WO2013054716A1 - Al-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法 - Google Patents
Al-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法 Download PDFInfo
- Publication number
- WO2013054716A1 WO2013054716A1 PCT/JP2012/075692 JP2012075692W WO2013054716A1 WO 2013054716 A1 WO2013054716 A1 WO 2013054716A1 JP 2012075692 W JP2012075692 W JP 2012075692W WO 2013054716 A1 WO2013054716 A1 WO 2013054716A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- aluminum alloy
- compound
- alloy
- primary crystal
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/20—Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0078—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only silicides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
Definitions
- the present invention relates to an aluminum alloy manufacturing method, and more particularly to an aluminum alloy manufacturing method capable of finely crystallizing an Al—Fe—Si compound and primary crystal Si.
- Aluminum alloys containing a large amount of Si are widely used as aluminum alloys having excellent wear resistance. It is also well known that Fe is contained in order to improve the rigidity of an aluminum alloy containing a large amount of Si.
- Patent Document 1 proposes a method of adjusting the quantitative relationship between “Fe and Ni” and “Fe and Mn” to uniformly disperse the crystallized product without crystallizing the coarse crystallized product. ing. Specifically, Al 3 (Ni, Mn, Fe), which tends to be coarsened, is adjusted by adjusting the amount of contained Ni, Fe, and Mn so that the relationship of Fe ⁇ ⁇ 0.25Ni + 1.75 and further Mn ⁇ 0.6Fe. Crystallization is suppressed.
- the Si content is 1.7 ⁇ Fe content + 13 to 13.7% by mass
- the Ti content is 0.05 to 0.07 ⁇ Fe content + 0.1% by mass
- the Cr content is 0.1 ⁇ Fe content + 0.05 to 0.15 mass%
- Mn content is adjusted to 0.4 to 0.6 ⁇ Fe content, and ultrasonic irradiation is performed at the liquidus temperature or higher.
- various crystallization products can be obtained in a short period of time, and Al-Ti crystallization products, Al-Cr crystallization products, Al- Crystallize in the order of Fe-based crystallized substance and simple substance Si so that the Al-Fe-based crystallized substance crystallizes with the Al-Ti-based crystallized substance and the Al-Cr-based crystallized substance as the nucleus. ing.
- the Cr-based and Ti-based compounds are first refined and used as heterogeneous nuclei to refine the Al-Fe-Si based compounds.
- ultrasonic irradiation since ultrasonic irradiation is performed, there is a problem that the amount of processing is limited depending on the horn size as well as an increase in cost due to the addition of ultrasonic irradiation equipment.
- the present invention has been devised to solve such a problem, and is inexpensive and capable of finely crystallizing an Al—Fe—Si based compound and primary crystal Si by employing simple means. It is an object of the present invention to provide a method for producing a simple aluminum alloy.
- the method for producing an aluminum alloy in which the Al—Fe—Si based compound and primary crystal Si are refined according to the present invention has the following objectives: Si: 10 to 20% by mass, Fe: 0.5 to 4% by mass , P: 0.003 to 0.02% by mass, and the balance is a molten aluminum alloy consisting of Al and inevitable impurities, and the fine particles present as a solid phase in the molten Al-Fe-Si compound during crystallization. It is characterized in that 0.01 to 1% by mass of a substance containing a metal silicide is added as a silicide.
- the molten aluminum alloy may include one or more of Mn, Ni, Cu, and Cr, and may further include one or more of Mg, Ti, Cr, Zr, and V. .
- powder of metal silicide itself or a mother alloy is preferable.
- a molten aluminum alloy containing Si and Fe is present as a solid phase in the molten metal during crystallization of the Al—Fe—Si compound, and Al—Fe—
- a fine metal silicide which becomes a solidification nucleus of the Si-based crystallized substance By adding a fine metal silicide which becomes a solidification nucleus of the Si-based crystallized substance, a fine effect equivalent to that of ultrasonic irradiation can be obtained.
- the cycle size can be shortened, and there are few restrictions on the amount of processing due to the horn size, and there is no contamination from the horn. Obtainable. Furthermore, the reliability is higher than that when ultrasonic irradiation is performed in that a heterogeneous nucleus that is reliably formed is added unlike ultrasonic irradiation.
