これにより、モータ2は、前記第1固定位相に基づいて駆動制御され、回転子51が回転始動する。
 その後、ステップSA5に進んで、検出信号判定部21が前記検出信号のエッジを検出したかどうかを判定する。このステップSA5で前記検出信号のエッジが検出されたと判定された場合(YESの場合)には、ステップSA6に進んで、前記検出信号のエッジの検出が2回目であるかどうかを判定する。
 一方、前記ステップSA5において、前記検出信号のエッジが検出されていないと判定された場合(NOの場合)には、ステップSA4に戻って、モータ2の駆動制御を続ける。
 ステップSA6において、前記検出信号のエッジの検出が2回目であると判定された場合(YESの場合)には、ステップSA7に進んで、補間位相算出部31が、回転子51の回転速度を算出する。
 一方、ステップSA6において、前記検出信号のエッジの検出が2回目でないと判定された場合(NOの場合)には、ステップSA1に戻って、前記検出信号がLow信号であるかどうかの判定を行う。
 なお、上述のステップSA5で前記検出信号のエッジが検出された際に、回転位置検出部13から出力される検出信号は、High信号からLow信号、または、Low信号からHigh信号に切り替わっている。そのため、ステップSA6でNOの場合に進むステップSA1において、前記検出信号がHigh信号からLow信号に切り替わっていた場合(YESの場合)には、固定位相設定部22は、電気角で90度を第2固定位相に設定する(ステップSA2)。一方、前記検出信号がLow信号からHigh信号に切り替わっていた場合(NOの場合)には、固定位相設定部22は、電気角で270度を第2固定位相に設定する(ステップSA3)。その後、モータ駆動制御部11は、前記第2固定位相を用いて制御信号を生成して、モータ2の駆動を制御する(ステップSA4)。
 ステップSA6において前記検出信号のエッジが2回目であると判定された場合に進むステップSA7では、検出信号判定部21から出力される算出指示信号に応じて、補間位相算出部31が回転子51の回転速度を算出する。具体的には、補間位相算出部31は、前記検出信号の1回目のエッジが検出された検出時刻t1と、前記検出信号の2回目のエッジが検出された検出時刻t2とを用いて、回転子51の回転速度を算出する。この際、回転子51は、前記検出信号の1回目のエッジが検出されたときから前記検出信号の2回目のエッジが検出されるまでの間に、電気角で180度、回転している。そのため、補間位相算出部31は、π/(t2-t1)[rad/s]によって、回転子51の回転速度を算出する。
 続くステップSA8では、回転位置検出部13から出力される検出信号がLow信号であるかどうかを判定する。ステップSA8において、前記検出信号がLow信号であると判定された場合(YESの場合)には、ステップSA9に進んで、基準位相設定部30が電気角0度を基準位相に設定する。
 一方、ステップSA8において、前記検出信号がLow信号でないと判定された場合、すなわち前記検出信号がHigh信号であると判定された場合(NOの場合)には、ステップSA10に進んで、基準位相設定部30が電気角180度を基準位相に設定する。
 ステップSA9,SA10の後に進むステップSA11では、補間位相算出部31が、ステップSA7で算出した前記回転速度を積分することにより、補間位相を算出する。
 その後、ステップSA12に進んで、演算部32が、前記基準位相に前記補間位相を加算することにより、推定位相を求める。そして、ステップSA13において、モータ駆動制御部11は、ステップSA12で求めた前記推定位相を用いてモータ2の駆動を制御する制御信号を生成する。これにより、モータ2は、ステップSA12で求めた前記推定位相に基づいて駆動制御される。
 その後、ステップSA14では、モータ制御装置1は、モータ2の駆動が停止したかどうかを判定する。ステップSA14でモータ2の駆動が停止したと判定された場合(YESの場合)には、このフローを終了する(エンド)。一方、ステップSA14でモータ2の駆動が停止していないと判定された場合(NOの場合)には、ステップSA15に進んで、回転位置検出部13から出力される検出信号のエッジを検出したかどうかの判定を行う。
 ステップSA15において、前記検出信号のエッジを検出したと判定された場合(YESの場合)には、ステップSA7に戻って、補間位相算出部31が、直近のエッジ検出の時刻と、その前のエッジ検出の時刻との差から回転速度を算出する。
 一方、ステップSA15において、前記検出信号のエッジを検出していないと判定された場合(NOの場合)には、ステップSA11に戻る。
 ここで、ステップSA1からSA3が第1固定位相設定工程に対応する。ステップSA4からSA6,SA1からSA3が第2固定位相設定工程に対応する。ステップSA4からSA7,SA11が補間位相算出工程に対応する。ステップSA8からSA10,SA12が推定位相算出工程に対応する。
 (固定位相を設定した場合のトルク変化)
 次に、固定位相設定部22によって固定位相を設定した場合に回転子51に生じるトルクの変化について説明する。以下では、説明簡略化のために、固定位相設定部22が第1固定位相を設定した場合について説明する。検出信号がLow信号の場合に設定される電気角90度の場合と、検出信号がHigh信号の場合に設定される電気角270度の場合とにおいて、回転子51に生じるトルク変化は同様である。そのため、以下では、第1固定位相が電気角90度に設定される場合について説明する。
 既述のとおり、回転位置検出部13から出力される検出信号がLow信号の場合、回転子51が停止する回転位置は、電気角で30度、90度、150度である。よって、固定位相を電気角で90度に設定した場合、モータ始動時における固定位相と実際の位相(実位相)との誤差は、電気角で-60度、0度、60度である。以下では、回転子51が停止する回転位置(電気角で30度、90度、150度)の3つのパターンについて、それぞれ、回転子51の回転に伴うトルクの変化を説明する。
 <パターン1>
