WO2018193543A1 - Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法 - Google Patents

Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法 Download PDF

Info

Publication number
WO2018193543A1
WO2018193543A1 PCT/JP2017/015697 JP2017015697W WO2018193543A1 WO 2018193543 A1 WO2018193543 A1 WO 2018193543A1 JP 2017015697 W JP2017015697 W JP 2017015697W WO 2018193543 A1 WO2018193543 A1 WO 2018193543A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
compound
content
crystallized
Prior art date
Application number
PCT/JP2017/015697
Other languages
English (en)
French (fr)
Inventor
鈴木 聡
織田 和宏
勝己 深谷
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to JP2019513134A priority Critical patent/JP6835211B2/ja
Priority to EP17906611.3A priority patent/EP3613866B1/en
Priority to PCT/JP2017/015697 priority patent/WO2018193543A1/ja
Priority to US16/606,146 priority patent/US11603582B2/en
Priority to CN201780089732.4A priority patent/CN110573637B/zh
Publication of WO2018193543A1 publication Critical patent/WO2018193543A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to an Al—Si—Fe-based aluminum alloy casting material and a method for producing the same.
  • Al aluminum
  • Si silicon having a hypereutectic composition
  • a Si-based compound primary crystal Si
  • high rigidity, low linear expansion and wear resistance are obtained (see Patent Document 1).
  • Al-Si-Fe-based aluminum alloy with improved rigidity and low linear expansion by forming Al-Fe-Si-based crystallized material by adding Fe to Al-Si-based aluminum alloy Is also known (see Patent Document 2).
  • Al—Si—Fe-based aluminum alloy when the content of Si or Fe increases, the Si-based crystallized product may become coarse or the Al—Fe—Si-based crystallized product may become acicular. Therefore, in order to suppress the coarsening of the Si-based crystallized product and the acicularization of the Al-Fe-Si-based crystallized product, Al-Si-Fe-based aluminum alloys include phosphorus (P) and manganese (Mn). Is added.
  • Al-Si-Fe-based aluminum alloys have been required to have higher rigidity and lower linear expansion.
  • an Al—Si—Fe series aluminum alloy in order to obtain higher rigidity and lower linear expansion, it is necessary to crystallize more primary crystal Si and Al—Fe—Si series intermetallic compounds.
  • Si is increased, the coarsening of the Si-based crystallized product cannot be sufficiently suppressed even if the amount of P added is increased.
  • an object of the aspect of the present invention is to provide an Al—Si—Fe-based aluminum alloy cast material having high rigidity or low linear expansion property and excellent in elongation, and a method for producing the same.
  • the Al—Si—Fe-based aluminum alloy cast material has a Si content of 12.0 mass% to 25.0 mass%, Fe: 0.48 mass% to 4.0 mass%, Cr: 0.17% by mass to 5.0% by mass,
  • the balance has a composition consisting of Al and inevitable impurities
  • the Si-based crystallized product includes a structure surrounding the Al—Cr—Si-based compound.
  • the content of Cr and the content of Si satisfy the following formula (1).
  • the structure further contains an Al-Fe-Si-based crystallized product,
  • the area ratio of the Al—Fe—Si based crystallized substance is 5% or more, the maximum diameter of the Al—Fe—Si based crystallized substance is 30 ⁇ m or less, and the area ratio of the Si based crystallized substance is 12%.
  • the maximum diameter of the Si-based crystallized product is 100 ⁇ m or less.
  • the Al—Si—Fe-based aluminum alloy casting material further contains one or more of the following elements.
  • Cu 0.5% by mass to 8.0% by mass
  • Ni 0.5% by mass to 6.0% by mass
  • Mg 0.05 mass% to 1.5 mass%
  • P 0.003 mass% to 0.02 mass%
  • Mn 0.3% by mass to 1.0% by mass
  • Ti 0.005 mass% to 1.0 mass%
  • B 0.001% by mass to 0.01% by mass
  • Zr 0.01% by mass to 1.0% by mass
  • V 0.01% by mass to 1.0% by mass
  • a method for producing an Al—Si—Fe-based aluminum alloy casting material includes Si: 12.0 mass% to 25.0 mass%, Fe: 0.5 mass% to 4.0 mass% Cr: An Al—Si—Fe-based aluminum alloy containing 0.17% by mass to 5.0% by mass with the balance being composed of Al and inevitable impurities is cast at a cooling rate of 500 ° C./s or more.
  • a supercooled state is caused at 30 ° C. or more than the liquidus temperature to solidify.
  • an Al—Si—Fe-based aluminum alloy casting material having high rigidity or low linear expansion property and excellent elongation, and a method for producing the same.
  • FIG. 1A is an explanatory diagram for explaining the relationship between the Si content and the area ratio of Si in an Al—Si-based aluminum alloy cast material.
  • FIG. 1B is an explanatory diagram for explaining the relationship between the Si area ratio and the linear expansion coefficient of Si in an Al—Si based aluminum alloy cast material.
  • FIG. 2 is an explanatory diagram for explaining a photograph of the alloy structure of Example 7, which is the Al—Si—Fe-based aluminum alloy cast material of the present embodiment.
  • the aluminum alloy cast material of the present embodiment is cooled at a cooling rate of 500 ° C./s or more at the time of casting and solidified, whereby the structure in which the Si-based crystallized material is in contact with the Al—Cr—Si-based compound is obtained. Have.
  • the aluminum alloy casting material of this embodiment will be described in detail.
  • the Al—Si—Fe-based aluminum alloy of the present embodiment includes 12.0% by mass to 25.0% by mass Si, 0.48% by mass to 4.0% by mass Fe, and 0.17% by mass. % And 5.0% by mass or less of Cr, with the balance being composed of Al and inevitable impurities.
  • Si improves castability, crystallizes as an Si-based compound, has an effect of increasing rigidity and wear resistance, and decreases linear expansion. Has an effect. If the Si content is less than 12.0% by mass, sufficient crystallization of the Si compound cannot be obtained, and the effect of enhancing rigidity and wear resistance cannot be exhibited sufficiently. Conversely, if the Si content exceeds 25.0 mass%, the castability is lowered. Preferably, when the Si content is 14.0% or more, more preferably the Si content is 16.0% or more, a cast material having good castability and improved rigidity and wear resistance can be obtained.