- the present inventors When manufacturing an aluminum alloy containing a large amount of Si and Fe, the present inventors reduced the size of crystallized substances that crystallize during the cooling and solidification process of the molten metal, particularly Al-Fe-Si-based crystallized substances. We have intensively studied how to prevent and crystallize finely.
- primary crystal Si when primary crystal Si is described, it is described as primary crystal Si in order to distinguish it from eutectic Si even when other compounds such as Al—Fe—Si crystallize as primary crystal.
- the fine metal silicide present as a solid phase in the molten metal during crystallization of the Al—Fe—Si compound means a silicide having a melting point higher than that of the Al—Fe—Si compound, and CrSi 2 , TiSi 2, WSi 2, MoSi 2 , ZrSi 2, TaSi 2, NbSi 2 , or the like can be assumed.
- the melting point of the metal silicide is 1500 to 2000 ° C. Even if the melting point is 1500 to 2000 ° C., it will dissolve sometime if kept in the molten metal, but if it has a high melting point, it can exist as a solid phase for a while and can become a solidification nucleus. .
- Si 10 to 20% by mass
- Si is an essential element for improving the rigidity and wear resistance of the aluminum alloy and reducing thermal expansion, and is contained in the range of 10 to 20% by mass. If the Si content is less than 10% by mass, sufficient rigidity, wear resistance, and low thermal expansion cannot be obtained. If the Si content exceeds 20% by mass, the liquidus becomes remarkably high, making melting and casting difficult. Become.
- Fe 0.5-4% by mass Crystallizes as an Al-Fe-Si compound, improves rigidity and lowers thermal expansion in an aluminum alloy. If the Fe content is less than 0.5% by mass, the amount of Al-Fe-Si-based crystallized product necessary for increasing rigidity cannot be obtained, and if it exceeds 4% by mass, the crystallized particles become coarse. Therefore, workability is reduced. Further, if it exceeds 4% by mass, it is necessary to increase TiSi 2 or the like which becomes a heterogeneous nucleus. At this time, the liquidus becomes high and it is necessary to increase the casting temperature. This increases the amount of gas in the molten metal and causes casting defects. In addition, an increase in the casting temperature will lead to a decrease in the life of the refractory material.
- Mn 0.6 ⁇ Fe mass% or less
- Mn has the effect of changing the needle-like coarse Al—Fe—Si-based crystallized material into a lump when cooling and solidifying the molten aluminum alloy containing Fe. Contain. However, if it exceeds 0.6 ⁇ Fe, a coarse compound is produced together with Fe.
- Mn is added in a small amount, addition of WSi 2 or MoSi 2 is particularly effective. This is because the Al—Fe—Si ⁇ 4 phase that crystallizes when the amount of Mn added is small, WSi 2 and MoSi 2 are the same crystal system (tetragonal). In other crystal systems, the effect of miniaturization is slightly reduced.
- an Al—Fe—Si ⁇ 5 phase (hexagonal crystal) is crystallized.
- the ⁇ 5 phase is easily refined if heterogeneous nuclei exist, and is refined with orthorhombic TiSi 2 , ZrSi 2 , hexagonal CrSi 2 , TaSi 2 , NbSi 2 , tetragonal WSi 2 , and MoSi 2. .
- Cu 0.5 to 8% by mass Since Cu has the effect of improving the mechanical strength, it is added if necessary. It also improves rigidity as an Al-Ni-Cu compound and reduces thermal expansion. High temperature strength is also improved. This effect becomes prominent when 0.5% by mass or more is added, but when it exceeds 8% by mass, the compound becomes coarse and the mechanical strength is lowered and the corrosion resistance is further lowered. Therefore, the addition amount of Cu is preferably 0.5 to 8%.
- Ni 0.5-6% by mass Ni is crystallized as an Al—Ni—Cu-based compound in the presence of Cu, and has an effect of improving rigidity and reducing thermal expansion. Therefore, Ni is added as necessary. High temperature strength is also improved. This effect is particularly effective at 0.5% by mass or more, and when it exceeds 6.0% by mass, the liquidus temperature becomes high, and the castability deteriorates. Therefore, the addition amount of Ni is preferably in the range of 0.5 to 6.0% by mass.
