WO2022270067A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2022270067A1
WO2022270067A1 PCT/JP2022/013155 JP2022013155W WO2022270067A1 WO 2022270067 A1 WO2022270067 A1 WO 2022270067A1 JP 2022013155 W JP2022013155 W JP 2022013155W WO 2022270067 A1 WO2022270067 A1 WO 2022270067A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
belt
width direction
tread
radial direction
Prior art date
Application number
PCT/JP2022/013155
Other languages
English (en)
French (fr)
Inventor
遥 鈴木
勲 桑山
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2022270067A1 publication Critical patent/WO2022270067A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a pneumatic tire provided with a reinforcing belt positioned between the belt layer and the tread in the tire radial direction.
  • a carcass layer extending in a substantially annular shape in which both ends in the tire width direction are folded back around a pair of bead cores and respectively moored, and two sheets arranged outside the carcass layer in the tire radial direction
  • a protection consisting of a belt layer composed of belt plies, a belt reinforcing layer having embedded reinforcing elements extending substantially parallel to the tire equatorial plane arranged radially outside the belt layer and extending substantially parallel to the tire equatorial plane, and a protection ply having reinforcing cords embedded therein.
  • a pneumatic tire having layers is known (see, for example, Patent Document 1).
  • An object of the present invention is to provide a tire capable of reducing lateral force loss that occurs during acceleration and deceleration during straight running and improving longitudinal force even when the tire is mounted on a vehicle with negative camber imparted to the wheel.
  • a pneumatic tire according to one embodiment of the present invention includes a tread in contact with a road surface, a belt layer having a plurality of belts provided inside the tread in the tire radial direction, and provided inside the belt layer in the tire radial direction, an annular carcass forming the skeleton of the tire.
  • the pneumatic tire has, between the belt layer and the tread, a reinforcing belt covered with a plurality of reinforcing cords extending along the tire width direction and the tire radial direction and arranged at predetermined intervals.
  • the inner end portion of at least one belt included in the belt layer in the tire width direction which is the inner side when mounted on the vehicle, is the outer side when mounted on the vehicle. It is positioned radially inward of the end portion.
  • the width from the tire equatorial plane to the inner end is wider than the width from the tire equatorial plane to the outer end.
  • the pneumatic tire is provided with the reinforcing belt, and the inner end of at least one belt included in the belt layer is located radially inward of the outer end when mounted on the vehicle.
  • the width in the tire width direction from the tire equatorial plane to the inner end is wider than the width in the tire width direction from the tire equatorial plane to the outer end. Therefore, even when pneumatic tires are mounted on a vehicle with negative camber applied to the wheels, the belt layer ensures the contact pressure of the entire tire contact surface, resulting in lateral force loss during acceleration and deceleration during straight-ahead driving. It is possible to provide a pneumatic tire in which the force is reduced and the longitudinal force is improved.
  • FIG. 1 is a cross-sectional view along the tire radial direction and the tire width direction of the pneumatic tire according to the embodiment.
  • FIG. 2 is a partially broken plan view of the tread portion.
  • FIG. 3 is a diagram for explaining the ground contact state of the pneumatic tire according to the embodiment during acceleration/deceleration during straight running.
  • FIG. 4 is a cross-sectional view of a pneumatic tire 10A according to Modification 1 along the tire radial direction and the tire width direction.
  • FIG. 5 is a cross-sectional view of a pneumatic tire 10B according to Modification 2 along the tire radial direction and the tire width direction.
  • FIG. 6 is a partial plan development view of the tread of a pneumatic tire 10B according to Modification 2. As shown in FIG.
  • FIG. 1 is a cross-sectional view along the tire radial direction and the tire width direction of a pneumatic tire 10 according to an embodiment.
  • FIG. 2 is a partially broken plan view of the tread portion 40.
  • FIG. 1 is a cross-sectional view along the tire radial direction and the tire width direction of a pneumatic tire 10 according to an embodiment.
  • FIG. 2 is a partially broken plan view of the tread portion 40.
  • the pneumatic tire 10 of this embodiment shown in FIGS. 1 and 2 is a pneumatic tire mounted on high-performance passenger cars, trucks, buses, and the like.
  • the pneumatic tire 10 includes a pair of bead portions 20 in which bead cores 21 are respectively embedded, sidewall portions 30 extending outward from each of the pair of bead portions 20 in the tire radial direction, and a portion mainly in contact with the road surface GND. and includes a substantially cylindrical tread portion 40 that connects the outer ends of the sidewall portions 30 in the tire radial direction.
  • the pneumatic tire 10 has a carcass layer 50 that extends in a substantially annular shape (toroidal shape) between the bead cores 21 to reinforce the sidewall portion 30 and the tread portion 40 to form the frame of the tire. Both ends of the carcass layer 50 in the width direction are tethered to the pair of bead cores 21 by folding back around the bead cores 21 from the inside toward the outside.
  • the carcass layer 50 is composed of at least one sheet. In this embodiment, as shown in FIG. 2, it is composed of two carcass plies 51 . In each carcass ply 51, a large number of parallel straight carcass cords 51a are embedded. The carcass cords 51a are arranged so as to extend in the radial direction (meridian direction) at 90 degrees with respect to the tire equatorial plane CL. The carcass layer 50 is formed by laminating carcass plies 51 having carcass cords 51a embedded so that the angle between the tire equatorial plane CL and the tire equatorial plane CL is 45 degrees or more and less than 90 degrees. The carcass cords 51a and the carcass cords 51a embedded in other carcass plies 51 may intersect when viewed from the tread surface.
  • the carcass cord 51a is made of nylon, aromatic polyamide, steel, or the like. In this embodiment, the carcass cords 51a are made of nylon.
  • a belt layer 60 is arranged outside the carcass layer 50 in the tire radial direction.
  • the belt layer 60 includes at least two inclined belts 61 and 63 laminated on the outer side in the tire radial direction.
  • a large number of parallel belt cords 61a, 63a extending linearly are embedded in each of the inclined belts 61, 63.
  • the belt cords 61a and 63a constitute the inclined belts 61 and 63 while being covered with the coating rubbers 61b and 63b.
  • the material of the belt cords 61a and 63a is also not particularly limited, and may be composed of, for example, cords twisted from steel, aromatic polyamide, or the like, or monofilaments.
  • the belt cord 61a of the inclined belt 61 and the belt cord 63a of the inclined belt 63 are arranged so that at least two belt plies 61 and 63 are inclined with respect to the tire width direction (or the tire circumferential direction).
  • the belt cords 63a intersect each other by being inclined in the opposite direction to the tire width direction. That is, the inclined belts 61 and 63 included in the belt layer 60 are so-called intersecting belts.
  • the belt layer 60 further includes a circumferential belt 65 in which a belt cord 65a extending substantially parallel to the tire equatorial plane CL is covered with a coating rubber 65b.
  • the circumferential belt 65 is composed of belt cords 65a composed of twisted cords of steel or organic fibers (eg nylon, aromatic polyamide).
  • the material of the belt cord 65a and the material of the belt cords 61a and 63a may be the same, considering the performance required of the pneumatic tire 10, they are preferably different.
  • the belt cord 65a preferably has higher strength than the belt cords 61a and 63a.
  • the number of belt cords 65a driven in the tire width direction (which may also be called an arrangement interval or arrangement density) is preferably 6 cords/cm or more.
  • the circumferential belt 65 is located outside the inclined belts 61 and 63 in the tire radial direction. In this embodiment, the circumferential belt 65 is positioned at the tire radial direction outer end of the belt layer 60 .
  • the circumferential belt 65 is a belt reinforcing layer that is arranged so as to overlap the inclined belts 61 and 63 and effectively suppresses the radial growth of the tread portion 40 . As shown in FIG. 2, the circumferential belt 65 is wider than the inclined belts 61 and 63 in the tire width direction, so that the inclined belts 61 and 63 overlap over the entire width. Note that the width of the circumferential belt 65 is in the range of 90% to 110% of the tread width.
  • the circumferential belt 65 can be easily formed as a so-called spiral belt, for example, by arranging one or a few belt cords 65a and covering them with rubber to form a strip having a constant width spirally wound around the inclined belts 61 and 63 on the outside in the tire radial direction. can be molded.
