WO2018189863A1 - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
WO2018189863A1
WO2018189863A1 PCT/JP2017/015135 JP2017015135W WO2018189863A1 WO 2018189863 A1 WO2018189863 A1 WO 2018189863A1 JP 2017015135 W JP2017015135 W JP 2017015135W WO 2018189863 A1 WO2018189863 A1 WO 2018189863A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
signal
frequency
target
Prior art date
Application number
PCT/JP2017/015135
Other languages
English (en)
French (fr)
Inventor
英介 原口
俊行 安藤
仁深 尾野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17905724.5A priority Critical patent/EP3605140B1/en
Priority to JP2017547017A priority patent/JP6274368B1/ja
Priority to PCT/JP2017/015135 priority patent/WO2018189863A1/ja
Priority to CN201780089368.1A priority patent/CN110520753B/zh
Priority to US16/492,551 priority patent/US11550042B2/en
Publication of WO2018189863A1 publication Critical patent/WO2018189863A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a laser radar device for measuring a distance to a target or a moving characteristic of the target.
  • a direct detection method that receives an intensity-modulated signal and a method that performs heterodyne detection that enables high-sensitivity reception are used. ing.
  • the conventional method using direct detection has a problem that thermal noise is dominant and reception sensitivity is deteriorated.
  • a configuration for performing heterodyne detection on pulsed light for example, Patent Document 1 requires a modulator for adding a frequency shift to transmitted light or local light, and is small and integrated. It was difficult.
  • a laser radar apparatus that performs heterodyne detection using intensity-modulated signal light (for example, Patent Document 2).
  • the frequency of the intensity-modulated signal is equivalent to the Doppler frequency, and pulse light It was difficult to implement against.
  • the pulse width of the pulse signal determines the resolution of the measurement distance.
  • this pulse signal is subjected to heterodyne detection, it is necessary to provide a frequency difference between the signal light and the local light so that the pulse signal can be handled.
  • the frequency difference between the signal light and the local light is limited by the modulation frequency of the optical frequency shifter, and it is difficult to realize a large frequency shift.
  • it is difficult to perform heterodyne detection by giving a large frequency shift to the signal light and local light and it is difficult to cope with a pulse signal having a short pulse width.
  • an object of the present invention is to obtain a laser radar device capable of measuring the target distance or the target moving characteristic with high resolution.
  • a laser radar device outputs a first light having a first frequency at a first time and outputs a second light having a second frequency at a second time;
  • An optical branching device for branching the first and second lights output from the semiconductor laser into signal light and local light, an optical modulator for modulating the signal light into pulsed light, and modulated by the optical modulator
  • An optical antenna that emits pulsed light to space and receives scattered light from a target of the pulsed light as received light, an optical heterodyne receiver that detects the received light heterodyne using the local light, and the optical heterodyne
  • a measurement unit that measures a distance to the target or a movement characteristic of the target using a reception signal heterodyne detected by the receiver, and the optical heterodyne receiver emits the local light of the second light. Used, characterized by heterodyne detection of the received light of the first light.
  • the present invention it is possible to give a larger frequency shift between the signal light and the local light than in the prior art, and by heterodyne detection of the scattered light from the target of the pulsed light having a short pulse width, the distance of the target Alternatively, the movement characteristics of the target can be measured with high resolution.
  • FIG. 1 is a configuration diagram of a laser radar device 100 according to Embodiment 1 of the present invention.
  • FIG. Overall operation of laser radar apparatus 100 according to Embodiment 1 of the present invention.
  • standard light source 1 which concerns on Embodiment 1 of this invention.
  • the image figure of the various signals which concern on Embodiment 1 of this invention.
  • the block diagram of the laser radar apparatus 100 which concerns on Embodiment 2 of this invention.
  • Embodiment 1 FIG. Embodiments of the present invention will be described below.
  • a laser radar device 100 that measures the distance to the target 20 will be described.
  • FIG. 1 shows a configuration diagram of a laser radar device 100 according to Embodiment 1 of the present invention.
  • the laser radar apparatus 100 includes a reference light source 1 that generates light having a single wavelength (single frequency) continuous oscillation and constant polarization, and a signal light path and a local light emission path 50 that travel light paths generated by the reference light source 1.