 回転子51が電気角で30度の回転位置に停止していた場合をパターン1とする。このパターン1の場合には、モータ始動時における固定位相と実位相との誤差は-60度である。前記誤差に対するトルクの変化を示す図6に、パターン1の場合を(1)で示す。パターン1では、回転子51に、正回転させる正のトルクが生じる。
 回転子51が正回転すると、実位相は徐々に大きくなるため、図6に実線矢印で示すように、前記誤差は徐々に小さくなる。これにより、回転子51に生じるトルクは徐々に増大する。
 回転子51が正回転して実位相が固定位相と一致した場合に、前記誤差はゼロになるため、回転子51に生じるトルクは最大になる。回転子51がさらに正回転すると、実位相が固定位相よりも大きくなるため、正の前記誤差が徐々に増える。これにより、回転子51に生じるトルクは徐々に減少する。
 前記誤差が電気角で90度に達した際には、実位相は電気角で180度である。このとき、回転位置検出部13から出力される検出信号はHigh信号に切り替わるため、検出信号判定部21によって検出信号のエッジが検出される。これにより、前記固定位相は、270度に切り替えられる。前記誤差は、電気角で-90度から90度の範囲内であるため、回転子51は正回転を続ける。
 なお、前記誤差が90度の場合には、回転子51に生じるトルクはゼロになるが、回転子51の慣性力及びコギングトルクによって、回転子51がすぐに停止することはない。また、前記固定位相を270度に切り替えた瞬間では、前記誤差は-90度になるが、この場合も、前記慣性力及びコギングトルクによって、回転子51は、すぐに停止することなく正回転を続ける。
 <パターン2>
 回転子51が電気角で90度の回転位置に停止していた場合をパターン2とする。このパターン2の場合には、モータ始動時における固定位相と実位相との誤差は0度である。図6に、パターン2の場合を(2)で示す。パターン2では、回転子51に、正回転させる正のトルクが生じる。
 回転子51が正回転すると、実位相は徐々に大きくなるため、図6に実線矢印で示すように、前記誤差は徐々に大きくなる。これにより、回転子51に生じるトルクは徐々に減少する。
 前記誤差が電気角で90度に達した際には、実位相は電気角で180度であり、パターン1と同様である。よって、説明を省略する。
 したがって、パターン2の場合も、回転子51は、正回転を続ける。
 <パターン3>
 回転子51が電気角で150度の回転位置に停止していた場合をパターン3とする。このパターン3の場合には、モータ始動時における固定位相と実位相との誤差は60度である。図6に、パターン3の場合を(3)で示す。パターン3では、回転子51に、正回転させる正のトルクが生じる。
 回転子51が正回転すると、実位相は徐々に大きくなるため、図6に実線矢印で示すように前記誤差は徐々に大きくなる。これにより、回転子51に生じるトルクは徐々に減少する。
 前記誤差が電気角で90度に達した際には、実位相は電気角で180度であり、パターン1と同様である。よって、説明を省略する。
 したがって、パターン3の場合も、回転子51は正回転を続ける。
 以上より、回転位置検出部13から出力される検出信号に応じて、電気角で90度または270度を固定位相に設定することにより、モータ2の回転子51を逆回転させることなく正回転させることができる。
 しかも、モータ2の始動時に固定位相を用いることにより、従来構成のように位相を推定するための演算が不要になる。よって、モータ2の始動時に固定位相を用いることにより、位相を演算して推定する方法に比べて、モータ2を容易に且つ応答性良く始動させることができる。
 したがって、本実施形態の構成により、回転子51の回転始動時の位相が容易に得られるとともに、回転子51の回転始動時の応答性が高い構成を実現できる。
 [実施形態2]
 図7は、実施形態2に係るモータ制御装置101の概略構成を示す図である。この実施形態2におけるモータ制御装置101は、第1固定位相または第2固定位相を設定した後、所定時間経過後で且つエッジ検出前に、補助固定位相としての第3固定位相または第4固定位相を設定する点で、実施形態1の構成とは異なる。以下では、実施形態1と同様の構成には同一の符号を付して説明を省略し、実施形態1の構成と異なる部分についてのみ説明する。
 (モータ制御装置)
 図7に示すように、モータ制御装置101は、モータ駆動制御部11と、位相設定部112とを有する。位相設定部112は、検出信号判定部21と、固定位相設定部122と、タイマ部124とを有する。
 固定位相設定部122は、実施形態1の固定位相設定部22と同様、モータ2の始動時から、検出信号判定部21によって算出指示信号が出力されるまでの間、回転位置検出部13から出力される検出信号に応じて、固定位相を設定する。詳しくは、固定位相設定部122は、実施形態1と同様に第1固定位相及び第2固定位相を設定する。なお、前記第1固定位相及び前記第2固定位相の設定は、実施形態1の固定位相設定部22と同様の動作なので、詳しい説明を省略する。
 また、固定位相設定部122は、前記第1固定位相または前記第2固定位相を設定した後、所定時間経過後に、補助固定位相としての第3固定位相または第4固定位相を設定する。詳しくは、固定位相設定部122は、前記第1固定位相を設定した後、後述のタイマ部124によって所定時間の経過を検出した際に、補助固定位相としての第3固定位相を設定する。同様に、固定位相設定部122は、前記第2固定位相を設定した後、後述のタイマ部124によって所定時間の経過を検出した際に、補助固定位相としての第4固定位相を設定する。
 なお、前記所定時間は、検出信号のエッジが検出される間隔よりも短い。また、前記所定時間は、図3に示すような位相の誤差とトルクとの関係に応じて、モータ毎に決められる。前記所定時間は、予め設定されていてもよいし、入力されるモータ駆動指令に応じて変化してもよい。
 前記第3固定位相は、前記第1固定位相に対して電気角で0度よりも大きく且つ90度以下である。本実施形態では、前記第3固定位相は、前記第1固定位相に対して電気角で60度進んだ値である。前記第4固定位相は、前記第2固定位相に対して電気角で0度よりも大きく且つ90度以下である。本実施形態では、前記第4固定位相は、前記第2固定位相に対して電気角で60度進んだ値である。
