WO2022270094A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2022270094A1
WO2022270094A1 PCT/JP2022/014788 JP2022014788W WO2022270094A1 WO 2022270094 A1 WO2022270094 A1 WO 2022270094A1 JP 2022014788 W JP2022014788 W JP 2022014788W WO 2022270094 A1 WO2022270094 A1 WO 2022270094A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
belt
tread
vehicle
width direction
Prior art date
Application number
PCT/JP2022/014788
Other languages
English (en)
French (fr)
Inventor
家朋 松永
勲 桑山
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN202280036235.9A priority Critical patent/CN117355424A/zh
Publication of WO2022270094A1 publication Critical patent/WO2022270094A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present disclosure relates to a tire having a tread with an asymmetrical pattern relative to the tire equator line.
  • the volume of the formed groove is different.
  • the negative rate of the inner side (IN side) when mounted on the vehicle is low, especially if the tread rigidity is high due to the pattern or the type of rubber, during acceleration or deceleration (braking) in a straight line, the vehicle's Combined with the negative camber, the ground pressure of the tread on the IN side is released, causing a phenomenon in which the longitudinal force (Fx) tends to decrease. As a result, braking/driving performance may be deteriorated.
  • An object of the present invention is to provide a tire capable of effectively suppressing ground contact pressure loss.
  • One aspect of the present disclosure is a tire (pneumatic tire 10) including a tread (tread 40) in contact with the road surface and a pair of intersecting belts (inclined belts 61, 63) in which cords intersect, wherein the tire equator line is The volume of the groove formed in the tread on the inner side when mounted on a vehicle as a reference is smaller than the volume of the groove formed on the tread on the outer side when mounted on the vehicle with respect to the tire equator line.
  • a reinforcing belt (reinforcing belt 70) covered with a plurality of reinforcing cords extending along the tire width direction and the tire radial direction and arranged at a predetermined distance, the reinforcing belt It is provided from the outer side when mounted on the vehicle to the inner side when mounted on the vehicle.
  • FIG. 1 is a cross-sectional view of a pneumatic tire 10 along the tire width direction and the tire radial direction.
  • FIG. 2 is a partial plan development view of the tread of the pneumatic tire 10.
  • FIG. 3 is a partially exploded plan view of the inside of the tread 40 of the pneumatic tire 10.
  • FIG. 4 is a diagram schematically showing a cross-sectional shape of a pneumatic tire 10 mounted on a four-wheeled vehicle provided with negative camber.
  • FIG. 1 is a cross-sectional view of a pneumatic tire 10 according to the present embodiment. Specifically, FIG. 1 is a cross-sectional view of the pneumatic tire 10 along the tire width direction and the tire radial direction. In addition, in FIG. 1, the illustration of cross-sectional hatching is partially omitted (same below).
  • FIG. 2 is a partial plan development view of the tread of the pneumatic tire 10.
  • the pneumatic tire 10 is mainly used for four-wheeled vehicles (vehicles) such as passenger cars.
  • Four-wheeled vehicles may include light vehicles and SUVs (Sport Utility Vehicles), and may also include sports cars suitable for sports driving.
  • a pneumatic tire 10 includes a bead portion 20, a sidewall portion 30 and a tread 40.
  • the pneumatic tire 10 also includes a carcass 50 and a belt layer 60 on the inner side of the tread 40 in the tire radial direction.
  • the pneumatic tire 10 includes a reinforcing belt 70 between the tread 40 (tread rubber) and the belt layer 60. As shown in FIG.
  • the bead portion 20 is engaged with the rim wheel RM (not shown in FIGS. 1 and 2, see FIG. 4) and has an annular shape along the tire circumferential direction.
  • the bead portion 20 has a bead core 21 in which cords of metal (such as steel) or organic fibers are bundled.
  • a bead filler (not shown, may be called a stiffener) made of rubber (or other than rubber (for example, resin)) having higher rigidity than the surrounding rubber is provided outside the bead core 21 in the tire radial direction. good too.
  • the sidewall portion 30 continues to the bead portion 20 and is located inside the bead portion 20 in the tire radial direction.
  • the sidewall portion 30 is a region from the tire width direction outer end of the bead portion 20 to the upper end of the belt layer 60 .
  • the sidewall portion 30 is also called a sidewall or the like.
  • the tread 40 is the part that contacts the road surface GND (not shown in FIGS. 1 and 2, see FIG. 4).
  • the tread 40 of the pneumatic tire 10 has various performances required for the pneumatic tire 10, specifically, high-speed durability, dynamic performance (cornering performance, steering stability, braking performance, etc.), drainage performance, and abrasion resistance.
  • a pattern (tread pattern) is formed in consideration of performance, rolling resistance (RR) and quietness (tire noise).
  • the outer side (outer side when attached to the vehicle (OUT side)) and the inner side (inner side (IN side) when attached to the vehicle) are designated.
  • the OUT side is located on the outside that can be seen from the side of the vehicle when mounted on the vehicle
  • the IN side is located on the inside that cannot be seen from the side of the vehicle when mounted on the vehicle.
  • outer side or “inner side” will be used as appropriate, but it may also be interpreted as “when mounted on a vehicle.” However, it is not necessarily limited to when it is mounted on a vehicle, and simply one shoulder of the sidewall portion 30 (or the bead portion 20) is placed on the outside (OUT side) and the other shoulder of the sidewall portion 30 (or the bead portion 20) is placed on the inside ( IN side).
  • the tread 40 is grooved by several groove elements. Specifically, the tread 40 may be formed with a plurality of circumferential grooves 41, widthwise sipes 42, and shoulder grooves 43, respectively.
  • the circumferential groove 41 is a linear main groove extending along the tire circumferential direction. Two circumferential grooves 41 are formed on the OUT side and one circumferential groove 41 is formed on the IN side with the tire equator line CL as a reference. Thus, the groove formed on the inner side (IN side) when mounted on the vehicle may include at least one circumferential groove 41 .
  • the width and depth of the circumferential groove 41 are not particularly limited. good too.
  • the groove wall portion of the circumferential groove 41 may be inclined with respect to the tire radial direction (or the tire equator line CL). Specifically, one groove wall portion of the circumferential groove 41 is inclined toward the inner side when mounted on the vehicle as it goes inward in the tire radial direction. Further, the other groove wall portion of the circumferential groove 41 is inclined toward the outside when mounted on the vehicle as it goes inward in the tire radial direction. That is, the groove width of the circumferential groove 41 may decrease from the tire radial outer side toward the tire radial inner side.
  • the width direction sipes 42 are linear sipes extending in the tire width direction, and are formed in plurality at regular intervals in the tire circumferential direction.
  • a sipe is a narrow groove that closes in the contact surface of the tread 40, and the opening width of the sipe when not in contact with the ground is not particularly limited, but is preferably 0.1 mm to 1.5 mm.
  • the width direction sipes 42 are inclined with respect to the tire width direction while extending along the tire width direction. That is, the width direction sipes 42 are not parallel to the tire width direction, but are inclined with respect to the tire width direction.
  • the inclination angle of the widthwise sipe 42 with respect to the tire width direction is 45 degrees or less, and preferably 30 degrees or less in consideration of both the rigidity of the tread 40 and the suppression of pass-by noise (PBN).
  • the shoulder groove 43 is formed in the tread shoulder portion on the IN side.
  • the shoulder grooves 43 extend in the tire width direction and have a shape that is bent at the central portion.
  • the shoulder grooves 43 may be formed on the outer side in the tire width direction of the ground contact edge in the tire width direction of the pneumatic tire 10 set to a normal internal pressure and loaded with a normal load. However, the area of the inner shoulder land portion where the shoulder groove 43 is formed may be grounded to the road surface GND during cornering.
