WO2018190078A1 - 重荷重用空気入りラジアルタイヤ - Google Patents

重荷重用空気入りラジアルタイヤ Download PDF

Info

Publication number
WO2018190078A1
WO2018190078A1 PCT/JP2018/010759 JP2018010759W WO2018190078A1 WO 2018190078 A1 WO2018190078 A1 WO 2018190078A1 JP 2018010759 W JP2018010759 W JP 2018010759W WO 2018190078 A1 WO2018190078 A1 WO 2018190078A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
block
heavy
duty pneumatic
inclined portion
Prior art date
Application number
PCT/JP2018/010759
Other languages
English (en)
French (fr)
Inventor
岡崎 直人
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201880023954.0A priority Critical patent/CN110494304B/zh
Priority to EP18784322.2A priority patent/EP3611038B1/en
Publication of WO2018190078A1 publication Critical patent/WO2018190078A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a heavy-duty pneumatic radial tire including a block that comes into contact with the road surface and a cross belt layer provided on the inner side in the tire radial direction of the block.
  • a pneumatic radial tire for trucks and buses, a so-called heavy-duty pneumatic radial tire or the like is formed with a sipe extending in the tire width direction for the purpose of improving braking performance or other performance (for example, wear performance and low rolling resistance). Blocks are widely used.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a heavy-duty pneumatic radial tire that further improves braking performance by improving the grounding performance of the block during braking. To do.
  • a heavy-duty pneumatic radial tire (heavy-duty pneumatic radial tire 10) according to one aspect of the present invention is provided on a road surface (road surface RS) and a block that contacts the road surface (road surface RS) (for example, block 100), and on the radially inner side of the block.
  • the crossing belt layer (crossing belt layer 81) is provided.
  • the block is formed with a sipe (sipe 110) extending in the tire width direction, and an inclined portion (for example, an inclined portion 120) is formed at the kicking side end of the block defined by the sipe.
  • the inclined portion is inclined from the outer side in the tire radial direction to the inner side in the tire radial direction by chamfering the kick-out side end portion.
  • the said inclination part is formed in the area
  • FIG. 1 is a cross-sectional view of the heavy-duty pneumatic radial tire 10 along the tire width direction and the tire radial direction.
  • FIG. 2 is a partially developed plan view of the tread 20.
  • FIG. 3 is a single perspective view of the block 100.
  • FIG. 4 is a single plan view of the block 100.
  • FIG. 5 is a single side view of the block 100.
  • FIG. 6 is a partially enlarged side view of the block 100.
  • FIG. 7A is a diagram schematically showing an overall deformation of the block 100 during braking.
  • FIG. 7B is a diagram schematically showing the overall deformation of the block 100 during braking.
  • FIG. 7C is a diagram schematically showing the overall deformation of the block 100 during braking.
  • FIG. 7A is a diagram schematically showing an overall deformation of the block 100 during braking.
  • FIG. 7B is a diagram schematically showing the overall deformation of the block 100 during braking.
  • FIG. 7C is a diagram
  • FIG. 8A is a diagram schematically showing the deformation of the block at the kicking side end of the block during braking.
  • FIG. 8B is a diagram schematically showing the deformation of the block at the kicking side end of the block during braking.
  • FIG. 9 is a single side view of the block 100A according to the modified example.
  • FIG. 10 is a partially developed plan view of a tread 20A according to another modification.
  • FIG. 1 is a cross-sectional view of the heavy load pneumatic radial tire 10 according to the present embodiment along the tire width direction and the tire radial direction.
  • FIG. 2 is a partially developed plan view of the tread 20.
  • the heavy-duty pneumatic radial tire 10 includes a tread 20 that contacts a road surface RS (not shown in FIGS. 1 and 2, see FIGS. 7 and 8).
  • the heavy-duty pneumatic radial tire 10 includes a tire side portion 60 that continues to the tread 20 and a bead portion 70 that is assembled to a wheel rim.
  • the heavy-duty pneumatic radial tire 10 can be suitably used mainly for truck buses.
  • the heavy-duty pneumatic radial tire 10 includes a belt layer 80 including a plurality of belts.
  • the belt layer 80 includes an intersecting belt layer 81 provided on the inner side in the tire radial direction and a reinforcing belt layer 82 provided on the outer side in the tire radial direction of the intersecting belt layer 81.
  • the belt layer 80 is provided on the inner side in the tire radial direction of the block 100 provided in the tread 20.
  • the crossing belt layer 81 is composed of two belts in which the orientation directions of tire cords (not shown) cross.
  • the reinforcing belt layer 82 is provided to ensure the strength and durability required for the heavy-duty pneumatic radial tire 10.
  • the belt is constituted by two belts, but the number of belts is not particularly limited. Further, the reinforcing belt layer 82 is not always essential depending on the use of the heavy duty pneumatic radial tire 10 or the like.
  • the tread 20 is formed with a plurality of circumferential grooves extending in the tire circumferential direction, specifically circumferential grooves 30, 40, and 50.
  • the circumferential groove 40 is formed at a position including the tire equator line CL.
  • the circumferential groove 30 and the circumferential groove 50 are respectively formed on the outer side in the tire width direction of the circumferential groove 40 with respect to the tire equator line CL.
  • the tread 20 is provided with a plurality of blocks 100 and blocks 200 in contact with the road surface RS (see FIGS. 7 and 8).
  • the block 100 is defined by circumferential grooves 30, 40, and 50 extending in the tire circumferential direction and a width groove 90 extending in the tire width direction.
  • the block 200 is provided on the outer side of the block 100 in the tire width direction.