 なお、固定位相設定部122は、前記第1固定位相を設定した後、検出信号判定部21によって検出信号のエッジを検出した場合には、前記第3固定位相を設定することなく、前記第2固定位相を設定する。また、固定位相設定部122は、前記第2固定位相を設定した後、検出信号判定部21によって検出信号のエッジを検出した場合には、前記第4固定位相を設定しない。この場合には、検出信号判定部21から出力される算出指示信号に応じて、推定位相算出部23が推定位相を算出する。
 タイマ部124は、固定位相設定部122が前記第1固定位相または前記第2固定位相を設定してから経過した時間を計測する。タイマ部124は、前記時間が所定時間を経過した場合に、固定位相変更信号を出力する。
 固定位相設定部122は、検出信号判定部21によって検出信号のエッジが検出される前(検出信号の種類が切り替わる前)に前記固定位相変更信号が入力された場合、第3固定位相または第4固定位相を設定する。モータ駆動制御部11は、固定位相設定部122によって設定された固定位相(第1固定位相、第2固定位相、第3固定位相、第4固定位相)を用いて、モータ2を駆動するための制御信号を生成する。これにより、モータ2は、前記固定位相に基づいて駆動制御される。
 (モータ制御装置の動作)
 次に、上述のような構成を有するモータ制御装置101の動作を、図8及び図9に示すフローを用いて説明する。
 モータ2の始動時に、図8に示すフローがスタートする(スタート)。図8に示すフローでは、まずステップSB1で、固定位相設定部122が回転位置検出部13から出力された検出信号がLow信号かどうかを判定する。
 ステップSB1で前記検出信号がLow信号であると判定された場合(YESの場合)には、ステップSB2に進んで、固定位相設定部122が電気角で60度を第1固定位相に設定する。一方、ステップSB1で前記検出信号がLow信号でないと判定された場合(NOの場合)、すなわち前記検出信号がHigh信号の場合には、ステップSB3に進んで、固定位相設定部122が電気角で240度を第1固定位相に設定する。
 ステップSB2,SB3において固定位相設定部122が第1固定位相を設定した後、ステップSB4に進んで、モータ駆動制御部11が、前記第1固定位相を用いて、モータ2の駆動を制御するための制御信号を生成する。これにより、モータ2は、前記第1固定位相に基づいて駆動制御され、回転子51が回転始動する。
 その後、ステップSB5に進んで、検出信号判定部21が、回転位置検出部13から出力された検出信号のエッジを検出したかどうかを判定する。このステップSB5で前記検出信号のエッジが検出されたと判定された場合(YESの場合)には、ステップSB6に進んで、前記検出信号のエッジの検出が2回目であるかどうかを判定する。
 一方、ステップSB5において、前記検出信号のエッジが検出されていないと判定された場合(NOの場合)には、ステップSB7に進んで、タイマ部124から固定位相変更信号が出力されたかどうか、すなわち、固定位相設定部122が第1固定位相を設定してから所定時間が経過したかどうかを判定する。
 ステップSB6において、前記検出信号の出力が2回目であると判定された場合(YESの場合)には、後述のステップSB14に進んで、補間位相算出部31が、回転子51の回転速度を算出する。
 一方、ステップSB6において、前記検出信号の出力が2回目でないと判定された場合(NOの場合)には、ステップSB8に進んで、固定位相設定部122が、回転位置検出部13から出力された検出信号がLow信号かどうかを判定する。
 ステップSB7において、固定位相設定部122が第1固定位相を設定してから所定時間が経過したと判定された場合(YESの場合)には、上述のステップSB8に進む。
 一方、ステップSB7において、固定位相設定部122が第1固定位相を設定してから所定時間が経過していないと判定された場合(NOの場合)には、ステップSB4に戻って、前記第1固定位相に基づくモータ2の駆動制御を継続する。
 ステップSB8において、前記検出信号がLow信号であると判定された場合(YESの場合)には、ステップSB9に進んで、固定位相設定部122が、電気角で120度を第3固定位相に設定する。一方、ステップSB8で前記検出信号がLow信号でないと判定された場合(NOの場合)、すなわち前記検出信号がHigh信号の場合には、ステップSB10に進んで、固定位相設定部122が電気角で300度を第3固定位相に設定する。
 ステップSB9,SB10で固定位相設定部122が第3固定位相を設定した後に進むステップSB11では、モータ駆動制御部11が、前記第3固定位相を用いて、モータ2を駆動するための制御信号を生成する。これにより、モータ2は、前記第3固定位相に基づいて駆動制御される。
 ステップSB11の後に進むステップSB12では、検出信号判定部21が前記検出信号のエッジを検出したかどうかを判定する。ステップSB12において、前記検出信号のエッジが検出された場合(YESの場合)には、ステップSB13に進んで、検出信号判定部21によって、前記検出信号のエッジの検出が2回目かどうかを判定する。一方、ステップSB12において、前記検出信号のエッジが検出されなかった場合(NOの場合)には、ステップSB11に戻って、モータ2を、前記第3固定位相に基づいて駆動制御する。
 ステップSB13において、前記検出信号のエッジの検出が2回目であると判定された場合(YESの場合)には、ステップSB14に進んで、補間位相算出部31が、回転子51の回転速度を算出する。
 一方、ステップSB13において、前記検出信号の出力が2回目でないと判定された場合(NOの場合)には、ステップSB1に戻って、前記検出信号がLow信号であるかどうかの判定を行う。
