WO2018198221A1 - 劣化診断装置および空気調和装置 - Google Patents

劣化診断装置および空気調和装置 Download PDF

Info

Publication number
WO2018198221A1
WO2018198221A1 PCT/JP2017/016519 JP2017016519W WO2018198221A1 WO 2018198221 A1 WO2018198221 A1 WO 2018198221A1 JP 2017016519 W JP2017016519 W JP 2017016519W WO 2018198221 A1 WO2018198221 A1 WO 2018198221A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
vibration
deterioration diagnosis
abnormality
detector
Prior art date
Application number
PCT/JP2017/016519
Other languages
English (en)
French (fr)
Inventor
貴玄 中村
信秋 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780089627.0A priority Critical patent/CN110573737A/zh
Priority to US16/488,462 priority patent/US20200049364A1/en
Priority to JP2019514943A priority patent/JPWO2018198221A1/ja
Priority to PCT/JP2017/016519 priority patent/WO2018198221A1/ja
Publication of WO2018198221A1 publication Critical patent/WO2018198221A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • the present invention relates to a compressor deterioration diagnosis device and an air conditioner.
  • Patent Document 1 describes a method of detecting an abnormality of a compressor based on a vibration value of the compressor.
  • an allowable limit value of compressor vibration corresponding to the compressor speed in each operation mode such as cooling operation or heating operation is set in advance, and the vibration of the compressor is detected in a state where the refrigeration cycle is stable. Then, the vibration detection value is compared with the set allowable limit value, and based on the result, it is determined whether or not the compressor is abnormal.
  • the present invention has been made in view of the above-described problems in the prior art, and provides a deterioration diagnosis device and an air conditioner that can diagnose the presence or absence of an abnormality in a compressor regardless of a change in the rotational speed. For the purpose.
  • the deterioration diagnosis apparatus of the present invention is a deterioration diagnosis apparatus for diagnosing the presence or absence of an abnormality in a compressor, and relates to a current detector that detects current information related to a power supply current supplied to the compressor, and vibration of the compressor.
  • a vibration detector that detects vibration information at a set measurement cycle, the current detector and the vibration detector are connected, and the current information input from the current detector and input from the vibration detector
  • the present invention by acquiring the feature amount of the compressor based on the current information and vibration information of the compressor, the presence or absence of the compressor abnormality is diagnosed regardless of the change in the rotation speed. be able to.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a deterioration diagnosis device according to Embodiment 1.
  • FIG. It is the schematic for demonstrating the case where the rotation speed of a compressor changes and it collects compressor vibration information by changing a measurement frequency.
  • Embodiment 1 FIG.
  • the deterioration diagnosis apparatus according to the first embodiment diagnoses whether there is an abnormality in the compressor mounted on the air conditioner.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of an air conditioner 100 equipped with a compressor 11 to be diagnosed by the deterioration diagnosis device 3 according to the first embodiment.
  • the air conditioner 100 includes an outdoor unit 1, indoor units 2A to 2D, and a deterioration diagnosis device 3.
  • the case where four indoor units are connected with respect to one outdoor unit is shown.
  • the numbers of outdoor units and indoor units are not limited to this example.
  • a plurality of outdoor units may be connected to the air conditioner.
  • 1 to 3 or 5 or more indoor units may be connected to the air conditioner.
  • the outdoor unit 1 includes a compressor 11, a refrigerant flow switching device 12, such as a four-way valve, a heat source side heat exchanger 13, an internal heat exchanger 14, an expansion valve 15, an accumulator 16, a heat source side blower 17, and a control device 18. I have.
  • the compressor 11 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state.
  • the compressor 11 for example, an inverter compressor or the like capable of controlling the capacity that is the refrigerant delivery amount per unit time by changing the drive frequency by the control by the control device 18 described later can be used. .
  • the refrigerant flow switching device 12 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows.
  • the switching of the flow path in the refrigerant flow switching device 12 is controlled by the control device 18 described later.
  • the heat source side heat exchanger 13 performs heat exchange between air (hereinafter referred to as “outdoor air” as appropriate) supplied by a heat source side blower 17 such as a fan and the refrigerant. Specifically, the heat source side heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. The heat source side heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • the internal heat exchanger 14 exchanges heat between the refrigerant flowing through the main circuit portion and the refrigerant branched from the main circuit and flowing through the injection circuit connected to the accumulator 16.
  • the expansion valve 15 depressurizes the refrigerant flowing through the injection circuit branched from the main circuit.
  • the accumulator 16 is provided on the low pressure side that is the suction side of the compressor 11.
  • the accumulator 16 stores surplus refrigerant generated due to a difference in operating state between the cooling operation and the heating operation, surplus refrigerant with respect to a transient change in operation, and the like.
  • the control device 18 includes, for example, software executed on an arithmetic device such as a microcomputer or CPU (Central Processing Unit), and hardware such as a circuit device that realizes various functions.
  • the control device 18 controls the overall operation of the air conditioner 100 based on, for example, settings made by a user's operation on a remote controller (not shown) and various information received from sensors (not shown) provided in each part of the air conditioner 100. To do.
  • the control device 18 controls the rotation speed of the compressor 11 based on detection results by a temperature sensor and a pressure sensor (not shown) provided in each part of the air conditioner 100.
  • control device 18 is provided in the outdoor unit 1, but this is not limited to this example.
  • the control device 18 may be provided in any of the indoor units 2A to 2D described later, or may be provided outside the outdoor unit 1 and the indoor units 2A to 2D.
  • the indoor units 2A to 2D perform, for example, cooling and heating of air in an air-conditioning target space.
  • the indoor units 2A to 2D include use side heat exchangers 21A to 21D, decompression devices 22A to 22D, and use side blowers 23A to 23D, respectively.
  • use side heat exchangers 21A to 21D and the decompression devices 22A to 22D will be simply referred to as “use side heat exchanger 21” and “decompression device 22”, respectively.
  • the use side heat exchanger 21 exchanges heat between the air supplied by the use side blowers 23A to 23D such as fans and the refrigerant. Thereby, heating air or cooling air supplied to the indoor space is generated.
  • the use-side heat exchanger 21 functions as an evaporator when the refrigerant carries cold heat during the cooling operation, and cools the air in the air-conditioning target space.
  • the utilization side heat exchanger 21 functions as a condenser when the refrigerant conveys warm heat during the heating operation, and performs heating by heating the air in the air-conditioning target space.
  • the decompression device 22 decompresses and expands the refrigerant.
  • the decompression device 22 is configured by a valve capable of controlling the opening, such as an electronic expansion valve.