  • Fe has an action of suppressing seizure to the mold during casting and an action of improving mechanical properties such as rigidity. This effect becomes significant when the Fe content is 0.48% by mass or more. When the Fe content exceeds 4.0% by mass, it becomes easy to crystallize as a coarse and needle-like Al—Fe—Si compound, which causes a decrease in elongation.
  • the crystallization temperature of the Al—Cr—Si compound is less than or equal to the crystallization temperature of the Si compound. -The effect of Si-based compounds becoming crystallization nuclei of Si-based compounds is reduced. Since the Cr content and the Si content satisfy the following formula (1), the Al—Cr—Si compound is easily crystallized earlier than the Si crystallized product when solidified.
  • elements other than Fe and Cr such as copper (Cu), nickel (Ni), magnesium (Mg), P, manganese (Mn ), Titanium (Ti), boron (B), zirconium (Zr), or vanadium (V).
  • Cu is added if necessary because it has the effect of improving the mechanical properties. When added together with Ni, it crystallizes out as an Al—Ni—Cu-based compound, improving rigidity and high-temperature strength and reducing linear expansion. This effect becomes remarkable when the Cu content is 0.5 mass% or more. On the other hand, if the Cu content exceeds 8.0% by mass, a coarse compound is formed and the elongation decreases. When the Cu content exceeds 8% by mass, the corrosion resistance is further lowered. For this reason, it is preferable that content of Cu is 0.5 mass% or more and 8 mass% or less.
  • Ni is added as necessary because it has the effect of improving mechanical properties. When added together with Cu, it crystallizes out as an Al—Ni—Cu-based compound, improving rigidity and high-temperature strength and reducing linear expansion. This effect becomes significant when Ni content is 0.5 mass% or more. On the other hand, if the Ni content exceeds 6.0% by mass, the liquidus temperature becomes high, and the castability deteriorates. For this reason, the content of Ni is preferably 0.5% by mass or more and 6% by mass or less.
  • MG is added as necessary because it has the effect of improving mechanical properties. This effect becomes significant when the Mg content is 0.05% by mass or more. Further, if the Mg content exceeds 1.5% by mass, the Al matrix becomes hard and the elongation decreases. For this reason, it is preferable that content of Mg is 0.05 mass% or more and 1.5 mass% or less.
  • P as an Al—P compound, serves as a crystallization nucleus of the Si compound and has the effect of refining the Si compound. This effect becomes significant when the P content is 0.003%. Moreover, when content of P exceeds 0.02 mass%, the molten metal flowability will fall and castability will fall. For this reason, it is preferable that content of P is 0.003 mass% or more and 0.02 mass% or less.
  • Mn has the effect of agglomerating the Al—Fe—Si based compound.
  • the Al—Fe—Si compound is coarse needle-shaped, it becomes a starting point of fracture and causes a decrease in elongation.
  • Mn by adding Mn to agglomerate, a decrease in elongation is suppressed. This effect becomes significant when the Mn content is 0.3% by mass or more. If the Mn content exceeds 1.0% by mass, a coarse Al— (Fe, Mn, Cr) —Si compound is formed, which causes a decrease in elongation.
  • Mn is preferably added in the range of 0.3 mass% or more and 1.0 mass% or less.
  • Ti is preferably added in the range of 0.005% by mass or more and 1.0% by mass or less.
  • B is preferably added in the range of 0.001% by mass or more and 0.01% by mass or less.
  • Zr is preferably added in the range of 0.01% by mass or more and 1.0% by mass or less.
  • V is preferably added in the range of 0.01% by mass or more and 1.0% by mass or less.
  • Si-based crystallized substances contribute to the improvement of rigidity, wear resistance, heat resistance and the like of the cast material, and also contribute to the suppression of linear expansion. This effect becomes significant when the area ratio of the Si-based crystallized substance is 12% or more.
  • FIG. 1A is an explanatory diagram for explaining the relationship between the Si content and the area ratio of Si in an Al—Si-based aluminum alloy cast material.
  • FIG. 1B is an explanatory diagram for explaining the relationship between the Si area ratio and the linear expansion coefficient of Si in an Al—Si based aluminum alloy cast material.
  • the Si content is 14.0% or more
  • the Si-based compound is easily crystallized, and the area ratio of the Si-based crystallized product is likely to be 12% or more.
  • FIG. 1B when the area ratio of the Si-based crystallized product increases, the linear expansion decreases.
  • the linear expansion coefficient is 21 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient is 21 It can be made smaller than ⁇ 10 -6 / ° C.
  • the Si-based compound is easily coarsened.
  • the particle size (equivalent circle diameter) of the Si-based crystallized product is preferably 100 ⁇ m or less.
  • Al-Fe-Si-based crystallized substances contribute to the improvement of the rigidity and heat resistance of the cast material and to the suppression of linear expansion. This effect becomes remarkable when the area ratio of the Al—Fe—Si based crystallized substance is 5% or more.
  • an Al-Fe-Si-based crystallized material with a particle size (equivalent circle diameter) exceeding 30 ⁇ m is present in the structure, when force is applied to the cast material itself, it becomes the starting point of fracture and increases the elongation of the cast material. Reduce.
  • the Si compound and the Al—Fe—Si compound are crystallized almost simultaneously. Thereby, acicularization of the Al—Fe—Si compound is suppressed, and a granular Al—Fe—Si compound can be obtained.
  • a fine Al—Cr—Si based compound is crystallized.
  • the Al—Cr—Si based compound is ⁇ -AlCrSi according to X-ray diffraction analysis.
  • Table 1 the crystal structure of each phase and the degree of mismatch between Si and each compound were compared.
  • a 0 is a lattice constant of Si
  • a is a lattice constant of an Al—P compound or Al—Cr—Si compound as a heterogeneous nucleus.
  • Al—P-based compounds have the same crystal system as Si and a close lattice constant.
  • ⁇ -AlCrSi is the same crystal system as Si, but the lattice constant a is twice the lattice constant a 0 of Si.