  • the tread 41 of the tread portion 40 is a portion that comes into contact with the road surface, and is made of rubber arranged outside the circumferential belt 65 in the tire radial direction.
  • the outer surface (tread surface) of the tread 41 may be formed with a plurality of wide main grooves extending continuously in the circumferential direction in order to improve drainage performance.
  • a large number of lateral grooves extending in the tire width direction or oblique direction may be formed on the outer surface of the tread 41 . In the case of racing tires, the main grooves and lateral grooves may not be formed.
  • the belt layer 60 is provided inside the tread 41 in the tire radial direction, and a reinforcing belt 70 is arranged between the tread 41 and the belt layer 60 .
  • the reinforcing belt 70 is provided between the inclined belt 63 and the tread 41 (specifically, the tread rubber forming the tread 41).
  • a reinforcing belt 70 is arranged between the tread 41 and the circumferential belt 65 .
  • the reinforcement belt 70 is a belt on which a plurality of reinforcement cords 70a extending along the tire width direction and the tire radial direction are arranged.
  • the reinforcing belt 70 is formed by coating a plurality of reinforcing cords 70a extending in the tire width direction and the tire radial direction and arranged at predetermined intervals in the tire circumferential direction with a coating rubber 70b.
  • the reinforcement cords 70a extend in the tire width direction when viewed from the tread surface, and extend along the tire radial direction (which may also be called the radial direction) when viewed from the side of the tire. Therefore, the reinforcing belt 70 may be called a radial belt or the like having cords extending along the radial direction.
  • the reinforcing belt 70 can be interpreted as a type of reinforcing belt that is relatively freely stretched and deformed in the tire circumferential direction, and is difficult to stretch and deform in the tire width direction. In this way, the reinforcing belt 70 can function as a component that imparts anisotropy inside the tread 41 (inward in the tire radial direction).
  • the reinforcing belt 70 is provided between the circumferential belt 65 and the tread 41 and has the characteristics described above, so it may be called a floating belt or the like.
  • the thickness of the rubber layer disposed between the reinforcing cords 70a of the reinforcing belt 70 and the belt cords 65a positioned at the tire radial direction outer end of the belt layer 60 is in the range of 0.3 mm or more and 1.5 mm or less. It's okay.
  • the reinforcing belt 70 is provided from the inner side (IN side) when mounted on the vehicle to the outer side (OUT side) when mounted on the vehicle. Specifically, the reinforcing belt 70 may be provided on the IN side and the OUT side with respect to the tire equatorial plane CL.
  • the reinforcing belt 70 may be provided at least up to the ground contact end in the tire width direction.
  • the ground contact edge may be based on a state in which a normal load is applied to the pneumatic tire 10 set to a normal internal pressure.
  • the end of the reinforcing belt 70 in the tire width direction may be located on the shoulder side of the tread 41 beyond the ground contact edge.
  • the normal internal pressure is the air pressure corresponding to the maximum load capacity in the YearBook of JATMA (Japan Automobile Tire Manufacturers Association) in Japan
  • the normal load is the maximum load corresponding to the maximum load capacity (load index) in the JATMA YearBook. capacity (maximum load).
  • load index maximum load capacity
  • maximum load maximum load capacity
  • ETRTO in Europe, TRA in the United States, and tire standards in other countries are compatible.
  • the reinforcing cords 70a embedded in the reinforcing belt 70 are preferably arranged parallel to the tire width direction, that is, arranged so that the angle formed with the tire width direction is 0 degree. However, it may have a slight angle with respect to the tire width direction. Specifically, the reinforcement cords 70a may be embedded in the reinforcement belt 70 so that the angle with respect to the tire width direction is 0 degrees or more and 15 degrees or less.
  • the cord material for the reinforcing cords 70a of the reinforcing belt 70 it is desirable to use organic fibers with relatively high strength.
  • organic fibers with relatively high strength.
  • aramid fibers specifically Kevlar (registered trademark), etc. can be used.
  • nylon, polyethylene terephthalate (PET), etc. may be used depending on the use environment, it is preferable to use higher-strength organic fibers (aromatic polyamide).
  • the reinforcing cords 70a may be formed by twisting a plurality of the above-described organic fibers or the like, and the thickness of the reinforcing cords 70a is preferably 0.5 mm to 2.0 mm, and the Young's modulus of the reinforcing cords 70a is , 50 GPa or more.
  • the number of reinforcement cords 70a embedded in the reinforcement belt 70 can be, for example, in the range of 20 to 60 cords/50 mm. However, the number of reinforcement cords 70a driven into the reinforcement belt 70 is not limited to this range.
  • the belt layer 60 is arranged asymmetrically with respect to the tire equatorial plane CL in cross sections along the tire radial direction and the tire width direction.
  • At least one belt included in the belt layer 60 which is the inner side IN when mounted on the vehicle in the tire width direction, for example, the inner end 611 of the inclined belt 61 is positioned on the outer side OUT when mounted on the vehicle. It is positioned inside in the tire radial direction of the outer end portion 613 . Furthermore, a width L611 in the tire width direction from the tire equatorial plane CL to the inner end portion 611 is wider than a width L613 in the tire width direction from the tire equatorial plane CL to the outer end portion 613 . That is, the relational expression of L611>L613 is satisfied.
  • the inner end portion 611 of the inclined belt 61 extends to the outer side in the tire width direction (the inner side IN when mounted on the vehicle) from the ground contact end of the pneumatic tire 10 .
  • all the belts included in the belt layer 60 that is, the inclined belts 63 and the circumferential belts 65 are also arranged asymmetrically with respect to the tire equatorial plane CL.
  • the positions of the inner end portions 631, 651 and the outer end portions 633, 653 of the inclined belt 63 and the circumferential belt 65 satisfy the same conditions as the positions of the inner end portion 611 and the outer end portion 613 of the inclined belt 61.
  • the inner end portions 631 and 651 of the inclined belt 63 and the circumferential belt 65 which become the inner IN when mounted on the vehicle, are positioned radially inward of the outer end portions 633 and 653 which become the outer OUT when mounted on the vehicle. ing. Furthermore, the width in the tire width direction from the tire equatorial plane CL to the inner ends 631 and 651 is wider than the width in the tire width direction from the tire equatorial plane CL to the outer ends 633 and 653 .
  • the reinforcing belt 70 is arranged asymmetrically with respect to the tire equatorial plane CL in cross sections along the tire radial direction and the tire width direction.
  • the inner end (first end) 701 of the reinforcing belt 70 which is the inner side IN when mounted on the vehicle in the tire width direction, is the outer end (the first end), which is the outer side OUT when mounted on the vehicle. 703 in the tire radial direction. Furthermore, a width L701 in the tire width direction from the tire equatorial plane CL to the inner end portion 701 is wider than a width L703 in the tire width direction from the tire equatorial plane CL to the outer end portion 703 . That is, the relational expression of L701>L703 is satisfied.
  • the inner end portion 701 of the reinforcing belt 70 extends to the outer side in the tire width direction (that is, the inner side IN when mounted on the vehicle) from the ground contact end of the pneumatic tire 10 .
  • FIG. 3 is a diagram for explaining the ground contact state of the pneumatic tire 10 when the vehicle is accelerated or decelerated while traveling straight ahead with the pneumatic tire 10 mounted on the rim RM of the wheel to which negative camber is imparted. be.
  • the solid line VL is the normal to the ground plane GND
  • the angle ⁇ C is the so-called camber angle representing the inclination angle of (the rim RM of) the wheel.
  • the angle ⁇ C is shown as the angle formed by the equatorial plane CL of the pneumatic tire 10 mounted on the rim RM and the normal VL to the ground plane GND.
  • the load applied to the tire temporarily increases and the ground contact edge of the pneumatic tire 10 increases.
  • the tire can be grounded up to a position (grounding position) GE on the outside in the tire width direction (that is, inside IN when mounted on the vehicle).
  • the inner end portion 611 of the inclined belt 61 is mounted on the vehicle. It is positioned inward in the tire radial direction of the outer end portion 613 that is the hour outer side OUT. Furthermore, a width L611 in the tire width direction from the tire equatorial plane CL to the inner end portion 611 is wider than a width L613 in the tire width direction from the tire equatorial plane CL to the outer end portion 613 .