  • the decompression device 22 is controlled by the control device 18 so that, for example, the refrigerant outlet temperature of the use side heat exchanger 21 is optimized.
  • FIG. 2 is a block diagram showing an example of the configuration of the deterioration diagnosis apparatus 3 according to the first embodiment.
  • the deterioration diagnosis device 3 includes a current detector 31, a vibration detector 32, A / D converters 33 and 34, an arithmetic device 35, and a notification means 36.
  • the current detector 31 detects the power supply current supplied to the current line of the compressor 11 at a preset cycle, and outputs it as compressor current information that is an analog signal including the frequency of the power supply current.
  • a current sensor such as an ACCT (AC Current Transformer) that detects an AC (Alternating Current) current can be used.
  • the current detector 31 is not limited thereto, and for example, a shunt resistor can be used.
  • the vibration detector 32 is a vibration sensor, for example, and is attached to the main body of the compressor 11.
  • the vibration detector 32 detects the vibration of the compressor 11 at a preset measurement cycle and outputs it as compressor vibration information that is an analog signal.
  • the compressor vibration information includes, for example, information related to vibration such as displacement, vibration speed, and vibration acceleration of the compressor 11.
  • a / D converters 33 and 34 convert input analog signals into digital signals.
  • the A / D converter 33 converts the compressor current information of the analog signal related to the current of the compressor 11 detected by the current detector 31 into a digital signal and outputs it.
  • the A / D converter 34 converts the compressor vibration information of the analog signal related to the vibration of the compressor 11 detected by the vibration detector 32 into a digital signal and outputs the digital signal.
  • the arithmetic unit 35 detects the compressor current information of the compressor 11 detected by the current detector 31 and converted into a digital signal, and the compressor vibration information of the compressor 11 detected by the vibration detector 32 and converted into a digital signal. Based on the above, it is determined whether or not the compressor 11 is abnormal.
  • the calculation device 35 includes a rotation speed detection unit 41, a measurement frequency setting unit 42, a feature amount calculation unit 43, an abnormality determination unit 44, and a storage unit 45.
  • the rotation speed detection unit 41 is supplied with compressor current information from the A / D converter 33.
  • the rotation speed detection unit 41 detects the rotation speed of the compressor 11 based on the frequency of the power supply current of the compressor 11 included in the supplied compressor current information.
  • the measurement frequency setting unit 42 is supplied with the rotational speed of the compressor 11 from the rotational speed detection unit 41.
  • the measurement frequency setting unit 42 sets a measurement frequency for determining a measurement cycle in which the vibration detector 32 detects vibration of the compressor 11 based on the supplied rotation speed of the compressor 11. Details of the measurement frequency setting method will be described later.
  • the feature amount calculation unit 43 is supplied with compressor vibration information from the A / D converter 34.
  • the feature amount calculation unit 43 calculates a feature amount related to the vibration of the compressor 11 based on the preset number, that is, the compressor vibration information of the sampling number in the vibration detector 32.
  • the feature amount for example, information indicating at least one vibration state such as vibration displacement, average value of vibration speed or vibration acceleration, standard deviation, skewness, kurtosis, and tolerance frequency can be used.
  • the abnormality determination unit 44 is supplied with the feature amount calculated by the feature amount calculation unit 43.
  • the abnormality determination unit 44 determines whether there is an abnormality in the compressor 11 based on the supplied feature amount. For example, the abnormality determination unit 44 determines whether or not a value indicating the supplied feature amount is within a range set in advance with respect to the feature amount, that is, within a set range, and a value indicating the feature amount Is outside the set range, it is determined that the compressor 11 is abnormal.
  • the storage unit 45 stores parameters and the like that are used in advance when performing various processes in each unit of the arithmetic unit 35.
  • the storage unit 45 stores a calculation formula or a frequency setting table used when the measurement frequency setting unit 42 sets the measurement frequency.
  • the storage unit 45 also stores a setting range used when the abnormality determination unit 44 determines whether the compressor 11 is abnormal.
  • the notifying means 36 notifies the diagnosis result of the presence or absence of abnormality of the compressor 11 based on the determination result by the abnormality determination unit 44 of the arithmetic unit 35.
  • a display an LED (Light Emitting Diode), a speaker, or the like can be used as the notification unit 36.
  • the notification means 36 is a display
  • the diagnosis result is displayed in characters or graphics.
  • the notification means 36 is an LED
  • the diagnosis result is displayed by turning on, blinking, or turning off.
  • the notification means 36 is a speaker
  • the diagnosis result is notified by voice.
  • FIG. 3 is a schematic diagram for explaining a case where the compressor vibration information is collected by changing the measurement frequency when the rotation speed of the compressor 11 changes.
  • FIG. 3A shows various data when the measurement frequency is fixed
  • FIG. 3B shows various data when the measurement frequency is changed.
  • “compressor rotational speed” indicates the rotational speed of the compressor 11.
  • the case where the compressor speed is changed to 30, 60, and 100 [rps] is shown.
  • “Measurement frequency” indicates a frequency for determining a measurement cycle when vibration of the compressor 11 is detected by the vibration detector 32.
  • FIG. 3A shows a case where the measurement frequency is set to a fixed value 48000 [Hz].
  • FIG. 3B shows a case where the measurement frequency is set to a variable value. Note that the measurement period can be obtained by the reciprocal of the measurement frequency.
  • “Number of samples” indicates the number of compressor vibration information necessary when the feature amount calculation unit 43 calculates the feature amount.
  • the number of samples is a number necessary for obtaining sufficient accuracy when calculating the feature amount, and is set in advance by, for example, an experiment or a test. In this example, the case where the number of samples is set to 8192 points is shown.
  • “Frame length” is obtained by multiplying the measurement cycle by the number of samples, and indicates the time required for the vibration detector 32 to acquire compressor vibration information for the number of samples.
  • “Rotation speed ⁇ frame length” is obtained by multiplying the compressor rotation speed by the frame length, and indicates the rotation speed in one frame.
  • “Rotation angle / sample” indicates a value obtained by converting the number of rotations per sample into a rotation angle.
  • the vibration detector 32 detects the vibration of the compressor 11 for each preset measurement cycle. Further, the measurement frequency setting unit 42 collects compressor vibration information for a preset number of samples, and calculates a feature amount based on the compressor vibration information.