 なお、上述のステップSB12で前記検出信号のエッジが検出された際に、回転位置検出部13から出力される検出信号は、High信号からLow信号、または、Low信号からHigh信号に切り替わっている。そのため、ステップSB13でNOの場合に進むステップSB1において、前記検出信号がHigh信号からLow信号に切り替わっていた場合(YESの場合)には、固定位相設定部122は、電気角で60度を第2固定位相に設定する(ステップSB2)。一方、前記検出信号がLow信号からHigh信号に切り替わっていた場合(NOの場合)には、固定位相設定部122は、電気角で240度を第2固定位相に設定する(ステップSB3)。その後、モータ駆動制御部11は、前記第2固定位相を用いて制御信号を生成して、モータ2の駆動を制御する(ステップSB4)。
 続くステップSB5では、検出信号判定部21によって前記検出信号のエッジが検出されたかどうかを判定し、前記検出信号のエッジが検出されたと判定された場合(YESの場合)には、ステップSB6に進む。このステップSB6では、前記検出信号のエッジ検出が2回目かどうかを判定するが、この場合、前記検出信号のエッジ検出は2回目なので、ステップSB14以降に進む。
 一方、ステップSB5において前記検出信号のエッジが検出されていないと判定された場合(NO場合)には、ステップSB7に進んで、上述のステップSB7と同様、前記第2固定位相の設定から所定時間が経過したかどうかを判定する。ステップSB7で前記所定時間が経過したと判定された場合(YESの場合)には、ステップSB8に進んで、固定位相設定部122が、回転位置検出部13から出力された検出信号がLow信号かどうかを判定する。
 ステップSB8において、前記検出信号がLow信号であると判定された場合(YESの場合)には、ステップSB9に進んで、固定位相設定部122が電気角で120度を第4固定位相に設定する。一方、ステップSB8において、前記検出信号がLow信号でないと判定された場合、すなわち前記検出信号がHigh信号であると判定された場合(NOの場合)には、ステップSB10に進んで、固定位相設定部122が電気角で300度を第4固定位相に設定する。
 ステップSB9,SB10の後に進むステップSB11では、モータ駆動制御部11が前記第4固定位相を用いて制御信号を生成して、モータ2の駆動を制御する。
 ステップSB11の後に進むステップSB12では、前記検出信号のエッジを検出したかどうかを判定し、前記検出信号のエッジが検出されたと判定された場合(YESの場合)には、ステップSB13に進む。このステップSB13では、前記検出信号のエッジ検出が2回目かどうかを判定するが、この場合、前記検出信号のエッジ検出は2回目なので、ステップSB14以降に進む。一方、ステップSB12において前記検出信号のエッジが検出されていないと判定された場合(NO場合)には、ステップSB11に戻って、ステップSB12で前記検出信号のエッジが検出されたと判定されるまで、前記第4固定位相に基づくモータ2の駆動制御を続ける。
 ステップSB13において回転位置検出部13から2回目の検出信号が出力された場合に進むステップSB14以降では、実施形態1のステップSA7からSA15と同様の動作を行う。
 すなわち、検出信号判定部21から出力される算出指示信号に応じて、補間位相算出部31が回転子51の回転速度を算出する(ステップSB14)。そして、回転位置検出部13から出力される検出信号がLow信号であるかどうかを判定し(ステップSB15)、前記検出信号がLow信号の場合には、基準位相設定部30が電気角0度を基準位相に設定し(ステップSB16)、前記検出信号がHigh信号の場合には、基準位相設定部30が電気角180度を基準位相に設定する(ステップSB17)。
 その後、前記回転速度を積分することにより、補間位相を算出し(ステップSB18)、演算部32が、前記基準位相に前記補間位相を加算することにより、推定位相を求める(ステップSB19)。モータ駆動制御部11は、ステップSB19で求めた前記推定位相を用いてモータ2の駆動を制御する制御信号を生成する(ステップSB20)。これにより、モータ2は、ステップSB19で求めた前記推定位相に基づいて駆動制御される。
 その後、モータ2の駆動が停止したかどうかを判定し(ステップSB21)、モータ2の駆動が停止した場合には、このフローを終了する(エンド)。一方、モータ2の駆動が停止していない場合には、前記検出信号のエッジを検出したかどうかの判定を行う(ステップSB22)。前記検出信号のエッジが検出された場合には、直近のエッジ検出の時刻と、その前のエッジ検出の時刻との差から回転速度を算出し(ステップSB14)、前記検出信号のエッジが検出されていない場合には、モータ2の駆動停止か前記検出信号のエッジが検出されるまで、前記推定位相に基づくモータ2の駆動制御を続ける(ステップSB20)。
 ここで、ステップSB1からSB3が第1固定位相設定工程に対応する。ステップSB1からSB3,SB12,SB13が第2固定位相設定工程に対応する。ステップSB11からSB14,SB18が補間位相算出工程に対応する。ステップSB15からSB17,SB19が推定位相算出工程に対応する。
 また、ステップSB7からSB10が、第3固定位相設定工程及び第4固定位相設定工程に対応する。
 (固定位相を設定した場合のトルク変化)
 次に、固定位相設定部122によって固定位相を設定した場合に回転子51に生じるトルクの変化について説明する。以下では、説明簡略化のために、固定位相設定部122が第1固定位相を設定し、その後、所定時間経過後に第3固定位相を設定した場合について説明する。検出信号がLow信号の場合に設定される電気角で60度の場合と、検出信号がHigh信号の場合に設定される電気角で240度の場合とにおいて、回転子51に生じるトルク変化は同様である。そのため、以下では、第1固定位相が電気角で60度に設定される場合について説明する。
 既述のとおり、回転位置検出部13から出力される検出信号がLow信号の場合、回転子51が停止する回転位置は、電気角で30度、90度、150度である。よって、固定位相を電気角で60度に設定した場合、モータ始動時における固定位相と実際の位相(実位相)との誤差は、電気角で-30度、30度、90度である。以下では、回転子51が停止する回転位置(電気角で30度、90度、150度)の3つのパターンについて、それぞれ、回転子51の回転に伴うトルクの変化を説明する。
 <パターン1>