  • the inner end portion 611 of the belt layer 60 extends to the outer side in the tire width direction (that is, the inner side IN when mounted on the vehicle) from the ground contact end of the pneumatic tire 10, and the inner end portion A sufficient thickness of the rubber layer is secured from 611 to the tire surface. Therefore, even if the tire touches the ground to the ground contact position GE on the inner side IN when the tire is mounted on the vehicle, the rubber layer near the ground contact position GE is pushed from the inner side in the tire radial direction by the belt layer 60 as shown in FIG. Supported. As a result, in the pneumatic tire 10, an excessive increase in contact length, which causes a large lateral force loss, is effectively suppressed in the vicinity of the contact position GE.
  • the curved tire surface deforms into a planar contact surface.
  • the vicinity of the ends 611, 631, 651 of the belt layer 60 extending to the tire width direction outer side and the tire radial inner side and positioned on the tire radial inner side is the ground contact surface GND.
  • the belt layer 60 approaches a state parallel to the ground contact surface GND) in the tire radial direction.
  • the belt cords 61a, 63a, 65a included in the belt layer 60 are subjected to high tension in the tire circumferential direction. Therefore, the rigidity of the belt layer 60 in the vicinity of the ends 611, 631, 651 may increase in the grounded state.
  • an in-plane contractive force directed toward the center in the tire width direction acts on the ground contact surface GND of the tread 41 . Due to this in-plane contraction force, deformation called wiping deformation occurs in the rubber layer of the tread 41 along the tire width direction. Although this in-plane contractive force acts on the entire ground contact surface, it causes a particularly large wiping deformation in the shoulder region located on the outer side in the tire width direction near the ground contact edge. This wiping deformation may increase the ground pressure, especially near the ground contact position GE.
  • an in-plane contraction force toward the center in the tire width direction acts upon contact with the road surface GND, and the tread 41 undergoes deformation called wiping deformation along the tire width direction.
  • the wiping deformation occurs over the entire ground-contacting surface, but is particularly large in the shoulder region positioned on the outside in the tire width direction near the contact edge. Therefore, especially in the vicinity of the ground contact position GE, the tread rubber may flow toward the center in the tire width direction due to wiping deformation, further increasing the contact pressure.
  • the pneumatic tire 10 of this embodiment includes a reinforcing belt 70 which is arranged between the tread 41 and the belt layer 60 and in which reinforcing cords 70a extending substantially in the radial direction are embedded. Since the reinforcing belt 70 has only cords arranged along the tire width direction, it can be stretched and deformed relatively freely in the tire circumferential direction, and conversely, it has the characteristic of being difficult to deform in the tire width direction. .
  • the reinforcement cords 70a of the reinforcement belt 70 generate tension in the tire width direction while the pneumatic tire 10 is under ground pressure. According to the reinforcing belt 70 configured as described above, even if the compressive stress in the tire radial direction increases in the tread portion 40 due to the contact pressure or the air pressure of the tire, the reinforcing belt 70 disperses the influence of the compressive stress in the tire width direction. Thus, the circumferential tension applied to the belt cords 61a, 63a, 65a of the belt layer 60 can be reduced. As a result, the rigidity in the vicinity of the ends 611, 631, 651 of the belt layer 60 can be optimized in the grounded state.
  • the reinforcing cords 70a having a Young's modulus of 50 GPa or more are used as the reinforcing cords 70a, the rigidity of the reinforcing belt 70 is ensured by the reinforcing cords 70a, and the flow of the tread rubber toward the center in the tire width direction due to wiping deformation is reduced. can do.
  • the influence of the rigidity of the reinforcement belt 70 due to the influence of the rigidity of the reinforcement belt 70, the influence of optimizing the rigidity near the ends 611, 631, and 651 of the belt layer 60 due to the suppression of wiping deformation becomes large.
  • the rigidity in the vicinity of the ends 611, 631, 651 of the layer 60 is further optimized, and the effect of suppressing local increases in contact pressure in the vicinity of the ends 611, 631, 651 of the belt layer 60 is further enhanced.
  • a pneumatic tire 10 capable of reducing the lateral force loss that occurs during acceleration and deceleration during straight running and improving the longitudinal force even when the tire is mounted on a vehicle with negative camber imparted to the wheel. can be done.
  • the inner end portion 701 of the reinforcement belt 70 on the inner side IN when mounted on the vehicle is located radially inward of the outer end portion 703 on the outer side OUT when mounted on the vehicle. Furthermore, a width L701 in the tire width direction from the tire equatorial plane CL to the inner end portion 701 is wider than a width L703 in the tire width direction from the tire equatorial plane CL to the outer end portion 703 .
  • the inner end portion 701 of the reinforcing belt 70 extends to the outer side in the tire width direction (that is, the inner side IN when mounted on the vehicle) from the ground contact end of the pneumatic tire 10 .
  • a sufficient thickness of the rubber layer is ensured from the inner end portion 701 to the tire surface.
  • the thickness of the rubber layer is ensured by the coating rubbers 70b, 65b and the like.
  • the belt cords 61a, 63a in the inclined belts 61, 63 have an inclination angle of 45 degrees or more and less than 90 degrees with respect to the tire equatorial plane CL.
  • the cord angle within this range, the shear strain in the circumferential direction that occurs between the road surface GND and the outermost inclined belt 63 is alleviated, suppressing the slip acting there and suppressing the tangential force in the tread width direction. can be made uniform and traction can be improved.
  • the width of the circumferential belt 65 is within the range of 90% to 110% of the tread width. According to this configuration, the durability of the circumferential belt 65 at the tire width direction outer end portions 651 and 653 is improved, and the radial growth of the tread portion 40 can be effectively suppressed.
  • the circumferential belt 65 was provided, but the circumferential belt 65 is not essential. That is, depending on the application of the pneumatic tire 10, the reinforcing belt 70 is provided outside the crossing belts (the inclined belts 61 and 63) in the tire radial direction, and the tread 41 (tread rubber) is provided outside the reinforcing belt 70 in the tire radial direction.
  • the structure provided may be sufficient.
  • a reinforcing belt for example, a belt (which may be called a cap layer or the like) that covers the tire width direction end of the intersecting belt may be provided.
  • the reinforcing belt 70 is provided to the vicinity of the ground contact edge on the inner side (IN side) when mounted on the vehicle and the outer side (OUT side) when mounted on the vehicle, but the width of the reinforcing belt 70 is based on the tire equatorial plane CL. If provided on the IN side and the OUT side as described above, it may be narrowed to some extent.
  • FIG. 4 also describes a pneumatic tire 10A according to Modification 1 of the pneumatic tire 10 of the present embodiment.
  • FIG. 4 is a cross-sectional view of a pneumatic tire 10A according to Modification 1 along the tire radial direction and the tire width direction.
  • the pneumatic tire 10A according to Modification 1 differs from the pneumatic tire 10 of the present embodiment in that an additional cushioning rubber layer 80 is arranged between the reinforcing belt 70 and the belt layer 60.
  • Other configurations of the pneumatic tire 10 ⁇ /b>A are the same as those of the pneumatic tire 10 .
  • the Young's modulus of the buffer rubber layer 80 is equal to or less than the elastic modulus of the coating rubber 65b of the circumferential belt 65 located at the tire radial direction outer end of the belt layer 60, or equal to or less than the elastic modulus of the coating rubber 70b of the reinforcing belt 70. .
  • the width in the tire radial direction is 0.2 mm or more and 1.5 mm or less. Moreover, the width of the buffer rubber layer 80 overlaps with the reinforcing belt 70 over the entire width.
  • FIG. 5 and 6 describe a pneumatic tire 10B according to Modification 2.
  • FIG. 5 is a cross-sectional view of a pneumatic tire 10B according to Modification 2 along the tire radial direction and the tire width direction.
  • FIG. 6 is a partial plan development view of the tread of a pneumatic tire 10B according to Modification 2. As shown in FIG.
  • the pattern of the tread 41 is not particularly limited and illustration thereof is omitted.
  • a pneumatic tire 10B according to Modification 2 has a cross-sectional structure similar to that of the pneumatic tire 10 according to the embodiment, as shown in FIG.