  • the surface (tread surface) of the block 100 and the block 200 is in contact with the road surface RS (see FIGS. 7 and 8).
  • a sipe 110 extending in the tire width direction is formed in the block 100.
  • the block 200 is formed with a sipe 210 extending in the tire width direction.
  • Sipes are blocks 100, It is a narrow groove that closes within the 200 ground plane.
  • the opening width of the sipe when not grounded is not particularly limited, but is preferably 0.1 mm to 1.5 mm.
  • a plurality of blocks 100 and 200 are provided along the tire circumferential direction to form a block row extending in the tire circumferential direction.
  • FIG. 3 is a single perspective view of the block 100.
  • FIG. 4 is a single plan view of the block 100.
  • FIG. 5 is a single side view of the block 100.
  • an inclined portion 120 is formed at one end of the block 100 partitioned by the sipe 110 in the tire circumferential direction.
  • the inclined portion 120 is inclined from the outer side in the tire radial direction to the inner side in the tire radial direction by chamfering one end portion of the block 100 in the tire circumferential direction.
  • the inclined portion 120 is formed at the kicking side end of the block 100.
  • the kicking side end of the block 100 is the stepping side of the tire as a whole with respect to the rotational direction R of the heavy-duty pneumatic radial tire 10, that is, the vehicle traveling direction T (not shown in FIGS. 3 to 5, FIG. 7A End). Accordingly, it should be noted that the heavy load pneumatic radial tire 10 is different from the kick-out side end (the end opposite to the vehicle traveling direction T). The kicking side end of the block 100 will be further described later.
  • the inclined portion 120 is inclined from the outer side in the tire radial direction to the inner side in the tire radial direction by chamfering the kick-out side end portion of the block 100. That is, the inclined portion 120 is a flat inclined surface formed by cutting out one end portion in the tire circumferential direction of the block 100 partitioned by the sipe 110.
  • the inclined portion 120 may be referred to as a chamfer or a chamfer.
  • the inclined portion 120 is formed in a region where the cross belt layer 81 is provided in the tire width direction (see FIGS. 1 and 2). Specifically, the block 100 in which the inclined portion 120 is formed is provided inside the belt end Be of the crossing belt layer 81 in the tire width direction.
  • the belt end Be means an end portion of a belt provided to the outermost side in the tire width direction among the crossing belt layers 81 constituted by two belts.
  • FIG. 6 is a partially enlarged side view of the block 100.
  • the angle ⁇ of the inclined portion 120 with respect to the tread surface 130 of the block 100 in the tire width direction view is preferably 15 degrees or more and 35 degrees or less.
  • the tread surface 130 is a surface portion of the block 100 and is a portion in contact with the road surface RS (see FIGS. 7 and 8).
  • the ratio of the length Lc in the tire circumferential direction of the inclined portion 120 to the length Lb in the tire circumferential direction of the block 100 is 2% or more and 13% or less. Is preferred.
  • the stepping side of the heavy-duty pneumatic radial tire 10 (hereinafter, referred to as a tire) means an end portion on the vehicle traveling direction T side in the tire circumferential direction.
  • the tire kick-out side means an end portion on the opposite side to the vehicle traveling direction T in the tire circumferential direction.
  • the stepping side and kicking side of the block 100 when referring to the stepping side and kicking side of the block 100 alone, it should be noted that it is opposite to the stepping side and kicking side of the tire. That is, as shown in FIG. 7A, the stepping side of the block 100 is the opposite side to the vehicle traveling direction T, and the kicking side end of the block 100 is the vehicle traveling direction T side.
  • FIG. 7B shows the shape of the block 100 when the vehicle is traveling at a substantially constant speed.
  • FIG. 7C shows the shape of the block 100 during braking of the vehicle.
  • a deceleration G is generated in the vehicle traveling direction T. Therefore, a stress in the arrow direction in the drawing is generated in the block 100.
  • the block 100 portion close to the road surface RS stress is generated in the direction opposite to the vehicle traveling direction T, and in the block 100 portion on the inner side in the tire radial direction, stress in the vehicle traveling direction T is generated. For this reason, the block 100 is deformed into a parallelogram shape when viewed in the tire width direction.
  • 8A and 8B schematically show the deformation of the block at the kick-out side end of the block during braking.
  • FIG. 8A shows a deformation of the block 100P in which the inclined portion 120 like the block 100 is not formed.
  • FIG. 8B shows a modification of the block 100 in which the inclined portion 120 is formed.
  • the block 100P in which the inclined portion 120 is not formed that is, viewed in the tire width direction and has a rectangular end portion
  • the block is caused by the stress generated during braking shown in FIG. 7B.
  • a "rolling deformation” occurs in which the 100P kick-out side end portion is deformed so as to be wound inwardly in the tire radial direction.
  • the kicking side end of the block 100P floats from the road surface RS, and sufficient contact (grounding property) with the road surface RS cannot be obtained.
  • grounding property grounding property
  • the surface of the inclined portion 120 that is not in contact at constant speed is in contact with the road surface RS because the block 100 is deformed during braking. It will be in the state which carries out and it will be hard to generate
  • Table 1 shows the comparative test results of the conventional example, the comparative example, and the examples (1, 2).
  • the conventional example is a heavy-duty pneumatic radial tire including a block 100P (see FIG. 8B) in which the inclined portion 120 is not formed.
  • Example 1 is a heavy-duty pneumatic radial tire provided with a block in which an inclined portion 120 is formed in the entire tread.