  • the normal internal pressure is the air pressure corresponding to the maximum load capacity in the JATMA (Japan Automobile Tire Manufacturers Association) YearBook
  • the normal load is the maximum load capacity (maximum load) corresponding to the maximum load capacity in the JATMA YearBook.
  • ETRTO in Europe, TRA in the United States, and tire standards in other countries are compatible.
  • the lug groove 44 is formed in the tread shoulder portion on the IN side.
  • the lug grooves 44 are inclined with respect to the tire width direction along the tire width direction. That is, the lug grooves 44 are not parallel to the tire width direction, but are inclined with respect to the tire width direction.
  • the inclination angle of the lug grooves 44 with respect to the tire width direction is 45 degrees or less, like the width direction sipes 42, and is preferably 30 degrees or less in consideration of both the rigidity of the outer shoulder land portion and suppression of PBN.
  • peripheral portion of the lug groove 44 may be inclined inward in the tire radial direction from the tread surface side of the tread 40 (outer shoulder land portion). Such an inclination may be called a chamfer (chamfer) or the like.
  • the volume of the groove portion (specifically, one circumferential groove 41 and the lug groove 44) formed in the tread 40 on the inner side when mounted on the vehicle with reference to the tire equator CL is the tire equator.
  • the volume is smaller than the volume of grooves (specifically, two circumferential grooves 41, widthwise sipes 42, and shoulder grooves 43) formed in the tread 40 on the vehicle-mounted outer side with reference to the line CL.
  • the volume of the groove may be interpreted as the area (or volume) of the portion that does not contact the road surface GND under the normal internal pressure and normal load described above.
  • the portion that touches the road surface GND may be interpreted as the land portion.
  • such a groove-to-land ratio may be defined as a so-called negative rate.
  • the negative ratio can be expressed simply as groove/(land+groove), but more precisely, the entire tread 40 obtained by projecting the entire circumference (or unit length (pitch)) of the tread 40 two-dimensionally. It may be interpreted as the ratio of grooves to area.
  • the main groove portion of the tread 40 may be treated as the groove portion, and the other grooves may be excluded.
  • the circumferential grooves 41 extending in the tire circumferential direction are treated as groove portions, and the widthwise sipes 42, the shoulder grooves 43, and the lug grooves 44 extending in the tire width direction are calculated for the negative rate. may be excluded from
  • the contact edge in the tire width direction required to determine the area of the land portion is the maximum load capacity (load index (LI)) corresponding to the maximum load capacity (load index (LI)) of the pneumatic tire 10 set to the normal internal pressure, as described above.
  • load index (LI) maximum load capacity
  • a state in which the load capacity (maximum load) is applied may be used as a reference.
  • the carcass 50 forms the skeleton of the pneumatic tire 10.
  • the carcass 50 has a radial structure in which carcass cords 51a (not shown in FIGS. 1 and 2, see FIG. 3) radially arranged along the tire radial direction are covered with a rubber material.
  • the carcass 50 is folded back from the inner side in the tire width direction to the outer side in the tire width direction via the bead cores 21 .
  • the carcass 50 may be one sheet, or two or more sheets may be laminated.
  • the belt layer 60 is provided outside the carcass 50 in the tire radial direction.
  • Belt layer 60 includes inclined belt 61 , inclined belt 63 and spiral belt 65 .
  • the inclined belt 61 is provided outside the carcass 50 in the tire radial direction.
  • the inclined belt 63 is provided outside the inclined belt 61 in the tire radial direction.
  • the inclined belt 61 and the inclined belt 63 respectively have a belt cord 61a and a belt cord 63a (see FIG. 3) that cross each other.
  • the inclined belt 61 and the inclined belt 63 constitute a pair of intersecting belts in which cords intersect.
  • the spiral belt 65 is provided outside the inclined belt 63, that is, the intersecting belt in the tire radial direction.
  • the spiral belt 65 has a structure in which a belt cord 65a is wound along the tire circumferential direction.
  • the spiral belt 65 is constructed by winding a strip-shaped rubber member coated with the belt cord 65a along the intersecting belt in the tire circumferential direction.
  • the reinforcing belt 70 is provided between the inclined belt 63 (intersecting belt) and the tread 40 (specifically, the tread rubber forming the tread 40). In this embodiment, the reinforcing belt 70 is provided between the spiral belt 65 and the tread 40. As shown in FIG.
  • the reinforcement belt 70 has a plurality of reinforcement cords 70a (see FIG. 3) extending along the tire width direction and the tire radial direction.
  • the reinforcement cords 70a extend in the tire width direction when viewed from the tread surface, and extend along the tire radial direction (which may also be called the radial direction) when viewed from the tire side. Therefore, the reinforcing belt 70 may be called a radial belt or the like having cords extending along the radial direction.
  • the reinforcement belt 70 can be interpreted as a type of reinforcement belt that is relatively freely stretched and deformed in the tire circumferential direction, and is difficult to stretch and deform in the tire width direction. In this way, the reinforcing belt 70 can function as a component that imparts anisotropy inside the tread 40 (inward in the tire radial direction).
  • the reinforcing belt 70 is provided between the spiral belt 65 and the tread 40 and has the characteristics described above, so it may be called a floating belt or the like.
  • the reinforcement belt 70 is provided from the outer side (OUT side) when mounted on the vehicle to the inner side (IN side) when mounted on the vehicle. Specifically, the reinforcing belt 70 may be provided on the OUT side and the IN side with respect to the tire equator line CL.
  • the reinforcing belt 70 may be provided at least up to the ground contact end in the tire width direction. As described above, the ground contact may be based on normal internal pressure and normal load. The end of the reinforcing belt 70 in the tire width direction may be positioned on the shoulder side of the tread 40 beyond the ground contact edge.
  • FIG. 3 is a partially exploded plan view of the inside of the tread 40 of the pneumatic tire 10. As shown in FIG. Specifically, FIG. 3 is a partial plan view of the carcass 50, the belt layer 60 and the reinforcing belt 70 provided inside the tread 40 (tread rubber).
  • the carcass 50 is composed of two carcass plies 51 in this embodiment.
  • the carcass 50 has a radial structure, but is not limited to a radial structure, and may have a bias structure in which the carcass cords 51a are arranged so as to intersect in the tire radial direction.
  • the material of the carcass cord 51a is not particularly limited, for example, it can be formed using organic fibers such as nylon, like tires for general four-wheeled vehicles.
  • the carcass cords 51a may be made of materials such as aromatic polyamide and steel.
  • the inclined belts 61 and 63 that constitute the belt layer 60 constitute a pair of intersecting belts as described above.
  • the belt cords 61a and the belt cords 63a are arranged obliquely with respect to the tire width direction (or the tire circumferential direction), and the belt cords 61a and the belt cords 63a are arranged so as to intersect each other. It inclines in the opposite direction to the width direction.
  • the material of the belt cord 61a and the belt cord 63a is not particularly limited either, and may be made of materials such as aromatic polyamide and steel, for example.
  • the spiral belt 65 is provided between the inclined belts 61, 63 (intersecting belts) and the reinforcing belt 70.
  • the spiral belt 65 is a belt in which a belt cord 65a extending substantially parallel to the tire equator line CL is covered with a rubber material.
  • the belt cord 65a may be called a spiral cord.
  • the belt cord 65a can be made of organic fibers or steel, for example.
  • the material of the belt cord 65a and the material of the belt cords 61a and 63a may be the same, considering the performance required of the pneumatic tire 10, it is preferable that they are different.
  • the belt cord 65a preferably has higher strength than the belt cords 61a and 63a.