  • the frame length necessary for calculating the feature amount is the same 0.171 [sec] regardless of the rotation speed of the compressor 11. It becomes. Therefore, the number of rotations in one frame changes according to the number of rotations of the compressor 11. Therefore, the rotation angle per sample changes according to the rotation speed of the compressor 11.
  • the measurement frequency is set so that the rotation angle per sample is the same even when the rotation speed of the compressor 11 changes. Change.
  • the number of samples is set in the same manner as in FIG. 3 (a).
  • the frame length is determined so that the rotation angle per sample is the same 0.75 [deg / sample] regardless of the value of the compressor rotation speed.
  • the measurement frequency is set based on the frame length and the number of samples determined in this way.
  • the measurement frequency is 14371 [Hz]
  • the measurement frequency is 28744 [Hz].
  • the measurement frequency is 48000 [sec].
  • the measurement frequency that is, the measurement cycle when the vibration of the compressor 11 is detected by the vibration detector 32 is changed according to the rotation speed of the compressor 11.
  • the measurement frequency is usually obtained by dividing or multiplying the reference clock frequency
  • the settable frequency may be limited. Therefore, in such a case, taking into consideration the versatility of the measuring device, the measurement frequency is, for example, a constant rotation angle per sample in the frequency obtained by dividing or multiplying the clock frequency. It is preferable to set the frequency close to the measurement frequency obtained as described above.
  • the deterioration diagnosis device 3 diagnoses whether there is an abnormality in the compressor 11 based on the information related to the compressor 11 detected by the current detector 31 and the vibration detector 32. Below, the operation
  • the vibration detector 32 detects the vibration of the compressor 11 at a preset measurement cycle.
  • Compressor vibration information which is information relating to the detected vibration, is converted from an analog signal to a digital signal via the A / D converter 34 and then supplied to the feature value calculation unit 43 of the calculation device 35.
  • the current detector 31 detects the power supply current of the compressor 11 at a preset cycle.
  • Compressor current information including the detected frequency of the power supply current is converted from an analog signal to a digital signal via the A / D converter 33 and then supplied to the rotation speed detection unit 41 of the arithmetic unit 35.
  • the rotation speed detection unit 41 detects the rotation speed of the compressor 11 based on the frequency of the power supply current of the compressor 11 included in the supplied compressor current information. Information indicating the detected rotation speed of the compressor 11 is supplied to the measurement frequency setting unit 42.
  • the measurement frequency setting unit 42 refers to the calculation formula or the frequency setting table stored in the storage unit 45 based on the supplied information indicating the rotation speed of the compressor 11 and according to the current rotation speed of the compressor 11.
  • the measurement frequency that is, the measurement cycle in the vibration detector 32 is set. Then, the vibration detector 32 detects the vibration of the compressor 11 at the set measurement cycle, and supplies the compressor vibration information corresponding to the detection result to the feature amount calculation unit 43 via the A / D converter 34. To do.
  • the feature amount calculation unit 43 calculates a feature amount such as vibration acceleration included in the supplied compressor vibration information.
  • the feature quantity obtained by the calculation at this time may be a single feature quantity such as an average value of acceleration of vibration, for example, or may be a state quantity obtained by combining a plurality of feature quantities.
  • the calculated feature amount is supplied to the abnormality determination unit 44.
  • the abnormality determination unit 44 reads the setting range from the storage unit 45, and determines whether or not the value indicating the supplied feature amount exists within the read setting range. If the value indicating the feature amount exists within the set range, the abnormality determination unit 44 determines that the compressor 11 is normal. On the other hand, when the value indicating the feature amount exists outside the setting range, the abnormality determination unit 44 determines that the compressor 11 is abnormal. Then, the abnormality determination unit 44 supplies determination information indicating the determination result to the notification unit 36.
  • the measurement frequency by the vibration detector 32 is changed in accordance with the change in the rotation speed of the compressor 11, so that the frequency per sample is changed regardless of the rotation speed of the compressor 11.
  • the presence or absence of abnormality of the compressor 11 is determined with a constant rotation angle.
  • the feature-value in each compressor rotation speed can be calculated on the same conditions. Therefore, the reliability of data can be improved and the presence or absence of abnormality of the compressor 11 can be determined with higher accuracy.
  • the deterioration diagnosis device 3 diagnoses whether there is an abnormality in the compressor 11 and detects a current information related to the power supply current supplied to the compressor 11. 31, a vibration detector 32 that detects vibration information related to the vibration of the compressor 11 at a set measurement cycle, a current detector 31 and a vibration detector 32, and current information input from the current detector 31. And an arithmetic unit 35 for diagnosing the presence / absence of an abnormality in the compressor 11 using vibration information input from the vibration detector 32, and an informing means 36 for notifying a diagnosis result of the presence / absence of an abnormality in the compressor 11.
  • the arithmetic unit 35 sets a measurement frequency for determining a measurement cycle when the vibration information is detected by the vibration detector 32 according to the rotation speed of the compressor 11 detected based on the current of the compressor 11.
  • a feature value indicating a vibration state is calculated from vibration information detected at a measurement cycle based on the set measurement frequency, and the presence or absence of abnormality of the compressor 11 is diagnosed based on the calculated feature value.
  • the present invention has been described above.
  • the present invention is not limited to the above-described first embodiment of the present invention, and various modifications and applications can be made without departing from the scope of the present invention. Is possible.
  • the rotation angle per sample is kept constant regardless of the number of rotations of the compressor 11.
  • this is not limited to this example.
  • the measurement frequency may be fixedly set and the number of samples may be variable. By doing so, it is possible to determine whether there is an abnormality in the compressor 11 regardless of the rotation speed of the compressor 11 as in the first embodiment.
  • the deterioration diagnosis device 3 when it is determined that an abnormality has occurred in the compressor 11, the deterioration diagnosis device 3 provides a control signal for performing control such as reducing the rotational speed for the purpose of protecting the compressor 11. You may transmit with respect to the control apparatus 18 of the air conditioning apparatus 100. FIG. When the control device 18 receives this control signal, the control device 18 performs control to reduce the rotational speed of the compressor 11. Further, for example, a communication unit (not shown) may be provided in the arithmetic unit 35 to notify the outside such as a remote place that an abnormality has occurred in the compressor 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

