WO2018190687A1 - 구형 세라믹 과립의 제조방법 - Google Patents

구형 세라믹 과립의 제조방법 Download PDF

Info

Publication number
WO2018190687A1
WO2018190687A1 PCT/KR2018/004362 KR2018004362W WO2018190687A1 WO 2018190687 A1 WO2018190687 A1 WO 2018190687A1 KR 2018004362 W KR2018004362 W KR 2018004362W WO 2018190687 A1 WO2018190687 A1 WO 2018190687A1
Authority
WO
WIPO (PCT)
Prior art keywords
granules
organic
ceramic
inorganic
particles
Prior art date
Application number
PCT/KR2018/004362
Other languages
English (en)
French (fr)
Inventor
윤희숙
박홍현
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170099806A external-priority patent/KR101892731B1/ko
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2018190687A1 publication Critical patent/WO2018190687A1/ko
Priority to US16/598,299 priority Critical patent/US11801222B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/425Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction

Definitions

  • the present invention relates to a method for producing spherical ceramic granules.
  • Spray drying refers to a method of spraying a mixture into a high temperature chamber by hydrating the coating material and dispersing the coating material. This spray drying method has the advantage of continuously producing a large amount of microcapsules, but the size of the device for the production of particles is large, the operating conditions are difficult, the shape and size distribution of the particles of the produced particles is uneven There is this.
  • Electrospray is a method of atomizing a liquid by electric force (electric field).
  • Liquid droplets formed by electrospray have attracted attention as a useful nanotechnology in recent years because they have a high chargeability and have the advantage of preventing aggregation by their own dispersion.
  • the electrospray technology is expected to be applied in a variety of fields because it is possible to deposit a fine and complex structure with low-cost equipment and easy operation in the air environment.
  • the microspray coater may be exemplified as the electrospray apparatus using the electrostatic charge method.
  • Microgranular coating machine is mainly applied to organic matter. That is, it is used in the fields of pharmaceutical, chemistry, cosmetics, foodstuffs, agriculture, etc. for the purpose of delivering active ingredients by forming granules using polymers and hydrogels and forming core-shell granules containing oils and various drugs therein. It is becoming.
  • by providing an encapsulated microgranular coating machine has been applied to the food industry by realizing the effects of aging, storage stability, blocking harmful substances.
  • it is being applied to the pharmaceutical industry by realizing the effects of emission control, solubility and osmoticity improvement.
  • it has been applied to the bio-pharmaceutical industry by implementing various effects in the in vivo test.
  • Korean Patent Publication No. 10-2016-0129386 (hereinafter abbreviated as 'prior art') refers to the pyrocampal-containing nanoparticles using electrospray technology and the An oral solid formulation is disclosed.
  • the size of the nanoparticles prepared in the prior art is controlled according to the process conditions of the electrospray apparatus used during the manufacturing process. That is, the prior art has a problem that it is difficult to manufacture nanoparticles of different sizes in a state in which the process conditions of the electrospray apparatus are excluded. Accordingly, a manufacturing method capable of controlling the size of the particles without changing the predetermined process conditions in the electrospray device has been required.
  • Patent Document 1 Korean Patent Publication No. 10-2016-0129386
  • An object of the present invention is to provide a method for producing spherical ceramic granules that can be applied to medicines and cosmetic materials, the size of the granules can be controlled and to produce granules of uniform size in a short amount of time.
  • the present invention provides a method for preparing ceramic granules, comprising: a) preparing an organic-inorganic composite liquid; B) preparing spherical granules by injecting the organic-inorganic composite solution prepared in step a) into the electrostatic charge microgranular coating machine; C) inducing a polymerization reaction of the spherical granules prepared in step b); D) washing and drying the spherical granules polymerized in step c); And e) step of sintering the spherical granules washed and dried in step d) to form ceramic beads.
  • step a) may be mixed with the inorganic particles in a solution containing organic particles to prepare the organic-inorganic composite liquid.
  • organic-inorganic complex solution prepared in step a) may include one or more organic materials of alginate, collagen, gelatin, chitosan, cellulose, natural and biological polymers.
  • the organic-inorganic complex prepared in step a) is hydroxyapatite (HA: hydroxy apatite), dicalcium phosphate (DCP: dicalcium phosphate), tricalcium phosphate (TCP: tricalcium phosphate), calcium tetraphosphate (TTCP: It may include one or more calcium phosphate-based minerals of tetracalcium phosphate (OCT) and octacalcium phosphate (OCP).
  • step b) may control the average diameter of the granules in accordance with the change of the injection nozzle size, pneumatic conditions and frequency of the micro-granule coating machine.
  • step b) is the step of injecting the organic-inorganic composite liquid prepared in step a); And spraying the organic-inorganic complex liquid into an electric field through a nozzle to form the spherical granules.
  • the polymerization method of step c) may include a method of inducing polymerization of at least one of ion crosslinking, chemical crosslinking, and photocrosslinking.
  • the ion crosslinking is a polymerization-inducing substance that induces the polymerization of the spherical granules, one of materials containing divalent cations such as calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and calcium carbonate (CaCO 3 ).
  • materials containing divalent cations such as calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and calcium carbonate (CaCO 3 ).
  • the above substances can be used.
  • the step e) may be sintered at a temperature range of 1000 to 1300 °C to remove the organic material.
  • the step a) includes the step of setting the content of the inorganic material to the organic material, the size and porosity of the ceramic beads prepared in the step e) is determined by the content of the inorganic material to the organic material set in step a) Can be controlled.
  • the formed ceramic beads are granulated particles including calcium oxide (CaO), the content of the calcium oxide may be 1 to 10% by mass.
  • CaO calcium oxide
  • step a) after preparing the organic-inorganic composite liquid may be further stirred with an ultrasonic mixer, and further comprising the step of dispersing the inorganic member in a co-rotating mixer.
  • Spherical ceramic granules manufacturing method has the advantage that can be produced in spherical ceramic granules in a high yield by producing the granules using the prepared raw material efficiently, by using the electrostatic charge microgranular coating machine By doing so, there is an advantage in that spherical granules having a large amount of uniform size can be produced in a short time.
  • the manufacturing method of the spherical ceramic granules according to the embodiment of the present invention in the state of excluding the control of the process setting of the fine granule coating machine, of the components contained in the organic-inorganic composite liquid prepared through the sintering process proceeded in the ceramic beads forming step According to the change in content, there is an advantage of controlling the composition ratio including calcium oxide, interparticle porosity, pore structure, crystal phase and granule size.
  • the spherical ceramic granules prepared according to the embodiment of the present invention may include an oxide such as calcium oxide (CaO) produced by polymerizing and sintering the organic-inorganic composite liquid, unlike the conventional spray drying method. Accordingly, there is an advantage that can be easily used in the medical field, such as bone filler, bone graft material, filler.
  • an oxide such as calcium oxide (CaO) produced by polymerizing and sintering the organic-inorganic composite liquid, unlike the conventional spray drying method. Accordingly, there is an advantage that can be easily used in the medical field, such as bone filler, bone graft material, filler.
  • the spherical ceramic granules prepared according to the embodiment of the present invention may be prepared by injecting an organic-inorganic composite liquid having a different composition according to the use thereof into a predetermined microgranular coating machine. Accordingly, there is an advantage that it is easy to produce organic-inorganic spherical granules having suitable conditions for the preparation of ceramic granules without the knowledge of the fine granule coating machine.
  • FIG. 1 is a step diagram of a ceramic granule manufacturing method according to an embodiment of the present invention.
  • Figure 2 shows a spherical ceramic granules prepared by an embodiment of the present invention.
  • 3 to 23 show data for an embodiment of the present invention.
  • the ceramic granules manufacturing method is a) step (S1) of preparing an organic-inorganic complex solution; B) step (S3) of preparing spherical granules by injecting the organic-inorganic composite solution prepared in step a) to the electrostatic charge microgranular coating; c) step (S5) of inducing a polymerization reaction of the spherical granules prepared in step b); d) step S7 of washing and drying the spherical granules polymerized in step c); And e) step S9 of sintering the spherical granules washed and dried in step d) to form ceramic beads.
  • step (S1) it can be prepared by purchasing, manufacturing, or the like, an organic-inorganic complex solution suitable for the experimental conditions.
  • an organic-inorganic complex solution suitable for the experimental conditions.
  • the organic-inorganic composite liquid of step (S1) it is possible to prepare a solution containing the organic particles in the solvent.
  • the organic particles may be at least one of alginate, collagen, gelatin, chitosan, cellulose, hyaluronate and a biopolymer, and may be a combination of these.
  • the solvent is generally used to disperse organic particles, and may be one of water, glycerin, and lipid oil.
  • the content of the organic particles in the solution containing the organic particles may be 0.5 to 5 wt%.
  • the content of the organic particles may be 1 to 2wt%.
  • the inorganic particles may be mixed with the solution containing the organic particles.
  • the inorganic particles may have an average diameter of 20 nm to 10 ⁇ m.
  • the inorganic particles may have an average diameter of 20 to 100 nm.
  • the inorganic particles may be any one of calcium phosphate, bioglass, alumina, zirconia, and composites thereof.
  • the calcium phosphate is hydroxyapatite (HA), dicalcium phosphate (DCP: dicalcium phosphate), tricalcium phosphate (TCP: tricalcium phosphate), calcium tetraphosphate (TTCP: tetracalcium phosphate) and octacalcium phosphate ( OCP: may be any one of octacalcium phosphate, but is not limited thereto.
  • the inorganic particles may be introduced into the solution in which the organic particles are dispersed.
  • the inorganic particles may be dispersed through a disperser.
  • the dispersing rate may be increased by simultaneously performing the dispensing using the powder and dispersing using the disperser.
  • the disperser may be an ultrasonic disperser.
  • the dispersing process may be performed at an appropriate time and conditions to evenly disperse the inorganic particles in a solution in which the organic particles are dispersed. This process can be understood as an important factor for preventing yield degradation caused by nozzle clogging phenomenon in the production of granules using a microgranular coating machine.
  • the shrinkage rate of the ceramic granules may be different depending on the content of the inorganic particles introduced into the solution containing the organic particles, thereby controlling the size of the ceramic granules by controlling the manufacturing conditions of the granules other than changing the process conditions of the microgranular coating machine. Can be controlled.
  • step a) S1 the organic particles and the inorganic particles may be agitated to prevent agglomeration of the organic particles and the inorganic particles.
  • the stirring may be performed using an ultrasonic mixer.
  • the stirring process may be performed at appropriate times and conditions to prevent the organic particles and the inorganic particles from agglomerating.
  • step a) S9 may include setting a content of an inorganic substance with respect to the organic substance. Through this, the size and porosity of the ceramic beads produced through the following process can be controlled.
  • step (S3) can be used to produce spherical granules of a desired size using a microgranule coating machine.
  • step (S3) can control the average diameter of the granules according to the change of the injection nozzle size, pneumatic conditions and frequency of the microgranular coating machine.
  • step (S3) By passing through step (S3), it is possible to produce spherical granules in which the average value of the diameters is preferably formed in the range of 40 to 2000 mu m.
  • step (S3) is a step of injecting the organic-inorganic complex solution prepared in step (S1); And spraying the organic-inorganic composite liquid into the electric field through the nozzle of the microgranular coating machine to form spherical granules.
  • the microgranular coating machine used in step b) (S3) is a device for making the solution into droplet granules.
  • the microgranular coating machine may be sprayed with a solution from the nozzle, by applying vibration to the nozzle and the solution to form a drop of granules of a predetermined size to fall off, and by applying an electrostatic charge to the granules of the droplets to the granules Can be dispersed and fall off.
  • the granules may be added dropwise to the solution in the container by placing a container containing the solution in the lower portion of the nozzle.
  • the micro-granular coating machine disperses a nozzle in which the solution is injected, a pump for supplying the solution to the nozzle, a vibrator for applying a vibration to the nozzle so that the solution sprayed from the nozzle forms the granules in the form of droplets, and the granules in the form of droplets. Electrostatic charges that exert a static charge to cause.
  • the microgranular coating machine used Buchi's Encapsulator B-395 Pro.
  • the uniformity of the size of the granules is improved by using a microgranular coating machine, and the granule size and shape can be controlled.
  • step c) it can maintain the shape of the sphere by inducing a polymerization reaction of the organic particles contained in the granules prepared in step b) (S3).
  • the polymerization-inducing substance may be added to the solution in which the granules produced by the microgranular coating machine are dropped. More preferably, the granular droplets sprayed by the microgranule coating machine may be directly added dropwise to the solution containing the polymerization inducing substance.
  • the concentration of the solution containing the polymerization inducing substance may be 50 to 300 mM, may be 100 mM.
  • the polymerization-inducing material may be understood as a material capable of inducing a polymerization reaction of organic-inorganic granules, thereby growing the dropped granules sprayed in the microgranular coating machine.
  • polymerization induction is generally used for ionic crosslinking with divalent cations such as calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4), calcium carbonate (CaCO 3), alginate, as well as for collagen, gelatin, hyaluronate and water-soluble polymer crosslinking.
  • Optical crosslinking polymerized using ultraviolet (UV) can be used.
  • the solvent of the solution containing the polymerization inducing substance may be one of water, methanol, ethanol, isopropanol, glycerin, polyethylene glycol, lipid oil.
  • step (S7) to wash and dry the granulated polymerized in step c) (S5).
  • step (S7) after the stabilization of the polymerized granules for 30 minutes to 2 hours, may proceed to the washing process to remove the unreacted components remaining in the granules.
  • the stabilization and washing may be performed using phosphate buffer saline (PBS).
  • PBS phosphate buffer saline
  • a process for drying the washed granules may proceed.
  • the drying process may be performed by leaving the granules at room temperature for a sufficient time, and may be performed using a dryer. At this time, the drying conditions may be performed at a pressure below atmospheric pressure (1x10 -5 Pa to 1x10 5 Pa) and a temperature above room temperature (0 °C to 60 °C), but is not particularly limited.
  • step (S9) proceeds the sintering of the washed and dried granules in step d) (S7).
  • the sintering temperature may be performed at 500 ° C to 1500 ° C, preferably at 1000 ° C to 1300 ° C, depending on the type of organic particles and inorganic particles included in the granules. Through this sintering process, it is possible to form ceramic beads in the form of granulated particles from which organic matter is removed. That is, step e) (S9) may stabilize the spherical ceramic granules by removing the organic material through sintering.
  • the ceramic granules produced through the sintering process include a ceramic composition including pores and calcium oxide (CaO) contained in the ceramic composition.
  • the calcium oxide (CaO) is derived from the polymerization induction material described above.
  • Ceramic granules manufacturing method according to an embodiment of the present invention has the advantage of being able to manufacture ceramic granules in a high yield by being manufactured through a series of processes described above, by using a fine granule coating machine of the electrostatic charge type in a short time There is an advantage in that granules can be prepared. In addition, it is possible to produce a ceramic granules of uniform size by proceeding the polymerization reaction process separately from the granules production process by the fine granule coating machine.
  • the manufacturing method of the present invention preferably further comprises the step of forming an organic-inorganic composite liquid as described above for such dispersion, stirring it with an ultrasonic mixer, and dispersing the inorganic member with a co-rotating mixer. Do.
  • the production method of the present invention forms the granules by spraying in an electrostatic manner.
  • the electrostatic charge method has an advantage of producing granules having a relatively uniform size, but may cause a problem in that the nozzle is clogged during the process to make granules impossible.
  • the organic-inorganic composite liquid containing a highly cohesive inorganic member as in the present invention is used as a raw material, since the nozzle is easily clogged by the aggregation of the inorganic member in the raw material, the raw material containing the inorganic member is electrostatically discharged. It is not easy to consider making granules by spraying in a bottom way.
  • the step of stirring the organic-inorganic composite liquid formed of the raw material of the electrostatic charge spraying with an ultrasonic mixer as described above, and further comprising the step of dispersing the inorganic member in the co-rotating mixer desirable.
  • a dispersing agent for the dispersion of an inorganic member.