  • the number of belt cords 65a driven in the tire width direction (which may also be called an arrangement interval or arrangement density) is preferably 6 cords/cm or more.
  • the reinforcing belt 70 extends in the tire width direction and is constructed by coating a plurality of reinforcing cords 70a arranged at predetermined intervals with a coating rubber 70b.
  • the reinforcing cords 70a are preferably arranged parallel to the tire width direction, that is, arranged so that the angle formed with the tire width direction is 0 degree. However, the reinforcing cords 70a may have a slight angle (15 degrees or less) with respect to the tire width direction.
  • organic fibers 70a As the material for the reinforcing cords 70a, it is desirable to use organic fibers with relatively high strength.
  • aramid fibers specifically Kevlar (registered trademark), etc. can be used.
  • nylon or the like may be used depending on the usage environment, it is preferable to use higher-strength organic fibers (aromatic polyamide).
  • the reinforcing cords 70a may be formed by twisting a plurality of the above-described organic fibers or the like, and the thickness of the reinforcing cords 70a is preferably 0.5 mm to 2.0 mm, and the Young's modulus of the reinforcing cords 70a is 50 GPa. It is preferable that it is above.
  • the number of reinforcing cords 70a to be driven is preferably 20 to 60/50 mm.
  • the volume of the groove formed in the inner (IN side) tread 40 when mounted on the vehicle with reference to the tire equator CL is It is smaller than the volume of the groove formed in the tread 40 on the outside (OUT side). That is, in the pneumatic tire 10, the IN side negative rate is lower than the OUT side negative rate.
  • Asymmetrical patterns are widely used for pneumatic tires that are mounted on vehicles such as four-wheeled vehicles for the purposes of driving performance and noise reduction, as described above.
  • the asymmetric pattern of IN side negative rate ⁇ OUT side negative rate like the pneumatic tire 10 there are the following drawbacks.
  • FIG. 4 schematically shows the cross-sectional shape of a pneumatic tire 10 mounted on a four-wheeled vehicle provided with negative camber.
  • negative camber ( ⁇ c in the figure) is applied, and when the negative ratio on the IN side is low, the load applied to the pneumatic tire 10 when accelerating or decelerating (braking) in a straight-ahead state. temporarily increases, and the contact edge in the tire width direction spreads toward the IN side.
  • the wiping deformation also causes contraction of the belt layer 60 (including the spiral belt 65), which is a factor that promotes the flow of the tread rubber. For this reason, on the IN side where the negative rate is low, the escape of the flowing tread rubber is limited, pushing up the belt layer 60 (which may be called buckling), that is, deformation of the tread 40 inward in the tire radial direction ( (see dotted line arrow in the figure) is likely to occur. As a result, during acceleration and deceleration, the contact pressure on the IN side drops, resulting in a loss of lateral force (Fy) and a drop in longitudinal force (Fx).
  • a reinforcing belt 70 is provided inside the tread 40 in the tire radial direction, in which reinforcing cords 70a arranged along the tire width direction are covered with a coating rubber 70b. That is, since the reinforcing belt 70 has only cords arranged along the tire width direction (and the tire radial direction), it can be stretched and deformed relatively freely in the tire circumferential direction, and conversely, can be stretched and deformed in the tire width direction. has the property of being difficult to deform.
  • the reinforcing belt 70 functions as a buffer layer between the highly rigid belt layer 60 (and the spiral belt 65) and the tread 40, and the wiping deformation described above can be reduced. Specifically, the wiping deformation, which is a factor that promotes the flow of the tread rubber, is absorbed by the reinforcing belt 70, so it is possible to prevent the belt layer 60 from being pushed up (lifted) near the circumferential groove 41 on the IN side.
  • the reinforcement belt 70 can disperse the tension in the tire width direction from the tension in the tire circumferential direction, and the rigidity of the belt layer 60 (and the spiral belt 65) is moderately lowered, thereby suppressing pressure loss due to wiping deformation.
  • the negative rate on the inner side (IN side) when mounted on the vehicle is low, and even when the rigidity of the tread 40 is high due to the pattern or the type of rubber, even in the straight running state.
  • Ground contact pressure loss during acceleration or deceleration can be effectively suppressed.
  • a decrease in longitudinal force can be suppressed, and braking/driving performance can be improved.
  • a spiral belt 65 around which a belt cord 65a is wound along the tire circumferential direction is provided between the inclined belts 61, 63 (intersecting belts) and the reinforcing belt . Therefore, while functioning as a hoop in the tire circumferential direction, the reinforcement belt 70 can contribute to suppression of contact pressure loss.
  • the reinforcing belt 70 may be provided at least up to the ground contact end in the tire width direction. As a result, when the vehicle is traveling straight ahead, it is possible to more effectively suppress the loss of contact pressure of the IN side tread 40, which has a low negative rate.
  • the groove formed on the IN side may include at least one circumferential groove 41 . That is, on the IN side where the negative rate is high, a linear groove extending in the tire circumferential direction that can serve as the main groove may be formed. Even in the case of such a tread pattern, which has a relatively wide groove width and extends along the tire circumferential direction, which is disadvantageous in suppressing deformation, it is possible to effectively suppress the loss of contact pressure in the vicinity of the circumferential grooves 41 .
  • one groove wall portion of the circumferential groove 41 is inclined so as to approach the inner side when mounted on the vehicle as it goes inward in the tire radial direction
  • the other groove wall portion of the circumferential groove 41 is , and is inclined so as to approach the outside when mounted on a vehicle as it goes inward in the tire radial direction.
  • the groove wall portion of the circumferential groove 41 may be parallel to the tire radial direction without being inclined.
  • the peripheral portion of the lug groove 44 may be formed with a chamfer (chamfer) that slopes inward in the tire radial direction from the tread surface side of the tread 40 (outer shoulder land portion). Forming such a chamfer is effective in improving wet performance and suppressing uneven wear in the vicinity of the lug grooves 44 .
  • the spiral belt 65 was provided in the above-described embodiment, but the spiral belt 65 is not essential. That is, depending on the application of the pneumatic tire 10, the reinforcing belt 70 is provided outside the crossing belts (the inclined belts 61, 63) in the tire radial direction, and the tread 40 (tread rubber) is provided outside the reinforcing belt 70 in the tire radial direction.
  • the structure provided may be sufficient.
  • other than the spiral belt 65 other reinforcing belts, for example, belts (which may be called cap layers or the like) that cover the tire width direction end portions of the intersecting belts may be provided.
  • belts which may be called cap layers or the like
  • the reinforcement belt 70 is provided to the vicinity of the ground contact edges of the outer side (OUT side) when mounted on the vehicle and the inner side (IN side) when mounted on the vehicle, but the width of the reinforcing belt 70 is based on the tire equator line CL. If provided on the OUT side and IN side as described above, it may be somewhat narrowed. Furthermore, the width of the reinforcing belt 70 may be asymmetric with respect to the tire equator line CL. In other words, either the OUT side or the IN side tire radial direction outer end may be positioned further outside in the tire width direction than the other tire radial direction outer end.
  • a plurality of linear circumferential grooves 41 are formed in the tread 40, but the circumferential grooves 41 are not necessarily linear, and may meander or bend along the tire circumferential direction. good too.
  • the tread 40 is not necessarily formed with circumferential grooves, and may be formed with inclined grooves or the like that are inclined with respect to the tire circumferential direction (tire width direction).
  • the tread pattern is not necessarily limited as long as it is an asymmetrical pattern of IN side negative rate ⁇ OUT side negative rate.