- Mg 0.05 to 1.5% by mass Since Mg is an alloy element useful for increasing the strength of the aluminum alloy, it is added as necessary. The above effect can be obtained by adding 0.05% by mass or more of Mg. However, if it exceeds 1.5% by mass, the matrix becomes hard and the toughness is lowered, which is not preferable. Therefore, the addition amount of Mg is preferably 0.05% to 1.5% by mass.
- Ti 0.01 to 1.0% by mass
- Cr 0.01 to 1.0% by mass
- Ti and Cr are peritectic additive elements, have a small diffusion coefficient in Al, form a stable solid solution at high temperature, and contribute to improvement of high temperature strength.
- Cr like Mn, has the effect of changing the needle-like coarse Al—Fe—Si based crystallized material into a lump. Therefore, a required amount of the above elements can be added according to desired characteristics.
- the amount of Ti and Cr are less than 0.01% by mass, the above effects are hardly caused, and when the amount exceeds 1.0% by mass, a coarse compound is formed, resulting in a decrease in mechanical strength.
- the liquidus becomes high and the casting temperature needs to be increased. This increases the amount of gas in the molten metal and causes casting defects. Moreover, the lifetime of a refractory material will be reduced. Therefore, the addition amounts of Ti and Cr are each preferably 0.01 to 1.0% by mass.
- Zr: 0.01 to 1.0 mass%, V: 0.01 to 1.0 mass% Zr and V have the effect of refining the crystal grains and improving the strength and elongation. Even if each is added alone, it is effective, so it is added if necessary. Further, both Zr and V have a function of suppressing the oxidation of the molten metal, and V has an effect of increasing the high temperature strength. If Zr: less than 0.01% by mass and V: less than 0.01% by mass, sufficient effects cannot be obtained. On the contrary, when Zr: 1.0 mass% and V: more than 1.0 mass%, a coarse intermetallic compound crystallizes, and strength and elongation decrease. In addition, the liquidus becomes high and the casting temperature needs to be increased.
- P 0.003 to 0.02 mass% P acts as a refiner for primary Si. In order to effectively express the action, the content of 0.003% by mass is necessary. However, if P is added to an amount exceeding 0.02% by mass, the hot water flowability is deteriorated, and casting defects such as poor hot water flow are liable to occur. Therefore, the upper limit of the P content is 0.02% by mass.
- At least one kind of fine metal silicide existing as a solid phase in the molten metal at the time of crystallization of the Al—Fe—Si compound is converted into silicide.
- the fine metal silicide present as a solid phase in the melt during crystallization of the Al—Fe—Si compound becomes a heterogeneous nucleus of the Al—Fe—Si compound, and the Al—Fe—Si compound is finely crystallized. Can be issued. If the amount is less than 0.01% by mass, this effect cannot be obtained. If the amount exceeds 1.0% by mass, the viscosity of the molten metal increases and the fluidity deteriorates.
- metal silicide CrSi 2 as described above, TiSi 2, WSi 2, MoSi 2, ZrSi 2, TaSi 2, NbSi 2 , and the like. These metal silicides may be added in combination.
- metal silicide powder When added as a metal silicide powder, the powder itself is effective because it acts as a heterogeneous nucleus. These metal silicides only need to maintain a fine form when added to the molten aluminum alloy.
- CrSi 2 cast materials of Al-15 wt% Si-4 wt% Cr alloy and that the CrSi 2 was finely crystallized by rapid solidification material, Al-15 wt% Si-4 wt% Cr alloy It is not limited to powders of metal silicide itself, such as those finely crushed after plastic working, and may be added in the form of a master alloy.
- CrSi 2 or the like When added as a mother alloy, CrSi 2 or the like may become coarser than the Al—Fe—Si compound in the normal casting method, but it may become coarser than the Al—Fe—Si compound. Since it does not act, there are methods such as rapid cooling to make it finer, or making a coarser thing finer by processing. Further, when added as a mother alloy, the dispersibility is improved and the yield tends to be improved as compared with the case where it is added as a metal silicide powder itself. It should be noted that other manufacturing methods may be used as long as CrSi 2 or the like can be made fine.