  • Example 2 is a heavy-duty pneumatic radial tire including the block 100 in which the inclined portion 120 is formed in the region where the crossing belt layer 81 is provided, like the heavy-duty pneumatic radial tire 10 described above. .
  • the comparative example is a heavy-duty pneumatic radial tire including a block in which an inclined portion 120 is formed only outside the area where the crossing belt layer 81 is provided.
  • test conditions are as follows.
  • Test vehicle Truck (2-2D) ⁇ Tire size: 315 / 70R22.5 ⁇ Set air pressure: 630kPa
  • Table 1 The numerical values in Table 1 are indexes, and the conventional example is set as a reference (100), and the smaller the value, the shorter the braking distance.
  • Example 2 (same configuration as the heavy-duty pneumatic radial tire 10), the braking distance is reduced by 13% compared to the conventional example. In the first embodiment, the braking distance is shortened by 5%.
  • the sloped portion 120 that is inclined from the outer side in the tire radial direction to the inner side in the tire radial direction by chamfering the kick-out side end portion of the block 100 includes the cross belt layer 81. Since it is formed in the provided region, it is possible to improve the braking ⁇ while suppressing the entanglement deformation of the block 100 during braking. In particular, when a rubber having a low rolling resistance is used for the tread rubber, the rigidity of the block 100 is likely to be lowered and the entanglement deformation is likely to occur. However, even in such a case, the entanglement deformation can be effectively suppressed.
  • the braking performance can be improved by improving the ground contact of the block 100 during braking.
  • the inclined portion 120 is formed only in the region where the crossing belt layer 81 is provided in the tire width direction. As a result, the braking ⁇ as the entire tread 20 is improved, so that the braking performance can be further improved.
  • the angle ⁇ of the inclined portion 120 is not less than 15 degrees and not more than 35 degrees.
  • the ratio of the length Lc of the inclined portion 120 in the tire circumferential direction to the length Lb of the block 100 in the tire circumferential direction (Lc / Lb * 100) is 2% or more and 13% or less.
  • the inclined portion 120 can sufficiently contact the road surface RS at the time of braking, and the braking ⁇ is reliably improved while suppressing the entanglement deformation.
  • FIG. 9 is a single side view of the block 100A according to the modified example. As shown in FIG. 9, a sipe 110A extending in the tire width direction is formed in the block 100A.
  • the sipe 110A has a zigzag shape that bends in the tire circumferential direction as it goes inward in the tire radial direction. Specifically, when viewed in the tire width direction, the sipe 110A includes a first bent portion 111 and a second bent portion 112.
  • the first bent portion 111 extends in the same direction as the inclined direction of the inclined portion 120A.
  • the second bent portion 112 communicates with the first bent portion 111 and bends in the opposite direction to the first bent portion 111 on the inner side in the tire radial direction than the first bent portion 111.
  • the zigzag sipe 110A having a plurality of bent portions suppresses the block 100A from falling during braking. For this reason, as a result, the entanglement deformation of the block 100A at the kick-out side end of the block 100A is also suppressed, and the braking ⁇ is easily improved.
  • the first bent portion 111 extends in the same direction as the inclined direction of the inclined portion 120A, and the second bent portion 112 bends in the opposite direction to the first bent portion 111, so that the block 100A falls down and the block 100A It is possible to effectively suppress both the block deformation of the block 100A at the kick-out side end of the block.
  • FIG. 10 is a partially developed plan view of a tread 20A according to another modified example.
  • the tread 20A includes a block 100 similar to the heavy-duty pneumatic radial tire 10 and a block 200A in which an inclined portion 220 is formed.
  • the block 200A is partitioned by a sipe 210A extending in the tire width direction.
  • An inclined portion 220 is formed at one end in the tire circumferential direction of the block 200A defined by the sipe 210A.
  • the inclined portion 220 is inclined from the outer side in the tire radial direction to the inner side in the tire radial direction by chamfering one end portion of the block 200A in the tire circumferential direction (end portion on the kicking side of the block). .
  • the inclined portion 220 tapers as it goes outward in the tire width direction, and disappears at the belt end Be of the crossing belt layer 81.
  • a chamfered inclined portion may be formed in the entire area where the crossing belt layer 81 is provided.
  • the braking ⁇ can be improved while suppressing the entanglement deformation of the block 100 and the block 200A at the time of braking to the maximum.
  • the rotation direction R is specified, but the rotation direction R is not necessarily specified.
  • the inclined portion 120 may be formed at an appropriate ratio at one end or the other end of the block 100 in the tire circumferential direction.
  • the block 100 has a quadrangular shape and the sipe 110 has a linear shape extending in the tire width direction, but the shapes of the block 100 and the sipe 110 are not limited to such shapes.
  • the block 100 may have a parallelogram shape or the like, and the sipe 110 may be slightly curved or may be inclined rather than parallel to the tire width direction.
  • the block 100 is separated from the adjacent block 100 by the width direction groove 90, but the width direction groove 90 may not be formed, and a rib-shaped block extending in the tire circumferential direction Moreover, only the sipe extending in the tire width direction may be formed.
  • the heavy-duty pneumatic radial tire according to the present invention is useful because the grounding property of the block during braking is improved and the braking performance is further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