 回転子51が電気角で30度の回転位置に停止していた場合をパターン1とする。このパターン1の場合には、モータ始動時における固定位相と実位相との誤差は-30度である。前記誤差に対するトルク変化を示す図10に、パターン1の場合を(1)で示す。パターン1では、回転子51に、正回転させる正のトルクが生じる。
 回転子51が正回転すると、実位相は徐々に大きくなるため、図10に実線矢印で示すように、前記誤差は徐々に小さくなる。これにより、回転子51に生じるトルクは徐々に増大する。
 固定位相設定部122が第1固定位相を設定してから所定時間経過後に、固定位相設定部122は、電気角120度を第3固定位相に設定する。このとき、回転子51の実位相を電気角で(30+α)度とすると、図11に(1)で示すように、実位相と第3固定位相との誤差は、電気角で(-90+α)度である。よって、前記誤差の絶対値は電気角で90度よりも小さいため、回転子51には正のトルクが生じる。これにより、回転子51は、正回転を続ける。
 前記誤差が電気角で60度に達した際には、実位相は電気角で180度である。回転位置検出部13から出力される検出信号はHigh信号に切り替わるため、検出信号判定部21によって検出信号のエッジが検出される。これにより、前記固定位相は、240度に切り替えられる。前記誤差は、電気角で-90度よりも大きく且つ90度よりも小さい範囲内であるため、回転子51は正回転を続ける。
 <パターン2>
 回転子51が電気角で90度の回転位置に停止していた場合をパターン2とする。このパターン2の場合には、モータ始動時における固定位相と実位相との誤差は30度である。図10に、パターン2の場合を(2)で示す。パターン2では、回転子51に、正回転させる正のトルクが生じる。
 回転子51が正回転すると、実位相は徐々に大きくなるため、図10に実線矢印で示すように、前記誤差は徐々に大きくなる。これにより、回転子51に生じるトルクは徐々に減少する。
 固定位相設定部122が第1固定位相を設定してから所定時間経過後に、固定位相設定部122は、電気角120度を第3固定位相に設定する。このとき、回転子51の実位相を電気角で(90+α)度とすると、図11に(2)で示すように、実位相と第3固定位相との誤差は、電気角で(-30+α)度である。よって、前記誤差の絶対値は電気角で90度よりも小さいため、回転子51には正のトルクが生じる。これにより、回転子51は、正回転を続ける。
 前記誤差が電気角で60度に達した際には、実位相は電気角で180度であり、パターン1と同様なので、説明を省略する。
 したがって、パターン2の場合も、回転子51は、正回転を続ける。
 <パターン3>
 回転子51が電気角で150度の回転位置に停止していた場合をパターン3とする。このパターン3の場合には、モータ始動時における固定位相と実位相との誤差は90度である。図10に、パターン3の場合を(3)で示す。パターン3では、回転子51に、トルクが生じない。
 固定位相設定部122が第1固定位相を設定してから所定時間経過後に、固定位相設定部122は、電気角120度を第3固定位相に設定する。このとき、図11に(3)で示すように、実位相と第3固定位相との誤差は、電気角で30度である。よって、前記誤差の絶対値は電気角で90度よりも小さいため、回転子51には正のトルクが生じる。これにより、回転子51は、正回転する。
 前記誤差が電気角で60度に達した際には、実位相は電気角で180度であり、パターン1と同様なので、説明を省略する。
 したがって、パターン3の場合も、回転子51は正回転を続ける。
 以上より、モータ2の始動時に、モータ2の駆動制御に固定位相を用いることにより、位相を演算して推定する従来の方法に比べて、モータ2を容易に且つ応答性良く駆動制御することができる。
 しかも、本実施形態では、回転位置検出部13から出力される検出信号のエッジが検出されるまでに、第1固定位相及び第3固定位相、または、第2固定位相及び第4固定位相を用いることにより、実施形態1のように第1固定位相のみ、または、第2固定位相のみを用いた場合に比べて、より大きな正のトルクを回転子51に生じさせることが可能になる。よって、回転子51をより確実に正回転させることができるため、モータ2をより迅速に始動させることができる。
 (その他の実施形態)
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記各実施形態では、固定位相設定部22は、第1固定相を電気角で90度に設定し、固定位相設定部122は、第1固定位相を電気角で60度に設定する。しかしながら、第1固定位相は、回転位置検出部13から出力される検出信号がLow信号の場合には、回転子51の安定停止点のうち最大電気角の安定停止点(本実施形態では150度)に対して電気角で-90度以上で且つ最小電気角の安定停止点(本実施形態では30度)に対して電気角で90度以下であればよい。また、第1固定位相は、回転位置検出部13から出力される検出信号がHigh信号の場合には、回転子51の安定停止点のうち最大電気角の安定停止点(本実施形態では330度)に対して電気角で-90度以上で且つ最小電気角の安定停止点(本実施形態では210度)に対して電気角で90度以下であればよい。
 前記各実施形態では、固定位相設定部22は、第1固定位相を電気角で90度に設定し、第2固定位相を電気角で270度に設定する。また、固定位相設定部122は、第1固定位相を電気角で60度に設定し、第2固定位相を電気角で240度に設定する。すなわち、固定位相設定部22,122は、第1固定位相に対して180度進んだ電気角を第2固定位相に設定する。
 しかしながら、第2固定位相は、回転子51の回転によって、回転位置検出部13から出力される検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、回転子51の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の電気角が設定されればよい。