  • dispersants are used for uniform dispersion due to the cohesiveness of the inorganic member. If the dispersant is included in the granules to be produced, problems may arise, for example, in the medical, pharmaceutical, food, and cosmetic fields. Therefore, in the production method of the present invention, there is an advantage that can greatly extend the field of application of the granules to be produced, without using a dispersant.
  • stirring and dispersion are performed through an ultrasonic mixer or a co-rotating mixer for uniform dispersion of the inorganic member.
  • 2 shows ceramic granules prepared by an embodiment of the present invention.
  • 1 is a 500 times magnification of ceramic granules, and ceramic granules may have a shape close to a spherical shape.
  • the surface of the ceramic granules may have a different roughness for each region, and pores may be formed and distributed on the surface.
  • the ceramic granules prepared according to the present embodiment may have a different shrinkage rate of the ceramic granules according to the content of organic and inorganic materials.
  • the porosity of the sintered ceramic granules may be controlled according to the content of the organic granules and the ceramic granules.
  • the spherical ceramic granules prepared by the embodiment of the present invention can be used for bone filler.
  • the spherical ceramic granules prepared by the embodiment of the present invention is not only in the pharmaceutical, cosmetic food field, but also filled with pores of sponge bone (spongy bone) pores to promote bone formation, bone filler, cosmetic and molding filler materials and microplastics It can be used in the field where the material is being used.
  • a sample of an organic-inorganic composite liquid in which the content ratio of alginate as an organic particle and nano apatite as an inorganic particle was controlled was prepared.
  • the content ratio was set to 1: 0 (Alg), and the sample was named with reference to the relative ratio of nano apatite.
  • Organic-inorganic granules were prepared by injecting each of the organic-inorganic composite liquids prepared above into a microgranular coating machine.
  • B-395 pro which is a microgranular coating machine using a Buchi electrostatic charge method, was used.
  • Each composite liquid sample was sprayed through the nozzle of the microgranular coating machine, and dropped into a solution containing a polymerization inducing substance. A polymerization reaction occurred in the solution to prepare spherical organic-inorganic composite granules.
  • the process for stabilizing the organic-inorganic granules prepared through the above process was performed, and washing and drying of the unreacted particles were performed. Stabilization and washing were performed using phosphate buffer saline (PBS).
  • PBS phosphate buffer saline
  • the organic-inorganic granules subjected to the above process were sintered.
  • the organic particles were limited to alginate, and the temperature range of the sintering process was 1000 to 1300 ° C., and the sintering process was performed at 1200 ° C. in detail.
  • An apatite composite liquid was prepared using an alginate as an organic particle and a nano apatite as an inorganic particle as 1: 0.1 (Alg_HA0.1). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite liquid was prepared using an alginate as an organic particle and a nano apatite as an inorganic particle as 1: 0.25 (Alg_HA0.25). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite solution was prepared using a content ratio of alginate as an organic particle and nano apatite as an inorganic particle as 1: 1 (Alg_HA1). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite solution was prepared using a content ratio of alginate as an organic particle and nano apatite as an inorganic particle as 1: 2.5 (Alg_HA2.5). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite liquid was prepared using an alginate as an organic particle and a nano apatite as an inorganic particle as 1: 5 (Alg_HA5). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite solution was prepared using a content ratio of alginate as an organic particle and nano apatite as an inorganic particle as 1: 7 (Alg_HA7). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite solution was prepared using a content ratio of alginate as an organic particle and nano apatite as an inorganic particle as 1: 9 (Alg_HA9). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite liquid was prepared using an alginate as an organic particle and a nano apatite as an inorganic particle as 1:10 (Alg_HA10). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite solution was prepared using a content ratio of alginate as an organic particle and nano apatite as an inorganic particle as 1: 4 (Alg_HA4). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite liquid was prepared using an alginate as an organic particle and a nano apatite as an inorganic particle as 1: 6 (Alg_HA6). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • An apatite composite liquid was prepared using an alginate as an organic particle and a nano apatite as an inorganic particle as 1: 8 (Alg_HA8). Except for the content ratio of alginate and nano apatite, the same process as in ⁇ Example 1> was performed to prepare ceramic granules.
  • 3 is a diagram for confirming the crystal formation of ⁇ Example 9>. 3 shows an organic-inorganic complex solution of Alg_HA10 samples in which the content ratio of alginate and nano apatite is mixed at 1:10, and it can be seen that spherical granules having a very uniform size are formed.
  • Alg HA After cross-linking (mm) After sintering (mm) Remained size Shirinkage Alg 1: 0 2.32 0 - Alg_HA0.1 1: 0.1 2.36 0.49 21% 79% Alg_HA0.25 1: 0.25 2.33 0.56 24% 76% Alg_HA1 1: 1 2.34 0.76 32% 68% Alg_HA2.5 1: 2.5 2.34 0.98 42% 58% Alg_HA10 1:10 2.25 1.4 62% 38%
  • Figure 4 shows the organic-inorganic composite granules prepared through steps b) to d
  • Figure 5 shows the ceramic granules prepared through step e) after step d). 4 and 5, (a) shows Alg, (b) shows Alg_HA0.1, (c) shows Alg_HA0.25, (d) shows Alg_HA1, (e) shows Alg_HA2.5, and (f) shows Alg_HA10. Indicates.
  • 6 and 7 show FE-SEM (Field Emission Scanning Electron Microscope) images of ceramic granules prepared after step e). 6 and 7 also denoted each sample described in [Table 2] (a) to (f). Referring to [Table 2] and Figure 6, the ceramic granules sintered through the step e) the organic-inorganic granules prepared according to each content ratio is confirmed that the particle size and porosity after sintering vary according to the ratio of the mixed inorganic material Can be. In particular, it can be seen that the size and porosity of the ceramic particles vary after sintering as the content ratio of nano apatite changes.
  • the content ratio of the inorganic material included in step a) can be understood as a major variable affecting the size of the ceramic granules prepared after sintering through step e).
  • the user may confirm that ceramic granules having a diameter of a desired size may be manufactured.
  • 8 and 9 are the results of confirming the components of the region of the crystal through the EDX analysis of the sintered ceramic granules.
  • 8A and 9B show results for samples having a relative content ratio of nano apatite of 0 to 0.25.
  • the crystal structure identified in spectrum3 is needle-shaped.
  • Ca / P which is the atomic% ratio of Ca and P
  • Ca / P is 1.66. This is analogous to the value of Ca / P of 1.67, which is the ratio of the atomic% of Ca and P found in typical apatite, which can be inferred from the crystal of apatite.
  • the crystal structure identified in spectrum2 is plate-shaped.
  • the graph below shows that the atomic% of P is close to zero. Through this, it is assumed that the plate-like structure is calcium oxide formed by polymerization.
  • Figure 9 is the result of EDX detection of the portion where the relative content ratio of apatite is mostly visible in the sample of 1 to 10.
  • the range of Ca / P which is the ratio of Ca and P in atomic%, was found to be 1.54 to 1.72, which is inferred to be a mixture of nano apatite and TCP (tricalcium phosphate) phase used in the fabrication. XRD measurements were performed to confirm this.
  • the ceramic granules including alginate as organic particles in the organic-inorganic composite liquid include calcium oxide and apatite.
  • the relative content ratio of nano apatite included in the preparation of the composite solution increased from 0.1 to 10
  • the content of apatite found in the crystal of the sintered sample increased, whereas the content of calcium oxide found in the crystal tended to decrease. You can check it.
  • (a) shows an Alg_HA1 sample, which shows granules prepared through an organic-inorganic complex solution in which alginate and nano apatite are mixed in a content ratio of 1: 1.
  • (b) shows an Alg_HA10 sample, and granules prepared through an organic-inorganic complex solution in which alginate and nano apatite were mixed in a content ratio of 1:10. Comparing (a) and (b), the average size of the granules produced is found to be 400 to 600 ⁇ m. That is, it can be seen that the relative content ratio of the nano apatite contained in the organic-inorganic complex solution in step a) does not significantly affect the size of the granules before sintering.
  • (c) is an Alg_HA1 sample which shows the ceramic granule which sintered the sample of (a).
  • (d) is an Alg_HA10 sample and shows ceramic granules which sintered the sample of (b). Comparing (c) and (d), it can be seen that the granules of (c) shrink about 75% in (a) to form granules having a diameter of 100 to 150 ⁇ m. On the other hand, it can be seen that the granules of (d) shrink to 50% in (b) to form ceramic granules having a diameter of 200 to 300 ⁇ m.
  • Ceramic granules were manufactured by controlling the process conditions of the microgranular coating machine differently from Experimental Example 6.
  • the set idle conditions were a frequency of 1900 Hz, a pressure of 340 to 370 mBar, a voltage of 1500 V, and a nozzle having a diameter of 200 ⁇ m. 12 shows the size comparison of alginate and nano apatite ratio of granules prepared under the conditions of Experimental Example 7.
  • (a) shows an Alg_HA5 sample, which represents granules prepared in an organic-inorganic complex solution in which alginate and nano apatite are mixed in a content ratio of 1: 5.
  • (b) shows an Alg_HA7 sample, which shows granules prepared in an organic-inorganic complex solution in which alginate and nano apatite are mixed in a content ratio of 1: 7.
  • (c) shows an Alg_HA9 sample, which shows granules prepared in an organic-inorganic complex solution in which alginate and nano apatite are mixed in a content ratio of 1: 9.
  • (d) shows an Alg_HA10 sample, which shows granules prepared from an organic-inorganic complex solution in which alginate and nano apatite are mixed in a content ratio of 1:10.
  • the ceramic granules manufacturing method according to the embodiment of the present invention can easily produce a plurality of granules having similar sizes.
  • FIG. 13 shows ceramic granules prepared by sintering each sample shown in FIG. 12.
  • the size of the ceramic granules prepared after sintering increases as the relative content ratio of nano apatite increases.
  • the Alg_HA5 sample of (a) shrinks to about 92% in size from 347 ⁇ 57 ⁇ m before sintering to 320 ⁇ 42 ⁇ m
  • Alg_HA10 sample of (d) it is sintered at 480 ⁇ 100 ⁇ m before sintering. It was then shrunk to about 97% in size at 466 ⁇ 50 ⁇ m.
  • the average size of the ceramic granules is 83 ⁇ 12 ⁇ m.
  • the average size of the ceramic granules is 132 ⁇ 15 ⁇ m.
  • FIG. 15 is an FE-SEM image for confirming the size of the ceramic granules according to the content ratio of nano apatite.
  • (a) is an Alg_HA5 sample
  • (b) is an Alg_HA7 sample
  • (c) is an Alg_HA9 sample
  • (d) is 500 times the Alg_HA10 sample. Referring to (a) to (b), even if the content ratio of nano apatite is different, it can be confirmed that the ceramic granules maintain the shape close to the spherical shape.
  • FIG. 16 is an enlarged image of each sample of FIG. 1500 times. Referring to (a) to (d), it can be seen that the sample having a high ratio of alginate forms a large number of interparticle pores. In summary, based on the results of FIG. 16, it is confirmed that porosity can be controlled according to the relative content ratio of nano apatite.
  • 17A and 17B show the sizes of the ceramic granules according to the relative proportions of nano apatite of the ceramic granules prepared using the 200 ⁇ m and 150 ⁇ m nozzles, respectively. 17A and 17B, it can be seen that as the relative content ratio of nano apatite increases, the size of ceramic granules increases. As described above, the shrinkage of the ceramic granules prepared after sintering decreases as the content ratio of the nano apatite included in step a) increases.
  • FIG. 17C is a graph for comparison between FIG. 17A and FIG. 17B.
  • the ceramic granules manufactured using the 200 ⁇ m nozzle have a smaller size than the ceramic granules manufactured using the 150 ⁇ m nozzle.
  • the size of the nozzle and the relative content ratio of the nano apatite was improved to improve the size of the sintered ceramic granules.
  • FIGS. 18A and 18B show the composition of ceramic granules according to relative proportions of nano apatite of ceramic granules prepared using 200 ⁇ m and 150 ⁇ m nozzles, respectively.
  • the graph at the top represents a sample containing a high content ratio of nano apatite
  • the bottom represents an Alg sample, followed by Alg_HA5, Alg_HA7, Alg_HA9, and Alg_HA10 samples.
  • 19A to 19D show the size and size distribution of ceramic granules according to the relative proportions of nano apatite of ceramic granules prepared using a 120 ⁇ m nozzle. For this purpose the diameters of the 200 ceramic granules were measured via an optical program.
  • the size of the sintered ceramic granules increased as the relative content ratio of nano apatite increased.
  • the content ratio of organic particles alginate and inorganic particles nanoapatite is 1: 4
  • the size of the ceramic particles was measured to be 60.8 ⁇ 8.4 ⁇ m
  • the content ratios of organic particles alginate and inorganic particles nanoapatite were 1: 6 and 1, respectively.
  • the ceramic particles were measured to be 73.2 ⁇ 10.4 ⁇ m, 82.3 ⁇ 10.9 ⁇ m, and 88.6 ⁇ 12.2 ⁇ m, respectively.
  • 20A to 20D show the size and size distribution of the ceramic granules according to the relative ratio of nano apatite content of the ceramic granules prepared using the 150 ⁇ m nozzle.
  • the diameters of the 200 ceramic granules were measured via an optical program.
  • the size of the sintered ceramic granules increased as the relative content ratio of the nano apatite was increased.
  • the content ratio of alginate (organic particles) and nano apatite (inorganic particles) is 1: 4
  • the size of the ceramic particles was measured to be 79.3 ⁇ 10.2 ⁇ m
  • the content ratio of alginate (inorganic particles) and nano apatite of inorganic particles was 1: 6, 1, respectively.
  • the size of ceramic particles was measured as 89.4 ⁇ 13.0 ⁇ m, 107.1 ⁇ 14.2 ⁇ m, and 123.3 ⁇ 17.1 ⁇ m, respectively.
  • 21A to 21D show the size and size distribution of ceramic granules according to the relative proportions of nano apatite of ceramic granules prepared using a 200 ⁇ m nozzle. For this purpose the diameters of the 200 ceramic granules were measured via an optical program.
  • the size of the sintered ceramic granules increased as the relative content ratio of the nano apatite increased.
  • the size of the ceramic particles was measured to be 104.3 ⁇ 14.7 ⁇ m, and the content ratios of the organic particles alginate and the inorganic particles nanoapatite were 1: 6 and 1, respectively.
  • the size of the ceramic particles was measured to be 118.8 ⁇ 16.3 ⁇ m, 146.1 ⁇ 22.8 ⁇ m, and 159.1 ⁇ 22.7 ⁇ m, respectively.
  • 22A to 22C show the particle size distribution of ceramic granules according to the change of alginate and nano apatite ratio based on the nozzle size based on the results of FIGS. 19 to 21.
  • the particle size distribution of 60.8 to 88.6 ⁇ m depends on the relative content ratio of nano apatite of the ceramic granules prepared using the 120 ⁇ m nozzle, and the average diameter of the ceramic granules increases as the relative amount of nano apatite increases. It can be seen that this increases. In addition, it has a particle size distribution of 79.3 to 123.3 ⁇ m according to the relative proportion of nano apatite content of the ceramic granules manufactured using the 150 ⁇ m nozzle, it can be seen that the average diameter of the ceramic granules increases as the relative content of nano apatite increases. .
  • Figures 23a to 23c shows the particle size distribution of the ceramic granules according to the change in nozzle size, based on the ratio of alginate and nano apatite based on the results of FIGS. 19 to 21 above.
  • the ceramic granules prepared under an alginate-to-nano apatite ratio of 1: 4 have an average diameter of 60.8 ⁇ m to 104.0 ⁇ m as the size of the nozzle increases from 120 ⁇ m to 200 ⁇ m. It can be seen that increases. In addition, it was confirmed that the ceramic granules prepared under the condition that the ratio of alginate and nano apatite were 1: 6 increased from 73.2 ⁇ m to 118.8 ⁇ m as the diameter of the nozzle increased from 120 ⁇ m to 200 ⁇ m.
  • Ceramic granules prepared under an alginate and nano apatite ratio of 1: 8 were found to increase in average diameter of ceramic granules from 82.3 ⁇ m to 146.1 ⁇ m as the nozzle size increased from 120 ⁇ m to 200 ⁇ m.
  • the average diameter of the ceramic granules increased from 88.6 ⁇ m to 159.1 ⁇ m as the nozzle size increased from 120 ⁇ m to 200 ⁇ m.
  • the standard deviation of the average diameter is 0.59 to 1.04 in the ceramic granules prepared under the condition of 1: 4 ratio of alginate and nano apatite.
  • the standard deviation value was 0.74 at the ratio of 1: 6, 1: 8 and 1:10, respectively. It increased from 1.04, 0.77 to 1.61 and 0.86 to 1.60. Through this, it was confirmed that as the size of the nozzle increases, the diameter and standard deviation of the ceramic granules prepared thereby increase.
  • the relative ratio of nano apatite to organics increased from 1: 4 to 1:10, the standard deviation increased from 0.59 to 0.86 for 120 ⁇ m nozzles, from 0.72 to 1.21 for 150 ⁇ m nozzles, and at 1.04 for 200 ⁇ m nozzles. It was confirmed that the increase to 1.60. Through this, it can be seen that in the manufacturing method of the ceramic granules, the distribution ratio of the ceramic granules is increased while increasing the relative content ratio of nano apatite to the organic material.
  • the following experiment was performed to confirm the uniform dispersion degree of the organic-inorganic composite solution according to the mixing method.
  • the organic-inorganic composite solution prepared in Example 2 was mixed for 6 minutes using a magnetic stirrer and 21 minutes for mixing.
  • the organic-inorganic composite solution prepared in Example 2 was mixed with a co-rotating mixer for 6 minutes, and then Stirring was performed with an ultrasonic mixer for 15 minutes, and the results are shown in FIGS. 24A and 24B.
  • Spherical ceramic granules prepared by the embodiment of the present invention can be used for bone filler.
  • the ceramic granules may be used in the fields of pharmaceutical, cosmetic food, as well as bone fillers, cosmetic and molding filler materials and microplastics that are supported on sponge pores and promote bone formation. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 구형 세라믹 과립의 제조방법에 관한 것으로, 세라믹 과립 제조방법은 유무기 복합액을 준비하는 a)단계; 정전하 방식의 미세과립코팅기에 상기 a)단계에서 준비한 유무기 복합액을 주입하여 구형 과립을 제조하는 b)단계; 상기 b)단계에서 제조된 구형 과립의 중합반응을 유도하는 c)단계; 상기 c)단계에서 중합된 구형 과립을 세척 및 건조하는 d)단계; 및 상기 d)단계에서 세척 및 건조된 구형 과립을 소결하여 세라믹 비즈를 형성하는 e)단계를 포함하여, 종래의 분무건조법을 대체할 수 있다.