  • a polarization maintaining optical coupler 2 that is an optical branching device, a semiconductor optical amplifier 3 (SOA: Semiconductor Optical Amplifiers) that converts light branched into the signal optical path by the polarization maintaining optical coupler 2 into pulse light, and pulse light From an optical amplifier 4 that amplifies, an optical circulator 5 that separates a signal optical path that receives amplified light from the output side of the signal optical path and outputs light received from the output side of the signal optical path 51 to the reception optical path 51
  • An optical antenna 6 that outputs the light output to the signal optical path as spatial light, and a delay filter that adjusts the optical path length of the received light received by the optical antenna 6 and output to the reception optical path 51 by the optical circulator 5.
  • Optical path length adjusting means 7 such as a bar
  • optical combining coupler 8 for combining the local light that is branched into the local light emitting path 50 by the polarization maintaining optical coupler 2 and the received light that passes through the receiving optical path 51, and after the combining Is input to the reference light source 1 and the reference light source 1.
  • the balanced receiver 9 that receives and converts the optical signal into the electrical signal
  • the measurement unit 30 that measures the distance to the target 20 or the movement characteristics of the target 20 using the received signal after photoelectric conversion.
  • An injection current control signal 14 that performs frequency modulation of light by the reference light source 1 and a pulse generation signal 15 that is input to the semiconductor optical amplifier 3 and used to generate pulsed light by the semiconductor optical amplifier 3 and a signal detection circuit in the measurement unit 30 12 includes a time series signal generation unit 10 that generates a trigger signal 16 that is input to 12 and used to start a signal detection operation, and a delay adjustment circuit 11 that adjusts the delay of the trigger signal 16. That.
  • the measurement unit 30 includes a signal detection circuit 12 that detects an amplitude equal to or greater than the threshold value of the received signal 18 after photoelectric conversion, and a signal processing unit 13 that processes the detected signal.
  • the same reference numerals indicate the same or corresponding parts.
  • the balanced receiver 9 is an example of a configuration that realizes an optical heterodyne receiver, and may be configured as another optical heterodyne receiver.
  • the semiconductor optical amplifier 3 is an example of an optical modulator that modulates input light into pulsed light, and may be configured as another optical modulator.
  • FIG. 2 shows the overall operation of the laser radar device 100.
  • the injection current control signal 14 is applied from the time series signal generation unit 10 to the reference light source 1 (S201).
  • the oscillation wavelength changes due to the carrier plasma effect and the thermo-optic effect.
  • FIG. 3 shows a signal image of the reference light source 1. With the injection current control signal 14 controlled as a burst pulse, the optical frequency of the output light from the reference light source 1 is output at the first frequency f1 only during the pulse ON period and at the second frequency f0 during the pulse OFF period. .
  • the pulse ON period and the pulse OFF period can be changed at high speed by the injection current control signal 14, so that the frequency difference between the first frequency f1 and the second frequency f0 is set to be equal to or higher than GHz.
  • a frequency shift of GHz or higher can be realized.
  • the reference light source 1 such as a semiconductor laser capable of frequency modulation by controlling the injection current, a frequency shift of GHz or more can be realized. It is generally well known that high-speed modulation of GHz or higher can be realized with a semiconductor laser.
  • the light output from the reference light source 1 is branched into the signal optical path and the local light emission path 50 by the polarization maintaining optical coupler 2 (S202).
  • the light branched into the signal optical path by the polarization maintaining optical coupler 2 becomes pulsed light by the semiconductor optical amplifier 3 that is directly modulated by the pulse generation signal 15.
  • the pulsed light output from the semiconductor optical amplifier 3 is amplified by the optical amplifier 4 such as an optical fiber amplifier (S203).
  • the amplified signal light is separated into a signal optical path and a reception optical path by the optical circulator 5 (S204).
  • spatial output is performed by the optical antenna 6 that outputs spatially as collimated light (S205).
  • the received light spatially output by the optical antenna 6 and scattered by the target 20 is separated from the signal optical path by the optical circulator 5 and enters the received optical path 51 (S206).
  • the optical path length adjusting means 7 such as a delay fiber, a fiber stretcher, or an optical phase shifter is set so that the signal optical path length L S due to the internally scattered light of the optical antenna 6 is longer than the local light emitting path length L L.
  • L S > L L (1)
  • the signal optical path length L S and the local light emission path length L L L due to the internally scattered light of the optical antenna 6 are both optical path lengths from the polarization maintaining optical coupler 2 to the balanced receiver 9.
  • the received light and the local light are combined by the polarization maintaining optical coupler 8 and then received by the balanced receiver 9 (S207).