  • the crystal structure of the Al—Cr—Si compound is cubic, and Si is also cubic. Therefore, the degree of matching is calculated by doubling the lattice constant a 0 , and the present inventors have a high degree of matching between the crystal structure of the Al—Cr—Si compound and the crystal structure of the Si compound (non- I found that the degree of consistency is low.
  • the Al—P compound described above can also be a crystallization nucleus of the Si compound, but the Al—Cr—Si compound has a higher degree of crystal structure matching with the Si compound than the Al—P compound. For this reason, an Al—Cr—Si compound is more suitable as a crystallization nucleus than an Al—P compound.
  • the Al-P-based compound becomes a crystallization nucleus following the Al-Cr-Si-based compound, and further Si-based compared to the single addition of Cr.
  • the number of crystallized substances increases, and the area ratio of Si-based crystallized substances can be increased.
  • the molten alloy having the above-described alloy composition is cooled at 500 ° C./s or more and solidified, and the Al—Cr—Si compound is crystallized more than the Si compound.
  • the Al—Cr—Si compound is allowed to act as a crystallization nucleus.
  • a large amount of Si-based compounds are present around the Al—Cr—Si-based compounds serving as crystallization nuclei.
  • a certain Al—Cr—Si compound becomes a crystallization nucleus and is surrounded by a Si crystallized product.
  • the Al—Cr—Si-based compound may be a crystal nuclei and may not be completely surrounded by the Si-based crystallized product.
  • the Al—Cr—Si compound acts as a crystallization nucleus, coarsening of the Si crystallization product is suppressed. For this reason, even if the Si content is increased, the Al—Si—Fe-based aluminum alloy of this embodiment has high tensile strength and high rigidity and can suppress a decrease in elongation. In the Al—Si—Fe-based aluminum alloy of the present embodiment, the area ratio of the Si-based crystallized product can be increased to obtain the characteristic of low linear expansion.
  • the cooling rate of the molten metal having the above-described alloy composition is 500 ° C./s or more, which is consistent with the crystal structure of the Si-based compound.
  • High and fine Al—Cr—Si based compounds crystallize and become crystallization nuclei of Si based compounds.
  • the temperature of the mold may be adjusted.
  • the Al—Si—Fe-based aluminum alloy cast material of the present embodiment can be cast by die casting or the like.
  • the molten metal cooling rate is 500 ° C./s or higher
  • a supercooled state is more likely to occur at 30 ° C. or higher than the liquidus temperature of the molten metal having the above-described alloy composition.
  • the difference in crystallization temperature between the Si-based compound and the Al—Fe—Si-based compound is considered to be about 55 ° C., and the molten alloy with the alloy composition is solidified by causing a supercooled state 30 ° C.
  • the liquidus temperature is 642 ° C. As a result, mutual coarsening is suppressed, and acicularization of the Al—Fe—Si compound is suppressed.
  • Example 1 to Example 7 and Comparative Examples 1 and 2 a molten metal having an alloy composition shown in Table 2 having an alloy element amount and the balance being Al is melted, and the cooling rate is 500 ° C./s.
  • the casting was obtained by die casting so that the supercooled state was 30 ° C. or higher.
  • Each casting temperature of Example 1 to Example 7 and Comparative Examples 1 and 2 is 780 ° C.
  • Example 1 to 7 and Comparative Examples 1 and 2 the tensile strength of the Al—Si—Fe-based aluminum alloy castings of Examples 1 to 7 and Comparative Examples 1 and 2 was tested by a test method based on JIS Z2241. Strength and elongation were measured, and the measurement results are shown in Table 2.
  • Example 1 to Example 7 and Comparative Examples 1 and 2 the alloy structure was observed and photographed with an optical microscope, and the photographed image was obtained using an image analysis software KS400 manufactured by Carl Zeiss, Inc.
  • the equivalent-circle diameter of the —Fe—Si-based compound was measured, and the maximum diameters of the measured particle diameters are shown in Table 2.
  • Example 1 to Example 7 and Comparative Examples 1 and 2 the alloy structure was observed and photographed with an optical microscope, and using the image analysis software, the unit area of the Si-based crystallized product and the Al—Fe—Si-based compound was measured. The area ratio per hit was determined and shown in Table 2.
  • Comparative Example 1 As shown in Table 2, in Comparative Example 1, when the alloy compositions of Example 1 to Example 7 are compared, the Cr content is less than 0.17% by mass. For this reason, in Comparative Example 1, it can be seen that the grain size of the Si-based crystallized product exceeds 100 ⁇ m and the grain size is coarsened. In Comparative Example 1, it can be seen that the particle diameter of the Al—Fe—Si compound exceeds 30 ⁇ m and the particle diameter is coarse. And it turns out that the tensile strength and elongation of the comparative example 1 are smaller than tensile strength and elongation in any of Example 1 to Example 7.
  • Comparative Example 2 As shown in Table 2, in Comparative Example 2, when the alloy compositions of Example 1 to Example 7 are compared, the Cr content exceeds 5.00% by mass. Therefore, it can be seen that in Comparative Example 2, the particle diameter of the Al—Fe—Si compound exceeds 30 ⁇ m, and the particle diameter is coarse. And it turns out that the tensile strength and elongation of the comparative example 2 are smaller than tensile strength and elongation in any of Example 1 to Example 7.
  • FIG. 2 is a photograph of the alloy structure of Example 7, which is the Al—Si—Fe-based aluminum alloy cast material of the present embodiment.
  • Example 7 is the Al—Si—Fe-based aluminum alloy cast material of the present embodiment.
  • FIG. 2 granular Al—Fe—Si compounds are observed.
  • the Al—Cr—Si based compound is surrounded by the Si based crystallized product.
  • the Al—Cr—Si compound although the Al—Cr—Si compound is not completely surrounded by the Si crystallized product, the Al—Cr—Si compound exists in a state where it is in contact with the Si crystallized product. Can be observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