Description

구형 세라믹 과립의 제조방법
본 발명은 구형 세라믹 과립의 제조방법에 관한 것이다.
미세캡슐을 제조하는 상업화된 방법 중, 가장 오래된 방법으로 분무건조법(spray drying)이 있다. 분무건조법은 피복물질을 수화시킨 후 대상물질에 분산시켜 혼합물을 고온의 챔버로 분무하는 방법을 말한다. 이러한 분무건조법은 대량의 미세캡슐을 연속적으로 생산가능한 장점이 있으나, 입자의 제조를 위한 장치의 크기가 크고, 운전조건이 까다로우며, 제조된 입자의 입자의 모양이 및 크기 분포가 불균일한 문제점이 있다.
한편. 전기분무란 전기적인 힘(전기장)에 의해 액체를 분무화하는 방법이다. 전기분무에 의해 형성되는 액체방울은 높은 대전성을 가지므로 자체적인 분산에 의해 응집을 방지할 수 있는 이점이 있기 때문에 최근 유용한 나노기술로서 주목되고 있다. 특히, 전기분무 기술은 대기환경에서 저렴한 장비와 간편한 조작으로 미세하고 복잡한 구조의 퇴적이 가능하기 때문에 다양한 분야에서의 응용이 기대되고 있다.
전술한 바와 같이 정전하 방식을 이용한 전기분무장치로 미세과립코팅기를 예로 들 수 있다. 미세과립코팅기는 주로 유기물에 적용된다. 즉, 고분자 및 수화겔을 이용하여 과립을 만들고 내부에 오일이나 각종 약물 등을 포함하는 코어-쉘과립을 형성하는 것으로써 유효성분의 전달목적으로 제약, 화학, 화장품, 식료품, 농업 등의 분야에서 응용되고 있다. 특히, 캡슐화가 가능한 미세과립코팅기를 제공하여 숙성향상, 저장안정성, 유해물질 차단 등의 효과를 구현하여 식료품 산업에 적용하고 있다. 또한, 방출제어, 용해도 및 삼투성 향상 등의 효과를 구현하여 의약 산업에 적용하고 있다. 또한, 생체내 검사에서 다양한 효과를 구현하며 바이오-의약 산업에 적용하고 있다.
한편, 전기분무를 이용하여 제조된 나노 입자와 관련하여 한국공개특허 제10-2016-0129386호(이하 '선행기술'이라 약칭함)는 전기분무 기술을 이용한 피록시캄 함유 나노 입자 및 이를 포함하는 경구용 고형제제 조성물에 대하여 개시하였다. 다만, 선행기술에서 제조되는 나노 입자의 크기는 제조과정간 사용되는 전기분무장치의 공정조건에 따라 제어된다. 즉, 선행기술은 전기분무장치의 공정조건 변화를 배제한 상태에서 상이한 크기의 나노 입자를 제조하기 어려운 문제점이 있다. 이에 따라, 전기분무장치에서 기설정된 공정조건의 변화없이 입자의 크기를 제어할 수 있는 제조방법이 요구되었다.
[특허문헌]
(특허문헌 1) 한국공개특허 제 10-2016-0129386호
본 발명의 목적은 의약 및 미용소재에 적용될 수 있고, 과립의 크기 제어가 가능하며 균일한 크기의 과립을 단시간에 다량으로 제조하는 구형 세라믹 과립의 제조방법을 제공하는데 있다.
본 발명은 세라믹 과립 제조방법에 있어서, 유무기 복합액을 준비하는 a)단계; 정전하 방식의 미세과립코팅기에 상기 a)단계에서 준비한 유무기 복합액을 주입하여 구형 과립을 제조하는 b)단계; 상기 b)단계에서 제조된 구형 과립의 중합반응을 유도하는 c)단계; 상기 c)단계에서 중합된 구형 과립을 세척 및 건조하는 d)단계; 및 상기 d)단계에서 세척 및 건조된 구형 과립을 소결하여 세라믹 비즈를 형성하는 e)단계를 포함한다.
또한, 상기 a)단계는 유기 입자가 포함된 용액에 무기 입자를 혼합하여 상기 유무기 복합액을 제조할 수 있다.
또한, 상기 a)단계에서 준비되는 유무기 복합액은 알지네이트, 콜라겐, 젤라틴, 키토산, 셀룰로스, 자연 및 생체 고분자 중 한 가지 이상의 유기물을 포함할 수 있다.
또한, 상기 a)단계에서 준비되는 유무기 복합액은 하이드록시아파타이트(HA: hydroxy apatite), 제이인산칼슘(DCP: dicalcium phosphate), 제삼인산칼슘(TCP: tricalcium phosphate), 제사인산칼슘(TTCP: tetracalcium phosphate) 및 제8인산칼슘(OCP: octacalcium phosphate) 중 한 가지 이상의 인산칼슘계 무기물을 포함할 수 있다.
또한, 상기 b)단계는 상기 미세과립코팅기의 분사노즐 크기, 공압 조건 및 진동수의 변화에 따라 과립의 평균 직경을 제어할 수 있다.
또한, 상기 b)단계는 상기 a)단계에서 준비한 유무기 복합액을 주입하는 단계; 및 상기 유무기 복합액을 노즐을 통해 전기장 내로 분사하여 상기 구형 과립을 형성하는 단계;를 포함할 수 있다.
또한, 상기 c)단계의 중합반응 유도 방법은 이온가교, 화학적가교, 광가교 중 한 가지 이상의 중합반응 유도 방법을 포함할 수 있다.
또한, 상기 이온가교는 상기 구형 과립의 중합반응을 유도하는 중합유도 물질로 염화칼슘(CaCl2), 황산칼슘(CaSO4), 탄산칼슘(CaCO3)과 같은 2가 양이온이 포함된 물질중 한 가지 이상의 물질을 사용할 수 있다.
또한, 상기 e)단계는 1000 내지 1300 ℃ 의 온도범위에서 소결하여 상기 유기물을 제거할 수 있다.
또한, 상기 a)단계는 유기물에 대한 무기물의 함량을 설정하는 단계를 포함하고, 상기 e)단계에서 제조된 세라믹 비즈의 크기 및 기공률은 상기 a)단계에서 설정된 상기 유기물에 대한 무기물의 함량에 의해 제어될 수 있다.
또한, 상기 형성된 세라믹 비즈는 산화칼슘(CaO)을 포함하는 과립화된 입자이고, 상기 산화칼슘의 함량은 1 내지 10 질량퍼센트 일 수 있다.
또한, 상기 a)단계에서, 유무기 복합액을 준비한 후 이를 초음파 믹서로 교반하고, 공자전 믹서로 무기 부재를 분산시키는 단계를 더 포함할 수 있다.
본 발명의 실시 예에 따른 구형 세라믹 과립의 제조방법은 준비된 원료소재를 효율적으로 이용하여 과립을 제조함으로써 높은 수율로 구형 세라믹 과립을 제조할 수 있는 이점이 있으며, 정전하 방식의 미세과립코팅기를 이용함으로써 짧은 시간에 다량의 균일한 크기를 가진 구형 과립을 제조할 수 있는 이점이 있다.
또한, 본 발명의 실시 예에 따른 구형 세라믹 과립의 제조방법은 미세과립코팅기의 공정설정의 제어를 배제한 상태에서, 세라믹 비즈 형성 단계에서 진행되는 소결과정을 통해 준비된 유무기 복합액에 포함된 성분의 함량의 변화에 따라 산화칼슘을 포함한 조성비, 입자간 기공도, 기공구조, 결정상 및 과립의 크기를 제어할 수 있는 이점이 있다.
또한, 본 발명의 실시 예에 의해 제조된 구형 세라믹 과립은 기존의 분무건조법과는 달리 유무기 복합액을 중합 및 소결하여 생성된 산화칼슘(CaO) 등의 산화물을 포함할 수 있다. 이에 따라, 골충진재, 골이식재, 필러 등의 의료분야에서 용이하게 사용할 수 있는 이점이 있다.
또한, 본 발명의 실시 예에 의해 제조된 구형 세라믹 과립은 그 용도에 따라 상이한 조성의 유무기 복합액을 기설정된 미세과립코팅기에 주입하여 제조될 수 있다. 이에 따라, 미세과립코팅기에 대한 전문지식이 없이 세라믹 과립의 제조에 적합한 조건을 가진 유무기 구형 과립을 용이하게 생산할 수 있는 이점이 있다.
도 1은 본 발명의 실시 예에 따른 세라믹 과립 제조방법의 단계도이다.
도 2는 본 발명의 실시 예에 의해 제조된 구형 세라믹 과립을 나타낸다.
도 3 내지 23은 본 발명의 실시 예에 대한 자료를 나타낸다.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명을 상세히 설명한다. 다만, 본 발명이 예시적 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일 참조부호는 실질적으로 동일한 기능을 수행하는 부재를 나타낸다.
본 발명의 목적 및 효과는 하기의 설명에 의해서 자연스럽게 이해되거나 보다 분명해 질 수 있으며, 하기의 기재만으로 본 발명의 목적 및 효과가 제한되는 것은 아니다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.
이하, 본 발명의 실시 예를 따르는 세라믹 과립 제조방법에 대하여 설명한다.
도 1은 본 발명의 실시 예를 따르는 세라믹 과립 제조방법의 단계도이다. 도 1을 참조하면, 세라믹 과립 제조방법은 유무기 복합액을 준비하는 a)단계(S1); 정전하 방식의 미세과립코팅기에 a)단계에서 준비한 유무기 복합액을 주입하여 구형 과립을 제조하는 b)단계(S3); b)단계에서 제조된 구형 과립의 중합반응을 유도하는 c)단계(S5); c)단계에서 중합된 구형 과립을 세척 및 건조하는 d)단계(S7); 및 d)단계에서 세척 및 건조된 구형 과립을 소결하여 세라믹 비즈를 형성하는 e)단계(S9)를 포함한다.
a)단계(S1)에서는 실험 조건에 알맞은 유무기 복합액을 구매, 제조 등의 방법을 통해 준비할 수 있다. 이하 a)단계(S1)에서 수행하는 유무기 복합액의 제조방법에 대하여 상술하도록 한다.
a)단계(S1)의 유무기 복합액을 준비하기 위해, 용매에 유기 입자가 포함된 용액을 준비할 수 있다. 상기 유기 입자는 알지네이트(alginate), 콜라겐, 젤라틴, 키토산, 셀룰로스, 하이알우로네이트 및 생체 고분자 중 적어도 하나일 수 있으며, 이들을 적절히 조합한 것일 수 있다. 상기 용매는 유기 입자를 분산하는 데 일반적으로 사용하는 것으로, 물, 글리세린, 지질 오일 중 하나 일 수 있다. 상기 유기 입자가 포함된 용액에서 상기 유기 입자의 함량은 0.5 내지 5 wt%의 일 수 있다. 상기 유기 입자의 함량은 1 내지 2wt% 일 수 있다.
다음으로, 상기 유기 입자가 포함된 용액에 무기 입자를 혼합할 수 있다. 상기 무기 입자는 평균 지름이 20nm 내지 10 ㎛ 일 수 있다. 상기 무기 입자는 평균 지름이 20 내지 100 nm일 수 있다. 상기 무기 입자는 인산칼슘, 생체유리계, 알루미나계, 지르코니아계 및 이들의 복합체 중 어느 하나일 수 있다. 상기 인산칼슘계는 하이드록시아파타이트(HA: hydroxy apatite), 제이인산칼슘(DCP: dicalcium phosphate), 제삼인산칼슘(TCP: tricalcium phosphate), 제사인산칼슘(TTCP: tetracalcium phosphate) 및 제8인산칼슘(OCP: octacalcium phosphate) 중 어느 하나일 수 있으나 이에 제한하지 않는다.
상기 무기 입자를 상기 유기 입자가 분산된 용액에 고르게 분산하기 위해, 상기 유기 입자가 분산된 용액 내로 분채를 이용하여 상기 무기 입자를 투입할 수 있다. 또한, 분산기를 통해 상기 무기 입자를 분산시킬 수 있다. 이 때, 분채를 이용한 투입 및 분산기를 이용한 분산은 동시에 수행함으로써 분산률을 높일 수 있다. 상기 분산기는 초음파 분산기일 수 있다. 상기 분산 공정은 상기 무기 입자를 상기 유기 입자가 분산된 용액에 고르게 분산하기 위해 적절한 시간 및 조건으로 수행될 수 있다. 해당 과정은, 미세과립코팅기를 이용한 과립 제조시 노즐막힘 현상으로 야기되는 수율 저하를 막기위한 중요한 요소로 이해될 수 있다.
한편, 유기 입자가 포함된 용액에 투입되는 무기 입자의 함량에 따라 세라믹 과립의 수축률이 상이하게 나타날 수 있으며, 이를 통해 미세과립코팅기의 공정조건 변경이외의 과립의 제조조건을 제어함으로써 세라믹 과립의 크기를 제어할 수 있다.
다음으로, a)단계(S1)에서는 상기 유기 입자 및 무기 입자가 포함된 용액을 교반하여 상기 유기 입자 및 무기 입자가 뭉치는 것을 방지할 수 있다. 상기 교반은 초음파 믹서를 이용하여 수행할 수 있다. 상기 교반 공정은 상기 유기 입자 및 무기 입자가 뭉치는 것을 방지하기 위해 적절한 시간 및 조건으로 수행될 수 있다. 특히, a)단계(S9)는 유기물에 대한 무기물의 함량을 설정하는 단계를 포함할 수 있다. 이를 통해, 후속하는 과정을 통해 제조되는 세라믹 비즈의 크기 및 기공률이 제어될 수 있다.
b)단계(S3)는 미세과립코팅기를 이용하여 원하는 크기의 구형 과립을 제조할 수 있다. b)단계(S3)는 미세과립코팅기의 분사노즐 크기, 공압 조건 및 진동수의 변화에 따라 과립의 평균 직경을 제어할 수 있다. b)단계(S3)를 거침으로써 바람직하게 40 내지 2000 ㎛ 의 범위에서 직경의 평균값이 형성되는 구형 과립을 제조할 수 있다.
특히, b)단계(S3)는 a)단계(S1)에서 준비한 유무기 복합액을 주입하는 단계; 및 유무기 복합액을 미세과립코팅기의 노즐을 통해 전기장 내로 분사하여 구형 과립을 형성하는 단계를 포함할 수 있다.