- the time for adding the fine metal silicide to the molten aluminum alloy may be any time as long as it is from the adjustment of the alloy composition to the casting.
- Comparative Example 6 is a commercially available JIS-ADC12 alloy.
- the mold was a JIS No. 4 boat type (30 ⁇ 50 ⁇ 200), and the mold temperature was 100 ° C.
- CrSi 2 is crystallized, and this acts as a solidification nucleus of the Al—Si—Fe based compound in the same manner as the CrSi 2 powder.
- the produced casting was cut into small pieces and used as a refining agent.
- the mold size was a round bar having a diameter of 13 mm and a length of 100 mm, and was cast at a mold temperature of 140 ° C. After casting, it was cooled at 100 ° C./second, and the structure of the cooled casting was observed without heat treatment to examine the distribution of crystallized matter. The results are also shown in Table 2.
- FIG. 1A, 1B, 2A, 2B the structure
- Examples 1, 2, and 3 and Comparative Examples 1 and 2 an alloy having an equivalent component composition was used as a sample, and the effect of adding metal silicide was observed. Even without ultrasonic irradiation, Examples 1, 2, and 3 have finer Al-Fe-Si compounds than Comparative Example 1, and a structure equivalent to that of Comparative Example 2 in which ultrasonic irradiation was performed was obtained. It has been.
- Examples 4 and 5 and Comparative Examples 3, 4, and 5 an alloy having an equivalent component composition was used as a sample, and the effect of adding metal silicide was observed. Even if ultrasonic irradiation was not performed, in Examples 4 and 5, the Al—Fe—Si compound was finer than Comparative Examples 3 and 5, and a structure equivalent to Comparative Example 4 in which ultrasonic irradiation was performed was obtained. It has been.
- Example 6 an alloy having the same component composition in Example 6 and Comparative Example 6 is used as a sample.
- the Al—Fe—Si-based compound is finer than in Comparative Example 6 in which ultrasonic irradiation was not performed.
- Example 9 uses an alloy having the same composition as that of Example 4 as a sample.
- CrSi 2 powder was added, whereas in Example 9, an Al—Cr—Si alloy was added, and an equivalently fine Al—Fe—Si compound was obtained.
- ultrasonic irradiation was not performed, but the microstructure was the same as that of Comparative Example 4 in which ultrasonic irradiation was performed.
- an alloy having the same composition as that of Comparative Example 5 is used as a sample.
- Comparative Example 5 since there was no ultrasonic irradiation and no addition of Al—Cr—Si alloy, the Al—Fe—Si based compound was coarse.