 すなわち、第2固定位相は、切り替わった後の前記検出信号がLow信号の場合には、回転子51の安定停止点のうち最大電気角の安定停止点(本実施形態では150度)に対して電気角で-90度以上で且つ最小電気角の安定停止点(本実施形態では30度)に対して電気角で90度以下であればよい。また、第2固定位相は、切り替わった後の前記検出信号がHigh信号の場合には、回転子51の安定停止点のうち最大電気角の安定停止点(本実施形態では330度)に対して電気角で-90度以上で且つ最小電気角の安定停止点(本実施形態では210度)に対して電気角で90度以下であればよい。
 前記各実施形態では、安定停止点は、電気角が0度から180度の範囲内で、30度、90度、150度であり、電気角が180度から360度の範囲内で、210度、270度、330度である。しかしながら、前記実施形態とは異なる構造のモータを用いた場合、前記安定停止点の電気角は、前記実施形態の例とは異なる。このような場合にも、前記実施形態の構成は適用可能である。なお、その場合でも、電気角が0度から180度の範囲及び180度から360度の範囲内で、それぞれ、最も電気角が小さい安定停止点が最小電気角の安定停止点であり、最も電気角が大きい安定停止点が最大電気角の安定停止点である。
 前記実施形態2では、固定位相設定部122は、回転位置検出部13から出力される検出信号のエッジの検出によって第1固定位相または第2固定位相を設定するとともに、第1固定位相または第2固定位相の設定から所定時間経過後に補助固定位相としての第3固定位相または第4固定位相を設定する。しかしながら、固定位相設定部は、前記検出信号のエッジが検出されるまでに前記補助固定位相を複数、設定してもよい。例えば、固定位相設定部は、前記第1固定位相を設定した後、第1所定時間経過後に補助固定位相を設定し、さらにそれから第2所定時間経過後に別の補助固定位相を設定してもよい。ただし、この場合でも、固定位相設定部は、前記検出信号のエッジが検出された際には、第2固定位相を設定する。
 前記実施形態2では、第3固定位相及び第4固定位相は、それぞれ、第1固定位相及び第2固定位相に対して、電気角で60度進んだ値である。しかしながら、第3固定位相及び第4固定位相は、それぞれ、第1固定位相及び第2固定位相に対して、電気角で0度よりも大きく且つ90度以下の値であれば、どのような値であってもよい。
 本発明は、モータの回転始動時に、回転子の回転に応じて電気角で180度毎に出力される検出信号を用いて、モータの駆動を制御するモータ制御装置に利用可能である。

Claims (4)

  1.  モータの駆動を制御するモータ制御装置であって、
     前記モータの電気角が180度毎に、前記モータの回転子の回転位置に応じて2種類の検出信号を出力する回転位置検出部と、
     前記検出信号に応じて前記モータの固定位相を設定する固定位相設定部と、
     前記検出信号及び前記固定位相を用いて、推定位相を算出する推定位相算出部と、
     前記固定位相または前記推定位相に基づいて、前記回転子の回転を制御するモータ駆動制御部と、を備え、
     前記固定位相設定部は、
      前記回転子の回転始動時に、前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第1固定位相を、前記固定位相として設定し、
      前記回転子の回転によって、前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の第2固定位相を、前記固定位相として設定し、
     前記推定位相算出部は、
      前記回転子の回転によって、前記回転位置検出部から出力される前記検出信号の種類が再度、切り替わった際に、最初に前記検出信号の種類が切り替わった時刻と2回目に前記検出信号の種類が切り替わった時刻とを用いて補間位相を算出する補間位相算出部と、
      前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、前記推定位相を算出する演算部と、
    を備える、モータ制御装置。
  2.  請求項1に記載のモータ制御装置において、
     前記固定位相設定部は、前記第1固定位相または前記第2固定位相を前記固定位相として設定してから所定時間が経過した際に、且つ、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わる前に、前記設定された固定位相に対して電気角で0度よりも大きく且つ90度以下の補助固定位相を、前記固定位相として設定する、モータ制御装置。
  3.  モータの制御方法であって、
     前記モータの回転子の回転始動時に、前記モータの電気角が180度毎に前記モータの回転子の回転位置に応じて回転位置検出部から出力される2種類の検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して-90度以上で且つ最小電気角の安定停止点に対して90度以下の電気角を、第1固定位相に設定する第1固定位相設定工程と、
     前記第1固定位相を用いてモータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の電気角を、第2固定位相に設定する第2固定位相設定工程と、
     前記第2固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が再度切り替わった際に、最初に前記検出信号が切り替わった時刻と2回目に前記検出信号が切り替わった時刻とを用いて、補間位相を算出する補間位相算出工程と、
     前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、推定位相を算出する推定位相算出工程と、を有する、モータ制御方法。
  4.  モータの制御方法であって、
     前記モータの回転子の回転始動時に、前記モータの電気角が180度毎に前記モータの回転子の回転位置に応じて回転位置検出部から出力される2種類の検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して-90度以上で且つ最小電気角の安定停止点に対して90度以下の電気角を、第1固定位相に設定する第1固定位相設定工程と、