圧縮機(11)の異常の有無を診断する劣化診断装置(3)は、圧縮機に供給される電源電流に関する電流情報を検出する電流検出器(31)と、圧縮機の振動に関する振動情報を、設定された測定周期で検出する振動検出器(32)と、電流検出器(31)および振動検出器(32)が接続され、電流検出器(31)から入力される電流情報および振動検出器(32)から入力される振動情報を用いて圧縮機の異常の有無を診断する演算装置(35)と、圧縮機の異常の有無の診断結果を報知する報知手段(36)とを備える。

Description

劣化診断装置および空気調和装置
 本発明は、圧縮機の劣化診断装置および空気調和装置に関するものである。
 従来から、空気調和装置等に搭載される圧縮機の異常を検出する種々の方法が提案されている。例えば、特許文献1には、圧縮機の振動値に基づいて圧縮機の異常を検出する方法が記載されている。この方法では、冷房運転または暖房運転等の各運転モードにおける圧縮機回転数に応じた圧縮機振動の許容限界値を予め設定し、冷凍サイクルが安定した状態で圧縮機の振動を検出する。そして、振動の検出値と設定された許容限界値とを比較し、その結果に基づき、圧縮機が異常であるか否かを判断する。
特開平10-288379号公報
 しかしながら、特許文献1に記載の方法では、圧縮機の起動時および加減速時等、圧縮機が一定の回転数で動作せず、振動値が大きく変動する場合には、圧縮機が異常であるか否かを判断することができない。圧縮機の故障につながる損傷等は、起動時および加減速時等に発生することが多いため、上記の特許文献1に記載の方法では、異常を迅速に発見することが困難であった。
 本発明は、上記従来の技術における課題に鑑みてなされたものであって、回転数の変化によらず、圧縮機の異常の有無を診断することができる劣化診断装置および空気調和装置を提供することを目的とする。
 本発明の劣化診断装置は、圧縮機の異常の有無を診断する劣化診断装置であって、前記圧縮機に供給される電源電流に関する電流情報を検出する電流検出器と、前記圧縮機の振動に関する振動情報を、設定された測定周期で検出する振動検出器と、前記電流検出器および前記振動検出器が接続され、前記電流検出器から入力される前記電流情報および前記振動検出器から入力される前記振動情報を用いて前記圧縮機の異常の有無を診断する演算装置と、前記圧縮機の異常の有無の診断結果を報知する報知手段とを備えるものである。
 以上のように、本発明によれば、圧縮機の電流情報および振動情報に基づき、圧縮機の特徴量を取得することにより、回転数の変化によらず、圧縮機の異常の有無を診断することができる。
実施の形態1に係る劣化診断装置による診断対象となる圧縮機を搭載した空気調和装置の構成の一例を示す概略図である。 実施の形態1に係る劣化診断装置の構成の一例を示すブロック図である。 圧縮機の回転数が変化するときであって、測定周波数を変化させて圧縮機振動情報を収集する場合について説明するための概略図である。
実施の形態1.
 以下、本発明の実施の形態1に係る劣化診断装置について説明する。本実施の形態1に係る劣化診断装置は、空気調和装置に搭載されている圧縮機の異常の有無を診断するものである。
[空気調和装置の構成]
 まず、本実施の形態1に係る劣化診断装置による診断対象となる圧縮機を搭載した空気調和装置について説明する。図1は、本実施の形態1に係る劣化診断装置3による診断対象となる圧縮機11を搭載した空気調和装置100の構成の一例を示す概略図である。図1に示すように、空気調和装置100は、室外機1、室内機2A~2Dおよび劣化診断装置3で構成されている。図1に示す例では、1台の室外機に対して4台の室内機が接続される場合を示す。なお、室外機および室内機の台数は、この例に限られない。例えば、空気調和装置には、複数の室外機が接続されていてもよい。また、例えば、空気調和装置には、1~3台、あるいは5台以上の室内機が接続されていてもよい。
(室外機)
 室外機1は、圧縮機11、四方弁等の冷媒流路切替装置12、熱源側熱交換器13、内部熱交換器14、膨張弁15、アキュムレータ16、熱源側送風機17、および制御装置18を備えている。
 圧縮機11は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機11としては、例えば、後述する制御装置18による制御によって駆動周波数を変化させることにより、単位時間あたりの冷媒送出量である容量を制御することが可能なインバータ圧縮機等を用いることができる。
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12における流路の切替は、後述する制御装置18によって制御される。
 熱源側熱交換器13は、ファン等の熱源側送風機17によって供給される空気(以下、「室外空気」と適宜称する)と冷媒との間で熱交換を行う。具体的には、熱源側熱交換器13は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、熱源側熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。
 内部熱交換器14は、主回路部分を流れる冷媒と、主回路から分岐し、アキュムレータ16に接続されたインジェクション回路を流れる冷媒との間で熱交換を行う。膨張弁15は、主回路から分岐したインジェクション回路を流れる冷媒を減圧させる。
 アキュムレータ16は、圧縮機11の吸入側である低圧側に設けられている。アキュムレータ16は、冷房運転と暖房運転との運転状態の違いによって生じる余剰冷媒、過渡的な運転の変化に対する余剰冷媒等を貯留する。
 制御装置18は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェア等で構成されている。制御装置18は、例えば、図示しないリモートコントローラに対する使用者の操作による設定、ならびに空気調和装置100の各部に設けられた図示しないセンサ等から受け取る各種情報に基づき、空気調和装置100全体の動作を制御する。例えば、制御装置18は、空気調和装置100の各部に設けられた図示しない温度センサおよび圧力センサ等による検出結果に基づき、圧縮機11の回転数を制御する。
 なお、この例では、制御装置18が室外機1に設けられているが、これはこの例に限られない。例えば、制御装置18は、後述する室内機2A~2Dのいずれかに設けられてもよいし、室外機1および室内機2A~2Dの外部に設けられてもよい。
(室内機)
 室内機2A~2Dは、例えば、空調対象空間の空気の冷房及び暖房を行うものである。室内機2A~2Dは、それぞれ、利用側熱交換器21A~21D、減圧装置22A~22D、および利用側送風機23A~23Dを備えている。なお、以下の説明において、室内機2A~2Dを特に区別する必要がない場合には、単に「室内機2」と適宜称して説明する。また、利用側熱交換器21A~21Dおよび減圧装置22A~22Dについても同様に、それぞれ、単に「利用側熱交換器21」および「減圧装置22」と適宜称して説明する。
 利用側熱交換器21は、ファン等の利用側送風機23A~23Dによって供給される空気と冷媒との間で熱交換を行う。これにより、室内空間に供給される暖房用空気または冷房用空気が生成される。利用側熱交換器21は、冷房運転の際に冷媒が冷熱を搬送している場合に蒸発器として機能し、空調対象空間の空気を冷却して冷房を行う。また、利用側熱交換器21は、暖房運転の際に冷媒が温熱を搬送している場合に凝縮器として機能し、空調対象空間の空気を加熱して暖房を行う。
 減圧装置22は、冷媒を減圧して膨張させる。減圧装置22は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。減圧装置22は、例えば、利用側熱交換器21の冷媒出口温度が最適となるように、制御装置18によって制御される。