- the Al—Fe—Si based compound is refined by the effect of the addition of the Al—Cr—Si alloy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Silicon Compounds (AREA)
Abstract
Description
まず、処理前のアルミニウム合金溶湯の成分、組成範囲について説明する。
Siは、アルミニウム合金の剛性,耐摩耗性を向上させ,熱膨張を低減させるために必須の元素であり、10~20質量%の範囲で含有させる。Si含有量が、10質量%に満たないと充分な剛性,耐摩耗性,低熱膨張が得られず、20質量%を超えるほどに多いと液相線が著しく高くなり,溶解,鋳造が困難になる。
Al-Fe-Si系化合物として晶出し、アルミニウム合金において剛性を向上させて熱膨張を低下させる。Fe含有量が、0.5質量%より少ないと剛性を高めるために必要な量のAl―Fe-Si系晶出物が得られず、4質量%より多いと晶出粒子が粗大化してしまうため、加工性が低下する。さらに、4質量%を超えると異質核となるTiSi2等の増加も必要となる。このとき液相線が高くなり、鋳造温度を高くする必要がある。これにより溶湯中のガス量が増加し、鋳造欠陥が発生する。また、鋳造温度の上昇は耐火材寿命の低下を招くことにもなる。
MnはFeを含むアルミニウム合金溶湯を冷却・凝固させる際、針状粗大なAl-Fe-Si系晶出物を塊状に変える作用があるので必要に応じて含有させる。しかし、0.6×Feより多いとFeとともに粗大な化合物が生成してしまう。Mn添加が少量のときはWSi2やMoSi2の添加が特に有効である。これはMn添加が少ないときに晶出するAl-Fe-Si系τ4相とWSi2とMoSi2が同じ結晶系(正方晶)のためである。他の結晶系ではやや微細化効果が低下する。一方、Mn添加が十分行われている場合にはAl-Fe-Si系τ5相(六方晶)が晶出する。τ5相は異質核が存在していれば微細化しやすく、斜方晶のTiSi2,ZrSi2,六方晶のCrSi2,TaSi2,NbSi2,正方晶のWSi2,MoSi2で微細化する。
Cuは機械的強度を向上させる作用があるため、必要により添加する。またAl-Ni‐Cu系化合物として剛性も向上させて,熱膨張を低減させる。また高温強度も向上させる。この作用は0.5質量%以上の添加で顕著となるが、8質量%を超えると化合物の粗大化が進み機械的強度が低下してしさらに耐食性も低下してしまう。そこでCuの添加量は0.5~8%にすることが好ましい。
NiはCuが存在する状態ではAl-Ni‐Cu系化合物として晶出し、剛性を向上させ熱膨張を低減させる作用があるため、必要により添加する。また高温強度も向上させる。この作用は0.5質量%以上で特に効果を発揮し、6.0質量%を超えると液相線温度が高くなるため,鋳造性が悪くなる。そこでNiの添加量は0.5~6.0質量%の範囲にすることが好ましい。
Mgはアルミニウム合金の強度を上昇させるために有用な合金元素であるため、必要により添加する。Mgを0.05質量%以上添加することで上記の効果が得られるが、1.5質量%を超えるとマトリックスが硬くなって、靭性が低下するので好ましくない。そこでMgの添加量は0.05%~1.5質量%にすることが好ましい。
Tiは結晶粒を微細化する作用を有し、高温強度の向上に寄与する。また、Ti,Crは包晶系添加元素であり、Al中の拡散係数が小さく、高温で安定な固溶体を形成させ、高温強度の向上に寄与する。またCrはMnと同様に針状粗大なAl-Fe-Si系晶出物を塊状に変える作用がある。したがって、所望の特性に応じて、上記元素を所要量添加することもできる。Ti量及びCrが0.01質量%より少ないと上記のような効果を生じ難く、1.0質量%を超える程に多いと粗大な化合物が形成され、機械的強度の低下を招く。また、液相線が高くなり、鋳造温度を高くする必要がある。これにより溶湯中のガス量が増加し、鋳造欠陥が発生する。また、耐火材寿命の低下を招くこととなる。そこで、Ti及びCrの添加量はそれぞれ0.01~1.0質量%であることが好ましい。
Zr,Vは、結晶粒を微細化させ、強度及び伸びを向上させる作用があり、各々単独添加でも効果を呈するため、必要により添加する。また、Zr、Vともに溶湯の酸化を抑制する働きがあり、Vは高温強度を高める効果がある。Zr:0.01質量%未満,V:0.01%質量%未満では十分な効果が得られない。逆にZr:1.0質量%、V:1.0質量%より多いと、粗大な金属間化合物が晶出し、強度や伸びが低下する。また、液相線が高くなり、鋳造温度を高くする必要がある。
Pは初晶Siの微細化剤として働く。その作用を有効に発現させるためには0.003質量%の含有が必要である。しかしながら、Pを0.02質量%を超えるほどにいれてしまうと湯流れ性が悪くなり、湯まわり不良等の鋳造欠陥が発生しやすくなる。そこで、P含有量の上限は0.02質量%とする。
その結果を、併せて表2に示す。
実施例1、2、3と比較例1、2は、同等の成分組成を有する合金を試料とし、金属珪化物添加の効果をみている。超音波照射を行わなくても実施例1、2、3は、比較例1よりAl-Fe-Si系化合物が微細になっており、超音波照射を行った比較例2と同等の組織が得られている。
Claims (5)
- Si:10~20質量%,Fe:0.5~4質量%,P:0.003~0.02質量%を含み、残部がAlと不可避的不純物からなるアルミニウム合金溶湯に、Al‐Fe‐Si系化合物晶出の際に溶湯中に固相として存在する微細な金属珪化物を含む物質を、珪化物として0.01~1質量%添加することを特徴とするAl-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法。
- Si:10~20質量%,Fe:0.5~4質量%,Mn:0.6×Fe質量%以下,P:0.003~0.02質量%を含み、残部がAlと不可避的不純物からなるアルミニウム合金溶湯に、Al‐Fe‐Si系化合物晶出の際に溶湯中に固相として存在する微細な金属珪化物を含む物質を、珪化物として0.01~1質量%添加することを特徴とするAl-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法。