  • the balanced receiver 9 that performs heterodyne detection using two PDs (Photo Diodes) is described.
  • a single optical receiver that performs heterodyne detection using one PD (Photo Diode) is described. It can be applied even when used.
  • the balanced receiver 9 has an advantage that the intensity noise held by the light source can be suppressed, and can receive with higher sensitivity than the single optical receiver.
  • the processing in the balanced receiver 9 is a specific example in which the received light is heterodyne detected by local light with an optical heterodyne receiver.
  • the reception signal 18 received by the balanced receiver 9 detects a signal of scattered light from the target 20 by the signal detection circuit 12 that detects a peak equal to or higher than a threshold value (S208).
  • the signal processing unit 13 measures the propagation time of the scattered light from the target 20 to measure the distance to the target 20 (S209).
  • FIG. 4 shows an image diagram of various signals.
  • the time-series signal generation unit 10 applies the injection current control signal 14 (FIG. 4A) for directly modulating the LD and the pulse generation signal 15 (FIG. 4B) for directly modulating the semiconductor optical amplifier 3 at the same timing. . Therefore, the signal light Tx output from the optical antenna 6 becomes a pulse light whose frequency is shifted. Assuming that the optical path length from the semiconductor optical amplifier 3 to the optical antenna 6 end is L S ′ ( ⁇ L S ), the spatially output signal light at the optical antenna 6 end (FIG. 4 (d ′)) Is delayed by the time L S '/ c from the modulation.
  • FIG. 4D shows the amplitude of the leaked light in the balanced receiver 9
  • FIG. 4F shows the frequency of the leaked light.
  • the internal scattering from the optical antenna 6 and the leaked light from the optical circulator 5 enter the balanced receiver 9 with a delay of time Ts from the application of the injection current control signal 14.
  • Ts Ls / c c: Speed of light (2)
  • the local light (FIG. 4E) is delayed by T L and enters the balanced receiver 9.
  • T L L L / c
  • the time domain X in which the local light is modulated and the signal light (internally scattered light from the optical antenna 6) are generated.
  • Signals are detected in three regions: a modulated time region Y and a time region Z to be detected, which is scattering from the target 20. That is, the local light is in a state modulated to the first frequency f1 in the time domain X, and is modulated to the second frequency f0 in the time domains Y and Z.
  • the signal light (internally scattered light from the optical antenna 6) is modulated in the time domain Y to the first frequency f1, and is modulated in the time domains X and Z to the second frequency f0.
  • the scattered light from the target 20 is in a state modulated to the first frequency f1 in the time domain Z, and is modulated to the second frequency f0 in the time domains X and Y.
  • the received signals in the time domains Y and Z are heterodyne detection of the internally scattered light from the optical antenna 6 having the first frequency f1 or the scattered light from the target 20 with the local light having the second frequency f0. It is the result.
  • heterodyne detection is performed using the second frequency f0 of the light frequency-modulated by the reference light source 1 as local light and the first frequency f1 as signal light.
  • the trigger signal 16 is generated by the time series signal generation unit 10, and the trigger signal 16 is determined by the delay adjustment circuit 11 such as a phase shifter to determine the timing for starting the operation of the signal detection circuit 12 (see FIG. 4). The delay is adjusted to (c)).
  • the trigger signal 17 is set between the timing at which the local light is modulated (X region in FIG. 4) and the region for receiving the leakage light of the signal light (Y region in FIG. 4). Further, the signal light leakage light (Y region in FIG. 4) is set as the detection zero distance.
  • the delay corresponding to the signal optical path length Ls and the distance to the target 20 cannot be separated.
  • the light propagation time from the output end of the optical antenna 6 to the target 20 can be detected by using the leakage light (internally scattered light) of the optical antenna 6 as a timing trigger for starting measurement.
  • the distance from the target to the target 20 can be accurately detected. Specifically, if the distance from the optical antenna 6 to the target 20 is Lt, the received scattered light from the target 20 is (Ls + 2Lt) / c. Therefore, 2Lt / c can be detected by using the leaked light Ls / c as a timing trigger.
  • the optical path length In the propagation of a signal optical path using an optical fiber, the optical path length generally changes due to the influence of environmental temperature or the like.
  • the trigger signal 17 When the trigger signal 17 is used as the measurement start point, this change in optical path length cannot be corrected.
  • measurement can be performed without the need to correct the measurement start point even when the environmental temperature changes.