(劣化診断装置)
 図2は、本実施の形態1に係る劣化診断装置3の構成の一例を示すブロック図である。図2に示すように、劣化診断装置3は、電流検出器31、振動検出器32、A/D変換器33および34、演算装置35、ならびに報知手段36で構成されている。
 電流検出器31は、圧縮機11の電流線に供給される電源電流を、予め設定された周期で検出し、電源電流の周波数を含む、アナログ信号である圧縮機電流情報として出力する。電流検出器31としては、例えば、AC(Alternating Current)電流を検出するACCT(AC Current Transformer)等の電流センサを用いることができる。また、これに限られず、電流検出器31としては、例えば、シャント抵抗を用いることもできる。
 振動検出器32は、例えば振動センサであり、圧縮機11の本体に取り付けられている。振動検出器32は、圧縮機11の振動を予め設定された測定周期で検出し、アナログ信号である圧縮機振動情報として出力する。圧縮機振動情報は、例えば、圧縮機11の変位、振動速度および振動加速度等の振動に関する情報を含む。
 A/D変換器33および34は、入力されたアナログ信号をデジタル信号に変換する。A/D変換器33は、電流検出器31で検出された圧縮機11の電流に関するアナログ信号の圧縮機電流情報をデジタル信号に変換して出力する。A/D変換器34は、振動検出器32で検出された圧縮機11の振動に関するアナログ信号の圧縮機振動情報をデジタル信号に変換して出力する。
 演算装置35は、電流検出器31で検出されデジタル信号に変換された圧縮機11の圧縮機電流情報と、振動検出器32で検出されデジタル信号に変換された圧縮機11の圧縮機振動情報とに基づき、圧縮機11の異常の有無を判断する。演算装置35は、回転数検出部41、測定周波数設定部42、特徴量演算部43、異常判断部44、および記憶部45を備えている。
 回転数検出部41は、A/D変換器33から圧縮機電流情報が供給される。回転数検出部41は、供給された圧縮機電流情報に含まれる圧縮機11の電源電流の周波数に基づき、圧縮機11の回転数を検出する。
 測定周波数設定部42は、回転数検出部41から圧縮機11の回転数が供給される。測定周波数設定部42は、供給された圧縮機11の回転数に基づき、振動検出器32で圧縮機11の振動を検出する測定周期を決定するための測定周波数を設定する。なお、測定周波数の設定方法の詳細については、後述する。
 特徴量演算部43は、A/D変換器34から圧縮機振動情報が供給される。特徴量演算部43は、予め設定された数、すなわち振動検出器32におけるサンプリング数の圧縮機振動情報に基づき、圧縮機11の振動に関する特徴量を演算する。この場合の特徴量としては、例えば、振動の変位、振動速度または振動加速度の平均値、標準偏差、歪度、尖度および公差頻度等の少なくとも1つの振動状態を示す情報を用いることができる。
 異常判断部44は、特徴量演算部43で演算された特徴量が供給される。異常判断部44は、供給された特徴量に基づき、圧縮機11における異常の有無を判断する。例えば、異常判断部44は、供給された特徴量を示す値が、この特徴量に対して予め設定された範囲内、すなわち設定範囲内に存在するか否かを判断し、特徴量を示す値が設定範囲外となった場合に、圧縮機11が異常であると判断する。
 記憶部45は、演算装置35の各部での各種処理を行う際に用いられるパラメータ等が予め記憶されている。例えば、記憶部45には、測定周波数設定部42で測定周波数を設定する際に用いられる計算式または周波数設定テーブルが記憶されている。また、記憶部45には、異常判断部44で圧縮機11の異常の有無を判断する際に用いられる設定範囲が記憶されている。
 報知手段36は、演算装置35の異常判断部44による判断結果に基づき、圧縮機11の異常の有無の診断結果を報知する。報知手段36としては、例えば、ディスプレイ、LED(Light Emitting Diode)またはスピーカ等を用いることができる。例えば、報知手段36がディスプレイである場合には、診断結果が文字または図形等で表示される。報知手段36がLEDである場合には、診断結果が点灯、点滅または消灯等で表示される。報知手段36がスピーカである場合には、診断結果が音声で報知される。
[測定周波数の設定]
 次に、測定周波数設定部42における測定周波数の設定方法について、図3を参照しながら説明する。
 図3は、圧縮機11の回転数が変化するときであって、測定周波数を変化させて圧縮機振動情報を収集する場合について説明するための概略図である。また、図3(a)は、測定周波数を固定とした場合の各種データを示し、図3(b)は、測定周波数を変化させた場合の各種データを示す。
 図3において、「圧縮機回転数」は、圧縮機11の回転数を示す。この例では、圧縮機回転数が30、60および100[rps]に変化した場合を示す。「測定周波数」は、振動検出器32で圧縮機11の振動を検出する場合の測定周期を決定するための周波数を示す。この例において、図3(a)では、測定周波数が固定値48000[Hz]に設定された場合を示す。また、図3(b)では、測定周波数が可変値に設定された場合を示す。なお、測定周期は、測定周波数の逆数で求めることができる。
 「サンプル数」は、特徴量演算部43で特徴量を演算する際に必要な圧縮機振動情報の数を示す。このサンプル数は、特徴量を演算する際に十分な精度を得るために必要な数であり、例えば、実験または試験等によって予め設定されるものである。この例では、サンプル数が8192ポイントに設定された場合を示す。
 「フレーム長」は、測定周期とサンプル数とを乗算したものであり、サンプル数分の圧縮機振動情報を振動検出器32で取得するために必要な時間を示す。「回転数×フレーム長」は、圧縮機回転数とフレーム長とを乗算したものであり、1フレームにおける回転数を示す。「回転角度/サンプル」は、1サンプルあたりの回転数を回転角度に換算した値を示す。
 まず、上述したように、振動検出器32は、予め設定された測定周期毎に圧縮機11の振動を検出している。また、測定周波数設定部42は、予め設定されたサンプル数分の圧縮機振動情報を収集し、これらの圧縮機振動情報に基づいて特徴量を演算している。
 ここで、圧縮機11の回転数が変化するときであって、測定周波数を固定して圧縮機振動情報を収集する場合について考える。この場合、図3(a)に示すように、圧縮機11の回転数がどのような場合であっても、特徴量を演算する際に必要なフレーム長は、同一の0.171[sec]となる。そのため、1フレームにおける回転数は、圧縮機11の回転数に応じて変化する。したがって、1サンプルあたりの回転角度は、圧縮機11の回転数に応じて変化する。
 図3(a)に示す例では、圧縮機回転数が30[Hz]の場合に、1フレームにおける回転数は5.1[rev]となり、1サンプルあたりの回転角度は0.23[deg/サンプル]となる。また、圧縮機回転数が60[Hz]の場合には、1フレームにおける回転数が10.2[rev]となり、1サンプルあたりの回転角度は0.45[deg/サンプル]となる。さらに、圧縮機回転数が100[Hz]の場合に、1フレームにおける回転数が17.1[rev]となり、1サンプルあたりの回転角度は0.75[deg/サンプル]となる。
 このように、1サンプルあたりの回転角度が圧縮機11の回転数に応じて変化すると、それぞれの圧縮機回転数において得られる特徴量は、同一条件の下で得られるものではなくなってしまう。そのため、この場合には、データの信頼性が損なわれてしまう。そこで、本実施の形態1では、図3(b)に示すように、圧縮機11の回転数が変化する場合であっても、1サンプルあたりの回転角度が同一となるように、測定周波数を変化させる。