重荷重用空気入りラジアルタイヤのブロック(100)には、タイヤ幅方向に延びるサイプ(110)が形成される。サイプ(110)によって区画されたブロック(100)の蹴り出し側端部には傾斜部(120)が形成される。傾斜部(120)は、蹴り出し側端部が面取りされることによってタイヤ径方向外側からタイヤ径方向内側に傾斜する。また、傾斜部(120)は、タイヤ幅方向において、少なくとも交錯ベルト層が設けられている領域に形成される。

Description

重荷重用空気入りラジアルタイヤ
 本発明は、路面と接地するブロックと、当該ブロックのタイヤ径方向内側に設けられた交錯ベルト層を備える重荷重用空気入りラジアルタイヤに関する。
 従来、自動車などの車両に装着される空気入りタイヤでは、制動性能の向上を目的とした様々なトレッドパターンが採用されている。例えば、タイヤ幅方向に延びるサイプが形成されたブロックを備える空気入りタイヤにおいて、サイプが形成されているブロックの踏面部分に、サイプに沿って入り隅状に切り欠いた凹部を形成することが知られている(例えば、特許文献1)。
 このような空気入りタイヤによれば、当該凹部によってエッジ成分が向上するため、特に、氷上での制動性能を向上し得る。
特開2009-190677号公報
 ところで、トラックバス用の空気入りラジアルタイヤ、いわゆる重荷重用空気入りラジアルタイヤなどでも、制動性能または他の性能(例えば、摩耗性能や低転がり抵抗)の向上を目的としてタイヤ幅方向に延びるサイプが形成されたブロックが広く用いられている。
 重荷重用空気入りラジアルタイヤの場合、乗用自動車に装着される空気入りタイヤと比較して、より大きな荷重が掛かるため、特に制動時には、ブロックの変形量も大きくなり易い。このため、制動時において、タイヤの踏み込み側に位置するブロック端部の変形(いわゆる巻き込み変形)が大きくなり、ブロックの接地性が損なわれる。このような現象は、制動性能の向上を阻害する。
 そこで、本発明は、このような状況に鑑みてなされたものであり、制動時におけるブロックの接地性を改善することによって、制動性能をさらに向上させた重荷重用空気入りラジアルタイヤの提供を目的とする。
 本発明の一態様に係る重荷重用空気入りラジアルタイヤ(重荷重用空気入りラジアルタイヤ10)は、路面(路面RS)と接地するブロック(例えば、ブロック100)と、前記ブロックのタイヤ径方向内側に設けられた交錯ベルト層(交錯ベルト層81)を備える。前記ブロックには、タイヤ幅方向に延びるサイプ(サイプ110)が形成され、前記サイプによって区画された前記ブロックの蹴り出し側端部には傾斜部(例えば、傾斜部120)が形成される。前記傾斜部は、前記蹴り出し側端部が面取りされることによってタイヤ径方向外側からタイヤ径方向内側に傾斜する。また、前記傾斜部は、タイヤ幅方向において、少なくとも前記交錯ベルト層が設けられている領域に形成される。
図1は、重荷重用空気入りラジアルタイヤ10のタイヤ幅方向及びタイヤ径方向に沿った断面図である。 図2は、トレッド20の一部展開平面図である。 図3は、ブロック100の単体斜視図である。 図4は、ブロック100の単体平面図である。 図5は、ブロック100の単体側面図である。 図6は、ブロック100の一部拡大側面図である。 図7Aは、制動時におけるブロック100の全体的な変形を模式的に示す図である。 図7Bは、制動時におけるブロック100の全体的な変形を模式的に示す図である。 図7Cは、制動時におけるブロック100の全体的な変形を模式的に示す図である。 図8Aは、制動時におけるブロックの蹴り出し側端部における当該ブロックの変形を模式的に示す図である。 図8Bは、制動時におけるブロックの蹴り出し側端部における当該ブロックの変形を模式的に示す図である。 図9は、変更例に係るブロック100Aの単体側面図である。 図10は、他の変更例に係るトレッド20Aの一部展開平面図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)重荷重用空気入りラジアルタイヤの概略構成
 図1は、本実施形態に係る重荷重用空気入りラジアルタイヤ10のタイヤ幅方向及びタイヤ径方向に沿った断面図である。図2は、トレッド20の一部展開平面図である。
 図1または図2に示すように、重荷重用空気入りラジアルタイヤ10は、路面RS(図1及び図2において不図示、図7及び図8参照)と接するトレッド20を備える。また、重荷重用空気入りラジアルタイヤ10は、トレッド20に連なるタイヤサイド部60、及びホイールリムに組み付けられるビード部70を備える。
 重荷重用空気入りラジアルタイヤ10は、主にトラックバス用として好適に用い得る。重荷重用空気入りラジアルタイヤ10は、複数のベルトによって構成されるベルト層80を備える。ベルト層80は、タイヤ径方向内側に設けられる交錯ベルト層81と、交錯ベルト層81のタイヤ径方向外側に設けられる補強ベルト層82とによって構成される。ベルト層80は、トレッド20に備えられるブロック100のタイヤ径方向内側に設けられる。
 交錯ベルト層81は、タイヤコード(不図示)の配向方向が交錯する2枚のベルトによって構成される。補強ベルト層82は、重荷重用空気入りラジアルタイヤ10に要求される強度及び耐久性などを確保するために設けられる。本実施形態では、2枚のベルトによって構成されるが、ベルトの枚数は、特に限定されない。また、補強ベルト層82は、重荷重用空気入りラジアルタイヤ10の用途などによっては、必ずしも必須ではない。
 トレッド20には、タイヤ周方向に延びる複数の周方向溝、具体的には、周方向溝30, 40, 50が形成される。
 周方向溝40は、タイヤ赤道線CLを含む位置に形成される。周方向溝30及び周方向溝50は、タイヤ赤道線CLを基準として周方向溝40のタイヤ幅方向外側にそれぞれ形成される。
 トレッド20には、路面RS(図7及び図8参照)と接する複数のブロック100及びブロック200が備えられる。
 ブロック100は、タイヤ周方向に延びる周方向溝30, 40, 50と、タイヤ幅方向に延びる幅方向溝90とによって区画される。ブロック200は、ブロック100のタイヤ幅方向外側にそれぞれ備えられる。ブロック100及びブロック200の表面(踏面)は、路面RS(図7及び図8参照)と接地する。
 ブロック100には、タイヤ幅方向に延びるサイプ110が形成される。同様に、ブロック200には、タイヤ幅方向に延びるサイプ210が形成される。なお、サイプとは、ブロック100,
200の接地面内では閉じる細溝である。非接地時におけるサイプの開口幅は、特に限定されないが、0.1mm~1.5mmであることが好ましい。