  • the response speed to the DFB-LD modulation signal can be a high-speed response of 1 ns or less, and the frequency change amount is 1 GHz or more.
  • the response band of the conventionally used optical frequency shifter is smaller than 1 MHz, and the shift amount is smaller than 1 GHz. As a result, it becomes difficult to cope with heterodyne detection of a pulse signal having a short pulse width of the ns order.
  • the frequency shift that occurs when LD (laser diode) is directly modulated in burst pulses is used as the reference light, and the optical path length difference between the reference light and the local light is set to be longer.
  • LD laser diode
  • the optical path length difference between the reference light and the local light is set to be longer.
  • heterodyne detection with a short pulse of ns order which has been impossible in the past, is possible, and it does not depend on the signal optical path length.
  • the distance from the optical antenna 6 to the target 20 can be detected.
  • the laser radar apparatus 100 outputs the first light having the first frequency f1 at the first time and the second light having the second frequency f0 at the second time.
  • a semiconductor laser that is a reference light source 1 that outputs the light of the above, an optical branching device such as a polarization maintaining optical coupler 2 that branches the first and second lights output from the semiconductor laser into signal light and local light,
  • An optical modulator that modulates the signal light into pulsed light
  • an optical antenna 6 that radiates the pulsed light modulated by the optical modulator into space, and receives scattered light from the target 20 of the pulsed light as received light
  • An optical heterodyne receiver that performs heterodyne detection of the received light using the local light
  • a measurement unit 30 that measures a distance from the target 20 using the received signal 18 that is heterodyne detected by the optical heterodyne receiver;
  • a high-resolution laser radar device 100 can be realized. Specifically, a frequency shift of 1 GHz or more can be realized, and heterodyne detection can be performed with pulsed light having a short pulse width of the ns order.
  • the heterodyne detection method can be reduced in size and integrated as compared with the prior art that performs frequency shift using an optical frequency shifter.
  • the measurement unit 30 measures the distance between the own device and the target 20 by measuring the propagation time of the scattered light from the target 20. With this configuration, the distance to the target 20 can be measured with higher resolution and higher sensitivity than in the conventional technology.
  • the measurement unit 30 uses, as the measurement start time, the time when the measurement unit 30 detects the internal scattered light generated by scattering the pulsed light within the device itself.
  • the propagation time of scattered light from the target 20 is measured.
  • the measurement start time is determined in advance.
  • the measurement result is also affected when expansion or contraction occurs in the light propagation path.
  • the configuration of the present embodiment if the time difference in which the internally scattered light and the scattered light from the target 20 are detected is the same even if the light propagation path expands and contracts, the measured distance is affected. Does not occur. Therefore, there is an advantage that the measurement value is not affected even when the light propagation path is expanded or contracted.
  • the optical path length L S of the internally scattered light is longer than the optical path length L L of the local light.
  • the measurement unit 30 includes the time when the local light has the first frequency f1 in the measurement unit 30 and the internal light generated by the scattering of pulsed light within the own device.
  • the trigger signal 17 that starts the operation of detecting a specific signal included in the received signal 18 is received between the time when the scattered light has the first frequency f1 in the measurement unit 30, and the operation of detecting the signal is started. It is characterized by that.
  • the detection of a specific signal indicates, for example, that a signal having an amplitude equal to or greater than a threshold value is detected.
  • the laser radar device 100 is characterized by including the delay adjustment circuit 11 that adjusts the delay time of the trigger signal 17.
  • the trigger signal 17 is generated when the local light emitted from the measurement unit 30 has the first frequency f1 and the internal scattered light generated by the scattering of the pulsed light within the device itself has the first frequency. It is possible to control the delay of the trigger signal 17 so as to be set between the time having f1.
  • the laser radar device 100 is characterized by including an optical path length adjusting unit that is an optical path length adjusting unit 7 that adjusts the optical path length of the pulsed light.
  • the signal light path length L S due to the internally scattered light of the optical antenna 6 can be set to be longer than the local light path length L L , and the local light can be set to propagate to the balanced receiver 9 quickly.
  • local light emission is not detected between the time when the internal scattered light of the antenna 6 is detected by the measurement unit 30 and the time when the scattered light from the target 20 is detected, and the internal scattered light of the antenna 6 is detected. It is possible to measure with high accuracy the time from when the light is scattered to when the scattered light from the target 20 is detected.
  • the light source that is the standard light source 1 outputs light having the first frequency f1 and the second frequency f0 by injecting a modulated current. It is characterized by doing.