高い剛性という特性を、持ちながら伸びにも優れるAl-Si-Fe系アルミニウム合金鋳造材及びその製造方法を提供する。 Al-Si-Fe系アルミニウム合金鋳造材は、 Si:12.0質量%~25.0質量%、 Fe:0.5質量%~4.0質量%、 Cr:0.17質量%~5.0質量%を含み、 残部がAlと不可避不純物からなる組成を有し、Si系晶出物が、Al-Cr-Si系化合物を囲繞している組織を有する。

Description

Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法
 本発明は、Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法に関する。
 過共晶組成となるシリコン(Si)を含有するアルミニウム(Al)合金が知られている。Al-Si系アルミニウム合金において、Si系化合物(初晶Si)が晶出しており、高剛性や低線膨張性及び耐摩耗性が得られている(特許文献1参照)。
 Al-Si系アルミニウム合金に、更にFeが添加されることで、Al-Fe-Si系晶出物を形成させることで、高剛性や低線膨張性も向上したAl-Si-Fe系アルミニウム合金も知られている(特許文献2参照)。
 Al-Si-Fe系アルミニウム合金において、SiやFeの含有量が増えるとSi系晶出物の粗大化やAl-Fe-Si系晶出物の針状化がおこる可能性がある。そこで、Si系晶出物の粗大化やAl-Fe-Si系晶出物の針状化を抑制するために、Al-Si-Fe系アルミニウム合金には、リン(P)やマンガン(Mn)の添加が行われている。
特開平7-270209号公報 特開平9-324235号公報
 近年、Al-Si-Fe系アルミニウム合金には、より高い剛性やより低い線膨張性が、求められるようになってきた。Al-Si-Fe系アルミニウム合金において、より高い剛性やより低い線膨張性を得るために、より多くの初晶SiやAl-Fe-Si系金属間化合物を晶出させる必要がある。それらの晶出物を多く晶出させるためには、Al-Si-Fe系アルミニウム合金中の、SiやFeの含有量を増やす必要がある。しかし、Siを増加させるとPの添加量を増加させても、Si系晶出物の粗大化を十分に抑制することができなくなる。その一方Pの添加量が多くなると溶湯の湯流れ性が低下し、鋳造性が悪化する。またAl-Fe-Si系晶出物の針状化を抑制するためMnの添加量を多くすると粗大なMn系化合物が晶出し、伸びの低下の原因となる。
 そこで、本発明の態様においては、高い剛性あるいは低線膨張性という特性を、持ちながら伸びにも優れるAl-Si-Fe系アルミニウム合金鋳造材及びその製造方法を提供することを目的とする。
 本発明の第1の態様は、Al-Si―Fe系アルミニウム合金鋳造材は、 Si:12.0質量%~25.0質量%、
 Fe:0.48質量%~4.0質量%、
 Cr:0.17質量%~5.0質量%を含み、
 残部がAlと不可避不純物からなる組成を有し、
 Si系晶出物が、Al-Cr-Si系化合物を囲繞している組織を含む。
 望ましい態様として、Crの含有量と、Siの含有量とは、下記式(1)を満たしている。
 Cr>0.018×Si―0.2 ・・・(1)
 望ましい態様として、組織中にAl-Fe―Si系晶出物を更に含み、
 前記Al-Fe―Si系晶出物の面積率が5%以上であり、Al-Fe―Si系晶出物の最大径が30μm以下であり、前記Si系晶出物の面積率が12%以上であり、前記Si系晶出物の最大径が100μm以下である。
 望ましい態様として、Al-Si-Fe系アルミニウム合金鋳造材は、更に、下記のいずれか一種以上の元素を含む。
 Cu:0.5質量%~8.0質量%、
 Ni:0.5質量%~6.0質量%、
 Mg:0.05質量%~1.5質量%、
 P:0.003質量%~0.02質量%、
 Mn:0.3質量%~1.0質量%、
 Ti:0.005質量%~1.0質量%、
 B:0.001質量%~0.01質量%、
 Zr:0.01質量%~1.0質量%、
 V:0.01質量%~1.0質量%、
 本発明の第2の態様としてAl-Si―Fe系アルミニウム合金鋳造材の製造方法は、Si:12.0質量%~25.0質量%、Fe:0.5質量%~4.0質量%、Cr:0.17質量%~5.0質量%を含み、残部がAlと不可避不純物からなる組成を有するAl-Si-Fe系アルミニウム合金を冷却速度500℃/s以上で鋳造を行う。
 望ましい態様として、Al-Si―Fe系アルミニウム合金鋳造材の製造方法において、液相線温度よりも30℃以上過冷却状態を起こして凝固させる。
 本発明に係る態様によれば、高い剛性あるいは低線膨張性という特性を、持ちながら伸びにも優れるAl-Si-Fe系アルミニウム合金鋳造材及びその製造方法を提供することができる。
図1Aは、Al-Si系アルミニウム合金鋳造材において、Si含有量と、Siの面積率との関係を説明するための説明図である。 図1Bは、Al-Si系アルミニウム合金鋳造材において、Si面積率と、Siの線膨張係数との関係を説明するための説明図である。 図2は、本実施形態のAl-Si-Fe系アルミニウム合金鋳造材であって、実施例7の合金組織の写真を説明する説明図である。
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、以下で説明する実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。
 本願発明者が鋭意研究を重ねたところ、Crを含有するAl-Si-Fe系アルミニウム合金を鋳造の際に急冷し、凝固させるとSi系晶出物よりもAl-Cr-Si系化合物が先に晶出し、Si系晶出物の晶出核となり、粗大化の抑制に作用することがわかった。また、この作用はSiの含有量が16%を超える高Siのアルミニウム合金でも作用することがわかった。
 更に、急冷することにより、凝固時に過冷却がおこり、Si系化合物とAl-Fe-Si系化合物がほぼ同時に晶出し、その結果Al-Fe-Si系化合物が針状化しにくくなることがわかった。
 そこで、本実施形態のアルミニウム合金鋳造材は、鋳造時に冷却速度500℃/s以上で冷却し、凝固させることにより、Si系晶出物が、Al-Cr-Si系化合物と接している組織を有する。以下、本実施形態のアルミニウム合金鋳造材を詳細に説明する。
(合金組成)
 本実施形態のAl-Si-Fe系アルミニウム合金は、12.0質量%以上25.0質量%以下のSiと、0.48質量%以上4.0質量%以下のFeと、0.17質量%以上5.0質量%以下のCrとを含み、残部がAlと不可避不純物からなる組成を有している。