     前記第1固定位相を用いてモータ駆動制御部によって前記モータの駆動を制御し、前記第1固定位相を設定してから所定時間が経過した際に、且つ、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わる前に、前記第1固定位相に対して0度よりも大きく且つ90度以下の電気角を、第3固定位相として設定する第3固定位相設定工程と、
     前記第3固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わった際に、切り替わった後の前記検出信号に応じて、前記回転子の安定停止点のうち最大電気角の安定停止点に対して電気角で-90度以上で且つ最小電気角の安定停止点に対して電気角で90度以下の電気角を、第2固定位相に設定する第2固定位相設定工程と、
     前記第2固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記第2固定位相を設定してから所定時間が経過した際に、且つ、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が切り替わる前に、前記第2固定位相に対して0度よりも大きく且つ90度以下の電気角を、第4固定位相として設定する第4固定位相設定工程と、
     前記第4固定位相を用いて前記モータ駆動制御部によって前記モータの駆動を制御し、前記回転子の回転によって前記回転位置検出部から出力される前記検出信号の種類が再度切り替わった際に、最初に前記検出信号が切り替わった時刻と2回目に前記検出信号が切り替わった時刻とを用いて、補間位相を算出する補間位相算出工程と、
     前記2回目に前記検出信号の種類が切り替わった後の前記検出信号に応じて決まる基準位相に、前記補間位相を加算することにより、推定位相を算出する推定位相算出工程と、を有する、モータ制御方法。
PCT/JP2017/039139 2017-04-28 2017-10-30 モータ制御装置及びモータ制御方法 WO2018198406A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/607,449 US10931215B2 (en) 2017-04-28 2017-10-30 Motor control apparatus and motor control method
CN201780088961.4A CN110463022B (zh) 2017-04-28 2017-10-30 电动机控制装置以及电动机控制方法
EP17907800.1A EP3618262B1 (en) 2017-04-28 2017-10-30 Motor control apparatus and motor control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-089096 2017-04-28
JP2017089096A JP6850416B2 (ja) 2017-04-28 2017-04-28 モータ制御装置及びモータ制御方法

Publications (1)

Publication Number Publication Date
WO2018198406A1 true WO2018198406A1 (ja) 2018-11-01

Family

ID=63919592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039139 WO2018198406A1 (ja) 2017-04-28 2017-10-30 モータ制御装置及びモータ制御方法

Country Status (5)

Country Link
US (1) US10931215B2 (ja)
EP (1) EP3618262B1 (ja)
JP (1) JP6850416B2 (ja)
CN (1) CN110463022B (ja)
WO (1) WO2018198406A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103326A (ja) * 2017-12-06 2019-06-24 キヤノン株式会社 モータ制御装置及び画像形成装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694210A (en) * 1986-07-31 1987-09-15 General Motors Corporation Brushless DC motor and sensorless drive arrangement therefor
JP2011066960A (ja) * 2009-09-15 2011-03-31 Toshiba Corp ロータ位置検出装置
WO2013153657A1 (ja) * 2012-04-12 2013-10-17 株式会社 日立製作所 三相同期電動機駆動装置
JP2015100142A (ja) 2013-11-18 2015-05-28 三菱電機株式会社 同期電動機の回転位相検出装置
JP2016082615A (ja) * 2014-10-10 2016-05-16 シンフォニアテクノロジー株式会社 モータ制御装置、モータシステム、モータ制御プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546862B2 (ja) * 2001-06-21 2004-07-28 日産自動車株式会社 永久磁石型ブラシレスモータ用の制御装置及び制御方法
JP4589093B2 (ja) * 2004-12-10 2010-12-01 日立オートモティブシステムズ株式会社 同期モータ駆動装置及び方法
JP2008092784A (ja) * 2006-07-28 2008-04-17 Mitsuba Corp ブラシレスモータの駆動装置及びブラシレスモータの始動方法並びにブラシレスモータのロータ停止位置検出方法