  • frequency modulation can be performed in a shorter time than the conventional technique in which frequency modulation is performed by an optical frequency shifter to provide a frequency difference between signal light and local light, and the frequency difference between signal light and local light can be increased. .
  • the laser radar device 100 is characterized in that the semiconductor laser that is the standard light source 1 is composed of DFB-LD (distributed feedback) laser diode.
  • the injection current control signal 14 controlled in a burst pulse manner allows the optical frequency of the output light from the reference light source 1 to be output at a frequency of f1 only during the pulse ON period and at a frequency of f0 during the pulse OFF period. Frequency modulation can be performed efficiently.
  • Embodiment 2 the distance from the peak of the received signal 18 that is equal to or greater than a certain fixed threshold to the target 20 is detected, whereas in the present embodiment, the received signal 18 is digitally converted and the digital signal is converted into By analyzing the frequency component, the moving speed of the target 20 that could not be detected in the first embodiment can be detected.
  • FIG. 5 shows a configuration diagram of the laser radar device 100 according to the present embodiment.
  • the signal detection circuit 12 in FIG. 2 is replaced with an AD (Analog-to-Digital) converter 21.
  • AD Analog-to-Digital
  • Figure 6 shows an image of various signals.
  • FFT Fast Fourier Transform
  • the leakage light generated by the internal scattering of the optical antenna 6 or the like is not affected by the movement of the target 20, and the frequency shift amount (zero Doppler) of the LD can be detected.
  • the zero Doppler component is extracted from the FFT result of the zero point (leakage light)
  • the difference between the frequency component obtained from the scattering of the zero Doppler and the target 20 is extracted, and the frequency analysis is performed. It is possible to detect the distance to the target 20 and the moving speed without depending on.
  • the laser radar apparatus 100 outputs the first light having the first frequency at the first time and the second light having the second frequency at the second time.
  • a semiconductor laser that is a reference light source 1 that outputs light
  • an optical branching device such as a polarization maintaining optical coupler 2 that branches the first and second lights output from the semiconductor laser into signal light and local light, and the signal
  • An optical modulator that modulates light into pulsed light
  • an optical antenna 6 that radiates pulsed light output from the optical modulator into space, and receives scattered light from the target 20 of the pulsed light as received light
  • An optical heterodyne receiver that performs heterodyne detection of received light using the local light
  • a measurement unit 30 that measures the movement characteristics of the target 20 using the received signal 18 heterodyne detected by the optical heterodyne receiver.
  • the reference light source 1 can realize a frequency shift larger than that of the conventional technique in which a frequency difference between signal light and local light is generated using an optical frequency shifter.
  • the laser radar device 100 capable of detecting the moving speed of the target 20 in a wide range (wide frequency range) can be realized by performing heterodyne detection using pulsed light having a short pulse width.
  • the measurement unit 30 measures the moving speed of the target 20 by measuring the frequency of the scattered light from the target 20.
  • the moving speed of the target 20 can be measured in a range higher than that of the prior art.
  • the measurement unit 30 has the frequency of the internally scattered light generated by scattering the pulsed light within the device itself and the frequency of the scattered light from the target 20.
  • the moving speed of the target 20 is measured by measuring the difference.