 本実施形態のAl-Si-Fe系アルミニウム合金において、Siは、鋳造性を向上させると共に、Si系化合物として晶出し、剛性や耐摩耗性を高める作用を有し、また線膨張性を低くする作用を有する。Siの含有量が12.0質量%よりも少ない場合、十分なSi系化合物の晶出が得られず、剛性や耐摩耗性を高める作用を十分に呈することができない。逆に、Siの含有量が25.0質量%を超えると鋳造性が低下する。好ましくは、Si含有量が14.0%以上、より好ましくはSi含有量が16.0%以上であると、鋳造性が良好で剛性や耐摩耗性を高めた鋳造材が得られる。
 本実施形態のAl-Si-Fe系アルミニウム合金において、Feは、鋳造の際の金型への焼き付きを抑制する作用を有すると共に、剛性等の機械的特性を高める作用を有する。この作用は、Feの含有量が0.48質量%以上で顕著となる。Feの含有量が4.0質量%を超えると、粗大で針状化したAl-Fe-Si系化合物として晶出しやすくなり、伸びが低下する要因となる。
 Crは、鋳造時に急冷させるとAl-Cr-Si系化合物として晶出し、Si系化合物の晶出核となり、粗大化の抑制に作用する。この作用は、Crの含有量が0.3質量%以上となると顕著となる。Crの含有量が5.0質量%を超えると、粗大なAl-(Fe、Cr、Mn)-Si系化合物として晶出しやすくなり、伸びが低下する要因となる。
 Cr含有量が、「0.018×Si―0.2」質量%以下であると、Al-Cr-Si系化合物の晶出温度がSi系化合物の晶出温度以下となるので、Al-Cr-Si系化合物がSi系化合物の晶出核となる作用が低下する。Crの含有量と、Siの含有量とは、下記式(1)を満たしていることで、凝固させるとSi系晶出物よりもAl-Cr-Si系化合物が先に晶出しやすくなる。
 Cr>0.018×Si―0.2 ・・・(1)
 本実施形態のAl-Si-Fe系アルミニウム合金においては、機械的性質を高めるためにFe、Cr以外の元素、例えば銅(Cu)、ニッケル(Ni)、マグネシウム(Mg)、P、マンガン(Mn)、チタン(Ti)、ボロン(B)、ジルコニウム(Zr)、バナジウム(V)のいずれか一種以上の元素を含んでもよい。
 Cuは機械的特性を向上させる作用があるため、必要により添加する。またNiとともに添加されるとAl-Ni-Cu系化合物として晶出し、剛性及び高温強度も向上させるとともに、線膨張性を低減させる作用も呈する。この作用は、Cuの含有量が0.5質量%以上の添加で顕著となる。また、Cuの含有量が8.0質量%を超えると、粗大な化合物を形成し、伸びが低下する要因となる。Cuの含有量が8質量%を超えると、更に耐食性も低下する。このため、Cuの含有量は、0.5質量%以上8質量%以下であることが好ましい。
 Niは、機械的特性を向上させる作用があるため、必要により添加する。またCuとともに添加されるとAl-Ni-Cu系化合物として晶出し、剛性及び高温強度も向上させるとともに、線膨張性を低減させる作用も呈する。この作用は、Niの含有量が0.5質量%以上の添加で顕著となる。また、Niの含有量は、6.0質量%を超えると液相線温度が高くなるため、鋳造性が悪くなる。このため、Niの含有量は、0.5質量%以上6質量%以下が好ましい。
 Mgは機械的特性を向上させる作用があるため、必要により添加する。この作用は、Mgの含有量が0.05質量%以上の添加で顕著となる。また、Mgの含有量が1.5質量%を超えて添加されるとAlの母相が硬くなり、伸びが低下する要因となる。このため、Mgの含有量は、0.05質量%以上1.5質量%以下であることが好ましい。
 Pは、Al-P系化合物として、Si系化合物の晶出核となり、Si系化合物の微細化の作用を有する。この作用は、Pの含有量が0.003%の添加で顕著となる。また、Pの含有量が、0.02質量%を超えて添加されると溶湯の湯流れ性が低下し、鋳造性が低下する。このため、Pの含有量は、0.003質量%以上0.02質量%以下であることが好ましい。
 Mnは、Al-Fe―Si系化合物を、塊状化させる作用を呈する。Al-Fe-Si系化合物が粗大針状であると破壊の起点となり、伸びの低下の要因となるが、Mnを添加し塊状化することにより、伸びの低下が抑制される。この作用は、Mnの含有量が0.3質量%以上の添加で顕著となる。Mnの含有量が、1.0質量%を超えて添加されると粗大なAl-(Fe,Mn,Cr)-Si系化合物を形成し、伸びが低下する要因となる。
 Ti、B、Zr、Vのいずれか一種以上の元素を含むと、結晶粒の微細化材として作用し、鋳造性を向上させると共に、機械的作用を向上させる作用を有する。Mnは、0.3質量%以上1.0質量%以下の範囲で添加されることが好ましい。Tiは、0.005質量%以上1.0質量%以下の範囲で添加されることが好ましい。Bは、0.001質量%以上0.01質量%以下の範囲で添加されることが好ましい。Zrは、0.01質量%以上1.0質量%以下の範囲で添加されることが好ましい。Vは、0.01質量%以上1.0質量%以下の範囲で添加されることが好ましい。
 Si系晶出物は、鋳造材の剛性、耐摩耗性、耐熱性等の向上に寄与すると共に、線膨張性の抑制に寄与する。Si系晶出物の面積率が12%以上で、この作用は顕著となる。
 図1Aは、Al-Si系アルミニウム合金鋳造材において、Si含有量と、Siの面積率との関係を説明するための説明図である。図1Bは、Al-Si系アルミニウム合金鋳造材において、Si面積率と、Siの線膨張係数との関係を説明するための説明図である。図1Aに示すように、Si含有量が14.0%以上とすると、Si系化合物が晶出しやすくなり、Si系晶出物の面積率が12%以上になりやすくなる。図1Bに示すように、Si系晶出物の面積率が大きくなると、線膨張性が低くなる。Si系晶出物の面積率が8%程度であると、線膨張係数が21×10-6/℃であり、Si系晶出物の面積率が12%であれば、線膨張係数が21×10-6/℃よりも小さくすることができる。
 しかしながら、Si含有量を増やすと、Si系化合物が粗大化しやすくなる。例えば、粒径(円相当径)が、100μmを超えるSi系晶出物が、組織中にあると鋳造材に力が加わった際に、破壊の起点となり鋳造材の伸びを低下させる。このため、Si系晶出物の粒径(円相当径)は、100μm以下であることが好ましい。
 Al-Fe-Si系晶出物は、鋳造材の剛性や耐熱性等の向上に寄与すると共に、線膨張性の抑制に寄与する。Al-Fe-Si系晶出物の面積率が5%以上で、この作用は顕著となる。また粒径(円相当径)が、30μmを超えるAl-Fe-Si系晶出物が、組織中にあると、鋳造材自体に力が加わった際に、破壊の起点となり鋳造材の伸びを低下させる。本実施形態の合金組成の溶湯を30℃以上の過冷却状態で冷却させることにより、Si系化合物とAl-Fe-Si系化合物とが、ほぼ同時に晶出する。これにより、Al-Fe-Si系化合物の針状化が抑制され、粒状のAl-Fe-Si系化合物を得ることができる。