  • a tread with an asymmetrical pattern having a low negative rate which is the volume of grooves formed on the inner side (IN side) when the tire is mounted on the vehicle, with respect to the tire equatorial plane CL. 41B pattern (tread pattern) can be formed.
  • the volume of the groove that defines the negative rate may be interpreted as the area (or volume) of the portion that does not contact the road surface under the above-described normal internal pressure and normal load.
  • the portion that touches the road surface under normal internal pressure and normal load may be interpreted as a land portion.
  • such a groove-to-land ratio may be defined as a so-called negative rate.
  • the negative ratio can be expressed simply as groove/(land+groove), but more precisely, the entire tread 41B obtained by projecting the entire circumference (or unit length (pitch)) of the tread 41B two-dimensionally. It may be interpreted as the ratio of grooves to area.
  • the contact edge in the tire width direction required to determine the area of the land portion is the maximum load capacity (load index) corresponding to the maximum load capacity (load index) of the pneumatic tire 10B set to the normal internal pressure.
  • the maximum load may be applied as a reference.
  • a pneumatic tire 10B according to Modification Example 2 has a pneumatic tire 10B according to the embodiment except that a pattern such as a circumferential groove 43B is formed in a tread 41B of a tread portion 40B. It may have a cross-sectional structure similar to that of the entered tire 10 .
  • a plurality of circumferential grooves 43B, widthwise sipes 45B, shoulder grooves 47B and lug grooves 49B may be formed in the tread 41B.
  • the circumferential groove 43B is a linear main groove extending along the tire circumferential direction.
  • the tire equatorial plane CL as a reference, two circumferential grooves 43B are formed on the OUT side and one circumferential groove 43B is formed on the IN side.
  • the groove formed on the inner side (IN side) when mounted on the vehicle may include at least one circumferential groove 43B.
  • the width direction sipes 45B are linear sipes extending in the tire width direction, and are formed in plurality at regular intervals in the tire circumferential direction.
  • the sipe is a narrow groove that closes in the contact surface of the tread 41B, and the opening width of the sipe when not contacting the ground is not particularly limited, but is preferably 0.1 mm to 1.5 mm.
  • the shoulder groove 47B is formed in the tread shoulder portion on the OUT side.
  • the shoulder groove 47B extends in the tire width direction and has a shape that is bent at the central portion.
  • the lug groove 49B is formed in the tread shoulder portion on the IN side.
  • the lug grooves 49B are inclined with respect to the tire width direction along the tire width direction. That is, the lug grooves 49B are not parallel to the tire width direction, but are inclined with respect to the tire width direction.
  • the inclination angle of the lug grooves 49B with respect to the tire width direction is 45 degrees or less, similar to the width direction sipes 45B, and is 30 degrees or less in consideration of both the rigidity of the outer shoulder land portion and suppression of pass-through noise (PBN). is preferred.
  • peripheral portion of the lug groove 49B may be inclined inward in the tire radial direction from the tread surface side of the tread 41B (outer shoulder land portion). Such an inclination may be called a chamfer (chamfer) or the like.
  • grooves (specifically, one circumferential groove 43B and a lug
  • the volume of the groove 49B) is the groove portion (specifically, the two circumferential grooves 43B, the widthwise sipes 45B and the shoulder grooves 47B) formed in the outer tread 41B when mounted on the vehicle with reference to the tire equatorial plane CL. is less than the volume of
  • the circumferential groove 43B extending in the tire circumferential direction is the target of the groove portion, and the widthwise sipe 45B, the shoulder groove 47B and the lug groove 49B extending in the tire width direction are calculated for the negative rate. may be excluded from