상기 b)단계(S3)에서 사용하는 미세과립코팅기는 용액을 액적 형상의 과립으로 만드는 장치이다. 상기 미세과립코팅기는 노즐에서 용액을 분사하고, 상기 노즐 및 용액에 진동을 가함으로써 일정한 크기의 액적 형상의 과립을 형성하여 떨어지도록 할 수 있으며, 상기 액적 형상의 과립에 정전하를 가함으로써 상기 과립이 분산되어 떨어지도록 할 수 있다. 상기 노즐의 하부에 용액이 담긴 용기를 배치함으로써 상기 과립은 상기 용기 내의 용액에 적하할 수 있다.
일 예로, 상기 미세과립코팅기는 용액이 분사되는 노즐, 용액을 노즐로 공급하는 펌프, 노즐에 진동을 가하여 노즐에서 분사되는 용액이 액적 형상의 과립을 형성하도록 하는 진동기, 형성된 액적 형상의 과립을 분산시키도록 정전하를 가하는 정전하기를 포함할 수 있다. 본 발명의 실시 예에서 미세과립코팅기는 Buchi 사의 Encapsulator B-395 Pro를 사용하였다.
본 발명의 실시 예를 따르는 세라믹 과립의 제조방법은 미세과립코팅기를 사용함으로써 과립의 크기의 균일성이 향상되고, 과립 크기 및 형상의 제어가 가능하다.
c)단계(S5)에서는 b)단계(S3)에서 제조된 과립에 포함된 유기 입자의 중합반응을 유도하여 구 형태의 형상을 유지시킬 수 있다. 이를 위해, 상기 미세과립코팅기에서 생성된 과립이 적하된 용액에 중합유도 물질을 첨가할 수 있다. 보다 바람직하게는, 상기 미세과립코팅기에서 분무되는 과립형상의 액적을 중합유도 물질이 포함된 용액에 직접 적하할 수 있다. 이를 통해, 과립의 생성과 동시에 중합 반응이 일어나도록 할 수 있어 중합에 의해 생성된 과립의 형상 및 크기를 보다 효율적으로 제어할 수 있고, 미세과립코팅기에서 가해진 정전하에 의해 분산된 과립의 분산성이 높은 상태에서 중합반응이 일어나도록 함으로써 중합에 의해 생성된 과립의 크기를 균일하게 제어할 수 있다.
이때, 중합유도 물질이 포함된 용액의 농도는 50 내지300 mM 일 수 있으며, 100 mM 일 수 있다. 상기 중합유도 물질은 유무기 과립의 중합반응을 유도하여, 상기 미세과립코팅기에서 분무되어 적하된 과립을 생장시킬 수 있는 물질로 이해될 수 있다. 또한, 일반적으로 중합유도는 염화칼슘(CaCl2), 황산칼슘(CaSO4), 탄산칼슘(CaCO3)과 같은 2가 양이온을 이용한 이온가교, 알지네이트 뿐만 아니라 콜라겐, 젤라틴, 하이알우로네이트 및 수용성 고분자 가교에 이용 가능한 N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide(EDC), Glutaraldehyde, Adipic acid dihydrazide(ADH), Genipin, 과 같은 화학물질을 이용한 화학적 가교, 그리고 acrylate기 또는 methacrylate기를 도입한 수용성 고분자 물질을 자외선(UV)을 이용하여 중합한 광가교를 사용할 수 있다. 상기 중합유도 물질이 포함된 용액의 용매는 물, 메탄올, 에탄올, 이소프로판올, 글리세린, 폴리 에틸렌 글리콜, 지질 오일 중 하나일 수 있다.
d)단계(S7)는 c)단계(S5)에서 중합된 과립을 세척 및 건조한다. d)단계(S7)는 30분 내지 2시간 동안 중합된 과립을 안정화 시킨 후, 과립에 잔여한 미반응 성분을 제거하기 위한 세척과정을 진행할 수 있다. 상기 안정화 및 세척은 인산완충식염수(PBS: phosphate buffer saline)를 이용하여 수행할 수 있다. 이어서, 세척된 과립을 건조시키기 위한 과정이 진행될 수 있다. 상기 건조 공정은 상기 과립을 상온에 충분한 시간 동안 방치함으로써 수행될 수 있고, 건조기를 이용하여 수행될 수 있다. 이 때, 상기 건조 조건은 대기압 이하의 압력(1x10-5Pa 내지 1x105Pa) 및 상온 이상의 온도(0℃ 내지 60℃)에서 수행될 수 있으나 특별히 제한되지 않는다
e)단계(S9)는 d)단계(S7)에서 세척 및 건조된 과립의 소결을 진행한다. 상기 소결 온도는 과립에 포함된 유기 입자 및 무기 입자의 종류에 따라 500℃ 내지 1500℃에서 수행될 수 있고, 바람직하게는 1000℃ 내지 1300℃ 에서 수행될 수 있다. 이러한 소결과정을 통해 유기물이 제거된 과립화된 입자 형태의 세라믹 비즈를 형성할 수 있다. 즉, e)단계(S9)는 소결을 통해 유기물을 제거하여 구형 세라믹 과립을 안정화 할 수 있다.
상기 소결 공정을 통해 제조된 세라믹 과립은 기공을 포함하는 세라믹 조성물 및 세라믹 조성물에 포함된 산화칼슘(CaO)을 포함한다. 상기 산화칼슘(CaO)은 앞서 설명한 중합유도 물질에서 유래한 것이다. 본 발명의 실시 예를 따르는 세라믹 과립 제조방법은 앞서 설명한 일련의 공정을 통해 제조됨으로써 높은 수율로 세라믹 과립을 제조할 수 있는 이점이 있으며, 정전하 방식의 미세과립코팅기를 이용함으로써 짧은 시간에 다량의 과립을 제조할 수 있는 이점이 있다. 또한, 중합반응 공정을 미세과립코팅기에 의한 과립 생성 공정과 구분하여 진행함으로써 균일한 크기의 세라믹 과립을 생성할 수 있다.
한편, 무기 부재는 응집성이 강하고, 분산성이 매우 낮기 때문에 유기 부재 용액에 무기 부재를 균일하게 분산시키면서 도입하는 것이 반드시 필요하다. 예를 들어, 본 발명의 제조방법은 이와 같은 분산을 위하여 상기와 같이 유무기 복합액을 형성한 후, 이를 초음파 믹서로 교반하고, 공자전 믹서로 무기 부재를 분산시키는 단계를 더 포함하는 것이 바람직하다.
본 발명의 제조방법은 정전하 방식으로 분사하여 과립을 형성한다. 정전하 방식은 상대적으로 균일한 크기의 과립을 제조할 수 있는 장점이 있으나, 공정 과정 중 노즐이 막혀 과립 제조가 불가능하게 되는 문제가 발생할 수 있다. 특히, 본 발명과 같이 응집성이 매우 높은 무기 부재를 포함하는 유무기 복합액을 원료로 사용하는 경우, 원료 물질 중 무기 부재의 응집에 의하여 노즐이 쉽게 막혀버리기 때문에, 무기 부재가 포함된 원료를 정전하 방식으로 분사하여 과립을 만드는 것을 고려하기는 쉽지 않다.
본 발명에서는 이와 같은 문제점을 해결하기 위하여, 정전하 방식 분사의 원료물질로 형성된 유무기 복합액을 상기한 바와 같이 초음파 믹서로 교반하고, 공자전 믹서로 무기 부재를 분산시키는 단계를 더 포함시키는 것이 바람직하다. 이와 같은 과정을 통하여 노즐이 막히는 것을 방지하고, 균일한 물성을 갖는 과립을 제조할 수 있게 된다.
본 발명의 제조방법에서는 무기 부재의 분산을 위하여 분산제를 사용하지 않는 것이 바람직하다. 일반적으로 무기 부재의 응집성때문에 균일 분산을 위하여 분산제를 사용하게 되는데 제조되는 과립에 분산제가 포함되는 경우 예를 들어, 의료, 제약, 식품, 화장품 분야에 적용함에 문제가 발생할 수 있다. 따라서, 본 발명의 제조방법에서는 분산제를 사용하지 않아, 제조되는 과립의 적용분야를 크게 확장시킬 수 있는 장점이 있다. 본 발명의 제조방법에서는 분산제를 사용하지 않는 대신, 무기 부재의 균일 분산을 위하여 초음파 믹서, 또는 공자전 믹서를 통하여 교반 및 분산을 수행한다.
도 2는 본 발명의 실시 예에 의해 제조된 세라믹 과립을 나타낸다. 도 1은 세라믹 과립을 500배 확대하여 나타낸 것으로, 세라믹 과립은 구형에 가까운 형태를 가질 수 있다. 또한, 세라믹 과립의 표면은 거칠기가 각 영역마다 상이할 수 있으며, 기공이 형성되어 표면에 분포될 수 있다.
한편, 본 실시 예에 따라 제조된 세라믹 과립은 유기물 및 무기물의 함량에 따라 세라믹 과립의 수축률이 상이할 수 있다. 또한, 세라믹 과립은 유기물 및 무기물의 함량에 따라 소결된 세라믹 과립의 기공률이 제어될 수 있다.
한편, 본 발명의 실시 예에 의해 제조된 구형 세라믹 과립은 골충진재 용도로 사용될 수 있다. 또한, 본 발명의 실시 예에 의해 제조된 구형 세라믹 과립은 제약, 화장품 식품분야 뿐만 아니라 해면골(spongy bone) 기공에 담지되어 골형성 촉진 등을 유도하는 골충진재, 미용 및 성형용 필러소재 및 미세플라스틱 소재가 사용되고 있는 분야에서 대체되어 사용될 수 있다.
이하, 본 발명을 하기 실시 예 및 실험 예에 의해 더욱 상세히 설명한다.
단, 하기 실시 예 및 실험 예는 본 발명을 예시할 뿐, 본 발명의 내용이 하기의 실시 예 및 실험 예에 의해 한정되는 것은 아니다.
< 실시예1 >
아파타이트 복합액 제조
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 제어한 유무기 복합액의 샘플을 제조하였다. 함량비는 1:0(Alg)으로 설정하였고, 샘플의 명칭은 나노 아파타이트의 상대적 비율을 참조하여 명명하였다.
미세과립코팅기를 이용한 과립 제조
앞서 제조한 각각의 유무기 복합액을 미세과립코팅기에 주입하여 유무기 과립을 제조하였다. 해당 실시예에는 Buchi 사의 정전하 방식을 이용한 미세과립코팅기인 B-395 pro를 사용하였다. 각 복합액 샘플은 미세과립코팅기의 노즐을 통해 분사되어 중합유도 물질이 포함된 용액으로 적하되었으며, 용액 내부에서 중합반응이 발생하여 구형의 유무기 복합과립을 제조하였다.
과립의 안정화 및 세척
앞서 공정을 통해 제조된 유무기 과립의 안정화를 위한 공정을 수행하였으며, 미반응 입자의 세척 및 건조를 수행하였다. 안정화 및 세척은 인산완충식염수(PBS: phosphate buffer saline)를 이용하여 수행하였다.
소결과정을 통한 세라믹 과립 제조
앞서 공정을 수행한 유무기 과립을 소결하였다. 특히, 해당 실시 예에서는 유기 입자가 알지네이트로 한정된 바, 소결과정의 온도범위는 1000 내지 1300℃ 였으며, 상세하게는 1200℃에서 소결과정이 진행되었다.
< 실시예2 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:0.1(Alg_HA0.1)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예3 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:0.25(Alg_HA0.25)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예4 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:1(Alg_HA1)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예5 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:2.5(Alg_HA2.5)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예6 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:5(Alg_HA5)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예7 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:7(Alg_HA7)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예8 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:9(Alg_HA9)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예9 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:10(Alg_HA10)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예10 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:4(Alg_HA4)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예11 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:6(Alg_HA6)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실시예12 >
유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비를 1:8(Alg_HA8)로 하여 아파타이트 복합액을 제조하였다. 상기 알지네이트와 나노 아파타이트의 함량비를 제외하고는 <실시예1>과 동일한 공정을 수행하여 세라믹 과립을 제조하였다.
< 실험예1 > 알지네이트 : 아파타이트 비율이 상이한 복합액 비교