 ブロック100及びブロック200は、タイヤ周方向に沿って複数備えられ、タイヤ周方向に延びるブロック列を形成する。
 (2)ブロック100の形状
 次に、ブロック100の形状について説明する。図3は、ブロック100の単体斜視図である。図4は、ブロック100の単体平面図である。図5は、ブロック100の単体側面図である。
 図3~図5に示すように、サイプ110によって区画されたブロック100のタイヤ周方向における一端部には、傾斜部120が形成される。傾斜部120は、ブロック100のタイヤ周方向における一端部が面取りされることによってタイヤ径方向外側からタイヤ径方向内側に傾斜している。
 具体的には、傾斜部120は、ブロック100の蹴り出し側端部に形成される。
 ブロック100の蹴り出し側端部とは、重荷重用空気入りラジアルタイヤ10の回転方向Rを基準としたタイヤ全体としての踏み込み側、つまり、車両進行方向T(図3~5において不図示、図7A参照)の端部を意味する。従って、重荷重用空気入りラジアルタイヤ10の蹴り出し側端部(車両進行方向Tと逆側の端部)とは異なることに留意されたい。なお、ブロック100の蹴り出し側端部については、さらに後述する。
 上述したように、傾斜部120は、ブロック100の蹴り出し側端部が面取りされることによってタイヤ径方向外側からタイヤ径方向内側に傾斜している。つまり、傾斜部120は、サイプ110によって区画されたブロック100のタイヤ周方向における一端部を切り欠くことによって形成された平坦な傾斜面である。傾斜部120は、面取り部または切欠き部(chamfer)と呼ばれてもよい。
 傾斜部120は、タイヤ幅方向において、交錯ベルト層81が設けられている領域に形成される(図1及び図2参照)。具体的には、傾斜部120が形成されているブロック100は、タイヤ幅方向において、交錯ベルト層81のベルト端Beの内側に備えられる。なお、ベルト端Beとは、2枚のベルトによって構成される交錯ベルト層81のうち、最もタイヤ幅方向外側まで設けられているベルトの端部を意味する。
 図6は、ブロック100の一部拡大側面図である。図6に示すように、タイヤ幅方向視において、ブロック100の踏面130に対する傾斜部120の角度θは、15度以上、35度以下であることが好ましい。なお、踏面130とは、ブロック100の表面部分であり、路面RS(図7及び図8参照)と接する部分である。
 また、ブロック100のタイヤ周方向における長さLb(図5参照)に対する傾斜部120のタイヤ周方向における長さLcの比率(Lc/Lb*100)は、2%以上、13%以下であることが好ましい。
 (3)作用・効果
 次に、重荷重用空気入りラジアルタイヤ10の作用及び効果について説明する。図7A~図7Cは、制動時におけるブロック100の全体的な変形を模式的に示す。
 図7Aに示すように、車両に装着された重荷重用空気入りラジアルタイヤ10が回転方向Rに回転することによって、重荷重用空気入りラジアルタイヤ10が路面RS上を転動すると、車両は、車両進行方向Tに進行する。
 ここで、重荷重用空気入りラジアルタイヤ10(以下、タイヤ)の踏み込み側とは、タイヤ周方向において、車両進行方向T側の端部を意味する。一方、タイヤの蹴り出し側とは、タイヤ周方向において、車両進行方向Tと逆側の端部を意味する。
 一方、ブロック100単体の踏み込み側、蹴り出し側を指す場合には、タイヤの踏み込み側、蹴り出し側と逆になることに留意されたい。つまり、図7Aに示すように、ブロック100の踏み込み側とは、車両進行方向Tと逆側であり、ブロック100の蹴り出し側端部とは、車両進行方向T側である。
 図7Bは、車両がほぼ一定速度で走行している場合におけるブロック100の形状を示す。一方、図7Cは、車両の制動時におけるブロック100の形状を示す。図7Bに示すように、車両の制動時には、車両進行方向Tに減速Gが発生するため、ブロック100には、図中の矢印方向への応力が発生する。
 具体的には、路面RSに近いブロック100の部分では、車両進行方向Tと逆側へ応力が発生し、タイヤ径方向内側のブロック100の部分では、車両進行方向Tへの応力が発生する。このため、ブロック100は、タイヤ幅方向視において、平行四辺形状に変形する。
 図8A及び図8Bは、制動時におけるブロックの蹴り出し側端部における当該ブロックの変形を模式的に示す。
 具体的には、図8Aは、ブロック100のような傾斜部120が形成されていないブロック100Pの変形を示す。図8Bは、傾斜部120が形成されているブロック100の変形を示す。
 図8Aに示すように、傾斜部120が形成されていない、つまり、タイヤ幅方向視にいて、矩形状の端部を有するブロック100Pの場合、図7Bに示した制動時に発生する応力によって、ブロック100Pの蹴り出し側端部がタイヤ径方向内側に巻き込むように変形する「巻き込み変形」が発生する。このため、ブロック100Pの蹴り出し側端部は、路面RSから浮いてしまい、路面RSとの十分なコンタクト(接地性)が得られなくなる。このような現象は、制動距離が延びる原因となる。
 一方、図8Bに示すように、傾斜部120が形成されているブロック100の場合、ブロック100が制動時に変形することによって、定速走行時にはコンタクトしていない傾斜部120の表面が路面RSとコンタクトするような状態となり、巻き込み変形が発生し難い。さらに、傾斜部120の表面が路面RSとコンタクトするため、制動時におけるブロック100全体としての摩耗係数(制動μ)が向上する。これにより、制動距離の短縮に貢献する。
 次に、重荷重用空気入りラジアルタイヤ10に関する比較試験結果について説明する。表1は、従来例、比較例及び実施例(1,2)の比較試験結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、従来例は、傾斜部120が形成されていないブロック100P(図8B参照)を備える重荷重用空気入りラジアルタイヤである。
 実施例1は、傾斜部120が形成されているブロックをトレッド全域に備える重荷重用空気入りラジアルタイヤである。実施例2は、上述した重荷重用空気入りラジアルタイヤ10のように、交錯ベルト層81が設けられている領域内に傾斜部120が形成されているブロック100を備える重荷重用空気入りラジアルタイヤである。
 比較例は、交錯ベルト層81が設けられている領域外のみに傾斜部120が形成されているブロックを備える重荷重用空気入りラジアルタイヤである。
 試験条件は、以下のとおりである。
  ・試験車両: トラック(2-2D)
  ・タイヤサイズ: 315/70R22.5
  ・設定空気圧: 630kPa