JP5419360B2 (ja) 2008-01-28 2014-02-19 キヤノン株式会社 光学機器
US8217601B2 (en) * 2009-07-29 2012-07-10 Parker-Hannifin Corporation Robust rotational position alignment using a relative position encoder
US9543865B2 (en) 2013-09-20 2017-01-10 Hitachi Automotive Systems, Ltd. Device for driving three-phase brushless motor
JP6080745B2 (ja) * 2013-11-18 2017-02-15 三菱電機株式会社 同期電動機の回転位相検出装置
KR102139167B1 (ko) 2014-03-18 2020-07-29 삼성전자주식회사 청소기 및 그 제어방법
JP6467621B2 (ja) 2014-09-24 2019-02-13 パナソニックIpマネジメント株式会社 ブラシレスdcモータの駆動装置およびそれを搭載した換気送風装置
JP6525659B2 (ja) 2015-03-25 2019-06-05 キヤノン株式会社 モータ制御装置およびモータ制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694210A (en) * 1986-07-31 1987-09-15 General Motors Corporation Brushless DC motor and sensorless drive arrangement therefor
JP2011066960A (ja) * 2009-09-15 2011-03-31 Toshiba Corp ロータ位置検出装置
WO2013153657A1 (ja) * 2012-04-12 2013-10-17 株式会社 日立製作所 三相同期電動機駆動装置
JP2015100142A (ja) 2013-11-18 2015-05-28 三菱電機株式会社 同期電動機の回転位相検出装置
JP2016082615A (ja) * 2014-10-10 2016-05-16 シンフォニアテクノロジー株式会社 モータ制御装置、モータシステム、モータ制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618262A4

Also Published As

Publication number Publication date
US20200144944A1 (en) 2020-05-07
CN110463022A (zh) 2019-11-15
EP3618262A1 (en) 2020-03-04
JP2018191365A (ja) 2018-11-29
US10931215B2 (en) 2021-02-23
EP3618262B1 (en) 2021-04-07
EP3618262A4 (en) 2020-03-25
JP6850416B2 (ja) 2021-03-31
CN110463022B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
EP3540933B1 (en) Method for driving sensorless motor
JP4623150B2 (ja) モータ制御装置
US20170163185A1 (en) Method for sensorless commutation of a brushless direct current motor
JP6516885B2 (ja) モータ駆動装置及びモータ駆動方法
WO2018198406A1 (ja) モータ制御装置及びモータ制御方法
JP2005176458A (ja) 電動機駆動装置およびそれを用いる電動工具
JP2008271698A (ja) モータ駆動装置
JP5782769B2 (ja) 交流モータの制御方法および制御装置
JPH09215382A (ja) 永久磁石同期モータの駆動方法
TWI581559B (zh) 具有一個霍爾感測器運轉的系統及其方法
CN111049433A (zh) 磁极初始位置检测装置以及磁极位置检测装置
US20150069943A1 (en) Motor driving control apparatus, motor driving control method, and motor system using the same
CN107852113B (zh) 电力转换装置和电力转换装置的控制方法
JP2008141897A (ja) Dcブラシレスモータの駆動制御方法及び駆動制御装置
JP6901678B2 (ja) モータ制御装置及びモータ制御方法
JP5745955B2 (ja) 駆動装置、及び駆動方法
JP2013090478A (ja) ブラシレスdcモータの回転子位置検出方法とその装置
JP2009261043A (ja) ブラシレスモータの駆動装置
JP5797478B2 (ja) ブラシレスモータの制御装置及び制御方法
JP2007318822A (ja) センサレスブラシレスモータの駆動装置
JP5772799B2 (ja) モータ磁極位相の調整方法
JP7407093B2 (ja) 半導体装置、モータ駆動システム、およびモータ起動方法
JP7358059B2 (ja) モータ駆動制御装置
JP2006033928A (ja) ブラシレスモータ
KR101927514B1 (ko) 정현파 전류구동 드라이브 ic로 단일 홀-센서를 갖는 bldc 모터를 구동하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017907800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017907800

Country of ref document: EP

Effective date: 20191128