 例えば、本実施の形態1では、図3(b)に示すように、サンプル数を図3(a)の場合と同様に設定する。また、この例では、圧縮機回転数がどのような値であっても、1サンプルあたりの回転角度が同一の0.75[deg/サンプル]となるようにフレーム長が決定される。
 図3(b)に示す例では、圧縮機回転数が30[Hz]の場合に、フレーム長が0.570[sec]となり、圧縮機回転数が60[Hz]の場合に、フレーム長が0.285[sec]となる。また、圧縮機回転数が100[Hz]の場合には、フレーム長が0.171[sec]となる。
 そして、このようにして決定されたフレーム長とサンプル数とに基づき、測定周波数が設定される。これにより、圧縮機回転数が30[Hz]の場合に、測定周波数が14371[Hz]となり、圧縮機回転数が60[Hz]の場合に、測定周波数が28744[Hz]となる。また、圧縮機回転数が100[Hz]の場合に、測定周波数が48000[sec]となる。
 このようにして、本実施の形態1では、圧縮機11の回転数に応じて、振動検出器32で圧縮機11の振動を検出する際の測定周波数、すなわち測定周期を変化させる。
 なお、測定周波数は、通常、基準となるクロック周波数を分周または逓倍させることによって得られるため、設定できる周波数が限定される可能性がある。したがって、このような場合には、測定機器の汎用性等も考慮して、測定周波数は、例えば、クロック周波数を分周または逓倍させた周波数のうち、1サンプルあたりの回転角度を一定とするようにして得られる測定周波数に近い周波数に設定すると好ましい。
[劣化診断装置の動作]
 次に、本実施の形態1に係る劣化診断装置3の動作について説明する。上述したように、劣化診断装置3は、電流検出器31および振動検出器32で検出された圧縮機11に関する情報に基づき、圧縮機11の異常の有無を診断する。以下では、劣化診断装置3において圧縮機11の異常の有無を診断するための動作について説明する。
 まず、振動検出器32は、予め設定された測定周期で圧縮機11の振動を検出する。検出された振動に関する情報である圧縮機振動情報は、A/D変換器34を介してアナログ信号からデジタル信号に変換された後、演算装置35の特徴量演算部43に供給される。
 一方、電流検出器31は、予め設定された周期で圧縮機11の電源電流を検出する。検出された電源電流の周波数を含む圧縮機電流情報は、A/D変換器33を介してアナログ信号からデジタル信号に変換された後、演算装置35の回転数検出部41に供給される。
 回転数検出部41は、供給された圧縮機電流情報に含まれる圧縮機11の電源電流の周波数に基づき、圧縮機11の回転数を検出する。検出された圧縮機11の回転数を示す情報は、測定周波数設定部42に供給される。
 測定周波数設定部42は、供給された圧縮機11の回転数を示す情報に基づき、記憶部45に記憶された計算式または周波数設定テーブルを参照して、現在の圧縮機11の回転数に応じて測定周波数、すなわち振動検出器32における測定周期を設定する。そして、振動検出器32は、設定された測定周期で圧縮機11の振動を検出し、検出結果に応じた圧縮機振動情報を、A/D変換器34を介して特徴量演算部43に供給する。
 特徴量演算部43は、供給された圧縮機振動情報に含まれる振動の加速度等の特徴量を演算する。なお、このとき演算によって得られる特徴量は、例えば振動の加速度の平均値等、単一の特徴量でもよいし、複数の特徴量を組み合わせて得られる状態量でもよい。演算された特徴量は、異常判断部44に供給される。
 異常判断部44は、記憶部45から設定範囲を読み出し、供給された特徴量を示す値が、読み出した設定範囲内に存在するか否かを判断する。そして、特徴量を示す値が設定範囲内に存在する場合、異常判断部44は、圧縮機11が正常であると判断する。一方、特徴量を示す値が設定範囲外に存在する場合、異常判断部44は、圧縮機11が異常であると判断する。そして、異常判断部44は、判断結果を示す判断情報を報知手段36に供給する。
 報知手段36は、異常判断部44から供給された判断情報に基づき、判断結果に応じた報知を行う。例えば、圧縮機11が異常である場合には、文字の表示、LEDの点灯、または音声の出力等を行い、使用者に対して圧縮機11の異常を報知する。
 このように、本実施の形態1では、圧縮機11の回転数の変化に応じて、振動検出器32による測定周波数を変化させることにより、圧縮機11の回転数によらず、1サンプルあたりの回転角度を一定として圧縮機11の異常の有無を判断する。これにより、同一条件の下で、それぞれの圧縮機回転数における特徴量を演算することができる。そのため、データの信頼性を向上させることができ、圧縮機11の異常の有無をより高精度に判断することができる。
 以上のように、本実施の形態1に係る劣化診断装置3は、圧縮機11の異常の有無を診断するものであり、圧縮機11に供給される電源電流に関する電流情報を検出する電流検出器31と、圧縮機11の振動に関する振動情報を、設定された測定周期で検出する振動検出器32と、電流検出器31および振動検出器32が接続され、電流検出器31から入力される電流情報および振動検出器32から入力される振動情報を用いて圧縮機11の異常の有無を診断する演算装置35と、圧縮機11の異常の有無の診断結果を報知する報知手段36とを備える。
 また、演算装置35は、圧縮機11の電流に基づき検出された圧縮機11の回転数に応じて、振動検出器32で振動情報を検出する際の測定周期を決定する測定周波数を設定し、設定された測定周波数に基づく測定周期で検出された振動情報から、振動状態を示す特徴量を演算し、演算された特徴量に基づき、圧縮機11の異常の有無を診断する。これにより、本実施の形態1では、圧縮機11の回転数によらず、圧縮機の異常の有無を診断することができる。
 以上、本発明の実施の形態1について説明したが、本発明は、上述した本発明の実施の形態1に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、本実施の形態1では、振動検出器32による圧縮機11の振動の測定周波数を変化させることにより、圧縮機11の回転数によらず、1サンプルあたりの回転角度を一定として圧縮機11の異常の有無を判断したが、これはこの例に限られない。
 例えば、1サンプルあたりの回転角度を一定とするために、測定周波数を固定的に設定し、サンプル数を可変としてもよい。こうすることにより、本実施の形態1と同様に、圧縮機11の回転数によらず、圧縮機11の異常の有無を判断することができる。
 また、例えば、圧縮機11に異常が発生していると判断した場合に、劣化診断装置3は、圧縮機11の保護を目的として回転数を低下させるなどの制御を行うための制御信号を、空気調和装置100の制御装置18に対して送信してもよい。制御装置18は、この制御信号を受信した場合に、圧縮機11の回転数を低下させる制御を行う。さらに、例えば、図示しない通信部を演算装置35に設け、圧縮機11に異常が発生したことを遠隔地等の外部に報知してもよい。
 1 室外機、2、2A、2B、2C、2D 室内機、3 劣化診断装置、11 圧縮機、12 冷媒流路切替装置、13 熱源側熱交換器、14 内部熱交換器、15 膨張弁、16 アキュムレータ、17 熱源側送風機、18 制御装置、21、21A、21B、21C、21D 利用側熱交換器、22、22A、22B、22C、22D 減圧装置、23、23A、23B、23C、23D 利用側送風機、31 電流検出器、32 振動検出器、33、34 A/D変換器、35 演算装置、36 報知手段、41 回転数検出部、42 測定周波数設定部、43 特徴量演算部、44 異常判断部、45 記憶部、100 空気調和装置。