 上述した合金組成の合金溶湯を、500℃/s以上で冷却し凝固させると微細なAl-Cr-Si系化合物が晶出する。Al-Cr-Si系化合物は、X線回折分析によれば、α-AlCrSiである。α-AlCrSiの異質核としての有効性を考察するため、下記表1のように、各相の結晶構造およびSiと各化合物の非整合度を比較した。ここで、aは、Siの格子定数であり、aは異質核としてのAl-P系化合物又はAl-Cr-Si系化合物の格子定数である。Al-P系化合物は、Siと同じ結晶系で格子定数が近い。α-AlCrSiは、Siと同じ結晶系であるが、格子定数aは、Siの格子定数aの2倍である。Al-Cr-Si系化合物の結晶構造が立方晶であり、Siも立方晶である。このため、格子定数aを2倍して整合度を算出し、本発明者らは、このAl-Cr-Si系化合物の結晶構造とSi系化合物との結晶構造の整合度が高い(非整合度が低い)ことを見いだした。
Figure JPOXMLDOC01-appb-T000001
 上述したAl-P系化合物もSi系化合物の晶出核となりえるが、Al-P系化合物よりもAl-Cr-Si系化合物の方がSi系化合物との結晶構造の整合度が高い。このため、Al-P系化合物よりもAl-Cr-Si系化合物の方が晶出核として適している。
 Pが更に、上述した合金組成の合金溶湯に添加されていると、Al-Cr-Si系化合物に続き、Al-P系化合物が晶出核となり、更に、Crの単独添加に比べ、Si系晶出物の数が増え、Si系晶出物の面積率を大きくすることができる。
 上述した合金組成の合金溶湯を、500℃/s以上で冷却し凝固させ、Al-Cr-Si系化合物がSi系化合物の晶出よりも晶出している状態として、Si系化合物の晶出の際に、Al-Cr-Si系化合物が晶出核として作用するようにする。その結果、晶出核となるAl-Cr-Si系化合物の周囲には、Si系化合物が多く存在するようになる。例えば、あるAl-Cr-Si系化合物は、晶出核となり、Si系晶出物に囲繞される。なお、Al-Cr-Si系化合物は、晶出核となり、Si系晶出物に完全に囲繞されていないものがあってもよい。
 Al-Cr-Si系化合物が晶出核として作用すると、Si系晶出物の粗大化が抑制される。このため、Si含有量を増やしても、本実施形態のAl-Si-Fe系アルミニウム合金においては、引張強度などが高く高剛性であり、伸びの低下を抑制できる。そして、本実施形態のAl-Si-Fe系アルミニウム合金においては、Si系晶出物の面積率を大きくし、低線膨張性という特性を得ることができる。
 以上説明したように、本実施形態のAl-Si-Fe系アルミニウム合金において、上述した合金組成の溶湯の冷却速度が500℃/s以上であることにより、Si系化合物の結晶構造と整合性の高い微細なAl-Cr-Si系化合物が晶出し、Si系化合物の晶出核となる。
 溶湯の冷却速度を500℃/s以上とするには、鋳型の温度調整をすればよい。例えば、本実施形態のAl-Si-Fe系アルミニウム合金鋳造材は、ダイキャスト鋳造などで鋳造可能である。
 本実施形態のAl-Si-Fe系アルミニウム合金において、溶湯の冷却速度が500℃/s以上になると、上述した合金組成の溶湯の液相線温度よりも30℃以上過冷却状態が生じやすくなる。この過冷却状態を経て、Si系化合物とAl-Fe-Si系化合物が、ほぼ同時に晶出する。Si系化合物とAl-Fe-Si系化合物との晶出温度差が55℃程度と考えられ、合金組成の溶湯を液相線温度よりも30℃以上過冷却状態を起こして凝固させることで、Si系化合物とAl-Fe-Si系化合物との晶出温度差が小さくなる。このため、Si系化合物とAl-Fe-Si系化合物とが、同時晶出しやすくなる。例えば、液相線温度は、642℃である。これにより、相互に粗大化が抑制され、Al-Fe-Si系化合物の針状化が抑制される。
[実施例]
 次に、本発明に係る実施例について説明する。実施例1から実施例7及び比較例1、2として、表2に示す合金元素量の合金組成を有し、残部がAlである合金組成の溶湯を溶製し、冷却速度が500℃/s以上であって、過冷却状態30℃以上となるようにダイキャスト鋳造し、鋳物が得られた。実施例1から実施例7及び比較例1、2の各鋳造温度は、780℃である。
Figure JPOXMLDOC01-appb-T000002
 実施例1から実施例7及び比較例1、2において、JIS Z2241に準拠した試験法により、実施例1から実施例7及び比較例1、2のAl-Si―Fe系アルミニウム合金鋳造材の引張強度、伸びが測定され、測定結果が表2に示されている。
 実施例1から実施例7及び比較例1、2において、光学顕微鏡で合金組織を観察、撮影し、撮影した画像をカールツアイス社製の画像解析ソフトKS400を用いて、Si系晶出物及びAl-Fe-Si系化合物の円相当径を計測し、計測した粒径の最大径をそれぞれサイズとして、表2に示した。
 実施例1から実施例7及び比較例1、2において、光学顕微鏡で合金組織を観察、撮影し、前記画像解析ソフトを用いて、Si系晶出物及びAl-Fe-Si系化合物の単位面積当たりの面積率を求め、表2に示した。
 表2に示すように、比較例1は、実施例1から実施例7の合金組成を比較すると、Crの含有量が0.17質量%より少ない。このため、比較例1は、Si系晶出物の粒径が100μmを越え、粒径が粗大化していることがわかる。比較例1は、Al-Fe-Si系化合物の粒径が、30μmを越え、粒径が粗大化していることがわかる。そして、比較例1の引張強度及び伸びは、実施例1から実施例7のいずれも引張強度及び伸びよりも小さいことがわかる。
 表2に示すように、比較例2は、実施例1から実施例7の合金組成を比較すると、Crの含有量が5.00質量%を超えている。このため、比較例2は、Al-Fe-Si系化合物の粒径が、30μmを越え、粒径が粗大化していることがわかる。そして、比較例2の引張強度及び伸びは、実施例1から実施例7のいずれも引張強度及び伸びよりも小さいことがわかる。
 図2は、本実施形態のAl-Si-Fe系アルミニウム合金鋳造材であって、実施例7の合金組織の写真である。図2に示す合金組織において、粒状のAl-Fe-Si系化合物が観察される。Al-Cr-Si系化合物の周囲にはSi系化合物が多く存在する。図2に示す合金組織において、Al-Cr-Si系化合物がSi系晶出物に囲繞される状態が観察できる。また、図2においては、Al-Cr-Si系化合物がSi系晶出物に完全に囲繞されていないものの、Al-Cr-Si系化合物がSi系晶出物に接した状態で、存在している状態が観察できる。Al-Cr-Si系化合物について、組成をn数8で調査した結果、Al13-15CrSi4-5の範囲と推定され、Al-Cr-Si三元系状態図から判断すると、α-AlCrSi(Al13CrSi)と推定された。
 以上、本願発明の種々の有用な実施例を示し、かつ、説明を施した。本願発明は、上述した種々の実施例や変形例に限定されること無く、この発明の要旨や添付する請求の範囲に記載された内容を逸脱しない範囲で種々変形可能であることはいうまでも無い。