- 前記アルミニウム合金溶湯が、さらにNi:0.5~6質量%,Cu:0.5~8質量%のいずれか1種以上を含むものである請求項1又は2に記載のAl-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法。
- 前記アルミニウム合金溶湯が、さらにMg:0.05~1.5質量%,Ti:0.01~1.0質量%,Cr:0.01~1.0質量%,Zr:0.01~1.0質量%,V:0.01~1.0質量%のいずれか1種以上を含むものである請求項1~3のいずれか1項に記載のAl-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法。
- アルミニウム合金溶湯に添加する微細な金属珪化物を含む物質が、金属珪化物の粉末そのものまたは母合金である請求項1~4のいずれか1項に記載のAl-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/350,087 US9303299B2 (en) | 2011-10-11 | 2012-10-03 | Method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si |
JP2013538510A JP5655953B2 (ja) | 2011-10-11 | 2012-10-03 | Al−Fe−Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法 |
EP12840375.5A EP2767608B1 (en) | 2011-10-11 | 2012-10-03 | METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011223694 | 2011-10-11 | ||
JP2011-223694 | 2011-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013054716A1 true WO2013054716A1 (ja) | 2013-04-18 |
Family
ID=48081773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075692 WO2013054716A1 (ja) | 2011-10-11 | 2012-10-03 | Al-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9303299B2 (ja) |
EP (1) | EP2767608B1 (ja) |
JP (1) | JP5655953B2 (ja) |
WO (1) | WO2013054716A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9657372B2 (en) | 2012-12-25 | 2017-05-23 | Nippon Light Metal Company, Ltd. | Manufacturing method of aluminum alloy in which Al—Fe—Si compound is refined |
CN108823438A (zh) * | 2018-07-03 | 2018-11-16 | 云南云铝涌鑫铝业有限公司 | 制备zld102低铁铝合金的方法 |
JP2019209362A (ja) * | 2018-06-06 | 2019-12-12 | 本田技研工業株式会社 | アルミニウム合金の製造方法 |
JP2021528563A (ja) * | 2018-06-20 | 2021-10-21 | フェデラル−モグル ニュルンベルク ゲーエムベーハー | アルミニウム合金、エンジン構成要素を製造する方法、エンジン構成要素、及びエンジン構成要素を製造するためのアルミニウム合金の使用 |
WO2023167174A1 (ja) * | 2022-03-03 | 2023-09-07 | 日本軽金属株式会社 | 鋳物用アルミニウム合金及びアルミニウム合金鋳物 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6835211B2 (ja) * | 2017-04-19 | 2021-02-24 | 日本軽金属株式会社 | Al−Si−Fe系アルミニウム合金鋳造材及びその製造方法 |
FR3110097B1 (fr) * | 2020-05-13 | 2022-11-18 | C Tec Constellium Tech Center | Procédé de fabrication d'une pièce en alliage d'aluminium |
FR3116014B1 (fr) * | 2020-11-10 | 2022-10-14 | Commissariat Energie Atomique | PROCEDE DE FABRICATION D’UNE PIECE EN ALLIAGE D’ALUMINIUM PAR FABRICATION ADDITIVE A PARTIR D’UN MELANGE DE POUDRES CONTENANT DES PARTICULES DE ZrSi2 |
CN112680638B (zh) * | 2020-11-12 | 2022-04-08 | 佛山市三水凤铝铝业有限公司 | 一种高效能铲齿用铝型材制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57177943A (en) * | 1981-04-15 | 1982-11-01 | Pechiney Aluminium | Primary silicon purification of pereutectic aluminum-silicon |
JPS62227057A (ja) * | 1986-03-28 | 1987-10-06 | Showa Alum Corp | 耐摩耗性に優れたアルミニウム基複合材およびその製造方法 |