Abstract

空気入りタイヤ(10)は、路面に接するトレッド(40)と、コードが交錯する一対の傾斜ベルト(61, 63)とを備える。空気入りタイヤ(10)は、タイヤ赤道線(CL)を基準とした車両装着時内側のトレッド(40)に形成される溝部のボリュームは、タイヤ赤道線(CL)を基準とした車両装着時外側のトレッド(40)に形成される溝部のボリュームよりも少なく、傾斜ベルト(61, 63)とトレッド(40)との間に、タイヤ幅方向及びタイヤ径方向に沿って延び、所定の距離を隔てて配置された複数の補強コードを被覆した補強ベルト(70)を備える。補強ベルト(70)は、車両装着時外側から車両装着時内側に亘って設けられる。

Description

タイヤ
 本開示は、タイヤ赤道線を基準とした非対称パターンのトレッドを備えるタイヤに関する。
 従来、四輪自動車などの車両に装着される空気入りタイヤ(以下、タイヤと適宜省略する)では、例えば、運動性能や騒音対策を目的として、タイヤ赤道線を基準とした非対称パターンが広く採用されている(例えば、特許文献1)。
 このような非対称パターンのトレッドを備えるタイヤでは、タイヤ赤道線を基準とした車両装着時外側(OUT側)に形成される溝部のボリューム(いわゆるネガティブ率)と、車両装着時内側(IN側)に形成される溝部のボリュームとが異なる。
特開2014-159244号公報
 上述したような車両装着時内側(IN側)のネガティブ率が低く、特に、パターンまたはゴムの種類によってトレッドの剛性が高くなっている場合、直進状態での加速または減速(制動)時に、車両のネガティブキャンバーとも相俟って、IN側のトレッドの接地圧が抜けてしまい、前後力(Fx)が低下し易い現象が生じる。この結果、制駆動性能を悪化させ得る。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、車両装着時内側(IN側)のネガティブ率が低い非対称パターンを採用した場合でも、直進状態での加速または減速時の接地圧抜けを効果的に抑制し得るタイヤの提供を目的とする。
 本開示の一態様は、路面に接するトレッド(トレッド40)と、コードが交錯する一対の交錯ベルト(傾斜ベルト61, 63)とを備えるタイヤ(空気入りタイヤ10)であって、タイヤ赤道線を基準とした車両装着時内側の前記トレッドに形成される溝部のボリュームは、前記タイヤ赤道線を基準とした車両装着時外側の前記トレッドに形成される溝部のボリュームよりも少なく、前記交錯ベルトと前記トレッドとの間に、タイヤ幅方向及びタイヤ径方向に沿って延び、所定の距離を隔てて配置された複数の補強コードを被覆した補強ベルト(補強ベルト70)を備え、前記補強ベルトは、前記車両装着時外側から前記車両装着時内側に亘って設けられる。
図1は、空気入りタイヤ10のタイヤ幅方向及びタイヤ径方向に沿った断面図である。 図2は、空気入りタイヤ10のトレッドの一部平面展開図である。 図3は、空気入りタイヤ10のトレッド40内部の一部分解平面図である。 図4は、ネガティブキャンバーが付与された四輪自動車に装着された空気入りタイヤ10の断面形状を模式的に示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)タイヤの全体概略構成
 図1は、本実施形態に係る空気入りタイヤ10の断面図である。具体的には、図1は、空気入りタイヤ10のタイヤ幅方向及びタイヤ径方向に沿った断面図である。なお、図1では、断面ハッチングの図示が、一部省略されている(以下同)。図2は、空気入りタイヤ10のトレッドの一部平面展開図である。
 本実施形態では、空気入りタイヤ10は、主に乗用自動車などの四輪自動車(車両)に用いられる。四輪自動車には、軽自動車やSUV(Sport Utility Vehicle)なども含まれてよく、また、スポーツドライビングに好適なスポーツカーが含まれてもよい。
 空気入りタイヤ10は、ビード部20、サイドウォール部30及びトレッド40を備える。また、空気入りタイヤ10は、トレッド40のタイヤ径方向内側に、カーカス50及びベルト層60を備える。さらに、空気入りタイヤ10は、トレッド40(トレッドゴム)とベルト層60との間に、補強ベルト70を備える。
 ビード部20は、リムホイールRM(図1,2において不図示、図4参照)に係止され、タイヤ周方向に沿った円環状である。ビード部20は、金属(スチールなど)または有機繊維のコードを束ねたビードコア21を有する。ビードコア21のタイヤ径方向外側には、周囲のゴムよりも高剛性なゴム(或いはゴム以外(例えば、樹脂)によって形成されたビードフィラー(不図示、スティフナーと呼ばれてもよい)が設けられてもよい。
 サイドウォール部30は、ビード部20に連なり、ビード部20のタイヤ径方向内側に位置する。サイドウォール部30は、ビード部20のタイヤ幅方向外側端からベルト層60の上端までの領域である。サイドウォール部30は、サイドウォールなどと呼ばれることもある。
 トレッド40は、路面GND(図1,2において不図示、図4参照)と接する部分である。空気入りタイヤ10のトレッド40には、空気入りタイヤ10に要求される各種性能、具体的には、高速耐久性、運動性能(コーナリング性能、操縦安定性、制動性能など)、排水性能、耐摩耗性能、転がり抵抗(RR)及び静粛性(タイヤ騒音)などを考慮したパターン(トレッドパターン)が形成される。
 空気入りタイヤ10は、車両への装着時における外側(車両装着時外側(OUT側))及び内側(車両装着時内側(IN側))が指定されることが好ましい。OUT側は、車両装着時に車両側面から視認できる外側に位置し、IN側は、車両装着時に車両側面から視認できない内側に位置する。なお、以下の説明では、単に、外側または内側と適宜記載するが、車両装着時と解釈されてもよい。但し、必ずしも車両装着時に限定されず、単に、サイドウォール部30(またはビード部20)の一方のショルダーを外側(OUT側)、サイドウォール部30(またはビード部20)の他方のショルダーを内側(IN側)と解釈されてもよい。
 図2に示すように、トレッド40には、幾つかの溝要素によって溝部が形成される。具体的には、トレッド40には、複数の周方向溝41、幅方向サイプ42及びショルダー溝43がそれぞれ形成されてよい。