Claims (10)

  1.  圧縮機の異常の有無を診断する劣化診断装置であって、
     前記圧縮機に供給される電源電流に関する電流情報を検出する電流検出器と、
     前記圧縮機の振動に関する振動情報を、設定された測定周期で検出する振動検出器と、
     前記電流検出器および前記振動検出器が接続され、前記電流検出器から入力される前記電流情報および前記振動検出器から入力される前記振動情報を用いて前記圧縮機の異常の有無を診断する演算装置と、
     前記圧縮機の異常の有無の診断結果を報知する報知手段と
    を備える劣化診断装置。
  2.  前記演算装置は、
     前記圧縮機の電流に基づき検出された前記圧縮機の回転数に応じて、前記振動検出器で前記振動情報を検出する際の前記測定周期を決定する測定周波数を設定し、
     設定された前記測定周波数に基づく前記測定周期で検出された前記振動情報から、振動状態を示す特徴量を演算し、
     演算された前記特徴量に基づき、前記圧縮機の異常の有無を診断する
    請求項1に記載の劣化診断装置。
  3.  前記演算装置は、
     前記電流情報から前記圧縮機の回転数を検出する回転数検出部と、
     検出された前記圧縮機の回転数に基づき、前記測定周波数を設定する測定周波数設定部と、
     前記測定周波数に基づいて前記振動検出器で検出された前記振動情報に基づき、前記特徴量を演算する特徴量演算部と、
     演算された前記特徴量に基づき、前記圧縮機の異常を判断する異常判断部と
    を有する
    請求項1または2に記載の劣化診断装置。
  4.  前記異常判断部は、
     演算された前記特徴量と、予め設定された前記特徴量に対する範囲を示す設定範囲とを比較し、
     前記特徴量が前記設定範囲外となった場合に、前記圧縮機が異常であると判断する
    請求項3に記載の劣化診断装置。
  5.  前記演算装置は、
     前記圧縮機の電流に基づき検出された前記圧縮機の回転数に応じて、前記圧縮機の異常を診断する際に必要な前記振動情報の数を示すサンプル数を設定し、
     設定された前記サンプル数だけ取得された前記振動情報から、振動状態を示す特徴量を演算し、
     演算された前記特徴量に基づき、前記圧縮機の異常の有無を診断する
    請求項1に記載の劣化診断装置。
  6.  前記振動情報は、前記圧縮機の変位、振動速度または振動加速度であり、
     前記特徴量は、前記振動情報の平均値、標準偏差、歪度および公差頻度の少なくとも1つである
    請求項1~5のいずれか一項に記載の劣化診断装置。
  7.  前記測定周波数は、基準となるクロック周波数を分周または逓倍して得られる
    請求項1~6のいずれか一項に記載の劣化診断装置。
  8.  前記圧縮機が異常であると診断した場合に、異常であることを示す信号を外部に送信する
    請求項1~7のいずれか一項に記載の劣化診断装置。
  9.  前記圧縮機が異常であると診断した場合に、前記圧縮機の回転数を制御するための制御信号を外部に送信する
    請求項1~8のいずれか一項に記載の劣化診断装置。
  10.  圧縮機、熱源側熱交換器、減圧装置、利用側熱交換器が配管によって接続され、該配管を冷媒が循環する空気調和装置であって、
     請求項1~9のいずれか一項に記載の劣化診断装置を備える空気調和装置。
PCT/JP2017/016519 2017-04-26 2017-04-26 劣化診断装置および空気調和装置 WO2018198221A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780089627.0A CN110573737A (zh) 2017-04-26 2017-04-26 劣化诊断装置以及空调装置
US16/488,462 US20200049364A1 (en) 2017-04-26 2017-04-26 Degradation diagnosis device and air-conditioning device
JP2019514943A JPWO2018198221A1 (ja) 2017-04-26 2017-04-26 劣化診断装置および空気調和装置
PCT/JP2017/016519 WO2018198221A1 (ja) 2017-04-26 2017-04-26 劣化診断装置および空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016519 WO2018198221A1 (ja) 2017-04-26 2017-04-26 劣化診断装置および空気調和装置