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

空気入りタイヤ(10,10A)は、ベルト層(60)とトレッド(41)との間に、タイヤ幅方向及びタイヤ径方向に沿って延び、所定の距離を隔てて配置された複数の補強コード(70a)を被覆した補強ベルト(70)を有する。タイヤ径方向及びタイヤ幅方向に沿ったタイヤ断面では、タイヤ幅方向におけるベルト層(60)に含まれる少なくとも一つのベルト(61)の車両装着時内側(IN)になる内側端部(611)が、車両装着時外側(OUT)になる外側端部(613)よりもタイヤ径方向内側に位置し、かつ、前記タイヤ幅方向において、タイヤ赤道面(CL)から内側端部(611)までの幅(L611)が、タイヤ赤道面(CL)から外側端部(613)までの幅(L613)よりも広い。

Description

空気入りタイヤ
 本発明は、ベルト層とトレッドとの間のタイヤ径方向位置に補強ベルトを備える空気入りタイヤに関する。
 従来の空気入りタイヤとして、タイヤ幅方向の両端部が一対のビードコアの回りに折り返されてそれぞれ係留される略環体状に延びるカーカス層、カーカス層のタイヤ径方向外側に配置された2枚のベルトプライで構成されるベルト層、ベルト層のタイヤ径方向外側に配置されたタイヤ赤道面と実質上平行に延びる補強素子を埋設したベルト強化層、および補強コードが埋設された保護プライからなる保護層を備える空気入りタイヤが知られている(例えば、特許文献1参照)。
 このような従来の空気入りタイヤによれば高速走行時の遠心力によってタイヤのトレッド部がタイヤ径方向に拡径するのを抑制してタイヤの高速耐久性や操縦安定性能を向上させることができるとされている。
特許第5084834号
 しかし、従来の空気入りタイヤでは、車輪にネガティブキャンバが付与された状態で車両に装着された場合に、直進走行中の加減速時にベルト層の端部よりも車両装着時内側が路面に接地することで接地端近傍における接地長が過度に増大して横力損失が生じ、タイヤに発生する前後力が低下する恐れがあった。
 本発明は、車輪にネガティブキャンバが付与された状態で車両に装着された場合でも、直進走行中の加減速時に生じる横力損失が低減されて前後力が向上し得るタイヤを提供することを目的とする。
 本発明の一実施形態に係る空気入りタイヤは、路面に接するトレッドと、前記トレッドのタイヤ径方向内側に設けられる複数のベルトを有するベルト層と、前記ベルト層のタイヤ径方向内側に設けられ、タイヤの骨格を形成する環体状のカーカスと、を備える。前記空気入りタイヤは、前記ベルト層とトレッドとの間に、タイヤ幅方向及びタイヤ径方向に沿って延び、所定の距離を隔てて配置された複数の補強コードを被覆した補強ベルトを有する。前記タイヤ径方向及び前記タイヤ幅方向に沿ったタイヤ断面では、前記タイヤ幅方向における前記ベルト層に含まれる少なくとも一つのベルトの車両装着時内側になる内側端部が、車両装着時外側になる外側端部よりもタイヤ径方向内側に位置する。前記タイヤ幅方向において、タイヤ赤道面から前記内側端部までの幅は、前記タイヤ赤道面から前記外側端部までの幅よりも広い。
 上記構成では、空気入りタイヤが前記補強ベルトを備え、ベルト層に含まれる少なくとも一つのベルトの内側端部が、車両装着時外側になる外側端部よりもタイヤ径方向内側に位置する。そして、タイヤ赤道面から前記内側端部までの前記タイヤ幅方向の幅が、前記タイヤ赤道面から前記外側端部までの前記タイヤ幅方向の幅よりも広い。このため、車輪にネガティブキャンバが付与された状態で空気入りタイヤが車両に装着された場合でも、ベルト層によってタイヤ接地面全体の接地圧が確保され、直進走行中の加減速時に生じる横力損失が低減されて前後力が向上する空気入りタイヤを提供することができる。
図1は、実施形態に係る空気入りタイヤのタイヤ径方向及びタイヤ幅方向に沿った断面図である。 図2は、トレッド部の一部破断平面図である。 図3は、直進走行中の加減速時における実施形態に係る空気入りタイヤの接地状況を説明する図である。 図4は、変更例1に係る空気入りタイヤ10Aのタイヤ径方向及びタイヤ幅方向に沿った断面図である。 図5は、変更例2に係る空気入りタイヤ10Bのタイヤ径方向及びタイヤ幅方向に沿った断面図である。 図6は、変更例2に係る空気入りタイヤ10Bのトレッドの一部平面展開図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)空気入りタイヤ全体の概略構成
 図1は、実施形態に係る空気入りタイヤ10のタイヤ径方向及びタイヤ幅方向に沿った断面図である。図2は、トレッド部40の一部破断平面図である。
 図1、2に示した本実施形態の空気入りタイヤ10は、高性能乗用車あるいはトラック・バス等に装着される空気入りタイヤである。空気入りタイヤ10は、ビードコア21がそれぞれ埋設された一対のビード部20、一対のビード部20の各々からタイヤ径方向外側に向かってそれぞれ延びるサイドウォール部30、及び、主に路面GNDに接する部位であり、サイドウォール部30のタイヤ径方向外端同士を連結する略円筒状のトレッド部40を備える。
 空気入りタイヤ10は、ビードコア21間を略環体状(トロイダル状)に延びてサイドウォール部30、トレッド部40を補強することでタイヤの骨格を形成するカーカス層50を有する。カーカス層50の幅方向両端部は、ビードコア21の回りを内側から外側に向かって折り返されることで、一対のビードコア21にそれぞれ係留されている。
 (2)タイヤを構成する各層の具体的構成
 カーカス層50は、少なくとも1枚で構成される。本実施形態では、図2に示すように、2枚のカーカスプライ51で構成されている。各カーカスプライ51内には、多数本の互いに平行な直線状のカーカスコード51aが埋設されている。カーカスコード51aは、タイヤ赤道面CLに対して90度、即ちラジアル方向(子午線方向)に延びるように配置されている。なお、カーカス層50は、タイヤ赤道面CLとなす角が45度以上90度未満であるように埋設されたカーカスコード51aを備えるカーカスプライ51が積層されており、一のカーカスプライ51に埋設されたカーカスコード51aと他のカーカスプライ51に埋設されたカーカスコード51aとがトレッド面視で交錯するものであってもよい。
 カーカスコード51aは、ナイロン、芳香族ポリアミド、スチール等で構成される。本実施形態において、カーカスコード51aは、ナイロンで構成されている。
 カーカス層50のタイヤ径方向外側には、ベルト層60が配置される。ベルト層60は、タイヤ径方向外側に積層した少なくとも2枚の傾斜ベルト61,63を含む。各傾斜ベルト61,63内には、直線状に延びる多数本の互いに平行なベルトコード61a,63aが埋設されている。つまり、ベルトコード61a,63aは、コーティングゴム61b,63bで覆われた状態で傾斜ベルト61,63を構成している。
 ベルトコード61a,63aの材料も特に限定されず、例えば、スチール、芳香族ポリアミド等を撚ったコードあるいはモノフィラメントで構成されてよい。傾斜ベルト61のベルトコード61a及び傾斜ベルト63のベルトコード63aは、少なくとも2枚のベルトプライ61,63がタイヤ幅方向(タイヤ周方向でも良い)に対して傾斜して配置され、ベルトコード61aとベルトコード63aとは、タイヤ幅方向に対して逆方向に傾斜することで、互いに交錯している。即ち、ベルト層60に含まれる傾斜ベルト61,63は、所謂交錯ベルトになっている。
 本実施形態において、ベルト層60は、タイヤ赤道面CLと実質的に平行に延びるベルトコード65aをコーティングゴム65bで被覆した周方向ベルト65をさらに含む。周方向ベルト65は、スチールまたは有機繊維(例えばナイロン、芳香族ポリアミド)を撚ったコードで構成されたベルトコード65aで構成されている。なお、ベルトコード65aの材質と、ベルトコード61a及びベルトコード63aの材質とは、同一でもよいが、空気入りタイヤ10に要求される性能を考慮すると、異なっていることが好ましい。具体的には、ベルトコード65aは、ベルトコード61a及びベルトコード63aよりも強度が高いことが好ましい。
 タイヤ幅方向におけるベルトコード65aの打ち込み数(配置間隔或いは配置密度と呼んでもよい)は、6本/cm以上であることが好ましい。
 周方向ベルト65は、傾斜ベルト61,63のタイヤ径方向外側に位置する。本実施形態において、周方向ベルト65は、ベルト層60のタイヤ径方向外側端に位置している。周方向ベルト65は、傾斜ベルト61,63と重なり合うよう配置されてトレッド部40の径成長を効果的に抑制するベルト強化層である。周方向ベルト65は、図2に示すように、タイヤ幅方向において、傾斜ベルト61,63より幅広にすることで、傾斜ベルト61,63の全幅において重なり合っている。なお、この周方向ベルト65の幅をトレッド幅の90%以上110%の範囲内となっている。
 周方向ベルト65は、例えば、ベルトコード65aを1本または少数本並べてゴム被覆した一定幅のストリップを傾斜ベルト61,63のタイヤ径方向外側に螺旋状に巻き付ける所謂スパイラルベルトとすることで容易に成形し得る。
 トレッド部40のトレッド41は、路面に接する部位であり、周方向ベルト65のタイヤ径方向外側に配置されたゴムからなる。本実施形態では図示を省略するが、トレッド41の外表面(踏面)には、排水性能を向上させるため、幅広で周方向に連続して延びる複数本の主溝が形成されてもよい。また、トレッド41の外表面にはタイヤ幅方向や斜め方向に延びる多数本の横溝が形成されてもよい。なお、レーシング用タイヤの場合、主溝、横溝が形成されていなくてもよい。