Claims (6)

  1.  Si:12.0質量%~25.0質量%、
     Fe:0.48質量%~4.0質量%、
     Cr:0.17質量%~5.0質量%を含み、
     残部がAlと不可避不純物からなる組成を有し、
     Si系晶出物が、Al-Cr-Si系化合物を囲繞している組織を含むことを特徴とするAl-Si―Fe系アルミニウム合金鋳造材。
  2.  Crの含有量と、Siの含有量とは、下記式(1)を満たしている請求項1に記載のAl-Si―Fe系アルミニウム合金鋳造材。
     Cr>0.018×Si―0.2 ・・・(1)
  3.  組織中にAl-Fe―Si系晶出物を更に含み、
     前記Al-Fe―Si系晶出物の面積率が5%以上であり、Al-Fe―Si系晶出物の最大径が30μm以下であり、前記Si系晶出物の面積率が12%以上であり、前記Si系晶出物の最大径が100μm以下であることを特徴とする請求項1または請求項2に記載のAl-Si―Fe系アルミニウム合金鋳造材。
  4.  更に、
     Cu:0.5質量%~8.0質量%、
     Ni:0.5質量%~6.0質量%、
     Mg:0.05質量%~1.5質量%、
     P:0.003質量%~0.02質量%、
     Mn:0.3質量%~1.0質量%、
     Ti:0.005質量%~1.0質量%、
     B:0.001質量%~0.01質量%、
     Zr:0.01質量%~1.0質量%、
     V:0.01質量%~1.0質量%、
     のいずれか一種以上の元素を含むことを特徴とする請求項1から請求項3のいずれか1項に記載のAl-Si-Fe系アルミニウム合金鋳造材。
  5.  Si:12.0質量%~25.0質量%、
     Fe:0.5質量%~4.0質量%、
     Cr:0.17質量%~5.0質量%を含み、
     残部がAlと不可避不純物からなる組成を有するアルミニウム合金を冷却速度500℃/s以上で鋳造を行うことを特徴とするAl-Si-Fe系アルミニウム合金鋳造材の製造方法。
  6. 請求項5に記載のAl-Si―Fe系アルミニウム合金鋳造材の製造方法において、
    液相線温度よりも30℃以上過冷却状態を起こして凝固させることを特徴とするAl-Fe-Si系アルミニウム合金鋳造材の製造方法。
PCT/JP2017/015697 2017-04-19 2017-04-19 Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法 WO2018193543A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019513134A JP6835211B2 (ja) 2017-04-19 2017-04-19 Al−Si−Fe系アルミニウム合金鋳造材及びその製造方法
EP17906611.3A EP3613866B1 (en) 2017-04-19 2017-04-19 Al-si-fe aluminum alloy casting material and production method therefor
PCT/JP2017/015697 WO2018193543A1 (ja) 2017-04-19 2017-04-19 Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法
US16/606,146 US11603582B2 (en) 2017-04-19 2017-04-19 Al—Si—Fe-based aluminum alloy casting material and method for producing the same
CN201780089732.4A CN110573637B (zh) 2017-04-19 2017-04-19 Al-Si-Fe系铝合金铸造材料及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015697 WO2018193543A1 (ja) 2017-04-19 2017-04-19 Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2018193543A1 true WO2018193543A1 (ja) 2018-10-25