 周方向溝41は、タイヤ周方向に沿って延びる直線状の主溝である。タイヤ赤道線CLを基準として、OUT側に2本の周方向溝41、IN側に1本の周方向溝41が形成されている。このように、車両装着時内側(IN側)に形成される溝部は、少なくとも1つの周方向溝41を含んでよい。
 周方向溝41の幅及び深さは特に限定されないが、例えば、深さは、4.5mm~7mm程度であり、幅は、深さと略同様でもよいし、深さよりも少し広く(または狭く)てもよい。
 また、周方向溝41の溝壁部分は、タイヤ径方向(タイヤ赤道線CLでもよい)に対して傾斜していてもよい。具体的には、周方向溝41の一方の溝壁部分は、タイヤ径方向内側に向かうに連れて車両装着時内側に近づくように傾斜する。また、周方向溝41の他方の溝壁部分は、タイヤ径方向内側に向かうに連れて車両装着時外側に近づくように傾斜する。つまり、周方向溝41の溝幅は、タイヤ径方向外側からタイヤ径方向内側に向かうに連れて狭くなってもよい。
 幅方向サイプ42は、タイヤ幅方向に延びる直線状のサイプであり、タイヤ周方向において一定の距離を隔てて複数形成される。
 なお、サイプとは、トレッド40の接地面内では閉じる細溝であり、非接地時におけるサイプの開口幅は、特に限定されないが、0.1mm~1.5mmであることが好ましい。
 幅方向サイプ42のタイヤ幅方向における一端は、周方向溝41に連通する。幅方向サイプ42は、タイヤ幅方向に沿いつつ、タイヤ幅方向に対して傾斜する。つまり、幅方向サイプ42は、タイヤ幅方向とは平行でなく、タイヤ幅方向に対して傾斜している。幅方向サイプ42のタイヤ幅方向に対する傾斜角度は、45度以下であり、トレッド40の剛性と通過騒音(PBN)抑制との両立を考慮すると、30度以下であることが好ましい。
 ショルダー溝43は、IN側のトレッドショルダー部分に形成される。本実施形態では、ショルダー溝43は、タイヤ幅方向に延び、中央部分で折れ曲がるような形状を有する。
 ショルダー溝43は、正規内圧に設定され、正規荷重が負荷された空気入りタイヤ10のタイヤ幅方向における接地端よりもタイヤ幅方向外側に形成されてよい。但し、ショルダー溝43が形成されている内側ショルダー陸部の領域は、コーナリング時などには路面GNDと接地してもよい。
 なお、正規内圧とは、日本ではJATMA(日本自動車タイヤ協会)のYearBookにおける最大負荷能力に対応する空気圧であり、正規荷重とは、JATMA YearBookにおける最大負荷能力に対応する最大負荷能力(最大荷重)である。また欧州ではETRTO、米国ではTRA、その他各国のタイヤ規格が対応する。
 ラグ溝44は、IN側のトレッドショルダー部分に形成される。ラグ溝44は、タイヤ幅方向に沿いつつ、タイヤ幅方向に対して傾斜する。つまり、ラグ溝44は、タイヤ幅方向とは平行でなく、タイヤ幅方向に対して傾斜している。
 ラグ溝44のタイヤ幅方向に対する傾斜角度は、幅方向サイプ42と同様に45度以下であり、外側ショルダー陸部の剛性とPBN抑制との両立を考慮すると、30度以下であることが好ましい。
 また、ラグ溝44の周縁部分は、トレッド40(外側ショルダー陸部)の踏面側からタイヤ径方向内側に向かって傾斜していてもよい。このような傾斜は、チャンファー(面取り部)などと呼ばれてもよい。
 空気入りタイヤ10では、タイヤ赤道線CLを基準とした車両装着時内側のトレッド40に形成される溝部(具体的には、1本の周方向溝41及びラグ溝44)のボリュームは、タイヤ赤道線CLを基準とした車両装着時外側のトレッド40に形成される溝部(具体的には、2本の周方向溝41、幅方向サイプ42及びショルダー溝43)のボリュームよりも少なくなっている。
 溝部のボリュームとは、上述した正規内圧及び正規荷重時において、路面GNDと接地しない部分の面積(或いは体積)と解釈されてよい。一方、正規内圧及び正規荷重時において、路面GNDと接地する部分が、陸部と解釈されてよい。
 また、このような溝部と陸部の比率は、いわゆるネガティブ率として定義されてもよい。ネガティブ率は、端的には、溝部/(陸部+溝部)として表現できるが、正確には、トレッド40の全周(または単位長(ピッチ)でもよい)部分を二次元に投影したトレッド40全体面積に対する溝部の比率と解釈されてよい。
 なお、ネガティブ率の計算を容易にするため、トレッド40の主溝部分のみを溝部の対象とし、他の溝は除外されてもよい。具体的には、本実施形態であれば、タイヤ周方向に延びる周方向溝41は溝部の対象とし、タイヤ幅方向に延びる幅方向サイプ42、ショルダー溝43及びラグ溝44は、ネガティブ率の計算から除外されてもよい。
 また、陸部の面積の確定に必要となるタイヤ幅方向における接地端は、上述したように、正規内圧に設定された空気入りタイヤ10に最大負荷能力(ロードインデックス(LI))に対応する最大負荷能力(最大荷重)が負荷された状態を基準としてよい。
 カーカス50は、空気入りタイヤ10の骨格を形成する。カーカス50は、タイヤ径方向に沿って放射状に配置されたカーカスコード51a(図1,2において不図示、図3参照)がゴム材料によって被覆されたラジアル構造である。カーカス50は、ビードコア21を介してタイヤ幅方向内側からタイヤ幅方向外側に折り返されている。なお、カーカス50は、1枚でもよいし、2枚以上が積層されてもよい。
 ベルト層60は、カーカス50のタイヤ径方向外側に設けられる。ベルト層60は、傾斜ベルト61、傾斜ベルト63及びスパイラルベルト65を含む。
 傾斜ベルト61は、カーカス50のタイヤ径方向外側に設けられる。傾斜ベルト63は、傾斜ベルト61のタイヤ径方向外側に設けられる。傾斜ベルト61及び傾斜ベルト63は、互いに交錯するベルトコード61a及びベルトコード63a(図3参照)をそれぞれ有する。
 本実施形態において、傾斜ベルト61及び傾斜ベルト63は、コードが交錯する一対の交錯ベルトを構成する。
 スパイラルベルト65は、傾斜ベルト63、つまり、交錯ベルトのタイヤ径方向外側に設けられる。スパイラルベルト65は、タイヤ周方向に沿ってベルトコード65aが巻き付けられた構造である。具体的には、ベルトコード65aを被覆したストリップ状のゴム部材を交錯ベルトに沿ってタイヤ周方向に巻き付けることによってスパイラルベルト65が構成される。