 ベルト層60は、トレッド41のタイヤ径方向内側に設けられており、トレッド41とベルト層60との間には、補強ベルト70が配置される。具体的に、補強ベルト70は、傾斜ベルト63とトレッド41(具体的には、トレッド41を形成するトレッドゴム)との間に設けられる。本実施形態では、補強ベルト70が、トレッド41と、周方向ベルト65との間に配置されている。
 補強ベルト70は、タイヤ幅方向及びタイヤ径方向に沿って延びる複数の補強コード70aが配置されたベルトである。補強ベルト70は、タイヤ幅方向及びタイヤ径方向に沿って延び、タイヤ周方向に所定の距離を隔てて配置された複数の補強コード70aを、コーティングゴム70bで被覆することによって構成される。
 補強コード70aは、トレッド面視においてタイヤ幅方向に延び、タイヤ側面視において、タイヤ径方向(ラジアル方向と呼ばれてもよい)に沿って延びる。従って、補強ベルト70は、ラジアル方向に沿って延びるコードを有するラジアルベルトなどと呼ばれてもよい。
 補強ベルト70は、タイヤ周方向には比較的自由に伸びて変形し、逆に、タイヤ幅方向には伸び難く、変形し難い補強ベルトの一種と解釈されてもよい。このように、補強ベルト70は、トレッド41の内部(タイヤ径方向内側)において異方性を与える構成要素として機能できる。
 また、補強ベルト70は、周方向ベルト65とトレッド41との間に設けられ、上述したような特徴を有することから、フローティングベルトなどと呼ばれてもよい。
 なお、補強ベルト70の補強コード70aとベルト層60のタイヤ径方向外側端に位置するベルトコード65aとの間に配置されるゴム層の厚さは、0.3mm以上1.5mm以下の範囲であってよい。
 補強ベルト70は、車両装着時内側(IN側)から車両装着時外側(OUT側)に亘って設けられる。具体的には、補強ベルト70は、タイヤ赤道面CLを基準としたIN側及びOUT側に設けられてよい。
 また、補強ベルト70は、少なくともタイヤ幅方向における接地端まで設けられてもよい。接地端は、正規内圧に設定された空気入りタイヤ10に正規荷重が負荷された状態を基準としてよい。なお、補強ベルト70のタイヤ幅方向における端部は、接地端を超えたトレッド41のショルダー側に位置してもよい。
 ここで、正規内圧とは、日本ではJATMA(日本自動車タイヤ協会)のYearBookにおける最大負荷能力に対応する空気圧であり、正規荷重とは、JATMA YearBookにおける最大負荷能力(ロードインデックス)に対応する最大負荷能力(最大荷重)である。また欧州ではETRTO、米国ではTRA、その他各国のタイヤ規格が対応する。
 本実施形態において、補強ベルト70に埋設されている補強コード70aは、タイヤ幅方向と平行、つまり、タイヤ幅方向と成す角度が0度となるように配置されることが望ましい。但し、タイヤ幅方向に対して多少の角度を有していてもよい。具体的に、補強コード70aは、タイヤ幅方向に対する角度が0度以上15度以下となるように、補強ベルト70に埋設されていてもよい。
 補強ベルト70の補強コード70aのコード材料としては、比較的強度の高い有機繊維を用いることが望ましい。例えば、アラミド繊維、具体的には、ケブラー(登録商標)などを用いることできる。ナイロン、ポリエチレンテレフタラート(PET)なども使用環境次第では用い得るが、より高強度の有機繊維(芳香族ポリアミド)を用いることが好ましい。
 補強コード70aは、上述した有機繊維などを複数撚ることによって形成されてよいが、補強コード70aの太さは、0.5mm~2.0mmとすることが好ましく、補強コード70aのヤング率は、50GPa以上であることが好ましい。
 補強ベルト70に埋設されている補強コード70aの打ち込み数は、例えば、20~60本/50mmの範囲とすることができる。ただし、補強ベルト補強ベルト70に対する補強コード70aの打ち込み数は、この範囲に限定されるものではない。
 本実施形態の空気入りタイヤ10において、ベルト層60は、図1に示すように、タイヤ径方向及び前記タイヤ幅方向に沿った断面において、タイヤ赤道面CLに対して非対称に配置されている。
 具体的に、図1に示すように、タイヤ幅方向の車両装着時内側INになるベルト層60に含まれる少なくとも一つのベルト、例えば傾斜ベルト61の内側端部611が、車両装着時外側OUTになる外側端部613よりもタイヤ径方向内側に位置している。さらに、タイヤ赤道面CLから内側端部611までのタイヤ幅方向の幅L611が、タイヤ赤道面CLから外側端部613までのタイヤ幅方向の幅L613よりも広くなっている。つまり、L611>L613の関係式を満たしている。
 本実施形態において、傾斜ベルト61の内側端部611は、空気入りタイヤ10の接地端よりもタイヤ幅方向外側(車両装着時内側IN)まで延びている。
 また、本実施形態では、ベルト層60に含まれる全てのベルト、即ち傾斜ベルト63,周方向ベルト65も、タイヤ赤道面CLに対して非対称に配置されている。そして、傾斜ベルト63,周方向ベルト65の内側端部631,651と外側端部633,653の位置は、傾斜ベルト61の内側端部611と外側端部613の位置と同様の条件を満たしている。
 具体的に、傾斜ベルト63,周方向ベルト65の車両装着時内側INになる内側端部631、651が、車両装着時外側OUTになる外側端部633,653よりもタイヤ径方向内側に位置している。さらに、タイヤ赤道面CLから内側端部631、651までのタイヤ幅方向の幅が、タイヤ赤道面CLから外側端部633,653までのタイヤ幅方向の幅よりも広くなっている。
 補強ベルト70は、図1に示すように、タイヤ径方向及び前記タイヤ幅方向に沿った断面において、タイヤ赤道面CLに対して非対称に配置されている。
 具体的に、図1に示すように、タイヤ幅方向の車両装着時内側INになる補強ベルト70の内側端部(第一端部)701が、車両装着時外側OUTになる外側端部(第二端部)703よりもタイヤ径方向内側に位置している。さらに、タイヤ赤道面CLから内側端部701までのタイヤ幅方向の幅L701が、タイヤ赤道面CLから外側端部703までのタイヤ幅方向の幅L703よりも広くなっている。つまり、L701>L703の関係式を満たしている。
 本実施形態では、補強ベルト70の内側端部701は、空気入りタイヤ10の前記接地端よりもタイヤ幅方向外側(即ち車両装着時内側IN)まで延びている。
 (作用・効果)
 図3は、ネガティブキャンバが付与された状態の車輪のリムRMに空気入りタイヤ10が装着された状態で直進走行中に加速あるいは減速した場合の、空気入りタイヤ10の接地状況を説明する図である。図3中において、実線VLは、接地面GNDに対する法線であり、角度θCは、車輪(のリムRM)の傾斜角度を表す所謂キャンバー角である。図中、角度θCは、リムRMに装着された空気入りタイヤ10の赤道面CLと、接地面GNDに対する法線VLとがなす角として図示されている。
 ネガティブキャンバが付与された状態の車輪のリムRMに空気入りタイヤ10が装着された状態で直進走行中に加減速すると、タイヤに掛かる荷重が一時的に増大して空気入りタイヤ10の前記接地端よりも、タイヤ幅方向外側(即ち車両装着時内側IN)の位置(接地位置)GEまでタイヤが接地し得る。
 この様な状況において、従来の空気入りタイヤでは、接地位置GE近傍のタイヤのゴム層がタイヤ径方向内側からベルト層60で支持されないため、タイヤの接地端近傍では接地長が過度に増大して大きな横力損失が発生していた。
 これに対して、本実施形態の空気入りタイヤ10では、タイヤ幅方向の車両装着時内側INになるベルト層60に含まれる少なくとも一つのベルト、例えば傾斜ベルト61の内側端部611が、車両装着時外側OUTになる外側端部613よりもタイヤ径方向内側に位置している。さらに、タイヤ赤道面CLから内側端部611までのタイヤ幅方向の幅L611が、タイヤ赤道面CLから外側端部613までのタイヤ幅方向の幅L613よりも広くなっている。
 この構成では、ベルト層60(少なくとも傾斜ベルト61)の内側端部611が空気入りタイヤ10の前記接地端よりもタイヤ幅方向外側(即ち車両装着時内側IN)まで延びており、かつ内側端部611からタイヤ表面までに十分なゴム層の厚さが確保されている。このため、前記接地端よりも車両装着時内側INの接地位置GEまでタイヤが接地した場合でも、図3に示すように、接地位置GE近傍でゴム層は、タイヤ径方向内側からベルト層60によって支持される。その結果、空気入りタイヤ10では、接地位置GE近傍において大きな横力損失の要因となる接地長の過度な増大が効果的に抑制される。
 ただし、図3に示すようなベルト層60によって接地位置GE近傍でゴム層がタイヤ径方向内側から支持された状態では、接地位置GE近傍で接地圧が上昇し、この接地圧の上昇に伴う横力損失が生じる恐れがある。
 具体的に、トレッド部40が路面に接地されると、曲面状であったタイヤ表面が接地面は平面状に変形する。これに伴い、本実施形態の空気入りタイヤ10における、タイヤ幅方向外側かつタイヤ径方向内側まで延びたタイヤ径方向内側に位置するベルト層60の端部611,631,651近傍は、接地面GNDに近づく(ベルト層60が接地面GNDに対して平行な状態に近づく)ようにタイヤ径方向に拡径する。この結果、ベルト層60に含まれるベルトコード61a,63a,65aには高いタイヤ周方向の張力が加わる。このため、ベルト層60の端部611,631,651近傍の剛性は、接地状態で高くなる恐れがある。