  • 1 reference light source
  • 2 polarization maintaining optical coupler
  • 3 semiconductor optical amplifier
  • 4 optical amplifier
  • 5 polarization maintaining optical circulator
  • 6 optical antenna 6
  • 7 optical path length adjusting means
  • 8 polarization maintaining Optical coupler
  • 9 balanced receiver
  • 10 time series signal generation unit
  • 11 delay adjustment circuit
  • 12 signal detection circuit
  • 13 signal processing unit
  • 14 injection current control signal
  • 15 pulse generation signal
  • 16 Trigger signal
  • 17 Trigger signal (after delay adjustment)
  • 18 Reception signal
  • 19 Detection signal
  • 20 Target
  • 21 AD converter
  • 30 Measurement unit
  • 50 Local light emission path
  • 51 Reception light path
  • 100 Laser radar equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

この発明のレーザレーダ装置は、第1の時間に第1の周波数をもつ光を出力し、第2の時間に第2の周波数をもつ光を出力する光源と、前記光源から出力された光を信号光と局発光に分岐する光分岐器と、前記信号光をパルス光に変調する光変調器と、前記パルス光を空間に放射しターゲットからの散乱光を受信光として受信する光アンテナと、前記受信光を、前記局発光を用いてヘテロダイン検波する光ヘテロダイン受信機と、前記光ヘテロダイン受信機で検波された受信信号を用いて、前記ターゲットとの距離または前記ターゲットの移動特性を測定する測定部と、を備え、前記光ヘテロダイン受信機は、前記局発光が前記第2の周波数をもつ状態で、前記第1の周波数をもつ前記受信光をヘテロダイン検波することを特徴とする。この構成により、信号光と局発光の間に大きな周波数シフトを与えることができ、短パルス光を用いてターゲットとの距離を高い分解能で測定できる。

Description

レーザレーダ装置
 この発明はターゲットとの距離またはターゲットの移動特性を計測するレーザレーダ装置に関するものである。
 ターゲットに対してレーザ光を送受信して、ターゲットとの距離を計測するレーザレーダ装置において、強度変調された信号を受信する直接検波方式や、高感度受信が可能なヘテロダイン検波を行う方式が用いられている。
 直接検波を用いる従来方式では、熱雑音が支配的となり受信感度が劣化する課題があった。一方、高感度受信の為、パルス光に対するヘテロダイン検波を行う構成(例えば、特許文献1)においては送信光、または局発光に周波数シフトを付加する為の変調器が必要であり、小型、集積化が困難であった。また、強度変調された信号光を用いてヘテロダイン検波を行うレーザレーダ装置についての報告もあるが(例えば、特許文献2)、当技術は強度変調信号の周波数がドップラ周波数と同等であり、パルス光に対して実施することは困難であった。
 また、パルス方式のレーザレーダ装置では、パルス信号のパルス幅が計測距離の分解能を決定する。このパルス信号をヘテロダイン検波する場合には、そのパルス信号に対応できるように信号光と局発光との周波数差を設ける必要がある。
特開2000-338246号公報 特開2015-129646号公報
 従来のパルス方式のレーザレーダ装置では、信号光と局発光との周波数差は光周波数シフタの変調周波数によって制限され、大きな周波数シフトを実現することが困難であった。その結果、信号光と局発光に大きな周波数シフトを与えてヘテロダイン検波を行うことが難しく、短いパルス幅を持つパルス信号に対応することが困難であった。具体的には、nsオーダの短いパルス幅を持つパルス信号に対応するためにはGHz以上の周波数シフトを実現することが必要となるが、従来技術ではGHz以上の周波数シフトを実現することは困難であった。
 本発明は上記のような課題を解決するためになされたもので、信号光と局発光の間に大きな周波数シフトを与え、短いパルス幅を持つパルス信号のターゲットからの散乱光をヘテロダイン検波することにより、ターゲットの距離またはターゲットの移動特性を高い分解能で測定できるレーザレーダ装置を得ることを目的とする。
 この発明に係るレーザレーダ装置は、第1の時間に第1の周波数をもつ第1の光を出力し、第2の時間に第2の周波数をもつ第2の光を出力する半導体レーザと、前記半導体レーザから出力された第1と第2の光を信号光と局発光に分岐する光分岐器と、前記信号光をパルス光に変調する光変調器と、前記光変調器で変調されたパルス光を空間に放射し、前記パルス光のターゲットからの散乱光を受信光として受信する光アンテナと、前記受信光を、前記局発光を用いてヘテロダイン検波する光ヘテロダイン受信機と、前記光ヘテロダイン受信機でヘテロダイン検波された受信信号を用いて、前記ターゲットとの距離または前記ターゲットの移動特性を測定する測定部と、を備え、前記光ヘテロダイン受信機は、前記第2の光の前記局発光を用いて、前記第1の光の前記受信光をヘテロダイン検波することを特徴とする。
 この発明によれば、従来技術よりも信号光と局発光の間に大きな周波数シフトを与えることができ、短いパルス幅をもつパルス光のターゲットからの散乱光をヘテロダイン検波することにより、ターゲットの距離またはターゲットの移動特性を高い分解能で測定できる。
この発明の実施の形態1に係るレーザレーダ装置100の構成図。 この発明の実施の形態1に係るレーザレーダ装置100の全体動作。 この発明の実施の形態1に係る基準光源1での信号イメージ図。 この発明の実施の形態1に係る各種信号のイメージ図。 この発明の実施の形態2に係るレーザレーダ装置100の構成図。 この発明の実施の形態2に係る各種信号のイメージ図。
 実施の形態1.