 補強ベルト70は、傾斜ベルト63(交錯ベルト)とトレッド40(具体的には、トレッド40を形成するトレッドゴム)との間に設けられる。本実施形態では、補強ベルト70は、スパイラルベルト65とトレッド40との間に設けられる。補強ベルト70は、タイヤ幅方向及びタイヤ径方向に沿って延びる複数の補強コード70a(図3参照)を有する。
 補強コード70aは、トレッド面視においてタイヤ幅方向に延び、タイヤ側面視において、タイヤ径方向(ラジアル方向と呼ばれてもよい)に沿って延びる。従って、補強ベルト70は、ラジアル方向に沿って延びるコードを有するラジアルベルトなどと呼ばれてもよい。
 補強ベルト70は、タイヤ周方向には比較的自由に伸びて変形し、逆に、タイヤ幅方向には伸び難く、変形し難い補強ベルトの一種と解釈されてもよい。このように、補強ベルト70は、トレッド40の内部(タイヤ径方向内側)において異方性を与える構成要素として機能できる。
 また、補強ベルト70は、スパイラルベルト65とトレッド40との間に設けられ、上述したような特徴を有することから、フローティングベルトなどと呼ばれてもよい。
 補強ベルト70は、車両装着時外側(OUT側)から車両装着時内側(IN側)に亘って設けられる。具体的には、補強ベルト70は、タイヤ赤道線CLを基準としたOUT側及びIN側に設けられてよい。
 また、補強ベルト70は、少なくともタイヤ幅方向における接地端まで設けられてもよい。上述したように、接地端は、正規内圧及び正規荷重時を基準としてよい。なお、補強ベルト70のタイヤ幅方向における端部は、接地端を超えたトレッド40のショルダー側に位置してもよい。
 (2)トレッド40内部の構造
 図3は、空気入りタイヤ10のトレッド40内部の一部分解平面図である。具体的には、図3は、トレッド40(トレッドゴム)内部に設けられるカーカス50、ベルト層60及び補強ベルト70の一部平面図である。
 図3に示すように、本実施形態では、カーカス50は、2枚のカーカスプライ51によって構成される。上述したように、本実施形態では、カーカス50は、ラジアル構造であるが、ラジアル構造に限定されず、カーカスコード51aがタイヤ径方向に交錯するように配置されたバイアス構造でもよい。
 カーカスコード51aの材料は特に限定されないが、例えば、一般的な四輪自動車向けのタイヤと同様に、ナイロンなどの有機繊維を用いて形成できる。但し、カーカスコード51aは、芳香族ポリアミド、スチールなどの材料によって構成されてもよい。
 ベルト層60を構成する傾斜ベルト61及び傾斜ベルト63は、上述したように一対の交錯ベルトを構成する。具体的には、ベルトコード61a及びベルトコード63aは、タイヤ幅方向(タイヤ周方向でもよい)に対して傾斜して配置され、ベルトコード61aとベルトコード63aとは、互いに交錯するように、タイヤ幅方向に対して逆方向に傾斜する。
 ベルトコード61a及びベルトコード63aの材料も特に限定されず、例えば、芳香族ポリアミド、スチールなどの材料によって構成されてよい。
 スパイラルベルト65は、傾斜ベルト61, 63(交錯ベルト)と補強ベルト70との間に設けられる。
 スパイラルベルト65は、タイヤ赤道線CLと実質的に平行に延びるベルトコード65aをゴム材料で被覆したベルトである。ベルトコード65aは、スパイラルコードと呼ばれてもよい。ベルトコード65aは、例えば、有機繊維またはスチールによって形成できる。なお、ベルトコード65aの材質と、ベルトコード61a及びベルトコード63aの材質とは、同一でもよいが、空気入りタイヤ10に要求される性能を考慮すると、異なっていることが好ましい。具体的には、ベルトコード65aは、ベルトコード61a及びベルトコード63aよりも強度が高いことが好ましい。
 タイヤ幅方向におけるベルトコード65aの打ち込み数(配置間隔或いは配置密度と呼んでもよい)は、6本/cm以上であることが好ましい。
 補強ベルト70は、タイヤ幅方向に延び、所定の距離を隔てて配置された複数の補強コード70aをコーティングゴム70bによって被覆することによって構成される。
 補強コード70aは、タイヤ幅方向と平行、つまり、タイヤ幅方向と成す角度が0度となるように配置されることが望ましい。但し、補強コード70aは、タイヤ幅方向に対して多少の角度(15度以下)を有していてもよい。
 補強コード70aの材料としては、比較的強度の高い有機繊維を用いることが望ましい。例えば、アラミド繊維、具体的には、ケブラー(登録商標)などを用いることできる。ナイロンなども使用環境次第では用い得るが、より高強度の有機繊維(芳香族ポリアミド)を用いることが好ましい。
 補強コード70aは、上述した有機繊維などを複数撚ることによって形成されてよいが、補強コード70aの太さは、0.5mm~2.0mmとすることが好ましく、補強コード70aのヤング率は、50GPa以上であることが好ましい。
 また、補強コード70aの打ち込み数は、20~60本/50mmとすることが好ましい。
 (3)作用・効果
 次に、本実施形態に係る空気入りタイヤ10の作用及び効果について説明する。上述したように、空気入りタイヤ10では、タイヤ赤道線CLを基準とした車両装着時内側(IN側)のトレッド40に形成される溝部のボリュームは、タイヤ赤道線CLを基準とした車両装着時外側(OUT側)のトレッド40に形成される溝部のボリュームよりも少なくなっている。つまり、空気入りタイヤ10では、IN側のネガティブ率は、OUT側のネガティブ率よりも低い。
 四輪自動車などの車両に装着される空気入りタイヤには、上述したように運動性能や騒音対策などを目的として、非対称パターンが広く採用される。しかしながら、空気入りタイヤ10のようなIN側ネガティブ率<OUT側ネガティブ率の非対称パターンの場合、次のような欠点がある。
 具体的には、乗用自動車などの四輪自動車の場合、一般的には、ネガティブキャンバーが付与されており、直進状態では、OUT側よりもIN側の接地圧が高くなる傾向にある。
 図4は、ネガティブキャンバーが付与された四輪自動車に装着された空気入りタイヤ10の断面形状を模式的に示す。
 図4に示すように、ネガティブキャンバー(図中のθc)が付与されており、IN側のネガティブ率が低い場合、直進状態において加速または減速(制動)すると、空気入りタイヤ10に負荷される荷重が一時的に増大し、タイヤ幅方向における接地端がIN側に広がる。