Publications (1)

Publication Number Publication Date
WO2018198221A1 true WO2018198221A1 (ja) 2018-11-01

Family

ID=63920249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016519 WO2018198221A1 (ja) 2017-04-26 2017-04-26 劣化診断装置および空気調和装置

Country Status (4)

Country Link
US (1) US20200049364A1 (ja)
JP (1) JPWO2018198221A1 (ja)
CN (1) CN110573737A (ja)
WO (1) WO2018198221A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111237182A (zh) * 2018-11-29 2020-06-05 桂林航天工业学院 一种空调压缩机故障诊断系统
CN111720966A (zh) * 2020-06-08 2020-09-29 海信(山东)空调有限公司 空调器的控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115163452B (zh) * 2022-06-20 2024-02-09 深圳拓邦股份有限公司 一种无实物压缩机检测方法、装置、设备和可读存储介质
CN116045562A (zh) * 2023-03-30 2023-05-02 宁波奥克斯电气股份有限公司 压缩机延命运行方法及空调器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277539A (ja) * 1985-09-27 1987-04-09 Mitsubishi Electric Corp インバ−タエアコン
JPS62228919A (ja) * 1986-03-31 1987-10-07 Ebara Res Co Ltd 回転機械の振動測定装置
JP2005241059A (ja) * 2004-02-24 2005-09-08 Midori Anzen Co Ltd 分煙システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183157A (ja) * 1989-01-09 1990-07-17 Hitachi Constr Mach Co Ltd 超音波測定装置におけるa/d変換処理方式
JP3191947B2 (ja) * 1991-02-25 2001-07-23 アジレント・テクノロジー株式会社 インピーダンス測定装置
JP3352244B2 (ja) * 1994-09-19 2002-12-03 浜松ホトニクス株式会社 電圧測定装置
CN1308692C (zh) * 2001-12-31 2007-04-04 岩壶卓三 旋转机械的异常诊断方法及异常诊断装置
JP4265982B2 (ja) * 2004-02-25 2009-05-20 三菱電機株式会社 機器診断装置、冷凍サイクル装置、冷凍サイクル監視システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277539A (ja) * 1985-09-27 1987-04-09 Mitsubishi Electric Corp インバ−タエアコン
JPS62228919A (ja) * 1986-03-31 1987-10-07 Ebara Res Co Ltd 回転機械の振動測定装置
JP2005241059A (ja) * 2004-02-24 2005-09-08 Midori Anzen Co Ltd 分煙システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111237182A (zh) * 2018-11-29 2020-06-05 桂林航天工业学院 一种空调压缩机故障诊断系统
CN111720966A (zh) * 2020-06-08 2020-09-29 海信(山东)空调有限公司 空调器的控制方法

Also Published As

Publication number Publication date
JPWO2018198221A1 (ja) 2020-01-09
CN110573737A (zh) 2019-12-13
US20200049364A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2018198221A1 (ja) 劣化診断装置および空気調和装置
US10330099B2 (en) HVAC compressor prognostics
US11009245B2 (en) Method and system for proactively and remotely diagnosing an HVAC system
US10060636B2 (en) Heat pump system with refrigerant charge diagnostics
ES2671050T3 (es) Aparato de aire acondicionado
US20210293432A1 (en) Environmental Control Unit including Maintenance Prediction
JPWO2017212606A1 (ja) 冷凍サイクル装置
JP2010025475A (ja) 冷凍サイクル機器に用いられる故障診断装置
JP6141217B2 (ja) 圧縮機劣化診断装置及び圧縮機劣化診断方法
JP7072398B2 (ja) 一体型空気調和装置の管理装置および管理プログラム
JP2008249258A (ja) 空調機能力試験方法および空調機能力試験システム
ES2918206T3 (es) Sistema de diagnóstico de averías
KR20180048466A (ko) 냉각 시스템을 진단하는 장치 및 방법
US11906185B2 (en) State analyzer system and state analysis device
JP2009293908A (ja) 空気調和装置及び空気調和装置の異常検知方法
JP2009145006A (ja) 空気調和機
WO2018179333A1 (ja) 冷媒圧縮式ヒートポンプ利用機器、冷媒圧縮式ヒートポンプの診断装置及び冷媒圧縮式ヒートポンプの診断方法
JP2014227057A (ja) 車両用空気調和装置の故障診断装置
JP2021032474A (ja) 空気調和システム
JP6636155B2 (ja) 冷凍装置
WO2023145016A1 (ja) 診断装置およびそれを有する冷凍サイクル装置
US12000604B2 (en) Failure diagnosis system configured to diagnose a state of an air-conditioning apparatus having a refrigerant circuit
KR20170139990A (ko) 냉각 시스템을 진단하는 장치 및 방법
JP2020190365A (ja) 空気調和システム
KR200435221Y1 (ko) 냉동기기 제어용 디지털 다중 압력스위치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907125

Country of ref document: EP

Kind code of ref document: A1