JPH0196341A (ja) * | 1987-10-08 | 1989-04-14 | Agency Of Ind Science & Technol | 過共晶Al−Si合金複合材料の製造方法 |
JPH02221349A (ja) * | 1988-12-20 | 1990-09-04 | Metallges Ag | 軽量鋳造材料 |
JP2002096157A (ja) * | 2000-09-14 | 2002-04-02 | Taisei:Kk | 細かい全等軸晶組織の鋳造方法 |
JP2002535488A (ja) * | 1999-01-21 | 2002-10-22 | アルミニウム ペシネイ | 半固体状態での成形のための過共晶アルミニウム−珪素合金生成物 |
JP2004027316A (ja) | 2002-06-27 | 2004-01-29 | Nippon Light Metal Co Ltd | 高温強度に優れたアルミニウム合金およびその製造方法 |
JP2004209487A (ja) * | 2002-12-27 | 2004-07-29 | National Institute For Materials Science | アルミニウム系鋳造合金の凝固結晶組織を制御する方法 |
JP2010090429A (ja) | 2008-10-07 | 2010-04-22 | Nippon Light Metal Co Ltd | アルミニウム合金の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0413747A1 (en) * | 1988-05-05 | 1991-02-27 | Martin Marietta Corporation | Arc-melting process for forming metallic-second phase composites and product thereof |
US5178686A (en) | 1988-12-20 | 1993-01-12 | Metallgesellschaft Aktiengesellschaft | Lightweight cast material |
SU1726546A1 (ru) * | 1990-04-16 | 1992-04-15 | Всесоюзный Проектно-Технологический Институт Литейного Производства | Способ рафинировани алюминиевых сплавов от железа |
US8828157B2 (en) * | 2003-12-18 | 2014-09-09 | Showa Denko K.K. | Method for producing shaped article of aluminum alloy, shaped aluminum alloy article and production system |
JP5565115B2 (ja) * | 2010-06-07 | 2014-08-06 | 日本軽金属株式会社 | アルミニウム合金の製造方法 |
-
2012
- 2012-10-03 JP JP2013538510A patent/JP5655953B2/ja active Active
- 2012-10-03 US US14/350,087 patent/US9303299B2/en active Active
- 2012-10-03 WO PCT/JP2012/075692 patent/WO2013054716A1/ja active Application Filing
- 2012-10-03 EP EP12840375.5A patent/EP2767608B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57177943A (en) * | 1981-04-15 | 1982-11-01 | Pechiney Aluminium | Primary silicon purification of pereutectic aluminum-silicon |
JPS62227057A (ja) * | 1986-03-28 | 1987-10-06 | Showa Alum Corp | 耐摩耗性に優れたアルミニウム基複合材およびその製造方法 |
JPH0196341A (ja) * | 1987-10-08 | 1989-04-14 | Agency Of Ind Science & Technol | 過共晶Al−Si合金複合材料の製造方法 |
JPH02221349A (ja) * | 1988-12-20 | 1990-09-04 | Metallges Ag | 軽量鋳造材料 |
JP2002535488A (ja) * | 1999-01-21 | 2002-10-22 | アルミニウム ペシネイ | 半固体状態での成形のための過共晶アルミニウム−珪素合金生成物 |
JP2002096157A (ja) * | 2000-09-14 | 2002-04-02 | Taisei:Kk | 細かい全等軸晶組織の鋳造方法 |
JP2004027316A (ja) | 2002-06-27 | 2004-01-29 | Nippon Light Metal Co Ltd | 高温強度に優れたアルミニウム合金およびその製造方法 |
JP2004209487A (ja) * | 2002-12-27 | 2004-07-29 | National Institute For Materials Science | アルミニウム系鋳造合金の凝固結晶組織を制御する方法 |
JP2010090429A (ja) | 2008-10-07 | 2010-04-22 | Nippon Light Metal Co Ltd | アルミニウム合金の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2767608A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9657372B2 (en) | 2012-12-25 | 2017-05-23 | Nippon Light Metal Company, Ltd. | Manufacturing method of aluminum alloy in which Al—Fe—Si compound is refined |