 このような場合、特に、高剛性でネガティブ率が低いIN側のトレッド40では、路面GNDとの接地に伴うタイヤ幅方向中央に向かう面内収縮力が作用し、トレッドゴムがタイヤ幅方向に沿ったワイピング変形と呼ばれる変形を来す。
 ワイピング変形は、ベルト層60など(スパイラルベルト65を含む)の収縮も引き起こし、トレッドゴムの流動を助長する要因となる。このため、ネガティブ率が低いIN側では、流動したトレッドゴムの逃げ場が限られ、ベルト層60の突き上げ(バックリングと呼ばれてもよい)、つまり、タイヤ径方向内側へのトレッド40の変形(図中の点線矢印参照)が生じ易い。これにより、加減速時には、IN側の接地圧が低下し、横力(Fy)が損失し、また、前後力(Fx)も低下してしまう。
 空気入りタイヤ10では、タイヤ幅方向に沿って配置される補強コード70aをコーティングゴム70bによって被覆した補強ベルト70が、トレッド40のタイヤ径方向内側に設けられている。つまり、補強ベルト70は、タイヤ幅方向(及びタイヤ径方向)に沿って配置されるコードのみを備えているため、タイヤ周方向には比較的自由に伸びて変形し、逆に、タイヤ幅方向には変形し難い特性を有する。
 補強ベルト70が、剛性が高いベルト層60(及びスパイラルベルト65)とトレッド40との緩衝層として機能し、上述したワイピング変形が低減できる。具体的には、トレッドゴムの流動を助長する要因となるワイピング変形が、補強ベルト70によって吸収されるため、IN側の周方向溝41近傍でのベルト層60の突き上げ(浮き)も抑制できる。
 また、補強ベルト70によって、タイヤ周方向の張力からタイヤ幅方向の張力に分散でき、ベルト層60(及びスパイラルベルト65)の剛性も程良く低下し、ワイピング変形による接地圧抜けを抑制し得る。
 このように、空気入りタイヤ10によれば、車両装着時内側(IN側)のネガティブ率が低く、特に、パターンまたはゴムの種類によってトレッド40の剛性が高くなっている場合でも、直進状態での加速または減速時の接地圧抜けを効果的に抑制できる。これにより、前後力の低下が抑制でき、制駆動性能を向上し得る。
 本実施形態では、傾斜ベルト61, 63(交錯ベルト)と補強ベルト70との間に、タイヤ周方向に沿ってベルトコード65aが巻き付けられたスパイラルベルト65が設けられる。このため、タイヤ周方向における箍(たが)として機能しつつ、補強ベルト70による接地圧抜け抑制に貢献し得る。
 また、補強ベルト70は、少なくともタイヤ幅方向における接地端まで設けられてもよい。これにより、直進時において、ネガティブ率が低いIN側のトレッド40の接地圧抜けをさらに効果的に抑制し得る。
 本実施形態では、IN側に形成される溝部は、少なくとも1つの周方向溝41を含んでよい。つまり、ネガティブ率が高いIN側には、主溝となり得るようなタイヤ周方向に伸びる直線状の溝が形成されていてよい。このような比較的溝幅が広くタイヤ周方向に沿って延び、変形抑制には不利なトレッドパターンの場合でも、周方向溝41近傍の接地圧抜けを効果的に抑制し得る。
 また、本実施形態では、周方向溝41の一方の溝壁部分は、タイヤ径方向内側に向かうに連れて車両装着時内側に近づくように傾斜し、周方向溝41の他方の溝壁部分は、タイヤ径方向内側に向かうに連れて車両装着時外側に近づくように傾斜している。このため、ネガティブキャンバーが付与されており、直進状態の加減速時でも、周方向溝41近傍でのタイヤ径方向内側へのトレッド40の変形を抑制する方向に作用する。このため、車両装着時内側(IN側)のトレッド40の接地圧低下をさらに効果的に抑制できる。
 なお、ウェット性能(排水性能)を重視する場合には、周方向溝41の溝壁部分は、傾斜せずにタイヤ径方向と平行としてもよい。
 また、本実施形態では、ラグ溝44の周縁部分は、トレッド40(外側ショルダー陸部)の踏面側からタイヤ径方向内側に向かって傾斜するチャンファー(面取り部)が形成されてもよい。このようなチャンファーを形成することによって、ウェット性能向上とラグ溝44近傍の偏摩耗抑制などに効果がある。
 (4)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、スパイラルベルト65が備えられていたが、スパイラルベルト65は、必須ではない。つまり、空気入りタイヤ10の用途などによっては、交錯ベルト(傾斜ベルト61, 63)のタイヤ径方向外側に補強ベルト70が設けられ、補強ベルト70のタイヤ径方向外側にトレッド40(トレッドゴム)が設けられる構造でもよい。
 また、スパイラルベルト65以外に、他の補強ベルト、例えば、交錯ベルトのタイヤ幅方向端部を覆うベルト(キャップ層などと呼ばれてもよい)が設けられてよい。
 本実施形態では、補強ベルト70が車両装着時外側(OUT側)及び車両装着時内側(IN側)の接地端付近まで備えられていたが、補強ベルト70の幅は、タイヤ赤道線CLを基準としたOUT側及びIN側に設けられていれば、多少狭くしてもよい。さらに、補強ベルト70の幅は、タイヤ赤道線CLを基準として非対称でもよい。つまり、OUT側またはIN側の何れのタイヤ径方向外側端は、他方のタイヤ径方向外側端よりもタイヤ幅方向外側に位置していてもよい。
 本実施形態では、直線状の周方向溝41がトレッド40に複数形成されていたが、周方向溝41は必ずしも直線状ではなく、タイヤ周方向に沿って多少蛇行したり、屈曲したりしてもよい。或いは、トレッド40には、必ずしも周方向溝が形成されず、タイヤ周方向(タイヤ幅方向)に対して傾斜した傾斜溝などが形成されていてもよい。つまり、IN側ネガティブ率<OUT側ネガティブ率の非対称パターンであれば、トレッドパターンは、必ずしも限定されない。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 空気入りタイヤ
 20 ビード部
 21 ビードコア
 30 サイドウォール部
 40 トレッド
 41 周方向溝
 42 幅方向サイプ
 43 ショルダー溝
 44 ラグ溝
 50 カーカス
 51 カーカスプライ
 51a カーカスコード
 60 ベルト層
 61 傾斜ベルト
 61a ベルトコード
 63 傾斜ベルト
 63a ベルトコード
 65 スパイラルベルト
 65a ベルトコード
 70 補強ベルト
 70a 補強コード
 70b コーティングゴム