<실험예1>에서는 무기물의 담지 한계를 확인하고, 이에 따른 과립의 특징을 비교하기 위하여 유기 입자인 알지네이트(alginate)와 무기 입자인 나노 아파타이트(HA: hydroxy apatite)의 함량비가 다른 <실시예1> 내지 <실시예9>의 유무기 복합액 샘플을 일부 비교하였다. [표 1]은 알지네이트 : 나노 아파타이트의 비율이 1:0 내지 1:10으로 설정된 유무기 복합액의 이론적 질량비 및 실제 질량비를 나타낸다. [표 1]을 참조하면, 이론적 질량비 및 실제 질량비는 나노 아파타이트의 상대적 함량비가 증가함에 따라 향상되는 경향을 나타냄을 확인할 수 있다. 특히, 이론적인 질량비는 알지네이트와 나노 아파타이트의 함량비와 일치하는 반면, 실제 질량비는 해당 비율과는 상이한 결과를 나타내는 것을 확인할 수 있다.
Sample Alginate:Hydroxyapatite Theoretical weight ratio Actual weight ratio
Alg 1:0 0 0
Alg_HA0.1 1:0.1 0.1 0.124
Alg_HA0.25 1:0.25 0.25 0.271
Alg_HA1 1:1 1 0.962
Alg_HA2.5 1:2.5 2.5 2.796
Alg_HA10 1:10 10 7.760
< 실험예2 > 고함랑 나노 아파타이트 샘플의 결정형성 확인
도 3은 <실시예9>의 결정형성을 확인하기 위한 도면이다. 도 3은 알지네이트와 나노 아파타이트의 함량비가 1:10으로 혼합된 Alg_HA10 샘플의 유무기 복합액을 나타내며, 매우 균일한 크기의 구형과립이 형성된 것을 확인할 수 있다.
< 실험예3 > 무기물 함량에 따른 과립 크기 변화
<실험예3>에서는 a)단계에서 제조된 유무기 복합액에 포함된 무기물의 함량이 b)단계 내지 e)단계를 통해 제조되는 과립 크기에 미치는 영향을 살펴보았다. e)단계의 소결은 알지네이트의 제거를 위해 1200℃에서 3시간 진행되었으며, <실험예3>에서 확인된 결과를 하기의 [표 2]에 정리하였다.
Alg:HA After cross-linking (mm) After sintering(mm) Remained size Shirinkage
Alg 1:0 2.32 0 -
Alg_HA0.1 1:0.1 2.36 0.49 21% 79%
Alg_HA0.25 1:0.25 2.33 0.56 24% 76%
Alg_HA1 1:1 2.34 0.76 32% 68%
Alg_HA2.5 1:2.5 2.34 0.98 42% 58%
Alg_HA10 1:10 2.25 1.4 62% 38%
[표 2]에 기재된 내용은 도 4 및 도 7을 통해 추가적으로 설명하도록 한다. 도 4는 b)단계 내지 d)단계를 통해 제조된 유무기 복합과립을 나타내며, 도 5는 d)단계 이후 e)단계를 통해 제조된 세라믹 과립을 나타낸다. 도 4 및 도 5의 (a)는 Alg, (b)는 Alg_HA0.1, (c)는 Alg_HA0.25, (d)는 Alg_HA1, (e)는 Alg_HA2.5, (f)는 Alg_HA10의 샘플을 나타낸다.
[표 2]의 After cross-linking(mm) 탭 및 도 4를 참조하면, 미세과립코팅기의 압력, 전압, 진동수와 같은 공정조건을 동일하게 설정한 뒤 중합유도를 통해 제조된 유무기 복합과립은 무기물의 상대적 함량비와 관계없이 그 크기가 2.25 내지 2.36 mm로 유사하게 형성된 것을 확인할 수 있다.
반면, [표 2]의 After sintering(mm) 탭 및 도 5를 참조하면, 최초 a)단계에서 포함되는 무기물의 함량비에 따라 과립의 형상 및 크기가 상이하게 형성되는 것을 확인할 수 있다. 특히, <실험예3>에서는 나노 아파타이트의 함량비가 증가함에 따라 소결과정을 통해 제조되는 세라믹 과립의 크기는 커지는 경향을 나타내며, 수축률이 감소함을 확인할 수 있다. 즉, (b)의 Alg_HA0.1의 샘플의 경우 약 80% 의 수축이 진행되는 반면, (f)의 Alg_HA10의 샘플의 경우 (b) 샘플의 절반에 가까운 약 40%의 수축이 진행됨을 확인할 수 있다.
도 6 및 도 7은 e)단계(S9) 이후 제조된 세라믹 과립의 FE-SEM(Field Emission Scanning Electron Microscope) 이미지를 나타낸다. 도 6 및 도 7 역시 [표 2]에 기재된 각 샘플을 (a) 내지 (f)로 표기하였다. [표 2] 및 도 6을 참조하면, 각 함량비율에 따라 제조된 유무기 과립을 e)단계를 통해 소결한 세라믹 과립은 혼합된 무기물의 비율에 따라 소결 후 입자 크기와 기공도가 달라짐을 확인할 수 있다. 특히, 나노 아파타이트의 함량비가 변화됨에 따라 소결 후 세라믹 입자의 크기와 기공도가 달라짐을 확인할 수 있다.
한편, [표 2] 및 도 7을 참조하면, a)단계에서 포함된 무기물의 함량비에 따라 제조된 유무기 과립을 e)단계를 통해 소결한 세라믹 과립의 결정상과 표면 조도가 변화하는 것을 확인할 수 있다. 상세하게는, (a)를 참조하면 유기물인 알지네이트 만으로 구성된 과립은 소결된 과립이 없어지지 않고 잔존하는 것을 확인할 수 있다. 또한, 과립을 형성하고 있는 결정이 넙적한 형태의 플레이트 형상을 형성함을 확인할 수 있다. 이와 같은 결과는 알지네이트의 중합을 위하여 사용된 중합유도체인 염화칼슘 용액에 포함된 산화칼슘이며, 일부 확인되는 침상형 결정은 d)단계에서 과립을 PBS 용액에 보관하는 과정에서 칼슘이 형성한 아파타이트로 유추된다.
또한, (b) 내지 (f)를 통해 나노 아파타이트의 상대적 함량비가 증가함에 따라 넓은 플레이트의 형상이 줄어들고 침상형태의 결정이 증가함을 확인할 수 있다. 특히, (d) 내지 (f)를 참조하면, 나노 아파타이트의 함량비가 1.0 이상인 경우에는 작은 입자로 구성되며, 비로서 구형의 입자를 확인할 수 있다. 이는, 혼합된 나노 아파타이트 입자로 유추된다.
전술한 <실험예3>의 결과를 통해, a)단계에서 포함되는 무기물의 함량비는 e)단계를 통한 소결 후 제조되는 세라믹 과립의 크기에 영향을 미치는 주요한 변수로 이해될 수 있음을 확인할 수 있으며, 누적된 데이터에 따라 사용자는 원하는 크기의 직경을 갖는 세라믹 과립을 제조할 수 있음을 확인할 수 있다.
< 실험예4 > 소결된 세라믹 과립의 EDX(Energy Dispersive X-Ray) 분석
도 8 및 도 9는 소결된 세라믹 과립의 EDX 분석을 통하여 결정의 영역별 성분을 확인한 결과이다. 도 8a 와 도 9b는 나노 아파타이트의 상대함량비가 0 내지 0.25인 샘플에 대한 결과이다. 도 8a를 참조하면, spectrum3 내부에 확인되는 결정의 구조가 침상형인 것을 확인할 수 있다. 또한, 하단의 그래프를 통해, Ca와P의 atomic%(원자 농도)비인 Ca/P가 1.66을 나타냄을 확인할 수 있다. 이는 전형적인 아파타이트에서 나타나는 Ca와P의 atomic%의 비인 Ca/P의 값 1.67과 유사하여, 아파타이트의 결정으로 유추할 수 있다.
또한, 도 8b를 참조하면, spectrum2 내부에 확인되는 결정의 구조가 판상형인 것을 확인할 수 있다. 또한, 하단의 그래프를 통해, P의 atomic%가 0에 가까운 것을 확인할 수 있다. 이를 통해, 판상형의 구조는 중합에 의해 형성된 산화칼슘일 것으로 추정된다.
한편, 도 9는 아파타이트의 상대적 함량비가 1 내지 10의 샘플에서 대부분 보이는 부분을 EDX 검출한 결과이다. 해당 영역에서는 Ca와P의 atomic%의 비인 Ca/P의 범위가 1.54 내지 1.72로 확인되었으며, 이는 제작에 사용된 나노 아파타이트와 TCP(tricalcium phosphate) 상이 혼재되어 있는 것으로 유추된다. 이를 확인하기 위해 XRD 측정을 실시하였다.
< 실험예5 > XRD(X- ray diffractometry ) 측정
도 10은 샘플에 대한 XRD 측정 결과를 나타낸다. 도 10을 참조하면, 유무기 복합액에 유기 입자인 알지네이트를 포함하는 세라믹 과립은 산화칼슘과 아파타이트를 포함하고 있음을 확인할 수 있다. 복합액 제조시 포함되는 나노 아파타이트의 상대적 함량비가 0.1 에서 10으로 증가함에 따라 소결된 샘플의 결정에서 확인되는 아파타이트의 함량이 증가하며, 이에 반해 결정에서 확인되는 산화칼슘의 함량이 줄어드는 경향을 나타내는 것을 확인할 수 있다.
특히, 나노 아파타이트의 상대적 함량비가 10인 Alg_HA10 샘플의 경우, 소결후 과립에서 산화칼슘은 거의 검출되지 않으며, 대부분 아파타이트로 구성되었다. 반면, 나노 아파타이트의 상대적 함량비가 0인 Alg 샘플의 경우, 소결후 과립에서 아파타이트 성분이 검출되지 않았다.
< 실험예6 > 나노 아파타이트 함량에 따른 결과 비교
<실험예6>에서는 미세과립코팅기의 공정조건을 제어하여 세라믹 과립을 제작하였다. 설정된 공전조건은 주파수 310Hz, 압력 186 내지 191mBar, 전압 1500V 이며, 직경이 200μm 인 노즐을 사용하였다. 도 11은 <실험예6>의 결과를 나타낸다.
(a)는 Alg_HA1 샘플로, 알지네이트와 나노 아파타이트가 1:1의 함량비로 혼합된 유무기 복합액을 통해 제조된 과립을 나타낸다. (b)는 Alg_HA10 샘플로, 알지네이트와 나노 아파타이트가 1:10의 함량비로 혼합된 유무기 복합액을 통해 제조된 과립을 나타낸다. (a)와 (b)를 비교하면, 제조된 과립의 평균 크기는 400 내지 600 ㎛로 확인된다. 즉, a)단계에서 유무기 복합액에 포함되는 나노 아파타이트의 상대적 함량비는 소결전 과립의 크기에 크게 영향을 미치지 않는 것을 알 수 있다.
한편, (c)는 Alg_HA1 샘플로, (a)의 샘플을 소결한 세라믹 과립을 나타낸다. 마찬가지로, (d)는 Alg_HA10 샘플로, (b)의 샘플을 소결한 세라믹 과립을 나타낸다. (c)와 (d)를 비교하면, (c)의 과립은 (a)에서 75%정도 수축하여 직경이 100 내지 150 ㎛의 과립이 형성됨을 확인할 수 있다. 반면, (d)의 과립은 (b)에서 50% 수준으로 수축하여 직경이 200 내지 300㎛ 의 세라믹 과립이 형성됨을 확인할 수 있다. (c)와 (d)의 비교를 통하여, a)단계에서 준비되는 유무기 복합액에 알지네이트와 나노 아파타이트의 함량비는 소결 후 제조되는 세라믹 과립의 직경에 영향을 끼침을 알 수 있으며, 나노 아파타이트의 상대적 함량비가 높은 경우 수축률이 감소하는 경향이 있음을 확인할 수 있다.
< 실험예7 > 나노 아파타이트 함량에 따른 결과 비교2
<실험예7>에서는 미세과립코팅기의 공정조건을 <실험예6>과 상이하게 제어하여 세라믹 과립을 제작하였다. 설정된 공전조건은 주파수 1900Hz, 압력 340 내지370 mBar, 전압 1500V 이며, 직경이 200μm 인 노즐을 사용하였다. 도 12는 <실험예7>의 조건하에 제조된 과립의 알지네이트와 나노 아파타이트 비율별 크기비교를 나타낸다.
(a)는 Alg_HA5 샘플로, 알지네이트와 나노 아파타이트가 1:5의 함량비로 혼합된 유무기 복합액에서 제조된 과립을 나타낸다. (b)는 Alg_HA7 샘플로, 알지네이트와 나노 아파타이트가 1:7의 함량비로 혼합된 유무기 복합액에서 제조된 과립을 나타낸다. (c)는 Alg_HA9 샘플로, 알지네이트와 나노 아파타이트가 1:9의 함량비로 혼합된 유무기 복합액에서 제조된 과립을 나타낸다. (d)는 Alg_HA10 샘플로, 알지네이트와 나노 아파타이트가 1:10의 함량비로 혼합된 유무기 복합액에서 제조된 과립을 나타낸다.
(a) 내지 (d)를 참조하면, 균일한 크기의 과립이 형성됨을 확인할 수 있다. 이에 따라, 본 발명의 실시 예에 따른 세라믹 과립 제조방법을 통해 크기가 유사한 다수의 과립을 용이하게 제조할 수 있다.
한편, 도 13은 도 12에 도시된 각각의 샘플을 소결하여 제조한 세라믹 과립을 나타낸다. 도 13의 (a) 내지 (d)를 참조하면, 나노 아파타이트의 상대적 함량비가 증가함에 따라 소결후 제조된 세라믹 과립의 크기가 증가하는 것을 확인할 수 있다. 특히, (a)의 Alg_HA5 샘플의 경우, 소결전 347±57 ㎛에서 소결후 320±42 ㎛로 약 92% 크기로 수축되었으며, (d)의 Alg_HA10 샘플의 경우, 소결전 480±100 ㎛에서 소결후 466±50 ㎛으로 약 97%의 크기로 수축되었다. 이는 [표 2] 및 도 5의 결과와 동일한 양상을 나타낸다. 이를 바탕으로, 유무기 복합액에 포함된 나노 아파타이트의 상대적 함량비를 조절하여, 소결후 세라믹 과립의 크기 제어가 가능함을 확인할 수 있다.
< 실험예8 > 나노 아파타이트 함량에 따른 결과 비교3
<실험예8>에서는 150 ㎛의 노즐을 사용하여 나노 아파타이트의 상대적 함량비를 제어하는 경우, 소결후 세라믹 과립의 크기를 비교하였다. 알지네이트와 나노 아파타이트의 함량비는 1:5 내지 1:10으로 설정하였다. 도 14는 <실험예8>의 결과를 나타낸 그래프이다. 도 14를 참조하면, 150㎛ 노즐을 사용한 경우에도 나노 아파타이트의 상대적 함량비가 증가함에 따라 수축률이 감소하여 소결후 제조되는 세라믹 과립의 크기가 향상됨을 확인할 수 있다.