 以下、この発明の実施の形態について説明する。
 本実施の形態では、ターゲット20との距離を計測するレーザレーダ装置100について説明する。
 図1にこの発明の実施の形態1に係るレーザレーダ装置100の構成図を示す。レーザレーダ装置100は、単一波長(単一周波数)の連続発振かつ定偏光である光を発生させる基準光源1と、基準光源1で発生した光の進む光路を信号光路と局発光路50とに分離する光分岐器である偏波保持光カプラ2、偏波保持光カプラ2で信号光路に分岐された光をパルス光に変換する半導体光増幅器3(SOA: Semiconductor Optical Amplifiers)、パルス光を増幅する光増幅器4、増幅されたパルス光を入力して信号光路へ出力するとともに信号光路の出力側から受信した光を受信光路51へ出力する信号光路を分離する光サーキュレータ5、光サーキュレータ5から信号光路へ出力された光を空間光として出力する光アンテナ6、光アンテナ6で受信され光サーキュレータ5で受信光路51に出力された受信光の光路長を調整する遅延ファイバなどの光路長調整手段7、偏波保持光カプラ2で局発光路50に分岐された光である局発光と受信光路51を通過する受信光を合波する光合波カプラ8、合波後の光信号を受信し電気信号に変換するバランストレシーバ9、光電変換後の受信信号を用いて、ターゲット20との距離またはターゲット20の移動特性を測定する測定部30、基準光源1に入力され基準光源1で光の周波数変調を行う注入電流制御信号14及び半導体光増幅器3に入力され半導体光増幅器3でパルス光を生成するために用いられるパルス生成信号15及び測定部30内の信号検出回路12に入力され信号検出の動作を開始するために用いられるトリガ信号16を生成する時系列信号生成ユニット10、トリガ信号16の遅延を調整する遅延調整回路11を備える。また、測定部30は光電変換後の受信信号18の閾値以上の振幅を検出する信号検出回路12と検出した信号を処理する信号処理部13を備える。以降の各図において、同一符号は同一または相当部分を示す。なお、バランストレシーバ9は光ヘテロダイン受信機を実現する構成の一例であり、他の光ヘテロダイン受信機の構成とすることも可能である。また、半導体光増幅器3は入力された光をパルス光に変調する光変調器の一例であり、他の光変調器の構成とすることもできる。
 以下、全体の動作について説明する。ここでは、一例として、基準光源1にDFB-LD (distributed feedback laser diode) を用いる。図2にレーザレーダ装置100の全体動作を示す。基準光源1に時系列信号生成ユニット10から注入電流制御信号14を印加する(S201)。DFB-LDでは、キャリアプラズマ効果と熱光学効果により発振波長が変化する。図3に基準光源1での信号イメージを示す。バーストパルス的に制御される注入電流制御信号14により、基準光源1からの出力光の光周波数はパルスON期間のみ第1の周波数f1、パルスOFF期間には第2の周波数f0の周波数で出力する。DFB-LDでは、注入電流制御信号14により、高速にパルスON期間とパルスOFF期間を変更できるため、第1の周波数f1と第2の周波数f0の周波数差がGHz以上となるように設定することで、GHz以上の周波数シフトを実現することができる。なお、DFB-LD以外であっても、注入電流を制御することによって周波数変調を行える半導体レーザなどの基準光源1であれば、GHz以上の周波数シフトを実現することができる。なお、半導体レーザでGHz以上の高速変調を実現可能であることは、一般によく知られている。
 基準光源1から出力された光を偏波保持光カプラ2で信号光路と局発光路50に分岐する(S202)。偏波保持光カプラ2で信号光路に分岐された光はパルス生成信号15で直接変調される半導体光増幅器3によりパルス光となる。半導体光増幅器3出力のパルス光は光ファイバ増幅器等の光増幅器4により増幅される(S203)。増幅された信号光は光サーキュレータ5で信号光路と受信光路に分離される(S204)。信号光路では、コリメート光として空間出力する光アンテナ6によって空間出力される(S205)。
 光アンテナ6によって空間出力され、ターゲット20で散乱された受信光は光サーキュレータ5により信号光路と分離され受信光路51に入る(S206)。受信光路では、遅延ファイバやファイバストレッチャ、光移相器等の光路長調整手段7により光アンテナ6の内部散乱光による信号光路長LSが局発光路長LLより長くなるように設定する。
   LS>LL            (1)