 比較試験では、当該トラックの時速60km/hから停止までの制動距離を測定した。表1の数値は、インデックスであり、従来例を基準(100)とし、値が小さい程、制動距離が短いことを意味する。
 実施例2(重荷重用空気入りラジアルタイヤ10と同様の構成)では、従来例と比較して、制動距離が13%短縮されている。また、実施例1でも制動距離が5%短縮されている。
 一方、比較例のように、交錯ベルト層81が設けられている領域外に傾斜部120が形成されているブロックを備えても、制動距離の短縮には貢献しない。具体的には、交錯ベルト層81が設けられている領域は、タイヤ径方向における張力が他の領域よりも高く、巻き込み変形が発生し易いが、交錯ベルト層81が設けられていない領域では、当該張力がそれ程高くないため、巻き込み変形が発生し難く、傾斜部120を形成せずにブロック全体を路面RSにコンタクトさせる方が制動μを向上させ易いためである。
 上述したように、重荷重用空気入りラジアルタイヤ10では、ブロック100の蹴り出し側端部が面取りされることによってタイヤ径方向外側からタイヤ径方向内側に傾斜した傾斜部120が、交錯ベルト層81が設けられている領域内に形成されるため、制動時におけるブロック100の巻き込み変形を抑制しつつ、制動μを向上させることができる。特に、トレッドゴムに転がり抵抗の低いゴムを用いる場合、ブロック100の剛性が低下し易く、巻き込み変形が発生し易いが、このような場合でも巻き込み変形を効果的に抑制し得る。
 つまり、重荷重用空気入りラジアルタイヤ10によれば、制動時におけるブロック100の接地性を改善することによって、制動性能を向上し得る。
 また、本実施形態では、傾斜部120は、タイヤ幅方向において、交錯ベルト層81が設けられている領域にのみ形成される。これにより、トレッド20全体としての制動μが向上するため、制動性能をさらに向上し得る。
 本実施形態では、傾斜部120の角度θは、15度以上、35度以下である。また、ブロック100のタイヤ周方向における長さLbに対する傾斜部120のタイヤ周方向における長さLcの比率(Lc/Lb*100)は、2%以上、13%以下である。
 このため、制動時に傾斜部120が路面RSを十分にコンタクトでき、巻き込み変形を抑制しつつ、制動μが確実に向上する。
 (4)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、ブロック100は、次のように変更してもよい。図9は、変更例に係るブロック100Aの単体側面図である。図9に示すように、ブロック100Aには、タイヤ幅方向に延びるサイプ110Aが形成される。
 タイヤ幅方向視において、サイプ110Aは、タイヤ径方向内側に行くに連れてタイヤ周方向において屈曲するジグザグ状である。具体的には、タイヤ幅方向視において、サイプ110Aは、第1屈曲部111と第2屈曲部112とを含む。
 第1屈曲部111は、傾斜部120Aの傾斜方向と同方向に延びる。第2屈曲部112は、第1屈曲部111と連通し、第1屈曲部111よりもタイヤ径方向内側において、第1屈曲部111と逆方向に屈曲する。
 ブロック100Aによれば、複数の屈曲部を有するジグザグ状のサイプ110Aによって、制動時におけるブロック100Aの倒れ込みが抑制される。このため、結果的に、ブロック100Aの蹴り出し側端部におけるブロック100Aの巻き込み変形も抑制され、制動μを向上させ易い。
 特に、第1屈曲部111は、傾斜部120Aの傾斜方向と同方向に延び、第2屈曲部112は、第1屈曲部111と逆方向に屈曲するため、ブロック100Aの倒れ込み変形と、ブロック100Aの蹴り出し側端部におけるブロック100Aの巻き込み変形との両方を効果的に抑制し得る。
 図10は、他の変更例に係るトレッド20Aの一部展開平面図である。図10に示すように、トレッド20Aには、重荷重用空気入りラジアルタイヤ10と同様のブロック100と、傾斜部220が形成されたブロック200Aとが備えられている。
 ブロック200Aは、タイヤ幅方向に延びるサイプ210Aによって区画されている。サイプ210Aによって区画されたブロック200Aのタイヤ周方向における一端部には、傾斜部220が形成される。
 傾斜部220は、傾斜部120と同様に、ブロック200Aのタイヤ周方向における一端部(ブロックの蹴り出し側端部)が面取りされることによってタイヤ径方向外側からタイヤ径方向内側に傾斜している。傾斜部220は、タイヤ幅方向外側に行くに連れて先細りになり、交錯ベルト層81のベルト端Beにおいて消滅する。
 このように、交錯ベルト層81が設けられている全域に面取りされた傾斜部を形成してもよい。ブロック200Aを備える重荷重用空気入りラジアルタイヤによれば、制動時におけるブロック100及びブロック200Aの巻き込み変形を最大限抑制しつつ、制動μを向上させることができる。
 また、重荷重用空気入りラジアルタイヤ10では、回転方向Rが指定されていたが、回転方向Rは必ずしも指定されていなくても構わない。この場合、ブロック100のタイヤ周方向における一端部または他端部に、適当な比率で傾斜部120を形成すればよい。
 重荷重用空気入りラジアルタイヤ10では、ブロック100は、四角形状であり、サイプ110はタイヤ幅方向に延びる直線状であったが、ブロック100及びサイプ110の形状は、このような形状に限定されない。例えば、ブロック100は、平行四辺形状などでもよく、サイプ110は多少湾曲していたり、タイヤ幅方向に対して平行ではなく傾斜したりしてもよい。
 重荷重用空気入りラジアルタイヤ10では、幅方向溝90によってブロック100が隣接するブロック100と区画されていたが、幅方向溝90は形成されていなくてもよく、タイヤ周方向に延びるリブ状のブロックに、タイヤ幅方向に延びるサイプのみが形成されていてもよい。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 本発明に係る重荷重用空気入りラジアルタイヤによれば、制動時におけるブロックの接地性が改善され、制動性能がさらに向上するため、有用である。
 10 重荷重用空気入りラジアルタイヤ
 20, 20A トレッド
 30, 40, 50 周方向溝
 60 タイヤサイド部
 70 ビード部
 80 ベルト層
 81 交錯ベルト層
 82 補強ベルト層
 90 幅方向溝
 100, 100A, 100P ブロック
 110, 110A サイプ
 111 第1屈曲部
 112 第2屈曲部
 120, 120A 傾斜部
 130 踏面
 200, 200A ブロック
 210, 210A サイプ
 220 傾斜部