알지네이트와 나노 아파타이트가 1:5의 함량비로 포함된 경우에는, 세라믹 과립의 평균적인 크기가 83±12 ㎛ 이다. 한편, 알지네이트와 나노 아파타이트가 1:10의 함량비로 포함된 경우에는, 세라믹 과립의 평균적인 크기가 132±15 ㎛ 인 것을 확인할 수 있다.
< 실험예9 > 나노 아파타이트 함량에 따른 결과 비교4
<실험예9>에서는 150 ㎛ 노즐을 이용하여 세라믹 과립을 제조하였으며, 나노 아파타이트의 상대적 함량비에 따른 세라믹 과립의 크기 및 형상을 FE-SEM 이미지로 나타내었다. 도 15 및 도 16은 <실험예9>의 결과를 나타낸다.
도 15는 나노 아파타이트의 함량비별 세라믹 과립의 크기를 확인하기 위한 FE-SEM 이미지이다. (a)는 Alg_HA5 샘플, (b)는 Alg_HA7 샘플, (c)는 Alg_HA9 샘플이며 (d)는 Alg_HA10 샘플을 500배 확대하였다. (a) 내지 (b)를 참조하면, 나노 아파타이트의 함량비가 상이하여도, 세라믹 과립은 구 형상에 가까운 형태를 유지하는 것을 확인할 수 있다.
한편, 도 16은 도 15의 각 샘플을 10000배 확대한 이미지이다. (a) 내지 (d)를 참조하면, 알지네이트의 비율이 높은 샘플이 입자간 기공을 다수 형성하는 것을 확인할 수 있다. 정리하자면, 도 16의 결과를 바탕으로 나노 아파타이트의 상대적 함량비에 따라 기공률의 제어가 가능할 것으로 확인된다.
< 실험예10 > 공정조건에 따른 세라믹 과립 비교
<실험예10>에서는 노즐크기 및 나노 아파타이트의 상대적 함량비에 따른, 소결후 세라믹 과립의 특징을 비교하였다. 도 17 및 도 18에는 <실험예10>의 결과가 도시되었다.
도 17a와 도 17b는 각각 200 ㎛ 및 150 ㎛ 노즐을 사용하여 제조한 세라믹 과립의 나노 아파타이트 상대적 함량비에 따른 세라믹 과립의 크기를 나타낸다. 도 17a와 도 17b를 참조하면, 나노 아파타이트의 상대적 함량비가 증가할수록 세라믹 과립의 크기가 커짐을 확인할 수 있다. 이는, 앞서 설명한 바와 같이 a)단계에서 포함된 나노 아파타이트의 함량비가 증가함에 따라 소결후 제조되는 세라믹 과립의 수축율이 감소하는 것과 같은 양상을 나타낸다.
도 17c는 도 17a와 도 17b의 비교를 위한 그래프이다. 도 17c를 참조하면, 200㎛ 노즐을 사용하여 제조한 세라믹 과립이 150㎛ 노즐을 사용하여 제조한 세라믹 과립보다 작은 크기를 가짐을 확인할 수 있다. 이를 통해, 노즐의 크기와 나노 아파타이트의 상대적 함량비를 증가시켜 소결된 세라믹 과립의 크기를 향상시킴을 확인하였다.
한편, 도 18a 및 도 18b는 각각 200㎛ 및 150㎛ 노즐을 사용하여 제조한 세라믹 과립의 나노 아파타이트 상대적 함량비에 따른 세라믹 과립의 조성을 나타낸다. 두 그래프 모두, 상단에 위치한 그래프가 나노 아파타이트를 높은 함량비를 포함한 샘플을 나타내며, 최하단은 Alg 샘플, 이후 Alg_HA5, Alg_HA7, Alg_HA9, 및 Alg_HA10 샘플을 나타낸다.
특히, 도 18a 및 도 18b를 참조하면, 도 18a의 200㎛ 과 도 18b의 150㎛ 노즐 모두에서 알지네이트와 나노 아파타이트의 함량비가 1:5 내지 1:10인 영역에서는 나노 아파타이트 상대적 함량비에 따른 결정상에 큰 변화가 확인되지 않았다. 즉, 노즐크기에 따른 조성변화가 확인되지 않음을 알 수 있다. 이를 통해, 해당 영역에서는 노즐의 크기와 나노 아파타이트 상대적 함량비에 따른 과립의 크기제어만 가능하며, 조성에는 큰 영향을 미치지 않음을 확인할 수 있다.
도 19a 내지 도 19d는 120㎛ 노즐을 사용하여 제조한 세라믹 과립의 나노 아파타이트 상대적 함량비에 따른 세라믹 과립의 크기 및 크기 분포도를 나타낸다. 이를 위해 200개의 세라믹 과립의 직경을 광학 프로그램을 통해 측정하였다.
도 19a 내지 도 19d를 참조하면, 나노 아파타이트의 상대적 함량비가 증가함에 따라 소결된 세라믹 과립의 크기가 증가하는 것을 확인하였다. 유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비가 1:4인 경우 세라믹 입자의 크기는 60.8±8.4㎛로 측정되었고, 유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비가 각각 1:6, 1:8 및 1:10인 경우 세라믹 입자의 크기는 각각 73.2±10.4㎛, 82.3±10.9㎛ 및 88.6±12.2㎛으로 측정되었다.
도 20a 내지 도 20d는 150㎛ 노즐을 사용하여 제조한 세라믹 과립의 나노 아파타이트 상대적 함량비에 따른 세라믹 과립의 크기 및 크기 분포도를 나타낸다. 이를 위해 200개의 세라믹 과립의 직경을 광학 프로그램을 통해 측정하였다.
도 20a 내지 도 20d를 참조하면, 앞선 도 19의 결과와 유사하게 나노 아파타이트의 상대적 함량비가 증가함에 따라 소결된 세라믹 과립의 크기가 증가하는 것을 확인하였다. 유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비가 1:4인 경우 세라믹 입자의 크기는 79.3±10.2㎛로 측정되었고, 유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비가 각각 1:6, 1:8 및 1:10인 경우 세라믹 입자의 크기는 각각 89.4±13.0㎛, 107.1±14.2㎛ 및 123.3±17.1㎛으로 측정되었다.
도 21a 내지 도 21d은 200㎛ 노즐을 사용하여 제조한 세라믹 과립의 나노 아파타이트 상대적 함량비에 따른 세라믹 과립의 크기 및 크기 분포도를 나타낸다. 이를 위해 200개의 세라믹 과립의 직경을 광학 프로그램을 통해 측정하였다.
도 21a 내지 도 21d을 참조하면, 앞선 도 19 및 도 20의 결과와 유사하게 나노 아파타이트의 상대적 함량비가 증가함에 따라 소결된 세라믹 과립의 크기가 증가하는 것을 확인하였다. 유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비가 1:4인 경우 세라믹 입자의 크기는 104.3±14.7㎛로 측정되었고, 유기 입자인 알지네이트와 무기 입자인 나노 아파타이트의 함량비가 각각 1:6, 1:8 및 1:10인 경우 세라믹 입자의 크기는 각각 118.8±16.3㎛, 146.1±22.8㎛ 및 159.1±22.7㎛으로 측정되었다.
도 22a 내지 도 22c는 앞선 도 19 내지 21의 결과를 노즐 크기 기준으로 알지네이트와 나노 아파타이트 비율별 변화에 따른 세라믹 과립의 입자크기 분포도를 나타낸 것이다.
도 22a 내지 도 22c를 참조하면, 120㎛ 노즐을 사용하여 제조한 세라믹 과립의 나노 아파타이트 상대적 함량비에 따라 60.8 내지 88.6㎛의 입도 분포를 갖고, 나노 아파타이트 상대적 함량비가 증가함에 따라 세라믹 과립의 평균 직경이 증가하는 것을 알 수 있다. 또한, 150㎛ 노즐을 사용하여 제조한 세라믹 과립의 나노 아파타이트 상대적 함량비에 따라 79.3 내지 123.3㎛의 입도 분포를 갖고, 나노 아파타이트 상대적 함량비가 증가함에 따라 세라믹 과립의 평균 직경이 증가하는 것을 알 수 있다. 또한, 200㎛ 노즐을 사용하여 제조한 세라믹 과립의 나노 아파타이트 상대적 함량비에 따라 104.0 내지 159.1㎛의 입도 분포를 갖고, 나노 아파타이트 상대적 함량비가 증가함에 따라 세라믹 과립의 평균 직경이 증가하는 것을 알 수 있다.
또한, 세라믹 과립의 제조방법에 있어서 유기물에 대한 나노 아파타이트 상대적 함량비가 1:4에서 1:10으로 증가함에 따라 표준편차가 120㎛ 노즐에서는 0.59에서 0.86으로 증가하였고, 150㎛ 노즐에서는 0.72에서 1.21으로 증가하였고, 200㎛ 노즐에서는 1.04에서 1.60으로 증가한 것을 확인하였다. 이를 통해, 세라믹 과립의 제조방법에 있어서 유기물에 대한 나노 아파타이트 상대적 함량비가 증가하면서 세라믹 과립 크기의 분포도가 증가하는 것을 알 수 있다.
도 23a 내지 도 23c는 앞선 도 19 내지 21의 결과를 알지네이트와 나노 아파타이트 비율을 기준으로, 노즐 크기의 변화에 따른 세라믹 과립의 입자크기 분포도를 나타낸 것이다.
도 23a 내지 도 23c을 참조하면, 알지네이트와 나노 아파타이트 비율을 1:4의 조건으로 제조된 세라믹 과립은 노즐의 크기가 120㎛에서 200㎛로 증가함에 따라 세라믹 과립의 평균 직경이 60.8 ㎛에서 104.0 ㎛로 증가하는 것을 알 수 있다. 또한, 알지네이트와 나노 아파타이트 비율을 1:6의 조건으로 제조된 세라믹 과립은 노즐의 크기가 120㎛에서 200㎛로 증가함에 따라 세라믹 과립의 평균 직경이 73.2 ㎛에서 118.8 ㎛로 증가하는 것을 확인하였고, 알지네이트와 나노 아파타이트 비율을 1:8의 조건으로 제조된 세라믹 과립은 노즐의 크기가 120㎛에서 200㎛로 증가함에 따라 세라믹 과립의 평균 직경이 82.3 ㎛에서 146.1 ㎛로 증가하는 것을 확인하였고, 알지네이트와 나노 아파타이트 비율을 1:10의 조건으로 제조된 세라믹 과립은 노즐의 크기가 120㎛에서 200㎛로 증가함에 따라 세라믹 과립의 평균 직경이 88.6 ㎛에서 159.1 ㎛로 증가하는 것을 확인하였다.
또한, 세라믹 과립의 제조방법에 있어서 노즐의 크기가 120㎛에서 200㎛으로 증가함에 따라 알지네이트와 나노 아파타이트 비율을 1:4의 조건으로 제조된 세라믹 과립에서는 평균직경에 대한 표준편차가 0.59 에서 1.04로 증가하였고, 세라믹 과립의 제조방법에 있어서 노즐의 크기가 120㎛에서 200㎛으로 증가함에 따라 알지네이트와 나노 아파타이트 비율이 각각 1:6, 1:8 및 1:10일 때 표준편차 값은 각각 0.74에서 1.04, 0.77 에서 1.61 및 0.86 에서 1.60으로 증가하였다. 이를 통해, 노즐의 크기가 증가함에 따라 이에 의해 준비된 세라믹 과립의 직경 및 표준편차가 증가하는 것을 확인하였다.
유기물에 대한 나노 아파타이트 상대적 함량비가 1:4에서 1:10으로 증가함에 따라 표준편차가 120㎛ 노즐에서는 0.59에서 0.86으로 증가하였고, 150㎛ 노즐에서는 0.72에서 1.21으로 증가하였고, 200㎛ 노즐에서는 1.04에서 1.60으로 증가한 것을 확인하였다. 이를 통해, 세라믹 과립의 제조방법에 있어서 유기물에 대한 나노 아파타이트 상대적 함량비가 증가하면서 세라믹 과립 크기의 분포도가 증가하는 것을 알 수 있다.
< 실험예11 > 혼합 방법에 따른 균일 분산도 확인
유기 부재와 무기 부재의 혼합에 있어 혼합 방법에 따른 유무기 복합 용액의 균일 분산 정도를 확인하기 위하여 이하와 같은 실험을 수행하였다. 실시 예 2에서 제조된 유무기 복합액에 대하여 자기 교반기를 이용하여 6분 혼합, 21분 혼합을 수행하였고, 다른 한편으로는 제조된 유무기 복합 용액에 대하여 6분간 공자전 믹서로 혼합하고, 이어서 15분간 초음파 믹서로 교반을 수행하였고, 그 결과를 도 24a 및 도 24b에 나타내었다.
도 24a 및 도 24b를 참조하면, 일반 자기 교반기로 교반을 수행하는 경우 유기 부재와 무기 부재가 충분히 혼합되지 않고, 무기 부재는 서로 심하게 응집되어 있는 것을 확인할 수 있다. 또한, 일반 자기 교반기로 교반하는 경우에는 시간이 지날수록 응집 현상이 더욱 심해지고 있는 것을 확인할 수 있다. 반면, 공자전 믹서와 초음파 믹서를 사용하여 혼합하는 경우에는 유기 부재와 무기 부재가 균일하게 혼합되어 무기 부재가 유기 부재 상에 균일하게 분산되는 것을 확인할 수 있다.
이상에서 대표적인 실시 예를 통하여 본 발명을 상세하게 설명하였으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 상술한 실시 예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리 범위는 설명한 실시 예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태에 의하여 정해져야 한다.
본 발명의 실시 예에 의해 제조된 구형 세라믹 과립은 골충진재 용도로 사용될 수 있다. 이처럼, 세라믹 과립은 제약, 화장품 식품분야 뿐만 아니라 해면골(spongy bone) 기공에 담지되어 골형성 촉진 등을 유도하는 골충진재, 미용 및 성형용 필러소재 및 미세플라스틱 소재가 사용되고 있는 분야에서 대체되어 사용될 수 있다.

Claims (12)

  1. a) 유기 입자 1에 대한 무기 입자의 질량비가 1 내지 10인 유무기 복합액을 준비하는 단계;
    b) 정전하 방식의 미세과립코팅기에 상기 a)단계에서 준비한 유무기 복합액을 주입하여 구형 과립을 제조하는 단계;
    c) 상기 b)단계에서 제조된 구형 과립의 중합반응을 유도하는 단계;
    d) 상기 c)단계에서 중합된 구형 과립을 세척 및 건조하는 단계; 및
    e) 상기 d)단계에서 세척 및 건조된 구형 과립을 소결하여 세라믹 비즈를 형성하는 단계를 포함하는 세라믹 과립 제조방법.
  2. 제 1 항에 있어서,
    상기 a)단계는,
    유기 입자가 포함된 용액에 무기 입자를 혼합하여 상기 유무기 복합액을 제조하는 세라믹 과립 제조방법.
  3. 제 1 항에 있어서,
    상기 a)단계에서 준비되는 유무기 복합액의 유기 입자는,
    알지네이트, 콜라겐, 젤라틴, 키토산, 셀룰로스, 자연 및 생체 고분자 중 적어도 하나의 유기물을 포함하는 세라믹 과립 제조방법.
  4. 제 1 항에 있어서,
    상기 a)단계에서 준비되는 유무기 복합액의 무기 입자는,
    하이드록시아파타이트(HA: hydroxy apatite), 제이인산칼슘(DCP: dicalcium phosphate), 제삼인산칼슘(TCP: tricalcium phosphate), 제사인산칼슘(TTCP: tetracalcium phosphate) 및 제8인산칼슘(OCP: octacalcium phosphate) 중 적어도 하나를 포함하는 세라믹 과립 제조방법.
  5. 제 1 항에 있어서,
    상기 b)단계는,
    상기 미세과립코팅기의 분사노즐 크기, 공압 조건 및 진동수의 변화에 따라 과립의 평균 직경을 제어하는 세라믹 과립 제조방법.
  6. 제 1 항에 있어서,
    상기 b)단계는,
    상기 a)단계에서 준비한 유무기 복합액을 주입하는 단계; 및
    상기 유무기 복합액을 노즐을 통해 전기장 내로 분사하여 상기 구형 과립을 형성하는 단계;를 포함하는 세라믹 과립 제조방법.
  7. 제 1 항에 있어서,
    상기 c)단계의 중합반응 유도 방법은,
    이온가교, 화학적가교, 광가교 중 어느 하나의 방법에 의해 수행되는 세라믹 과립 제조방법.
  8. 제 7 항에 있어서,
    상기 이온가교는,
    염화칼슘(CaCl2), 황산칼슘(CaSO4), 탄산칼슘(CaCO3) 중 적어도 하나의 중합유도 물질을 사용하는 세라믹 과립 제조방법.
  9. 제 3 항에 있어서,
    상기 e)단계는,
    1000 내지 1300 ℃ 의 온도범위에서 소결하여 상기 유기물을 제거하는 세라믹 과립 제조방법.
  10. 제 1 항에 있어서,
    상기 a)단계는,
    유기물에 대한 무기물의 함량을 설정하는 단계를 포함하고, 상기 e)단계에서 제조된 세라믹 비즈의 크기 및 기공률은 상기 a)단계에서 설정된 상기 유기 입자에 대한 무기 입자의 함량에 의해 제어되는 세라믹 과립 제조방법.
  11. 제 1 항에 있어서,
    상기 형성된 세라믹 비즈는 산화칼슘(CaO)을 포함하는 과립화된 입자이고, 상기 산화칼슘의 함량은 1 내지 10 질량퍼센트인 세라믹 과립 제조방법.
  12. 제 1 항에 있어서,
    상기 a)단계에서, 유무기 복합액을 준비한 후 이를 초음파 믹서로 교반하고, 공자전 믹서로 무기 부재를 분산시키는 단계를 더 포함하는 것을 특징으로 하는 세라믹 과립 제조방법.
PCT/KR2018/004362 2017-04-14 2018-04-13 구형 세라믹 과립의 제조방법 WO2018190687A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/598,299 US11801222B2 (en) 2017-04-14 2019-10-10 Manufacturing method for granule

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0048463 2017-04-14
KR20170048463 2017-04-14
KR10-2017-0099806 2017-08-07
KR1020170099806A KR101892731B1 (ko) 2017-08-07 2017-08-07 구형 세라믹 과립 및 이의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004363 Continuation-In-Part WO2018190688A1 (ko) 2017-04-14 2018-04-13 유무기 복합 과립 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2018190687A1 true WO2018190687A1 (ko) 2018-10-18

Family

ID=63793541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004362 WO2018190687A1 (ko) 2017-04-14 2018-04-13 구형 세라믹 과립의 제조방법

Country Status (2)

Country Link
US (1) US11801222B2 (ko)
WO (1) WO2018190687A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753529C1 (ru) * 2021-01-11 2021-08-17 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ изготовления гранул из биоактивного материала на основе гидроксиапатита или фторапатита

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639467A (en) * 1992-05-29 1997-06-17 The Regents Of The University Of California Electrostatic process for manufacturing coated transplants and product
KR20100089632A (ko) * 2009-02-04 2010-08-12 한양대학교 산학협력단 마이크로스피어와 하이드로겔을 포함하는 서방성 약물전달 복합체
KR20100138128A (ko) * 2009-06-24 2010-12-31 단국대학교 산학협력단 다공성 마이크로스피어 및 이의 제조방법
KR20120116215A (ko) * 2011-04-12 2012-10-22 주식회사 바이오알파 성장인자 단백질을 담지한 마이크로스피어-하이드로겔 복합체의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415493A (en) * 1967-08-21 1968-12-10 Chemineer Mixing device
CA1018514A (en) * 1974-10-25 1977-10-04 Basil A. Burgess Interdigitating helical blades and baffle fingers in a rotating, shear stirrer
US6949251B2 (en) 2001-03-02 2005-09-27 Stryker Corporation Porous β-tricalcium phosphate granules for regeneration of bone tissue
WO2005075090A1 (en) * 2004-02-09 2005-08-18 Matsushita Electric Works, Ltd. Electrostatic spraying device
KR101115964B1 (ko) 2008-08-29 2012-02-21 한스바이오메드 주식회사 서방형 골다공증치료제를 담지한 골충진재
KR20120021899A (ko) 2010-08-20 2012-03-09 한국화학연구원 다공성 유무기 혼성체, 그의 제조 방법, 그를 포함하는 흡착제 및 그의 응용
KR101393462B1 (ko) 2012-07-09 2014-05-12 대구가톨릭대학교산학협력단 인산칼슘계 다공성 골 대체재의 제조 방법 및 이에 의하여 제조된 인산칼슘계 다공성 골 대체재
KR101896594B1 (ko) 2015-04-13 2018-09-11 서울대학교 산학협력단 이중가교된 생분해성 고분자 하이드로겔-인산칼슘 복합체 및 이의 제조방법
KR101756972B1 (ko) 2015-04-30 2017-07-11 한양대학교 에리카산학협력단 전기분무를 이용하여 제조한 피록시캄 나노입자를 함유하는 경구용 고형제제 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639467A (en) * 1992-05-29 1997-06-17 The Regents Of The University Of California Electrostatic process for manufacturing coated transplants and product
KR20100089632A (ko) * 2009-02-04 2010-08-12 한양대학교 산학협력단 마이크로스피어와 하이드로겔을 포함하는 서방성 약물전달 복합체
KR20100138128A (ko) * 2009-06-24 2010-12-31 단국대학교 산학협력단 다공성 마이크로스피어 및 이의 제조방법
KR20120116215A (ko) * 2011-04-12 2012-10-22 주식회사 바이오알파 성장인자 단백질을 담지한 마이크로스피어-하이드로겔 복합체의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEMETHOVA ET AL.: "Vibration technology for microencapsulation: the restrictive role of viscosity", BIOPROCESSING & BIOTECHNIQUES, vol. 5, no. 1, 2014, pages 1 - 3, XP055559510 *

Also Published As

Publication number Publication date
US11801222B2 (en) 2023-10-31
US20200188302A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2021132858A1 (ko) 필러용 생분해성 고분자 미세입자의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
WO2011027960A2 (ko) 화장품용 색조캡슐 조성물, 이의 제조방법 및 이를 이용한 화장품 제제
WO2013180458A1 (ko) 약물전달용 가교물 하이드로 젤 및 그 하이드로 젤의 제조방법
WO2011143953A1 (zh) 一种微球制造方法及制造设备
WO2018190687A1 (ko) 구형 세라믹 과립의 제조방법
WO2014196789A1 (en) Water-dispersed hydrophobic powder composition and method for preparing pulp paper and glass fiber using the same
WO2016043547A1 (ko) 조직 수복용 조성물 및 이의 제조방법
WO2017131271A1 (ko) 홍삼농축액 알갱이와, 홍삼농축액분말과 유동층코팅기를 이용한 홍삼농축액 알갱이의 제조방법
WO2023027401A1 (ko) 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법
WO2017014431A1 (ko) 생분해성 고분자를 포함하는 마이크로파티클의 제조방법
KR101892731B1 (ko) 구형 세라믹 과립 및 이의 제조방법
WO2022050783A1 (ko) 약물의 지속 방출을 위한 서방형 마이크로입자
WO2021194202A1 (ko) 고흡수성 수지 필름 및 이의 제조 방법
WO2023008957A1 (ko) 생분해성 코팅 조성물, 이의 제조 방법 및 이를 이용한 생분해성 물품
WO2021071246A1 (ko) 고흡수성 수지의 제조 방법
WO2022124508A1 (ko) 조직 수복용 주사제 조성물 및 이의 제조 방법
WO2022146114A1 (ko) 미네랄 소재를 이용한 유효성분 안정화 방법
WO2018190688A1 (ko) 유무기 복합 과립 및 이의 제조방법
WO2022019461A1 (ko) 식용 가능한 시트형 물품
WO2023287262A1 (ko) 고흡수성 수지의 제조 방법
WO2015084060A1 (ko) 고흡수성 수지 및 이의 제조방법
WO2023244012A1 (ko) 복합체, 이의 제조방법 및 이를 이용한 성형용 필러 조성물
WO2018047994A1 (ko) 고유동성 용사 분말 및 이의 제조 방법
WO2024063243A1 (ko) 초음파 분무를 통한 다공성 고분자 구조체 및 이의 제조방법
WO2023244011A1 (ko) 복합체, 이의 제조방법 및 이를 이용한 성형용 필러 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784637

Country of ref document: EP

Kind code of ref document: A1