Claims (4)

  1.  路面に接するトレッドと、コードが交錯する一対の交錯ベルトとを備えるタイヤであって、
     タイヤ赤道線を基準とした車両装着時内側の前記トレッドに形成される溝部のボリュームは、前記タイヤ赤道線を基準とした車両装着時外側の前記トレッドに形成される溝部のボリュームよりも少なく、
     前記交錯ベルトと前記トレッドとの間に、タイヤ幅方向及びタイヤ径方向に沿って延び、所定の距離を隔てて配置された複数の補強コードを被覆した補強ベルトを備え、
     前記補強ベルトは、前記車両装着時外側から前記車両装着時内側に亘って設けられるタイヤ。
  2.  前記交錯ベルトと前記補強ベルトとの間に、タイヤ周方向に沿ってコードが巻き付けられたスパイラルベルトを備える請求項1に記載のタイヤ。
  3.  前記補強ベルトは、少なくともタイヤ幅方向における接地端まで設けられる請求項1または2に記載のタイヤ。
  4.  前記車両装着時内側に形成される前記溝部は、少なくとも1つの周方向溝を含む請求項1乃至3の何れか一項に記載のタイヤ。
PCT/JP2022/014788 2021-06-21 2022-03-28 タイヤ WO2022270094A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280036235.9A CN117355424A (zh) 2021-06-21 2022-03-28 轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-102395 2021-06-21
JP2021102395A JP2023001584A (ja) 2021-06-21 2021-06-21 タイヤ

Publications (1)

Publication Number Publication Date
WO2022270094A1 true WO2022270094A1 (ja) 2022-12-29

Family

ID=84545378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014788 WO2022270094A1 (ja) 2021-06-21 2022-03-28 タイヤ

Country Status (3)

Country Link
JP (1) JP2023001584A (ja)
CN (1) CN117355424A (ja)
WO (1) WO2022270094A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103700A (ja) * 2017-12-14 2019-06-27 株式会社三洋物産 遊技機
JP2019103699A (ja) * 2017-12-14 2019-06-27 株式会社三洋物産 遊技機

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975176A (en) * 1998-05-29 1999-11-02 Scott; John R. Tire having a constantly decreasing diameter
JP2008279820A (ja) * 2007-05-08 2008-11-20 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2009061842A (ja) * 2007-09-05 2009-03-26 Bridgestone Corp 二輪車用空気入りタイヤ
JP2010120438A (ja) * 2008-11-17 2010-06-03 Bridgestone Corp 自動二輪車用空気入りタイヤ
JP2010120437A (ja) * 2008-11-17 2010-06-03 Bridgestone Corp 自動二輪車用空気入りタイヤ
JP2014159244A (ja) 2013-02-20 2014-09-04 Bridgestone Corp 空気入りタイヤ
WO2014162607A1 (ja) * 2013-04-05 2014-10-09 横浜ゴム株式会社 空気入りタイヤ
JP2015202781A (ja) * 2014-04-14 2015-11-16 株式会社ブリヂストン ランフラットタイヤ
JP2016120831A (ja) * 2014-12-25 2016-07-07 東洋ゴム工業株式会社 空気入りタイヤ
US20180186189A1 (en) * 2015-06-16 2018-07-05 Compagnie Generale Des Etablissements Michelin Pneumatic tire having a crown that comprises a reinforcement ply and a high-traction tread
JP2019001420A (ja) * 2017-06-19 2019-01-10 株式会社ブリヂストン タイヤ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975176A (en) * 1998-05-29 1999-11-02 Scott; John R. Tire having a constantly decreasing diameter
JP2008279820A (ja) * 2007-05-08 2008-11-20 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2009061842A (ja) * 2007-09-05 2009-03-26 Bridgestone Corp 二輪車用空気入りタイヤ
JP2010120438A (ja) * 2008-11-17 2010-06-03 Bridgestone Corp 自動二輪車用空気入りタイヤ
JP2010120437A (ja) * 2008-11-17 2010-06-03 Bridgestone Corp 自動二輪車用空気入りタイヤ
JP2014159244A (ja) 2013-02-20 2014-09-04 Bridgestone Corp 空気入りタイヤ
WO2014162607A1 (ja) * 2013-04-05 2014-10-09 横浜ゴム株式会社 空気入りタイヤ
JP2015202781A (ja) * 2014-04-14 2015-11-16 株式会社ブリヂストン ランフラットタイヤ
JP2016120831A (ja) * 2014-12-25 2016-07-07 東洋ゴム工業株式会社 空気入りタイヤ
US20180186189A1 (en) * 2015-06-16 2018-07-05 Compagnie Generale Des Etablissements Michelin Pneumatic tire having a crown that comprises a reinforcement ply and a high-traction tread
JP2019001420A (ja) * 2017-06-19 2019-01-10 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
JP2023001584A (ja) 2023-01-06
CN117355424A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
JP5756486B2 (ja) 空気入りタイヤ
JP4655694B2 (ja) 空気入りタイヤ
JP4266053B2 (ja) 空気入りタイヤ
WO2022270094A1 (ja) タイヤ
EP3231638B9 (en) Pneumatic tire
JP2018079903A (ja) 空気入りタイヤ
JP4978087B2 (ja) 空気入りタイヤ
WO2022270097A1 (ja) タイヤ
JP2016020159A (ja) レーシングカート用の空気入りタイヤ
JP2019137334A (ja) 空気入りタイヤ
JP6707318B2 (ja) 空気入りタイヤ
US20220024254A1 (en) Tire
JP6851924B2 (ja) 自動二輪車用空気入りタイヤ
WO2020179137A1 (ja) 二輪車用タイヤ
JP5521730B2 (ja) 空気入りタイヤ
JP6077736B2 (ja) 空気入りタイヤ
US20210354514A1 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP5201961B2 (ja) 自動二輪車用空気入りタイヤ
JP4675710B2 (ja) 自動二輪車用タイヤ
JP4553678B2 (ja) 自動二輪車用空気入りタイヤ
WO2022270067A1 (ja) 空気入りタイヤ
WO2022270069A1 (ja) 空気入りタイヤ
WO2021260996A1 (ja) 空気入りタイヤ
US20230001742A1 (en) Pneumatic tire and method of manufacturing pneumatic tire
JP5845019B2 (ja) 乗用車用空気入りラジアルタイヤ及びその使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022828013

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828013

Country of ref document: EP

Effective date: 20240122