Family

ID=63855745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015697 WO2018193543A1 (ja) 2017-04-19 2017-04-19 Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法

Country Status (5)

Country Link
US (1) US11603582B2 (ja)
EP (1) EP3613866B1 (ja)
JP (1) JP6835211B2 (ja)
CN (1) CN110573637B (ja)
WO (1) WO2018193543A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469072B2 (ja) * 2020-02-28 2024-04-16 株式会社神戸製鋼所 アルミニウム合金鍛造材及びその製造方法
JP2022150384A (ja) * 2021-03-26 2022-10-07 本田技研工業株式会社 アルミニウム合金、積層造形物の製造方法および積層造形物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270209A (ja) 1994-03-28 1995-10-20 Yazaki Corp 膜式ガスメータ
JPH09324235A (ja) 1996-06-05 1997-12-16 Nippon Light Metal Co Ltd ダイカスト用過共晶Al−Si合金ならびに過共晶Al−Si合金ダイカスト鋳物およびその製造方法およびその使用方法
JP2000001731A (ja) * 1998-06-16 2000-01-07 Nippon Light Metal Co Ltd 過共晶Al−Si系合金ダイカスト部材及びその製造方法
JP2001288526A (ja) * 2000-04-04 2001-10-19 Sumitomo Special Metals Co Ltd 放熱材料とその製造方法
JP2002356755A (ja) * 2001-05-29 2002-12-13 Nippon Light Metal Co Ltd 耐摩耗性に優れたCu含有過共晶Al−Si系アルミニウム合金鋳造部材の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI9300296B (sl) 1992-06-11 1998-06-30 Smithkline Beecham P.L.C. Postopek in intermedianti za pripravo klavulanske kisline
JP3378342B2 (ja) * 1994-03-16 2003-02-17 日本軽金属株式会社 耐摩耗性に優れたアルミニウム鋳造合金及びその製造方法
CN1233862C (zh) * 2003-11-07 2005-12-28 薛元良 一种高硅铝合金材料及其生产方法
JP4341438B2 (ja) * 2004-03-23 2009-10-07 日本軽金属株式会社 耐摩耗性に優れたアルミニウム合金及び同合金を用いた摺動部材
US9303299B2 (en) * 2011-10-11 2016-04-05 Nippon Light Metal Company, Ltd. Method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si
CN102764957B (zh) * 2012-07-12 2014-11-05 东北大学 一种过共晶铝硅合金发动机缸套的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270209A (ja) 1994-03-28 1995-10-20 Yazaki Corp 膜式ガスメータ
JPH09324235A (ja) 1996-06-05 1997-12-16 Nippon Light Metal Co Ltd ダイカスト用過共晶Al−Si合金ならびに過共晶Al−Si合金ダイカスト鋳物およびその製造方法およびその使用方法
JP2000001731A (ja) * 1998-06-16 2000-01-07 Nippon Light Metal Co Ltd 過共晶Al−Si系合金ダイカスト部材及びその製造方法
JP2001288526A (ja) * 2000-04-04 2001-10-19 Sumitomo Special Metals Co Ltd 放熱材料とその製造方法
JP2002356755A (ja) * 2001-05-29 2002-12-13 Nippon Light Metal Co Ltd 耐摩耗性に優れたCu含有過共晶Al−Si系アルミニウム合金鋳造部材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3613866A4

Also Published As

Publication number Publication date
EP3613866A1 (en) 2020-02-26
JP6835211B2 (ja) 2021-02-24
JPWO2018193543A1 (ja) 2019-11-07
CN110573637A (zh) 2019-12-13
EP3613866A4 (en) 2020-09-30
US20200048745A1 (en) 2020-02-13
US11603582B2 (en) 2023-03-14
EP3613866B1 (en) 2022-12-14
CN110573637B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
JP5355320B2 (ja) アルミニウム合金鋳物部材及びその製造方法
WO2012026354A1 (ja) Co基合金
JP4187018B2 (ja) 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法
JP2007169712A (ja) 塑性加工用アルミニウム合金
WO2013054716A1 (ja) Al-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法
WO2014104037A1 (ja) Al-Fe-Si系化合物を微細化させたアルミニウム合金の製造方法
JP2016079419A (ja) アルミニウム合金連続鋳造材及びその製造方法
US11549461B2 (en) High strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for manufacturing internal combustion engine piston
WO2018193543A1 (ja) Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法
JP6113371B2 (ja) 高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン
JP2012126959A (ja) Al−Si系合金及びその製造方法
JPH01180938A (ja) 耐摩耗性アルミニウム合金
JPH08134578A (ja) 高温強度及び靭性に優れたダイカスト用アルミニウム合金及び製造方法
JP5699774B2 (ja) アルミニウム合金材及びその製造方法
JP3504917B2 (ja) 自動車エンジンの可動部品およびケーシング部材用のアルミニウム−ベリリウム−シリコン系合金
JP2022048993A (ja) アルミニウム合金
JP4148801B2 (ja) 切削性に優れた耐摩耗Al−Si系合金及びその鋳造方法
JP6103382B2 (ja) アルミニウム合金
JP2018070899A (ja) 過共晶Al−Mn系アルミニウム合金鋳造材及びその製造方法
JP6569453B2 (ja) 高靱性アルミニウム合金鋳物及びその製造方法
JP7126915B2 (ja) アルミニウム合金押出材及びその製造方法
JP2022147009A (ja) 耐熱性アルミニウム合金及び耐熱性アルミニウム合金部材
JP2023069367A (ja) 過共晶Al-Si合金及び過共晶Al-Si合金鋳物並びにその製造方法
JP4238180B2 (ja) 高靱性Al合金鋳物及びその製造方法
JPH08176715A (ja) 剛性および耐熱性に優れた展伸用アルミニウム合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017906611

Country of ref document: EP

Effective date: 20191119