Claims (6)

  1.  路面と接地するブロックと、
     前記ブロックのタイヤ径方向内側に設けられた交錯ベルト層を備える重荷重用空気入りラジアルタイヤであって、
     前記ブロックには、タイヤ幅方向に延びるサイプが形成され、
     前記サイプによって区画された前記ブロックの蹴り出し側端部には傾斜部が形成され、
     前記傾斜部は、前記蹴り出し側端部が面取りされることによってタイヤ径方向外側からタイヤ径方向内側に傾斜し、
     前記傾斜部は、タイヤ幅方向において、少なくとも前記交錯ベルト層が設けられている領域に形成される重荷重用空気入りラジアルタイヤ。
  2.  前記傾斜部は、タイヤ幅方向において、前記交錯ベルト層が設けられている領域にのみ形成される請求項1に記載の重荷重用空気入りラジアルタイヤ。
  3.  タイヤ幅方向視において、前記ブロックの踏面に対する前記傾斜部の角度は、15度以上、35度以下である請求項1または2に記載の重荷重用空気入りラジアルタイヤ。
  4.  前記ブロックのタイヤ周方向における長さに対する前記傾斜部のタイヤ周方向における長さの比率は、2%以上、13%以下である請求項1乃至3の何れか一項に記載の重荷重用空気入りラジアルタイヤ。
  5.  タイヤ幅方向視において、前記サイプは、タイヤ径方向内側に行くに連れてタイヤ周方向において屈曲するジグザグ状である請求項1乃至4の何れか一項に記載の重荷重用空気入りラジアルタイヤ。
  6.  タイヤ幅方向視において、前記サイプは、
     前記傾斜部の傾斜方向と同方向に延びる第1屈曲部と、
     前記第1屈曲部と連通し、前記第1屈曲部よりもタイヤ径方向内側において、前記第1屈曲部と逆方向に屈曲する第2屈曲部と
    を含む請求項5に記載の重荷重用空気入りラジアルタイヤ。
PCT/JP2018/010759 2017-04-10 2018-03-19 重荷重用空気入りラジアルタイヤ WO2018190078A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880023954.0A CN110494304B (zh) 2017-04-10 2018-03-19 重载荷用充气子午线轮胎
EP18784322.2A EP3611038B1 (en) 2017-04-10 2018-03-19 Heavy duty pneumatic radial tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017077530A JP6929107B2 (ja) 2017-04-10 2017-04-10 重荷重用空気入りラジアルタイヤ
JP2017-077530 2017-04-10

Publications (1)

Publication Number Publication Date
WO2018190078A1 true WO2018190078A1 (ja) 2018-10-18

Family

ID=63793660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010759 WO2018190078A1 (ja) 2017-04-10 2018-03-19 重荷重用空気入りラジアルタイヤ

Country Status (4)

Country Link
EP (1) EP3611038B1 (ja)
JP (1) JP6929107B2 (ja)
CN (1) CN110494304B (ja)
WO (1) WO2018190078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111546835A (zh) * 2019-02-12 2020-08-18 固特异轮胎和橡胶公司 用于轮胎的胎面