 また、トレッド部40が接地されると、トレッド41の接地面GNDに対してタイヤ幅方向の中央に向かう面内収縮力が作用する。この面内収縮力によりトレッド41のゴム層にはタイヤ幅方向に沿ってワイピング変形と呼ばれる変形が生じる。この面内収縮力は接地面全体に作用するが、前記接地端に近いタイヤ幅方向外側に位置するショルダー領域で特に大きなワイピング変形を発生させる。このワイピング変形は、特に接地位置GE近傍で接地圧を上昇させる恐れがある。
 また、トレッド部40では、路面GNDとの接地に伴い、タイヤ幅方向中央に向かう面内収縮力が作用し、トレッド41がタイヤ幅方向に沿ったワイピング変形と呼ばれる変形を来す。ワイピング変形は、接地面全体で発生するが特に前記接地端に近いタイヤ幅方向外側に位置するショルダー領域で大きく発生する。このため、特に接地位置GE近傍では、ワイピング変形に伴うトレッドゴムのタイヤ幅方向中央側への流動により、接地圧がさらに上昇する恐れがある。
 このように、ベルト層60の端部611近傍の剛性が高くなる作用と、ワイピング変形とにより、接地位置GE近傍では、接地圧が局所的に上昇する恐れがあった。そして、このような接地圧上昇が生じた場合、接地位置GE近傍のゴム層がタイヤ周方向だけでなくタイヤ幅方向にも変形して、横力損失を増大させる恐れがあった。
 本実施形態の空気入りタイヤ10は、トレッド41とベルト層60との間に配置され、実質上ラジアル方向に延びる補強コード70aが埋設された補強ベルト70を備える。補強ベルト70は、タイヤ幅方向に沿って配置されるコードのみを備えているため、タイヤ周方向には比較的自由に伸びて変形し、逆に、タイヤ幅方向には変形し難い特性を有する。
 補強ベルト70における補強コード70aは、空気入りタイヤ10に接地圧が掛かった状態で、タイヤ幅方向に張力を発生させる。上記構成の補強ベルト70によれば、接地圧やタイヤの空気圧によってトレッド部40にタイヤ径方向の圧縮応力が高くなった場合でも、補強ベルト70が圧縮応力の影響をタイヤ幅方向にも分散することで、ベルト層60のベルトコード61a,63a,65aに掛かる周方向の張力を低減することができる。これにより、接地状態でベルト層60の端部611,631,651近傍の剛性を適正化することができる。
 また、補強コード70aにヤング率が50GPa以上の補強コード70aを用いた場合、該補強コード70aによって補強ベルト70の剛性が確保され、ワイピング変形によるトレッドゴムのタイヤ幅方向中央側への流動を低減することができる。この際、補強ベルト70の剛性の影響によりワイピング変形抑制によるベルト層60の端部611,631,651近傍の剛性を適正化の影響が大きくなるため、この構成を用いた場合、接地状態でベルト層60の端部611,631,651近傍の剛性がさらに適正化され、ベルト層60の端部611,631,651近傍における局所的な接地圧の上昇を抑制する効果がさらに高まる。
 このため、車輪にネガティブキャンバが付与された状態で車両に装着された場合でも、直進走行中の加減速時に生じる横力損失が低減されて前後力が向上し得る空気入りタイヤ10を提供することができる。
 なお、本実施形態の空気入りタイヤ10では、車両装着時内側INの補強ベルト70の内側端部701が、車両装着時外側OUTの外側端部703よりもタイヤ径方向内側に位置している。さらに、タイヤ赤道面CLから内側端部701までのタイヤ幅方向の幅L701が、タイヤ赤道面CLから外側端部703までのタイヤ幅方向の幅L703よりも広くなっている。
 この構成では、補強ベルト70の内側端部701が空気入りタイヤ10の前記接地端よりもタイヤ幅方向外側(即ち車両装着時内側IN)まで延びている。そして、内側端部701からタイヤ表面までに十分なゴム層の厚さが確保されている。さらに、補強ベルト70とベルト層60との端部間、即ち内側端部701と内側端部651との間にもコーティングゴム70b,65b等によるゴム層の厚さが確保されている。
 このため、前記接地端よりも車両装着時内側INの接地位置GEまでタイヤが接地した場合でも、図3に示すように、接地位置GE近傍のタイヤのゴム層は、補強ベルト70によってタイヤ径方向内側から支持される。この構成によれば、補強コード70aによってワイピング変形が大きく発生しやすい接地位置GE近傍でワイピング変形が効果的に抑制され、接地位置GE近傍までベルト層60のベルトコード61a,63a,65aに掛かる周方向の張力が効果的に低減される。
 この結果、車輪にネガティブキャンバが付与された状態で車両に装着された場合でも、直進走行中の加減速時に生じる横力損失がさらに低減され、空気入りタイヤ10に発生する前後力がさらに向上する。
 また、本実施形態では、傾斜ベルト61,63内のベルトコード61a,63aが、タイヤ赤道面CLに対する傾斜角度を45度以上90度未満とされている。コード角度をこの範囲に設定することで、路面GNDと最外側の傾斜ベルト63との間に発生する周方向のせん断歪を緩和して、ここに働くすべりを抑制してトレッド幅方向の接線力を均一化し、トラクション性を改善することができる。
 また、本実施形態において、周方向ベルト65の幅は、トレッド幅の90%以上110%の範囲内となっている。この構成によれば、周方向ベルト65のタイヤ幅方向外側端部651,653での耐久性が向上し、かつトレッド部40の径成長を効果的に抑制し得る。
 (変更例)
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、周方向ベルト65が備えられていたが、周方向ベルト65は、必須ではない。つまり、空気入りタイヤ10の用途などによっては、交錯ベルト(傾斜ベルト61,63)のタイヤ径方向外側に補強ベルト70が設けられ、補強ベルト70のタイヤ径方向外側にトレッド41(トレッドゴム)が設けられる構造でもよい。
 また、周方向ベルト65以外に、他の補強ベルト、例えば、交錯ベルトのタイヤ幅方向端部を覆うベルト(キャップ層などと呼ばれてもよい)が設けられてよい。
 本実施形態では、補強ベルト70が車両装着時内側(IN側)及び車両装着時外側(OUT側)の接地端付近まで備えられていたが、補強ベルト70の幅は、タイヤ赤道面CLを基準としたIN側及びOUT側に設けられていれば、多少狭くしてもよい。
 また、図4は、本実施形態の空気入りタイヤ10の変更例1に掛かる空気入りタイヤ10Aについて記載している。図4は、変更例1に係る空気入りタイヤ10Aのタイヤ径方向及びタイヤ幅方向に沿った断面図である。
 変更例1に掛かる空気入りタイヤ10Aは、補強ベルト70とベルト層60との間に追加の緩衝ゴム層80が配置されている点が本実施形態の空気入りタイヤ10と異なる。空気入りタイヤ10Aのその他の構成は、空気入りタイヤ10と同様になっている。
 緩衝ゴム層80のヤング率は、ベルト層60のタイヤ径方向外側端に位置する周方向ベルト65のコーティングゴム65bの弾性率以下、或いは補強ベルト70のコーティングゴム70bの弾性率以下になっている。
 緩衝ゴム層80の厚さは、タイヤ径方向の幅が0.2mm以上1.5mm以下になっている。また、緩衝ゴム層80の幅は、補強ベルト70と全幅において重なり合うようになっている。
 変更例1に掛かる空気入りタイヤ10Aでは、ネガティブキャンバが付与された状態の車輪のリムRMに空気入りタイヤ10が装着された状態で直進走行中に加減速した際に、接地圧によるタイヤの変形に伴ってベルト層60がタイヤ幅方向に変形した場合でも、緩衝ゴム層80によってベルト層60と補強ベルト70との間に生じるせん断応力が効果的に緩和される。
 図5および図6は、変更例2に係る空気入りタイヤ10Bについて記載している。図5は、変更例2に係る空気入りタイヤ10Bのタイヤ径方向及びタイヤ幅方向に沿った断面図である。図6は、変更例2に係る空気入りタイヤ10Bのトレッドの一部平面展開図である。
 本実施形態の空気入りタイヤ10では、トレッド41のパターンを特に限定することなく図示も省略していた。変更例2に係る空気入りタイヤ10Bは、図5で示すように、実施形態に係る空気入りタイヤ10と同様の断面構造を有する。空気入りタイヤ10Bの外表面には、図6に示すように、タイヤ赤道面CLを基準とした車両装着時内側(IN側)に形成される溝部のボリュームであるネガティブ率が低い非対称パターンのトレッド41Bのパターン(トレッドパターン)を形成し得る。
 なお、ここで、ネガティブ率を規定する溝部のボリュームとは、上述した正規内圧及び正規荷重時において、路面と接地しない部分の面積(或いは体積)と解釈されてよい。一方、正規内圧及び正規荷重時において、路面と接地する部分が、陸部と解釈されてよい。
 また、このような溝部と陸部の比率は、いわゆるネガティブ率として定義されてもよい。ネガティブ率は、端的には、溝部/(陸部+溝部)として表現できるが、正確には、トレッド41Bの全周(または単位長(ピッチ)でもよい)部分を二次元に投影したトレッド41B全体面積に対する溝部の比率と解釈されてよい。
 また、陸部の面積の確定に必要となるタイヤ幅方向における接地端は、上述したように、正規内圧に設定された空気入りタイヤ10Bに最大負荷能力(ロードインデックス)に対応する最大負荷能力(最大荷重)が負荷された状態を基準としてよい。
 具体的に、変更例2に係る空気入りタイヤ10Bは、図5に示すように、トレッド部40Bのトレッド41Bに周方向溝43B等のパターンが形成されていること以外は、実施形態に係る空気入りタイヤ10と同様の断面構造を有してよい。
 変更例2に係る空気入りタイヤ10Bのトレッドパターンは、図6に示すように、トレッド41Bに複数の周方向溝43B、幅方向サイプ45B、ショルダー溝47B及びラグ溝49Bがそれぞれ形成されてよい。
 具体的に、周方向溝43Bは、タイヤ周方向に沿って延びる直線状の主溝である。タイヤ赤道面CLを基準として、OUT側に2本の周方向溝43B、IN側に1本の周方向溝43Bが形成されている。このように、車両装着時内側(IN側)に形成される溝部は、少なくとも1つの周方向溝43Bを含んでよい。
 幅方向サイプ45Bは、タイヤ幅方向に延びる直線状のサイプであり、タイヤ周方向において一定の距離を隔てて複数形成される。
 なお、サイプとは、トレッド41Bの接地面内では閉じる細溝であり、非接地時におけるサイプの開口幅は、特に限定されないが、0.1mm~1.5mmであることが好ましい。
 ショルダー溝47Bは、OUT側のトレッドショルダー部分に形成される。変更例2では、ショルダー溝47Bが、タイヤ幅方向に延び、中央部分で折れ曲がるような形状を有する。
 ラグ溝49Bは、IN側のトレッドショルダー部分に形成される。ラグ溝49Bは、タイヤ幅方向に沿いつつ、タイヤ幅方向に対して傾斜する。つまり、ラグ溝49Bは、タイヤ幅方向とは平行でなく、タイヤ幅方向に対して傾斜している。
 ラグ溝49Bのタイヤ幅方向に対する傾斜角度は、幅方向サイプ45Bと同様に45度以下であり、外側ショルダー陸部の剛性と通過騒音(PBN)抑制との両立を考慮すると、30度以下であることが好ましい。
 また、ラグ溝49Bの周縁部分は、トレッド41B(外側ショルダー陸部)の踏面側からタイヤ径方向内側に向かって傾斜していてもよい。このような傾斜は、チャンファー(面取り部)などと呼ばれてもよい。
 この様に、変更例2に係る空気入りタイヤ10Bでは、タイヤ赤道面CLを基準とした車両装着時内側のトレッド41Bに形成される溝部(具体的には、1本の周方向溝43B及びラグ溝49B)のボリュームが、タイヤ赤道面CLを基準とした車両装着時外側のトレッド41Bに形成される溝部(具体的には、2本の周方向溝43B、幅方向サイプ45B及びショルダー溝47B)のボリュームよりも少なくなっている。
 なお、ネガティブ率の計算を容易にするため、トレッド41Bの主溝部分のみを溝部の対象とし、他の溝は除外されてもよい。具体的には、本実施形態であれば、タイヤ周方向に延びる周方向溝43Bは溝部の対象とし、タイヤ幅方向に延びる幅方向サイプ45B、ショルダー溝47B及びラグ溝49Bは、ネガティブ率の計算から除外されてもよい。
 特願2021-102341号(出願日:2021年6月21日)の全内容は、ここに援用される。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。

Claims (4)

  1.  路面に接するトレッドと、
     前記トレッドのタイヤ径方向内側に設けられる複数のベルトを有するベルト層と、
     前記ベルト層のタイヤ径方向内側に設けられ、タイヤの骨格を形成する環体状のカーカスと、を備え、
     前記ベルト層とトレッドとの間に、タイヤ幅方向及びタイヤ径方向に沿って延び、所定の距離を隔てて配置された複数の補強コードを被覆した補強ベルトを有し、
     前記タイヤ径方向及び前記タイヤ幅方向に沿ったタイヤ断面では、
      前記タイヤ幅方向における前記ベルト層に含まれる少なくとも一つのベルトの車両装着時内側になる内側端部が、車両装着時外側になる外側端部よりもタイヤ径方向内側に位置し、かつ
      前記タイヤ幅方向において、タイヤ赤道面から前記内側端部までの幅が、前記タイヤ赤道面から前記外側端部までの幅よりも広い空気入りタイヤ。
  2.  前記タイヤ断面では、
      前記タイヤ幅方向における前記補強ベルトの車両装着時内側になる第一端部が車両装着時外側になる第二端部よりもタイヤ径方向内側に位置し、かつ
      前記タイヤ幅方向において、前記タイヤ赤道面から前記第一端部までの幅が、前記タイヤ赤道面から前記第二端部までの幅よりも広い請求項1に記載の空気入りタイヤ。
  3.  前記タイヤ断面では、
      前記タイヤ幅方向における前記ベルト層のそれぞれのベルトの前記内側端部が前記外側端部よりタイヤ径方向内側に位置し、かつ
      前記タイヤ幅方向において、前記ベルト層のそれぞれのベルトの前記タイヤ赤道面から前記内側端部までの幅が、前記タイヤ赤道面から前記外側端部までの幅よりも広い
     請求項1または請求項2に記載の空気入りタイヤ。
  4.  前記ベルト層と前記補強ベルトとの間に配置された緩衝ゴム層をさらに備える請求項1から3の何れか一項に記載の空気入りタイヤ。
PCT/JP2022/013155 2021-06-21 2022-03-22 空気入りタイヤ WO2022270067A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-102341 2021-06-21
JP2021102341A JP2023001543A (ja) 2021-06-21 2021-06-21 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2022270067A1 true WO2022270067A1 (ja) 2022-12-29

Family

ID=84544625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013155 WO2022270067A1 (ja) 2021-06-21 2022-03-22 空気入りタイヤ

Country Status (2)

Country Link
JP (1) JP2023001543A (ja)
WO (1) WO2022270067A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192909A (ja) * 2000-12-26 2002-07-10 Bridgestone Corp タイヤ・リムホイール組立体及び空気入りタイヤ
JP2006151212A (ja) * 2004-11-30 2006-06-15 Bridgestone Corp 空気入りタイヤ
JP2009067290A (ja) * 2007-09-14 2009-04-02 Bridgestone Corp 空気入りタイヤ
JP2019111859A (ja) * 2017-12-21 2019-07-11 Toyo Tire株式会社 空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192909A (ja) * 2000-12-26 2002-07-10 Bridgestone Corp タイヤ・リムホイール組立体及び空気入りタイヤ
JP2006151212A (ja) * 2004-11-30 2006-06-15 Bridgestone Corp 空気入りタイヤ
JP2009067290A (ja) * 2007-09-14 2009-04-02 Bridgestone Corp 空気入りタイヤ
JP2019111859A (ja) * 2017-12-21 2019-07-11 Toyo Tire株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
JP2023001543A (ja) 2023-01-06

Similar Documents

Publication Publication Date Title
US5277235A (en) Pneumatic radial tire with high cornering and steering stability
WO2014073286A1 (ja) 空気入りタイヤ
WO2017188408A1 (ja) ランフラットラジアルタイヤ
WO2019220680A1 (ja) 空気入りタイヤ
WO2022270094A1 (ja) タイヤ
JP2012071791A (ja) 空気入りタイヤ
JP2002120514A (ja) 空気入りタイヤ
WO2006075455A1 (ja) 空気入りタイヤ
JP6018788B2 (ja) 自動二輪車用タイヤ
JPH11147406A (ja) 空気入りタイヤ
JP3511299B2 (ja) セットの非対称空気入りタイヤおよびその装着方法
WO2016093069A1 (ja) 空気入りタイヤ
WO2022270067A1 (ja) 空気入りタイヤ
JP6805782B2 (ja) 空気入りタイヤ
WO2022270069A1 (ja) 空気入りタイヤ
US5299612A (en) Pneumatic radial tire with high cornering and steering stability
WO2021260996A1 (ja) 空気入りタイヤ
CN113508042B (zh) 二轮车用轮胎
JP2002103923A (ja) 空気入りタイヤ
WO2020129971A1 (ja) タイヤ
JP6077736B2 (ja) 空気入りタイヤ
JPH11115418A (ja) 空気入りタイヤ
JP5521730B2 (ja) 空気入りタイヤ
WO2022270097A1 (ja) タイヤ
JP3467097B2 (ja) 空気入りラジアルタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827987

Country of ref document: EP

Kind code of ref document: A1