JP2019209362A (ja) * | 2018-06-06 | 2019-12-12 | 本田技研工業株式会社 | アルミニウム合金の製造方法 |
JP2021528563A (ja) * | 2018-06-20 | 2021-10-21 | フェデラル−モグル ニュルンベルク ゲーエムベーハー | アルミニウム合金、エンジン構成要素を製造する方法、エンジン構成要素、及びエンジン構成要素を製造するためのアルミニウム合金の使用 |
JP7350021B2 (ja) | 2018-06-20 | 2023-09-25 | フェデラル-モグル ニュルンベルク ゲーエムベーハー | アルミニウム合金、エンジン構成要素を製造する方法、エンジン構成要素、及びエンジン構成要素を製造するためのアルミニウム合金の使用 |
CN108823438A (zh) * | 2018-07-03 | 2018-11-16 | 云南云铝涌鑫铝业有限公司 | 制备zld102低铁铝合金的方法 |
WO2023167174A1 (ja) * | 2022-03-03 | 2023-09-07 | 日本軽金属株式会社 | 鋳物用アルミニウム合金及びアルミニウム合金鋳物 |
Also Published As
Publication number | Publication date |
---|---|
EP2767608B1 (en) | 2016-08-10 |
EP2767608A1 (en) | 2014-08-20 |
JP5655953B2 (ja) | 2015-01-21 |
EP2767608A4 (en) | 2015-07-01 |
JPWO2013054716A1 (ja) | 2015-03-30 |
US20140283651A1 (en) | 2014-09-25 |
US9303299B2 (en) | 2016-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5655953B2 (ja) | Al−Fe−Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法 | |
JP6011998B2 (ja) | Al−Fe−Si系化合物を微細化させたアルミニウム合金の製造方法 | |
WO2012008470A1 (ja) | 高温強度と熱伝導率に優れたアルミニウム合金及びその製造方法 | |
JP4187018B2 (ja) | 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法 | |
JP5582982B2 (ja) | アルミニウム合金及びその製造方法 | |
KR101241426B1 (ko) | 알루미늄 합금의 제조방법 | |
WO2010086951A1 (ja) | 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物 | |
JP4852754B2 (ja) | 展伸用マグネシウム合金、同合金より成るプレス成形用板材およびその製造方法 | |
JP5206664B2 (ja) | 熱伝導用途用アルミニウム合金材 | |
JP2020164946A (ja) | Al−Mg−Si系アルミニウム合金冷延板及びその製造方法並びに成形用Al−Mg−Si系アルミニウム合金冷延板及びその製造方法 | |
JP3448990B2 (ja) | 高温強度及び靭性に優れたダイカスト製品 | |
JP6113371B2 (ja) | 高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン | |
JP2000265232A (ja) | 高温疲労強度及び耐摩耗性に優れたアルミニウム合金製ピストン及びその製造方法 | |
JP5004032B2 (ja) | 高温強度に優れ、低熱膨張性を有するアルミニウム基合金およびその製造方法 | |
CN114672701B (zh) | 一种高强度多元共晶铸造铝合金及其制备方法 | |
JP2007239029A (ja) | 展伸加工用耐熱アルミニウム合金 | |
EP3613866B1 (en) | Al-si-fe aluminum alloy casting material and production method therefor | |
JP5168069B2 (ja) | アルミニウム合金の製造方法 | |
JP3915739B2 (ja) | 高温強度に優れた鋳造用アルミニウム合金 | |
US20100172791A1 (en) | Aluminum-bronze alloy as raw materials for semi solid metal casting | |
JP2024110605A (ja) | 鋳物用過共晶Al-Si系合金及びその合金を用いた鋳物の製造方法 | |
JP2006316341A (ja) | 鋳造用アルミニウム合金および同アルミニウム合金鋳物 | |
JP2012102369A (ja) | 鋳造用アルミニウム合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12840375 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013538510 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14350087 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012840375 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012840375 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |