WO2018190283A1 - 水冷式ランス - Google Patents

水冷式ランス Download PDF

Info

Publication number
WO2018190283A1
WO2018190283A1 PCT/JP2018/014833 JP2018014833W WO2018190283A1 WO 2018190283 A1 WO2018190283 A1 WO 2018190283A1 JP 2018014833 W JP2018014833 W JP 2018014833W WO 2018190283 A1 WO2018190283 A1 WO 2018190283A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer cylinder
lance
temperature
water
metal
Prior art date
Application number
PCT/JP2018/014833
Other languages
English (en)
French (fr)
Inventor
義博 山田
鉄平 田村
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201880004201.5A priority Critical patent/CN110177888A/zh
Priority to KR1020197012052A priority patent/KR20190062475A/ko
Priority to JP2019512495A priority patent/JP6733812B2/ja
Publication of WO2018190283A1 publication Critical patent/WO2018190283A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4646Cooling arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C2005/4626Means for cooling, e.g. by gases, fluids or liquids

Definitions

  • the present invention relates to a water-cooled lance for supplying a gas into a vessel such as a converter.
  • One of the roles of the converter is to decarburize to remove carbon in the hot metal.
  • Decarburization is performed by putting a lance inside the converter vessel and supplying oxygen from the lance to the inside of the converter vessel.
  • oxygen is sprayed from the top blowing lance to the pretreated hot metal accommodated in the converter vessel at a high supply rate.
  • carbon and oxygen in hot metal are directly reacted to generate carbon monoxide, and carbon in hot metal is removed. Since the inside of such a container such as a converter is hot, the lance is provided with a cooling mechanism to prevent damage due to heat.
  • Patent Document 1 discloses a copper jacket used in a copper steel apparatus such as an oxygen blowing lance of a converter for improving heat resistance, impact resistance, and wear resistance.
  • the copper jacket is formed by forming a nickel or nickel alloy coating layer on the exposed surface of the copper plate.
  • the splash generated in the vessel increases.
  • the metal sticks to the inner wall of the container.
  • the base metal also adheres to the lance shaft that is the lance main body portion of the upper blowing lance inserted into the container. If the bullion adheres and accumulates on the lance shaft, when the upper lance is removed from the container after blowing, the accumulated bullion is caught in the opening at the top of the container, and the upper lance cannot be removed from the container. In order to prevent the accumulation of bullion on the lance shaft, it is necessary to care for the lance, which increases the man-hours for bullion care.
  • an object of the present invention is a new and improved overload capable of suppressing the accumulation of metal on the outer surface of the lance body. To provide a blowing lance.
  • a water-cooled lance comprising a lance main body portion and a nozzle portion provided at the tip of the lance main body portion, the outermost portion of the lance main body portion.
  • the outer cylinder to be provided is provided with a water-cooled lance formed from a material having a linear expansion coefficient larger than that of the bare metal.
  • the outer cylinder is formed of a material having a linear expansion coefficient greater than 12 ⁇ 10 ⁇ 6 / K.
  • the outer cylinder is formed from a material having a thermal conductivity smaller than that of the bare metal.
  • the outer cylinder is formed of a material having a thermal conductivity of less than 40 W / m ⁇ K.
  • the outer cylinder is preferably formed from stainless steel containing an austenite phase.
  • At least the outer cylinder is formed of a material having a high temperature strength at 200 ° C. of 200 MPa or more.
  • the outer surface of the outer cylinder may be subjected to calorizing treatment.
  • the flow rate of the cooling medium flowing in the water-cooled lance may be set so that the outer surface temperature of the outer cylinder is 500 ° C. or less which is the ⁇ phase embrittlement temperature.
  • FIG. 1 is a schematic explanatory diagram showing a schematic configuration of an upper blowing converter facility using an upper blowing lance according to the present embodiment.
  • the converter removes impurities contained in the hot metal.
  • the converter equipment includes a converter main body 10 and an upper blowing lance 100.
  • the outer shell is comprised with the iron shell, and the refractory material is constructed in the inside.
  • the top blowing lance 100 supplies oxygen into the container.
  • the upper blowing lance 100 is configured to be movable in the vertical direction.
  • An exhaust gas hood 20 is connected to the furnace port 12 of the converter main body 10. The gas released from the inside of the converter body 10 passes through the exhaust gas hood 20 and is discharged out of the container of the converter body 10.
  • the hot metal 5 accommodated in the converter main body 10 reacts with oxygen blown from the upper blowing lance 100 inserted into the converter main body 10 from the furnace port 12 and is decarburized.
  • the oxygen supply rate by the top blowing lance 100 or the stirring speed for stirring the hot metal 5 inside the converter main body 10 increases, the splash generated in the container of the converter main body 10 increases.
  • the metal 7 easily adheres to the inner wall of the converter main body 10 or the lance main body portion of the upper blowing lance 100.
  • the metal 7 deposited on the lance main body is removed from the furnace port 12 or the exhaust gas hood 20 when the upper blow lance 100 is taken out from the container of the converter main body 10 after blowing.
  • the top blowing lance 100 cannot be taken out from the container by being caught in the opening (not shown).
  • the outer cylinder forming the outer surface of the lance main body is formed from a material having a material to which the metal is difficult to adhere. Therefore, accumulation of the metal 7 on the lance body is suppressed, and a work load such as maintenance of the lance is reduced.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of the upper blowing lance 100 according to the present embodiment.
  • FIG. 3 is an explanatory view showing materials of members constituting the upper blowing lance 100 according to the present embodiment.
  • the top blowing lance 100 is a water-cooled lance, and as shown in FIG. And a nozzle portion 153.
  • the lance shaft including the first cylindrical portion 110, the second cylindrical portion 120, and the third cylindrical portion 130 of the upper blowing lance 100 is referred to as a lance main body portion 151.
  • the first cylindrical portion 110, the second cylindrical portion 120, and the third cylindrical portion 130 will be described with the central surface as the inner surface and the outer surface as the outer surface.
  • the first cylindrical portion 110 is a hollow member at the innermost part of the upper blowing lance 100.
  • the first cylindrical portion 110 communicates with the main hole 102 at the tip of the upper blowing lance 100.
  • Oxygen fed into the upper blowing lance 100 from an oxygen supply source (not shown) passes through the first cylindrical portion 110 and is supplied from the main hole 102 into the processing container.
  • the second cylindrical part 120 is a hollow member provided so as to cover the outer surface of the first cylindrical part 110.
  • a first space V 1 through which a cooling medium flows is formed by the outer surface of the first cylindrical portion 110 and the inner surface of the second cylindrical portion 120.
  • a cooling medium For example, water is used as the cooling medium.
  • the first space V 1 communicates with a second space V 2 described later in the nozzle portion 153 at the tip of the upper blowing lance 100.
  • 1st cylindrical part 110 and 2nd cylindrical part 120 comprise the inner cylinder 151a of the lance main-body part 151, as shown in FIG.
  • the third cylindrical portion 130 is a hollow member provided so as to cover the outer surface of the second cylindrical portion 120.
  • the third cylindrical portion 130 is located on the outermost part of the upper blowing lance 100. That is, as shown in FIG. 3, the third cylindrical portion 130 is an outer cylinder 151 b that covers the inner cylinder 151 a in the lance main body portion 151.
  • a second space V 2 is formed a cooling medium flows. As described above, the second space V 2 communicates with the first space V 1 in the nozzle portion 153.
  • the cooling medium flows into the first space V 1 from the upper side that is opposite to the tip where the nozzle portion 153 is provided, It flows toward the nozzle part 153. Thereafter, the cooling medium is first flowed from the space V 1 to the second space V 2 in the nozzle unit 153, flows from the front end side to the upper side.
  • the upper blowing lance 100 is cooled. This prevents the top blowing lance 100 from being melted.
  • the nozzle part 153 is provided at the tip of the lance body part 151.
  • the nozzle portion 153 has a circular shape when viewed from the axial direction.
  • the nozzle portion 153 has one or a plurality of main holes 102.
  • the main hole 102 is an opening formed in the nozzle portion 153 at the tip of the upper blowing lance 100.
  • the main holes 102 are arranged at substantially equal intervals along the circumferential direction of the nozzle portion 153 when viewed from the axial direction.
  • the main hole 102 allows the hollow portion inside the first cylindrical portion 110 to communicate with the outside world. As a result, oxygen flowing through the first cylindrical portion 110 can be discharged to the outside through the main hole 102. For example, the oxygen discharged from the main hole 102 is sprayed on the hot metal in the container.
  • the top blowing lance 100 may have a sub-hole in the side surface portion of the lance main body portion 151.
  • the first cylindrical portion 110 and the second cylindrical portion 120 constituting the inner cylinder 151a are formed using, for example, carbon steel.
  • the third cylindrical portion 130 constituting the outer cylinder 151b of the lance main body 151 is a material having a linear expansion coefficient larger than the linear expansion coefficient of the metal in order to prevent adhesion of the metal to the lance main body 151. Formed from.
  • the upper blowing lance 100 according to the present embodiment is configured such that the expansion and contraction of the outer cylinder 151b due to a temperature change causes the ingot and the outer cylinder 151b to adhere to the outer surface of the outer cylinder 151b at the time of blowing. Increase the air gap between the outer surface. By generating this air gap, the metal bar attached to the outer surface of the outer cylinder 151b is likely to fall off from the outer surface of the outer cylinder 151b.
  • the outer surface temperature of the outer cylinder 151b becomes a high temperature of 200 ° C. or higher. For this reason, in the state which the outer cylinder 151b expanded, the metal
  • the air gap generated at the end of blowing is about 300 ⁇ m.
  • the bullion was deposited without dropping off while being caught on the outer surface of the outer cylinder 151b.
  • the inventor of the present application pays attention to the size of the air gap, weakens the degree of catching between the bullion and the outer surface of the outer cylinder 151b by increasing the air gap at the end of blowing, and the bullion tends to fall off. I thought of forming.
  • the outer cylinder 151b is formed of a material having a linear expansion coefficient larger than that of the metal.
  • the expansion and contraction of the outer cylinder 151b due to temperature change can be made larger than the expansion and contraction of the metal. As a result, the air gap after completion of blowing can be increased.
  • FIG. 4 shows the linear expansion coefficients of Cu, Ni, Cr, Ag, duralumin, brass, austenitic SUS, two-phase SUS, nickel alloy, carbon steel, and ferrite SUS.
  • FIG. 4 shows the linear expansion coefficient at 300 K (normal temperature).
  • the physical property value has temperature dependency, but the temperature dependency is low with respect to the linear expansion coefficient in the operating temperature range. For this reason, in the temperature environment where the top blowing lance 100 is used, the linear expansion coefficient is considered to be constant.
  • the bare metal close to pure iron has physical properties close to those of carbon steel. Therefore, the linear expansion coefficient of carbon steel (11.8 ⁇ 10 ⁇ 6 [/ K]) is regarded as the linear expansion coefficient of the bare metal.
  • the outer cylinder 151b may be formed of a material having a linear expansion coefficient larger than 12 ⁇ 10 ⁇ 6 [/ K].
  • materials having a linear expansion coefficient larger than 12 ⁇ 10 ⁇ 6 [/ K] are Cu, Ni, Ag, duralumin, brass, austenitic SUS, two-phase SUS, and nickel alloy.
  • the outer cylinder 151b is formed from a material having a thermal conductivity smaller than that of the base metal.
  • the thermal conductivity of the outer cylinder 151b smaller than the thermal conductivity of the base metal, the heat of the outer cylinder 151b becomes difficult to be transmitted to the low temperature part, and the high temperature state of the outer cylinder 151b is maintained during blowing. Thereby, the outer cylinder 151b becomes easier to expand during blowing.
  • the outer cylinder 151b contracts from the expanded state after the end of blowing, a larger gap is formed between the outer surface of the outer cylinder 151b and the metal attached to the outer surface.
  • FIG. 5 shows the thermal conductivity of Cu, Ni, Cr, Ag, duralumin, brass, austenitic SUS, two-phase SUS, nickel alloy, carbon steel, and ferrite SUS.
  • FIG. 5 shows the thermal conductivity at 300 K (normal temperature).
  • thermal conductivity has low temperature dependence in the operating temperature range. For this reason, in the temperature environment where the top blowing lance 100 is used, it is considered that the thermal conductivity is constant.
  • the thermal conductivity the metal has a physical property value close to that of carbon steel. Therefore, the thermal conductivity of carbon steel (43 [W / m ⁇ K]) is regarded as the thermal conductivity of the metal.
  • materials having a thermal conductivity smaller than 40 [W / m * K] are austenitic SUS, two-phase SUS, nickel alloy, and ferrite SUS.
  • austenitic SUS for example, austenitic SUS, two-phase SUS, nickel alloy, or the like for the outer cylinder 151 b of the top blowing lance 100 according to the present embodiment.
  • austenitic SUS a stainless steel pipe made of stainless steel (austenitic SUS) containing an austenitic phase whose linear expansion coefficient is about 1.4 times that of carbon steel
  • an air gap of about 600 ⁇ m is formed at the end of blowing. It will arise and it will be in the state where a bullion tends to drop out from the outer surface of outer cylinder 151b.
  • austenitic SUS it is particularly preferable to use SUS310 for the outer cylinder 151b. Since SUS310 has good carburization resistance in a CO atmosphere, the durability of the outer cylinder 151b can be increased.
  • the outer cylinder 151b of the lance main body 151 has a high temperature strength at the temperature of the outer cylinder 151b when used in the container of the converter main body 10. It is preferably formed from a material that is 200 MPa or more. If the high-temperature strength is lower than 200 MPa, the upper blowing lance 100 is deformed during use, and the first space V 1 or the second space V 2 through which the cooling medium flows becomes narrow and cooling is not sufficiently performed. This is because it occurs.
  • the temperature of the outer cylinder 151b differs between the inner surface in contact with the cooling medium and the outer surface exposed to the space in the container (see FIG. 7). Here, the temperature of the outer cylinder 151b is an average of the temperature of the inner surface and the temperature of the outer surface.
  • the temperature in the vessel of the converter main body 10 becomes a high temperature of 1000 ° C. or higher.
  • the temperature of the second cylindrical portion 120 cooled by the cooling medium in the top blowing lance 100 is 100 ° C. when water at room temperature (here, 27 ° C. (300 K)) is used as the cooling medium.
  • the third cylindrical portion 130 which is the outer cylinder 151b is also cooled by the cooling medium, but is exposed to the inside of the vessel of the converter main body 10, and therefore the third cylindrical portion 130 is the second cylindrical portion 120. It becomes hotter than.
  • the temperature of the outer cylinder is about 200 ° C.
  • Carbon steel has a high temperature strength of 245 MPa at 200 ° C. and a high temperature strength of 196 MPa at 400 ° C.
  • at least the outer cylinder 151b of the lance main body portion 151 has a high temperature strength at 200 ° C. Is preferably formed from a material having a thickness of 200 MPa or more.
  • FIG. 6 shows the high-temperature strength of Cu, austenitic SUS, carbon steel, and ferrite SUS.
  • FIG. 6 shows the high-temperature strength at 200 ° C. and 400 ° C.
  • materials having a high-temperature strength at 200 ° C. of 200 MPa or more are austenitic SUS, carbon steel, and ferrite SUS.
  • austenitic SUS or ferrite SUS whose high-temperature strength does not become less than 200 MPa even at 400 ° C.
  • the outer surface of the outer cylinder 151b may be calorized.
  • the calorizing treatment is a treatment for diffusing and permeating aluminum on the material surface, and is performed for the purpose of heat resistance, oxidation resistance, wear resistance, and the like.
  • Carburizing treatment is performed on the outer surface of the outer cylinder 151b, so that the carburization resistance of the outer cylinder 151b can be further improved.
  • the heat resistance of the outer cylinder 151b is improved and the thermal conductivity is lowered. Thereby, the outer cylinder 151b becomes difficult to expand. As a result, it is possible to generate an air gap between the bare metal attached to the outer surface of the outer cylinder and the outer surface of the outer cylinder, and the bare metal can be easily dropped from the outer surface of the outer cylinder 151b. .
  • the flow velocity of the cooling medium flowing through the first space V 1 and the second space V 2 is set so that the outer surface temperature of the outer cylinder 151 b of the upper blowing lance 100 is 500 ° C. or less which is the ⁇ phase embrittlement temperature. It may be set.
  • the outer surface temperature of the outer cylinder 151b exceeds the ⁇ phase embrittlement temperature, carburization occurs on the outer surface of the outer cylinder 151b. For this reason, the carburization resistance of the outer cylinder 151b can be improved by setting the outer surface temperature of the outer cylinder 151b to 500 ° C. or less which is the ⁇ phase embrittlement temperature.
  • the upper blowing lance 100 is formed of a material in which the outer cylinder 151b has a linear expansion coefficient larger than that of the bare metal.
  • the air gap formed between the bare metal adhering to the outer surface of the outer cylinder 151b at the end of blowing and the outer surface can be increased.
  • the bullion attached to the lance main body 151 is in a state where it is easy to drop off, and the bullion can be prevented from attaching to the outer surface of the outer cylinder 151b.
  • the upper blow lance 100 is a sub-hole lance having a sub-hole
  • the bullion will fall into the container on every charge. Therefore, the subhole does not continue to be in a state of being blocked by the metal. As a result, no drift occurs in the jet of oxygen discharged from the sub-hole, and the lance can be prevented from being melted. Therefore, the life of the lance itself can be extended.
  • tip of the lance main-body part 151 with copper with high heat conductivity.
  • the nozzle portion 153 does not melt even in a high temperature environment, and the durability of the upper blowing lance 100 can be improved. Since such a nozzle portion 153 is maintained in a cooled state, the metal is difficult to adhere even during blowing.
  • FIG. 7 shows the outer surface temperature Ts and the inner surface temperature Tw of the outer cylinder during blowing for each material.
  • FIG. 8 shows the size of the air gap formed between the bare metal attached to the outer surface of the outer cylinder during blowing and the outer surface of the outer cylinder at the end of blowing for each material. .
  • the linear expansion coefficient and thermal conductivity of each material are shown in Table 1 below.
  • austenitic SUS Cu, carbon steel, and austenitic SUS are the only austenitic SUS materials whose linear expansion coefficient is larger than 12 ⁇ 10 ⁇ 6 [/ K] and whose thermal conductivity is smaller than 40 [W / m ⁇ K]. It is.
  • the temperature inside the converter vessel during blowing was 1600 ° C.
  • the outer surface temperature of the outer cylinder when it was in a steady state after a predetermined time after blowing was 25 ° C.
  • the cooling medium flowing in the upper blowing lance was water, and the flow rate of the cooling medium was 5 m / s.
  • FIG. 7 shows a simulation result regarding the outer surface temperature Ts and the inner surface temperature Tw of the outer cylinder.
  • the temperature difference between the outer surface temperature Ts and the inner surface temperature Tw is the largest when the austenitic SUS is used as the material forming the outer cylinder among Cu, carbon steel, and austenitic SUS. I understood it.
  • FIG. 8 shows a simulation result regarding the air gap.
  • the air gap was larger when Cu or austenitic SUS was used with respect to the air gap (about 300 ⁇ m) of the carbon steel. From this, it can be said that by using Cu or austenitic SUS as a material for forming the outer cylinder, it is possible to drop the metal attached to the outer cylinder of the top blowing lance.
  • austenitic SUS showed the highest air gap, it is easier to drop off the bullion attached to the outer cylinder of the upper lance by using austenitic SUS as the material forming the outer cylinder. It can be said.
  • the air gap becomes larger due to the difference in linear expansion coefficient between the base metal and the material forming the outer cylinder. Therefore, by selecting a material having a linear expansion coefficient larger than that of the bare metal as a material for forming the outer cylinder, a larger air gap can be generated, and the bare metal is removed from the outer surface of the outer cylinder. It can be easily removed.
  • the linear expansion coefficient of the bullion can be regarded as close to about 12 ⁇ 10 ⁇ 6 [/ K] of carbon steel. Accordingly, the material forming the outer cylinder desirably has a linear expansion coefficient larger than 12 ⁇ 10 ⁇ 6 [/ K].
  • a material having a low thermal conductivity is unlikely to change in temperature when in contact with a material having a temperature different from that of the material. Therefore, when a material with low thermal conductivity is used for the outer cylinder, the outer cylinder maintains a high temperature state during blowing, and therefore, expansion is greater than when a material with high thermal conductivity is used.
  • the outer cylinder is contracted from the expanded state after the end of blowing, a larger gap is formed between the outer surface of the outer cylinder and the metal attached to the outer surface.
  • the thermal conductivity of the metal can be considered to be close to about 40 [W / m ⁇ K] of carbon steel. Therefore, it is desirable that the material forming the outer cylinder has a thermal conductivity smaller than 40 [W / m ⁇ K].
  • the outer cylinder of the lance body can be made of a material having a linear expansion coefficient larger than 12 ⁇ 10 ⁇ 6 [/ K], so that the bullion attached to the outer cylinder of the top blowing lance can be removed. It was shown that it can be done.
  • Ni, Ag, duralumin, brass, two-phase SUS, and nickel alloy also have a linear expansion coefficient larger than 12 ⁇ 10 ⁇ 6 [/ K]. Therefore, even when an outer cylinder is formed using these materials, it is considered that the same effect as when Cu or austenitic SUS is used is produced.
  • the outer cylinder of the lance body is formed of a material having a linear expansion coefficient larger than 12 ⁇ 10 ⁇ 6 [/ K] and a thermal conductivity smaller than 40 [W / m ⁇ K].
  • the air gap between the bare metal attached to the outer surface of the outer cylinder and the outer surface of the outer cylinder can be made larger, and the bare metal can be removed more easily from the outer surface of the outer cylinder. It was shown that can be made. As shown in FIGS.
  • the two-phase SUS and nickel alloy also have a linear expansion coefficient larger than 12 ⁇ 10 ⁇ 6 [/ K] and a thermal conductivity of 40 [W / m ⁇ K. ] Smaller than Therefore, even when an outer cylinder is formed using these materials, it is considered that the same effect as that obtained when austenite SUS is used is produced.
  • the outer surface temperature Ts and the inner surface temperature Tw of the outer cylinder when the flow velocity of the cooling medium flowing through the upper blowing lance is changed are simulated. Asked. The simulation result is shown in FIG. As shown in FIG. 9, when the flow rate of the cooling medium is increased to 5 m / s, 10 m / s, and 15 m / s, the outer surface temperature Ts of the outer cylinder tends to gradually decrease while maintaining 500 ° C. or less. I understood it. Therefore, it was found that if the flow rate of the cooling medium is 5 m / s, the outer surface temperature of the outer cylinder can be 500 ° C. or less, and the outer carburization resistance of the outer cylinder can be maintained high.
  • the top blowing lance of the converter facility has been described, but the present invention is not limited to such an example.
  • the water-cooled lance of the present invention can be applied to devices other than converter facilities.
  • the water-cooled lance of the present invention may be used in smelting reduction treatment in a melting furnace, hot metal pretreatment in a torpedo car, secondary refining using a vacuum furnace, and the like.
  • the top blowing lance which blows oxygen with respect to molten iron from upper direction was demonstrated as an example in the top blowing converter equipment, this invention is not limited to this example.
  • the present technology can be applied to an immersion lance used by being immersed in hot metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Nozzles (AREA)

Abstract

ランス本体部と、ランス本体部の先端に設けられたノズル部とからなる水冷式ランスであって、ランス本体部の最外部に設けられる外筒(151b)は、地金の線膨張係数より大きい線膨張係数である材料から形成される。これにより、ランス本体部の外表面への地金の堆積を抑制する。

Description

水冷式ランス
 本発明は、転炉等の容器内部にガスを供給する水冷式ランスに関する。
 転炉の役割の1つとして、溶銑中にある炭素を除去する脱炭がある。脱炭は、転炉の容器内部にランスを入れ、当該ランスから転炉の容器内部への酸素を供給することにより行われる。例えば上吹き転炉では、転炉の容器内に収容された予備処理された溶銑に対して、上吹きランスから高い供給速度で純酸素を吹き付ける。これにより、溶銑中の炭素と酸素とを直接反応させて一酸化炭素を生成させ、溶銑中にある炭素を除去する。このような転炉等の容器内部は高温であるため、ランスは、熱による損傷を防止するため冷却機構を備えている。例えば特許文献1には、耐熱性、耐衝撃性、耐摩耗性の向上のため、転炉の酸素吹込用ランス等の銅鋼装置に用いられる銅製ジャケットが開示されている。銅製ジャケットは、銅板の露出面上にニッケル又はニッケル合金被覆層を形成することにより構成されている。
特開昭58-9906号公報
 ここで、上吹きランスによる酸素の供給速度あるいは転炉等の容器内で溶銑を撹拌する攪拌速度が高まるにつれて、容器内で発生するスプラッシュが増大する。その結果、容器内壁に地金が付着する。また、容器内に挿入されている上吹きランスにも、ランス本体部であるランス軸に地金が付着する。ランス軸に地金が付着し堆積すると、吹錬後に上吹きランスを容器から取り出す際に、堆積した地金が容器上部の開口部に引っ掛かり、上吹きランスを容器から取り出せなくなる。ランス軸への地金の堆積を防止するためにはランスの手入れが必要であり、地金手入れの作業工数が増加する。
 さらに、副孔ランスを用いる場合、副孔がランスに付着した地金により塞がれると、副孔から噴射される酸素の噴流が偏流する。この場合、ランスに副孔を設けることの効果が得られないだけでなく、ランス自体が溶損し、寿命が低下する恐れがある。また、ランス軸に付着する地金が多くなると、スクラップとして回収はされるものの鉄の歩留まりが低下する。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、ランス本体部の外表面に地金が堆積することを抑制可能な、新規かつ改良された上吹きランスを提供することにある。
 上記課題を解決するために、本発明のある観点によれば、ランス本体部と、ランス本体部の先端に設けられたノズル部とからなる水冷式ランスであって、ランス本体部の最外部に設けられる外筒は、地金の線膨張係数より大きい線膨張係数である材料から形成される、水冷式ランスが提供される。
 外筒は、12×10-6/Kより大きい線膨張係数を有する材料から形成される。
 また、外筒は、地金の熱伝導率より小さい熱伝導率を有する材料から形成される。例えば、外筒は、40W/m・Kより小さい熱伝導率を有する材料から形成される。
 外筒は、オーステナイト相を含むステンレス鋼から形成するのが好ましい。
 また、少なくとも外筒は、200℃における高温強度が200MPa以上である材料から形成されることが好ましい。
 また、外筒の外表面は、カロライジング処理が施されていてもよい。
 さらに、水冷式ランス内を流れる冷却媒体の流速は、外筒の外表面温度がσ相脆化温度である500℃以下となるように設定してもよい。
 以上説明したように本発明によれば、ランス本体部の外表面に地金が堆積することを抑制できる。
本発明の一実施形態に係る上吹きランスを用いる上吹き転炉設備の概略構成を示す概略説明図である。 同実施形態に係る上吹きランスの概略構成を示す説明図である。 同実施形態に上吹きランスの構成する部材の材質を示す説明図である。 各種材料の線膨張係数を示すグラフである。 各種材料の熱伝導率を示すグラフである。 各種材料の高温強度を示すグラフである。 実施例として、各材料における外筒の外表面温度と内表面温度とのシミュレーション結果を示すグラフである。 実施例として、各材料におけるエアギャップの大きさのシミュレーション結果を示すグラフである。 上吹きランスを流れる冷却媒体の流速を変化させたときの、オーステナイト系SUSからなる外筒の外表面温度及び内表面温度のシミュレーション結果を示すグラフである。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 [1.上吹き転炉設備の概要]
 まず、図1を参照して、本発明の一実施形態に係る上吹きランスを用いる上吹き転炉設備の概略構成について説明する。図1は、本実施形態に係る上吹きランスを用いる上吹き転炉設備の概略構成を示す概略説明図である。
 製鋼工程において、転炉により溶銑中に含まれる不純物を取り除く処理が行われる。転炉設備は、図1に示すように、転炉本体10と、上吹きランス100とを備える。転炉本体10は、外殻が鉄皮で構成され、その内部に耐火物が施工されている。上吹きランス100は、容器内に酸素を供給する。上吹きランス100は、上下方向に移動可能に構成されている。容器内に酸素を供給する際には、転炉本体10の上部の炉口12からその内部に挿入される。容器内に酸素を供給しない間は、上吹きランス100は、炉口12から転炉本体10の容器外へ移動される。転炉本体10の炉口12には、排ガスフード20が接続されている。転炉本体10の内部から放出されるガスは、排ガスフード20を通り、転炉本体10の容器外へ排出される。
 転炉本体10の内部に収容された溶銑5は、炉口12から転炉本体10の内部へ挿入された上吹きランス100から吹き込まれる酸素と反応し、脱炭される。ここで、上吹きランス100による酸素供給速度あるいは転炉本体10の内部で溶銑5を撹拌する攪拌速度が高まるにつれて、転炉本体10の容器内で発生するスプラッシュが増大する。その結果、転炉本体10の内壁あるいは上吹きランス100のランス本体部に対して地金7が付着しやすくなる。ランス本体部に地金7が付着し堆積すると、吹錬後に上吹きランス100を転炉本体10の容器内から取り出す際に、ランス本体部に堆積した地金7が炉口12あるいは排ガスフード20の開口部(図示せず。)に引っ掛かり、上吹きランス100を容器内から取り出せなくなる。
 そこで、本実施形態に係る上吹きランス100は、ランス本体部の外表面を形成する外筒を、地金が付着しにくい材質を有する材料から形成する。これにより、ランス本体部への地金7の堆積を抑制し、ランスの手入れ等の作業負荷を軽減する。
 [2.上吹きランス]
 本実施形態に係る上吹きランス100の構成を、図2及び図3に基づきより詳細に説明する。図2は、本実施形態に係る上吹きランス100の概略構成を示す説明図である。図3は本実施形態に係る上吹きランス100の構成する部材の材質を示す説明図である。
 [2-1.構成]
 本実施形態に係る上吹きランス100は、水冷式ランスであり、図2に示すように、同軸上に配置された第1の円筒部110、第2の円筒部120、第3の円筒部130と、ノズル部153とから構成される。以下では、上吹きランス100の第1の円筒部110、第2の円筒部120、及び第3の円筒部130からなるランス軸を、ランス本体部151という。また、第1の円筒部110、第2の円筒部120、及び第3の円筒部130について、中心側の面を内表面とし、外部側の面を外表面として説明する。
 第1の円筒部110は、上吹きランス100の最内部にある中空部材である。第1の円筒部110は、上吹きランス100の先端部の主孔102と連通している。酸素供給源(図示せず。)から上吹きランス100に送入された酸素は、第1の円筒部110を通り、主孔102から処理容器内に供給される。
 第2の円筒部120は、第1の円筒部110の外表面を覆うように設けられた中空部材である。第1の円筒部110の外表面と第2の円筒部120の内表面とによって、冷却媒体が流れる第1の空間Vが形成される。冷却媒体としては、例えば水が用いられる。第1の空間Vは、上吹きランス100の先端のノズル部153において、後述する第2の空間Vと連通している。
 第1の円筒部110及び第2の円筒部120は、図3に示すように、ランス本体部151の内筒151aを構成する。
 第3の円筒部130は、第2の円筒部120の外表面を覆うように設けられた中空部材である。第3の円筒部130は、上吹きランス100の最外部に位置する。すなわち、第3の円筒部130は、図3に示すように、ランス本体部151において、内筒151aを覆う外筒151bである。第2の円筒部120の外表面と第3の円筒部130の内表面とによって、冷却媒体が流れる第2の空間Vが形成されている。上述したように、第2の空間Vは、ノズル部153において第1の空間Vと連通している。本実施形態に係る上吹きランス100では、図2に示すように、冷却媒体は、ノズル部153が設けられている先端とは反対側である上部側から第1の空間Vに流入され、ノズル部153に向かって流れる。その後、冷却媒体は、ノズル部153において第1の空間Vから第2の空間Vへ流入し、先端側から上部側へ向かって流れる。第1の空間V及び第2の空間Vに冷却媒体を循環させることで、上吹きランス100が冷却される。これにより、上吹きランス100が溶損することを防止する。
 ノズル部153は、ランス本体部151の先端に設けられる。ノズル部153は、軸方向からみると円形状である。ノズル部153は、1または複数の主孔102を有する。主孔102は、上吹きランス100の先端のノズル部153に形成された開口である。ノズル部153が複数の主孔102を有する場合、主孔102は、軸方向からみて、ノズル部153の周方向に沿って略等間隔に配置される。主孔102は、第1の円筒部110の内部の中空部分と外界とを連通させる。これにより、第1の円筒部110を流れてきた酸素を、主孔102を介して外部に排出することができる。主孔102から排出される酸素は、例えば、容器内の溶銑に対して吹き付けられる。
 なお、図2及び図3では、上吹きランス100の酸素を排出する部分として主孔102のみを記載したが、本発明はかかる例に限定されない。例えば、上吹きランス100は、ランス本体部151の側面部に副孔を有していてもよい。
 [2-2.材質]
 本実施形態に係る上吹きランス100は、内筒151aを構成する第1の円筒部110及び第2の円筒部120は、例えば炭素鋼を用いて形成される。一方、ランス本体部151の外筒151bを構成する第3の円筒部130は、ランス本体部151への地金の付着を防止するため、地金の線膨張係数より大きい線膨張係数を有する材料から形成される。これにより、本実施形態に係る上吹きランス100は、温度変化による外筒151bの膨張及び収縮によって、吹錬終了時に、吹錬時に外筒151bの外表面に付着した地金と外筒151bの外表面との間のエアギャップが大きくなるようにする。このエアギャップを生じさせることにより、外筒151bの外表面に付着した地金が、外筒151bの外表面から脱落しやすくなる。
 吹錬中、外筒151bの外面温度は200℃以上の高温となる。このため、外筒151bが膨張した状態で、その外表面に地金が付着する。吹錬が終了すると外筒151bの外面温度は50℃程度にまで低下し、外筒151bは収縮する。このため、外筒151bが膨張した状態で外表面に付着した地金と収縮した外筒151bとの間には、空気層が生じる。上吹きランス100の径方向における空気層の厚さを、エアギャップという。例えば、炭素鋼の鋼管を用いてランス本体部151の外筒151bを形成した場合、吹錬終了時に生じるエアギャップは300μm程度であった。このとき、地金は外筒151bの外表面に引っ掛かった状態で脱落せずに堆積していた。本願発明者は、エアギャップの大きさに着目し、吹錬終了時のエアギャップを大きくすることによって地金と外筒151bの外表面との引っ掛かり度合を弱め、地金が脱落しやすい状態を形成することを想到した。
 具体的には、外筒151bは、地金の線膨張係数より大きい線膨張係数を有する材料から形成する。地金よりも線膨張係数より大きい材料から外筒151bを形成することにより、温度変化による外筒151bの膨張及び収縮を地金の膨張及び収縮よりも大きくすることができる。その結果、吹錬終了後のエアギャップを大きくすることができる。
 図4に、Cu、Ni、Cr、Ag、ジュラルミン、黄銅、オーステナイト系SUS、2相系SUS、ニッケル合金、炭素鋼、フェライト系SUSの線膨張係数を示す。図4では300K(常温)における線膨張係数を示している。なお、一般に物性値には温度依存性があるが、使用温度範囲では線膨張係数に関しては温度依存性が低い。このため、上吹きランス100が使用される温度環境においては、線膨張係数は一定であるとみなす。ここで、純鉄に近い地金は炭素鋼に近い物性値を有する。そこで、炭素鋼の線膨張係数(11.8×10-6[/K])を地金の線膨張係数とみなす。そうすると、外筒151bは、線膨張係数は12×10-6[/K]より大きい材料から形成すればよい。図4において、線膨張係数は12×10-6[/K]より大きい材料は、Cu、Ni、Ag、ジュラルミン、黄銅、オーステナイト系SUS、2相系SUS、ニッケル合金である。
 より好ましくは、外筒151bは、地金の熱伝導率より小さい熱伝導率を有する材料から形成する。外筒151bの熱伝導率を地金の熱伝導率より小さくすることで、外筒151bの熱が低温部へ伝わり難くなり、吹錬時に外筒151bの高温状態が維持される。これにより、外筒151bは、吹錬時により膨張し易くなる。吹錬終了後に外筒151bが膨張した状態から収縮すると、外筒151bの外表面と当該外表面に付着した地金との間に、より大きなギャップが形成される。
 図5に、Cu、Ni、Cr、Ag、ジュラルミン、黄銅、オーステナイト系SUS、2相系SUS、ニッケル合金、炭素鋼、フェライト系SUSの熱伝導率を示す。図5では300K(常温)における熱伝導率を示している。なお、熱伝導率も使用温度範囲では温度依存性が低い。このため、上吹きランス100が使用される温度環境においては、熱伝導率は一定であるとみなす。熱伝導率についても、地金は炭素鋼に近い物性値を有する。そこで、炭素鋼の熱伝導率(43[W/m・K])を地金の熱伝導率とみなす。そうすると、外筒151bは、熱伝導率は40[W/m・K]より小さい材料から形成すればよい。図5において、熱伝導率は40[W/m・K]より小さい材料は、オーステナイト系SUS、2相系SUS、ニッケル合金、フェライト系SUSである。
 図4の線膨張係数及び図5の熱伝導率を鑑みると、本実施形態に係る上吹きランス100の外筒151bは、例えばオーステナイト系SUS、2相系SUS、ニッケル合金等を用いるのが好ましい。例えば、外筒151bに、線膨張係数が炭素鋼の1.4倍程度のオーステナイト相を含むステンレス鋼(オーステナイト系SUS)からなるステンレス鋼管を用いた場合、吹錬終了時には600μm程度のエアギャップが生じ、外筒151bの外表面から地金が脱落しやすい状態となる。オーステナイト系SUSのうち、特に、外筒151bにはSUS310を用いるのが好ましい。SUS310は、CO雰囲気中で耐浸炭性がよいことから、外筒151bの耐久性を高めることができる。
 また、上吹きランス100の損傷を防止する観点から、ランス本体部151のうち、少なくとも外筒151bは、転炉本体10の容器内で使用されるときの外筒151bの温度において、高温強度が200MPa以上である材料から形成されることが好ましい。高温強度が200MPaより低いと、使用中に上吹きランス100が変形し、冷却媒体が流れる第1の空間Vまたは第2の空間Vが狭くなり冷却が十分に行われない等の問題が発生するためである。外筒151bは、冷却媒体に接する内表面と容器内の空間に晒される外表面とでは温度が異なる(図7参照)。ここでは、外筒151bの温度は、内表面の温度と外表面の温度との平均とする。
 吹錬中、転炉本体10の容器内の温度は1000℃以上の高温となる。このとき、上吹きランス100において冷却媒体により冷却されている第2の円筒部120の温度は、冷却媒体として常温(ここでは27℃(300K)とする。)の水を用いた場合、100℃以下に維持される。一方、外筒151bである第3の円筒部130も冷却媒体によって冷却されているが、転炉本体10の容器内に晒されているため、第3の円筒部130は第2の円筒部120よりも高温となる。例えば、従来一般的に使用されている炭素鋼から形成されたランス本体の外筒では、外筒の温度は200℃程度となる。炭素鋼は、200℃において245MPaの高温強度を有し、400℃において196MPaの高温強度を有する。これより、従来一般的に使用されているランス本体の高温強度と同等、あるいはそれ以上の高温強度を確保するためには、ランス本体部151のうち、少なくとも外筒151bを、200℃における高温強度が200MPa以上である材料から形成することが好ましい。
 図6に、Cu、オーステナイト系SUS、炭素鋼、フェライト系SUSの高温強度を示す。図6では、200℃と400℃における高温強度を示している。図6において、200℃における高温強度が200MPa以上の材料は、オーステナイト系SUS、炭素鋼、フェライト系SUSである。より高温領域である400℃でも強度を保持できるようにするには、400℃においても高温強度が200MPa未満とならないオーステナイト系SUS、フェライト系SUSを用いるのが好ましい。
 また、外筒151bの外表面にカロライジング処理を施してもよい。カロライジング処理は、アルミニウムを材料表面に拡散滲透させる処理であり、耐熱性、耐酸化性、耐摩耗性等を目的として行われる。外筒151bの外表面にカロライジング処理を施すことで、外筒151bの耐浸炭性をより高めることができる。また、外筒151bの外表面にカロライジング処理を施すことにより、外筒151bの耐熱性が向上し、熱伝導率が低下する。これにより、外筒151bが膨張しにくくなる。その結果、外筒の外表面に付着した地金と外筒の外表面との間によりエアギャップを発生させることが可能となり、外筒151bの外表面から地金を容易に脱落させることができる。
 さらに、上吹きランス100の外筒151bの外表面温度がσ相脆化温度である500℃以下となるように、第1の空間V及び第2の空間Vを流れる冷却媒体の流速を設定してもよい。外筒151bの外表面温度がσ相脆化温度を超えると、外筒151bの外表面で浸炭が生じるようになる。このため、外筒151bの外表面温度をσ相脆化温度である500℃以下とすることで、外筒151bの耐浸炭性を高めることができる。
 このように、本実施形態に係る上吹きランス100は、外筒151bが地金の線膨張係数より大きい線膨張係数を有する材料から形成される。これにより、吹錬終了時に外筒151bの外表面に付着した地金と当該外表面との間に形成されるエアギャップを大きくすることができる。その結果、ランス本体部151に付着した地金が脱落しやすい状態となり、外筒151bの外表面に地金が付着することを防止できる。このような上吹きランス100により、吹錬中にランス本体部151の外筒151bの外表面に付着した地金がチャージ毎に脱落するため、外筒151bの外表面に地金が堆積することがない。したがって、吹錬終了後にランス本体部151に付着した地金を除去する地金手入れ工数を低減することができる。また、地金をランス本体部151の外筒151bの外表面から脱落させることで、地金を容器内の溶銑に戻すことができ、鉄の歩留まりを改善できる。
 さらに、上吹きランス100が副孔を備える副孔ランスである場合、吹錬中にランス本体部151の外筒151bの外表面に地金が付着し、副孔を塞いだとしても、吹錬終了後には、地金はチャージ毎に容器内に脱落する。したがって、副孔が地金により塞がれた状態となり続けることはない。その結果、副孔から排出される酸素の噴流に偏流が生じることもなく、ランスが溶損することも防止できるため、ランス自体の寿命を長くすることができる。
 なお、ランス本体部151の先端に溶接されているノズル部153は、熱伝導率の高い銅で形成するのが好ましい。これにより、上吹きランス100が転炉本体10の容器内の高温環境下にある場合にも、ノズル部153からランス本体部151へ熱が伝わりやすいため、ノズル部153を高温となりにくい状態とすることができる。したがって、高温環境下においてもノズル部153は溶融せず、上吹きランス100の耐久性を高めることができる。このようなノズル部153は、冷却された状態が維持されていることから、吹錬中も地金は付着しにくい状態となっている。
 本発明の上吹きランスの有効性を示すため、外筒をCu、炭素鋼、オーステナイト系SUSを用いて構成した場合について、外筒温度及び形成されるエアギャップの大きさをシミュレーションにより検証した。図7は、各材料について、吹錬中における外筒の外表面温度Tsと内表面温度Twとを示している。図8は、各材料について、吹錬終了時に、吹錬中に外筒の外表面に付着した地金と当該外筒の外表面との間に形成されるエアギャップの大きさを示している。また、各材料の線膨張係数及び熱伝導率は、下記表1とした。Cu、炭素鋼、オーステナイト系SUSのうち、線膨張係数が12×10-6[/K]より大きく、かつ、熱伝導率が40[W/m・K]より小さい材料は、オーステナイト系SUSのみである。
Figure JPOXMLDOC01-appb-T000001
 本検証では、吹錬中の転炉容器内の温度を1600℃、吹錬終了後、所定時間経過後に定常状態となったときの外筒の外面温度を25℃とした。また、上吹きランス内を流れる冷却媒体は水とし、冷却媒体の流速は5m/sとした。
 まず、転炉容器内の温度が1600℃であるときの、外筒の外表面温度Tsと内表面温度Twとをシミュレーションにより求めた。図7に、外筒の外表面温度Tsと内表面温度Twとに関するシミュレーション結果を示す。図7に示すように、Cu、炭素鋼、オーステナイト系SUSのうち、外筒を形成する材料としてオーステナイト系SUSを用いた場合が最も外表面温度Tsと内表面温度Twとの温度差が大きくなることがわかった。
 次に、外筒の外面温度が25℃となったときの、エアギャップの大きさをシミュレーションにより求めた。図8に、エアギャップに関するシミュレーション結果を示す。図8に示すように、炭素鋼のエアギャップ(約300μm)に対し、Cu、オーステナイト系SUSを用いた場合エアギャップの方が大きくなった。これより、外筒を形成する材料としてCuまたはオーステナイト系SUSを用いることで、上吹きランスの外筒に付着した地金を脱落させることが可能となるといえる。また、オーステナイト系SUSは最も高いエアギャップを示したことから、外筒を形成する材料としてオーステナイト系SUSを用いることで、上吹きランスの外筒に付着した地金を脱落させることが更に容易となるといえる。
 エアギャップは、地金と外筒を形成する材料との線膨張係数の差によって大きくなる。したがって、外筒を形成する材料として、地金の線膨張係数より大きい線膨張係数を有する材料を選択することで、より大きなエアギャップを発生させることができ、外筒の外表面から地金を容易に脱落させることができる。鉄鋼精錬の場合、地金の線膨張係数は、炭素鋼の約12×10-6[/K]に近いとみなすことができる。これより、外筒を形成する材料は、12×10-6[/K]より大きい線膨張係数を有することが望ましい。
 また、熱伝導率が高い材料では、熱が高温部から低温部へと移動しやすい。すなわち、熱伝導率が高い材料は、当該材料と異なる温度のものに接したとき、温度が変化しやすい。したがって、外筒に熱伝導率が高い材料を用いた場合、吹錬時に外筒が高温状態となっても外筒の熱は低温部へ伝わりやすいため、外筒の膨張は比較的小さい。一方、熱伝導率が低い材料では、熱が高温部から低温部へと移動しにくい。すなわち、熱伝導率が低い材料は、当該材料と異なる温度のものに接したとき、温度が変化しにくい。したがって、外筒に熱伝導率が低い材料を用いた場合、外筒は、吹錬時に高温となった状態を維持するため、熱伝導率が高い材料を用いる場合よりも膨張は大きくなる。吹錬終了後に外筒が膨張した状態から収縮すると、外筒の外表面と当該外表面に付着した地金との間に、より大きなギャップが形成される。これより、外筒を形成する材料として、地金の熱伝導率より小さな熱伝導率を有する材料を選択することで、より大きなエアギャップを発生させることができ、外筒の外表面から地金を容易に脱落させることができる。鉄鋼精錬の場合、地金の熱伝導率は、炭素鋼の約40[W/m・K]に近いとみなることができる。したがって、外筒を形成する材料は、40[W/m・K]より小さい熱伝導率を有することが望ましい。
 本シミュレーションでは、Cuまたはオーステナイト系SUSを用いて外筒を形成した場合に、炭素鋼を用いて外筒を形成した場合よりも外筒の外表面に付着した地金と外筒の外表面との間のエアギャップが大きくなった。この結果より、ランス本体部の外筒を、線膨張係数が12×10-6[/K]より大きい材料で形成することで、上吹きランスの外筒に付着した地金を脱落させることができることが示された。なお、図4に示したように、Ni、Ag、ジュラルミン、黄銅、2相系SUS、ニッケル合金も線膨張係数が12×10-6[/K]より大きい。したがって、これらの材料を用いて外筒を形成した場合にも、Cuまたはオーステナイト系SUSを用いた場合と同様の効果を奏すると考えられる。
 さらに、オーステナイト系SUSを用いて外筒を形成した場合に、外筒の外表面に付着した地金と外筒の外表面との間のエアギャップが最も大きくなった。この結果より、ランス本体部の外筒を、線膨張係数が12×10-6[/K]より大きく、かつ、熱伝導率が40[W/m・K]より小さい材料で形成することで、吹錬終了後において、外筒の外表面に付着した地金と外筒の外表面との間のエアギャップをより大きくすることができ、外筒の外表面から地金をさらに容易に脱落させることができることが示された。なお、図4及び図5に示したように、2相系SUS、ニッケル合金も線膨張係数が12×10-6[/K]より大きく、かつ、熱伝導率が40[W/m・K]より小さい。したがって、これらの材料を用いて外筒を形成した場合にも、オーステナイト系SUSを用いた場合と同様の効果を奏すると考えられる。
 また、ランス本体部の外筒をオーステナイト系SUSで形成した場合に、上吹きランスを流れる冷却媒体の流速を変化させたときの、外筒の外表面温度Tsと内表面温度Twとをシミュレーションにより求めた。当該シミュレーション結果を図9に示す。図9に示すように、冷却媒体の流速を5m/s、10m/s、15m/sと大きくしたところ、外筒の外表面温度Tsは500℃以下を維持したまま徐々に低下する傾向があることがわかった。したがって、冷却媒体の流速は5m/sであれば外筒の外表面温度を500℃以下とすることができ、外筒の耐浸炭性が高い状態を維持するできることがわかった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、転炉設備の上吹きランスについて説明したが、本発明はかかる例に限定されない。例えば、本発明の水冷式ランスは転炉設備以外にも適用可能である。例えば、本発明の水冷式ランスは、溶融炉での溶融還元処理、トーピードカーにおける溶銑予備処理、真空炉を用いた二次精錬等において使用してもよい。また、上記実施形態では、上吹き転炉設備において、上方から溶銑に対して酸素を吹き付ける上吹きランスを例として説明したが、本発明はかかる例に限定されない。例えば、溶銑に浸漬して使用される浸漬ランス等にも本技術は適用可能である。
 5    溶銑
 7    地金
 10   転炉本体
 12   炉口
 20   排ガスフード
 100  上吹きランス
 102  主孔
 110  第1の円筒部
 120  第2の円筒部
 130  第3の円筒部
 151  ランス本体部
 151a 内筒
 151b 外筒
 153  ノズル部
 

Claims (8)

  1.  ランス本体部と、前記ランス本体部の先端に設けられたノズル部とからなる水冷式ランスであって、
     前記ランス本体部の最外部に設けられる外筒は、地金の線膨張係数より大きい線膨張係数である材料から形成される、水冷式ランス。
  2.  前記外筒は、12×10-6/Kより大きい線膨張係数を有する材料から形成される、請求項1に記載の水冷式ランス。
  3.  前記外筒は、地金の熱伝導率より小さい熱伝導率を有する材料から形成される、請求項1または2に記載の水冷式ランス。
  4.  前記外筒は、40W/m・Kより小さい熱伝導率を有する材料から形成される、請求項3に記載の水冷式ランス。
  5.  前記外筒は、オーステナイト相を含むステンレス鋼から形成される、請求項1~4のいずれか1項に記載の水冷式ランス。
  6.  少なくとも前記外筒は、200℃における高温強度が200MPa以上である材料から形成される、請求項1~5のいずれか1項に記載の水冷式ランス。
  7.  前記外筒の外表面は、カロライジング処理が施されている、請求項1~6のいずれか1項に記載の水冷式ランス。
  8.  前記水冷式ランス内を流れる冷却媒体の流速は、前記外筒の外表面温度がσ相脆化温度である500℃以下となるように設定される、請求項1~7のいずれか1項に記載の水冷式ランス。
     
PCT/JP2018/014833 2017-04-13 2018-04-09 水冷式ランス WO2018190283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880004201.5A CN110177888A (zh) 2017-04-13 2018-04-09 水冷式喷枪
KR1020197012052A KR20190062475A (ko) 2017-04-13 2018-04-09 수랭식 랜스
JP2019512495A JP6733812B2 (ja) 2017-04-13 2018-04-09 水冷式ランス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017079573 2017-04-13
JP2017-079573 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018190283A1 true WO2018190283A1 (ja) 2018-10-18

Family

ID=63792588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014833 WO2018190283A1 (ja) 2017-04-13 2018-04-09 水冷式ランス

Country Status (5)

Country Link
JP (1) JP6733812B2 (ja)
KR (1) KR20190062475A (ja)
CN (1) CN110177888A (ja)
TW (1) TWI666327B (ja)
WO (1) WO2018190283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417086B2 (ja) 2020-03-19 2024-01-18 日本製鉄株式会社 上吹きランスの冷却方法、上吹きランスの冷却装置及び上吹きランス設備

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218510A (ja) * 1986-03-18 1987-09-25 Nippon Kokan Kk <Nkk> 酸素吹錬ランス
JPH0488108A (ja) * 1990-07-30 1992-03-23 Nkk Corp 転炉吹錬用ランス
JPH08157927A (ja) * 1994-12-02 1996-06-18 Kawasaki Heavy Ind Ltd 製鋼用ランス
JPH10310812A (ja) * 1997-04-25 1998-11-24 Ltv Steel Co Inc ランスを備える容器内の後燃焼熱の回収改良方法
JP2007537355A (ja) * 2004-05-14 2007-12-20 ザ・ビーオーシー・グループ・インコーポレーテッド 溶融金属の精錬
JP2013057104A (ja) * 2011-09-08 2013-03-28 Nippon Steel & Sumitomo Metal Corp 転炉吹錬時における酸素上吹きランスへの地金の付着防止方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589906A (ja) 1981-07-08 1983-01-20 Akira Yamamoto 銅製ジヤケツト
CN1330777C (zh) * 2005-07-28 2007-08-08 天津钢铁有限公司 转炉氧枪的水冷装置
CN102605135A (zh) * 2012-03-21 2012-07-25 沈阳东冶汉森冶金装备有限公司 一种带有表面涂层的转炉锥体氧枪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218510A (ja) * 1986-03-18 1987-09-25 Nippon Kokan Kk <Nkk> 酸素吹錬ランス
JPH0488108A (ja) * 1990-07-30 1992-03-23 Nkk Corp 転炉吹錬用ランス
JPH08157927A (ja) * 1994-12-02 1996-06-18 Kawasaki Heavy Ind Ltd 製鋼用ランス
JPH10310812A (ja) * 1997-04-25 1998-11-24 Ltv Steel Co Inc ランスを備える容器内の後燃焼熱の回収改良方法
JP2007537355A (ja) * 2004-05-14 2007-12-20 ザ・ビーオーシー・グループ・インコーポレーテッド 溶融金属の精錬
JP2013057104A (ja) * 2011-09-08 2013-03-28 Nippon Steel & Sumitomo Metal Corp 転炉吹錬時における酸素上吹きランスへの地金の付着防止方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417086B2 (ja) 2020-03-19 2024-01-18 日本製鉄株式会社 上吹きランスの冷却方法、上吹きランスの冷却装置及び上吹きランス設備

Also Published As

Publication number Publication date
KR20190062475A (ko) 2019-06-05
TW201842193A (zh) 2018-12-01
JPWO2018190283A1 (ja) 2019-06-27
CN110177888A (zh) 2019-08-27
TWI666327B (zh) 2019-07-21
JP6733812B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
CN103958994A (zh) 用于顶部浸没喷射的流体冷却喷枪
US9534846B2 (en) Method for manufacturing a melt launder and a melt launder
JP5435184B1 (ja) 穿孔プラグ
WO2017106978A1 (en) Nozzle assembly
WO2018190283A1 (ja) 水冷式ランス
EP1954999B1 (en) Cooling element and method for manufacturing the same
JP5260878B2 (ja) 溶射によるアモルファス皮膜の形成方法
CN104284741B (zh) 穿孔轧制用顶头的制造方法
CN103958702A (zh) 冷却元件以及制造冷却元件的方法
JP6335248B2 (ja) 肉盛溶接用合金及び溶接用粉末
KR101261424B1 (ko) 취련용 랜스 노즐
WO2019188352A1 (ja) 上吹きランス及び上吹きランスの被覆方法
CN108504961B (zh) 一种应用于高速轧制的导卫导轮
JP2011202236A (ja) 転炉の上吹きランス及び転炉の操業方法
JP4496791B2 (ja) 電磁出湯ノズルおよびこれを用いる金属溶解・出湯装置
JP4796994B2 (ja) 耐アルミニウム溶湯溶損性鋳鉄の製造方法及び耐アルミニウム溶湯溶損性鋳鉄
JPWO2017145758A1 (ja) ガス吹き込みノズル
JP6551247B2 (ja) 副孔ランス
JP2009068099A (ja) 精錬容器のガス吹き込み羽口構造
JP5437833B2 (ja) アトマイズ用ノズルおよび金属粉末の製造方法
JP6610404B2 (ja) 転炉操業方法
JP6045094B2 (ja) 自溶合金皮膜の形成方法
RU64959U1 (ru) Стенка кристаллизатора машины непрерывного литья заготовок
JP2021147668A (ja) 上吹きランスの冷却方法、上吹きランスの冷却装置及び上吹きランス設備
CN114029458A (zh) 一种q235b钢/316不锈钢电渣重熔复合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512495

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197012052

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784039

Country of ref document: EP

Kind code of ref document: A1