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147409A (ja) * 1991-11-27 1993-06-15 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH09226312A (ja) * 1996-02-05 1997-09-02 Goodyear Tire & Rubber Co:The 空気タイヤ
JPH11170817A (ja) * 1997-12-08 1999-06-29 Bridgestone Corp 空気入りタイヤ
JP2000229504A (ja) * 1998-12-11 2000-08-22 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2001219715A (ja) * 1999-01-13 2001-08-14 Bridgestone Corp 操縦安定性にすぐれる空気入りタイヤ
US6467517B1 (en) * 1999-06-15 2002-10-22 Michelin Recherche Et Technique S.A. Tire having sacrificial bridging
JP2003159910A (ja) * 2001-09-17 2003-06-03 Bridgestone Corp 空気入りタイヤ
JP2003205710A (ja) * 2002-01-10 2003-07-22 Bridgestone Corp 空気入りタイヤ及びその装着方法
JP2006321342A (ja) * 2005-05-18 2006-11-30 Bridgestone Corp 空気入りタイヤ
JP2007223493A (ja) * 2006-02-24 2007-09-06 Bridgestone Corp 空気入りタイヤ
EP1870258A2 (de) * 2006-06-24 2007-12-26 Continental Aktiengesellschaft Fahrzeugreifen
JP2009190677A (ja) 2008-02-18 2009-08-27 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2010234895A (ja) * 2009-03-30 2010-10-21 Yokohama Rubber Co Ltd:The スタッドレスタイヤ
JP2011251650A (ja) * 2010-06-03 2011-12-15 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2014237398A (ja) * 2013-06-07 2014-12-18 株式会社ブリヂストン 空気入りタイヤ
JP2015024818A (ja) * 2014-10-01 2015-02-05 コンパニー ゼネラール デ エタブリッスマン ミシュラン 雪上性能改善用の面取り部を有する側方溝を備えたタイヤ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310408A (ja) * 1991-04-08 1992-11-02 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH04345501A (ja) * 1991-05-24 1992-12-01 Yokohama Rubber Co Ltd:The 氷雪路用重荷重空気入りラジアルタイヤ
JP3170518B2 (ja) * 1992-05-11 2001-05-28 株式会社ブリヂストン 空気入りタイヤ
ATE314210T1 (de) * 2000-07-03 2006-01-15 Michelin Soc Tech Luftreifen mit einer lauffläche für schwere lasten
US7360568B2 (en) * 2005-01-27 2008-04-22 Bridgestone Firestone North American Tire, Llc Tire having narrowing sipes
JP2006264455A (ja) * 2005-03-23 2006-10-05 Bridgestone Corp 空気入りタイヤ
FR2933335B1 (fr) * 2008-07-03 2010-08-20 Michelin Soc Tech Bande de roulement directionnelle pour pneu pourvue d'incisions adaptees
FR2939360B1 (fr) * 2008-12-05 2011-03-04 Michelin Soc Tech Bande de roulement pourvue d'incisions
FR2964600B1 (fr) * 2010-09-09 2014-08-22 Michelin Soc Tech Bande de roulement pour pneumatique
JP5977696B2 (ja) * 2013-03-13 2016-08-24 株式会社ブリヂストン 空気入りタイヤ
JP6548495B2 (ja) * 2015-07-27 2019-07-24 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147409A (ja) * 1991-11-27 1993-06-15 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH09226312A (ja) * 1996-02-05 1997-09-02 Goodyear Tire & Rubber Co:The 空気タイヤ
JPH11170817A (ja) * 1997-12-08 1999-06-29 Bridgestone Corp 空気入りタイヤ
JP2000229504A (ja) * 1998-12-11 2000-08-22 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2001219715A (ja) * 1999-01-13 2001-08-14 Bridgestone Corp 操縦安定性にすぐれる空気入りタイヤ
US6467517B1 (en) * 1999-06-15 2002-10-22 Michelin Recherche Et Technique S.A. Tire having sacrificial bridging
JP2003159910A (ja) * 2001-09-17 2003-06-03 Bridgestone Corp 空気入りタイヤ
JP2003205710A (ja) * 2002-01-10 2003-07-22 Bridgestone Corp 空気入りタイヤ及びその装着方法
JP2006321342A (ja) * 2005-05-18 2006-11-30 Bridgestone Corp 空気入りタイヤ
JP2007223493A (ja) * 2006-02-24 2007-09-06 Bridgestone Corp 空気入りタイヤ
EP1870258A2 (de) * 2006-06-24 2007-12-26 Continental Aktiengesellschaft Fahrzeugreifen
JP2009190677A (ja) 2008-02-18 2009-08-27 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2010234895A (ja) * 2009-03-30 2010-10-21 Yokohama Rubber Co Ltd:The スタッドレスタイヤ
JP2011251650A (ja) * 2010-06-03 2011-12-15 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2014237398A (ja) * 2013-06-07 2014-12-18 株式会社ブリヂストン 空気入りタイヤ
JP2015024818A (ja) * 2014-10-01 2015-02-05 コンパニー ゼネラール デ エタブリッスマン ミシュラン 雪上性能改善用の面取り部を有する側方溝を備えたタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611038A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111546835A (zh) * 2019-02-12 2020-08-18 固特异轮胎和橡胶公司 用于轮胎的胎面

Also Published As

Publication number Publication date
EP3611038B1 (en) 2023-03-15
JP6929107B2 (ja) 2021-09-01
CN110494304B (zh) 2021-11-16
JP2018176928A (ja) 2018-11-15
EP3611038A4 (en) 2021-01-13
EP3611038A1 (en) 2020-02-19
CN110494304A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2016125814A1 (ja) 空気入りタイヤ
JP4738276B2 (ja) 空気入りタイヤ
AU2010207199B2 (en) Tire
RU2568521C1 (ru) Пневматическая радиальная шина для пассажирского транспортного средства и способ ее эксплуатации
JP4786317B2 (ja) 空気入りラジアルタイヤ
US11685195B2 (en) Pneumatic tire
US11878554B2 (en) Tyre
JP2011102073A (ja) 空気入りタイヤ
WO2018150746A1 (ja) 空気入りタイヤ
JP2013028289A (ja) 乗用車用空気入りラジアルタイヤ及びその使用方法
JP7187255B2 (ja) 空気入りタイヤ
WO2019049765A1 (ja) 空気入りタイヤ
WO2022270094A1 (ja) タイヤ
AU2016336311A1 (en) Pneumatic tire
JP4928785B2 (ja) 空気入りタイヤ
JP5229446B2 (ja) 空気入りタイヤ
WO2018190078A1 (ja) 重荷重用空気入りラジアルタイヤ
JP2006297991A (ja) 空気入りタイヤ
JP6411947B2 (ja) タイヤ
EP3446891B1 (en) Tire and tire mold
WO2021054261A1 (ja) タイヤ
JP5597350B2 (ja) タイヤ
JP7119529B2 (ja) 空気入りタイヤ
JP4149041B2 (ja) 空気入りタイヤ
JP7189800B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018784322

Country of ref document: EP

Effective date: 20191111