ここで、光アンテナ6の内部散乱光による信号光路長LSと局発光路長LLはともに偏波保持光カプラ2からバランストレシーバ9に至る光路長である。
 受信光と局発光とを偏波保持光カプラ8で合波後、バランストレシーバ9で受信する(S207)。ここでは、2つのPD(Photo Diode)を用いてヘテロダイン検波を行うバランストレシーバ9による実施例を記載しているが、1つのPD(Photo Diode)を用いてヘテロダイン検波を行う単一光レシーバを用いた場合においても適用可能である。なお、バランストレシーバ9では光源が保有する強度雑音を抑圧できる利点があり、単一光レシーバよりも高感度な受信が可能となる。バランストレシーバ9での処理は、光ヘテロダイン受信機で受信光を局発光によりヘテロダイン検波する具体的な一例である。
バランストレシーバ9で受信後の受信信号18は閾値以上のピークを検出する信号検出回路12にてターゲット20からの散乱光の信号を検出する(S208)。信号処理部13にてターゲット20からの散乱光の伝播時間を測定することにより、ターゲット20までの距離等の測定を行う(S209)。
 各種信号のイメージ図を図4に示す。時系列信号生成ユニット10はLD直接変調する注入電流制御信号14(図4(a))と半導体光増幅器3を直接変調するパルス生成信号15(図4(b))とを同タイミングで印加する。従って、光アンテナ6から出力される信号光Txは周波数シフトされたパルス光となる。半導体光増幅器3から光アンテナ6端までの光路長をLS’(<LS)とすると、空間出力される光アンテナ6端の信号光(図4(d'))は半導体光増幅器3での変調から時間LS’/c分だけ遅延が生じる。
 バランストレシーバ9における漏れ光の振幅を図4(d)、漏れ光の周波数を図4(f)にそれぞれ示す。ここで、光アンテナ6からの内部散乱や光サーキュレータ5からの漏れ光は、注入電流制御信号14の印加から時間Tsだけ遅れてバランストレシーバ9に入る。
   Ts=Ls/c      c:光速              (2)
一方、局発光(図4(e))はTLだけ遅延し、バランストレシーバ9に入る。
   TL=LL/c
今、光路長調整手段7によって、
       TL<TS
が成り立つ。
 したがって、受信信号の振幅(図4(g))、及び周波数(図4(h))に示すように局発光が変調された時間領域X、信号光(光アンテナ6からの内部散乱光)が変調された時間領域Y、ターゲット20からの散乱である検出したい時間領域Zの3領域で信号が検出される。すなわち、局発光は時間領域Xで第1の周波数f1に変調された状態であり、時間領域Y、Zで第2の周波数f0に変調された状態となる。信号光(光アンテナ6からの内部散乱光)は時間領域Yで第1の周波数f1に変調された状態であり、時間領域X、Zで第2の周波数f0に変調された状態となる。ターゲット20からの散乱光は時間領域Zで第1の周波数f1に変調された状態であり、時間領域X、Yで第2の周波数f0に変調された状態となる。これは局発光、信号光(光アンテナ6からの内部散乱光)、ターゲット20からの散乱光がそれぞれ異なる遅延を持つためである。従って、時間領域Y、Zの受信信号は、局発光が第2の周波数f0を持つ状態で、第1の周波数f1をもつ光アンテナ6からの内部散乱光またはターゲット20からの散乱光をヘテロダイン検波した結果である。本実施の形態では、基準光源1で周波数変調された光の第2の周波数f0を局発光として用い、第1の周波数f1を信号光として用いてヘテロダイン検波する。
 また、時系列信号生成ユニット10によってトリガ信号16が生成され、トリガ信号16は移相器などの遅延調整回路11によって、信号検出回路12の動作を開始するタイミングを決定するトリガ信号17(図4(c))に遅延調整される。ここで、トリガ信号17は、局発光が変調されたタイミング(図4のX領域)と信号光の漏れ光を受信する領域(図4のY領域)との間に設定される。さらに、信号光の漏れ光(図4のY領域)の信号を検出ゼロ距離とする。トリガ信号17を測定開始点とした場合、信号光路長Ls分の遅延とターゲット20との距離とを分離することができない。これに対して、光アンテナ6の漏れ光(内部散乱光)を測定開始のタイミングトリガとして用いることにより、光アンテナ6出力端からターゲット20までの光伝播時間を検出することができ、光アンテナ6からターゲット20までの距離を正確に検出可能となる。具体的に、光アンテナ6からターゲット20までの距離をLtとすると、受信されるターゲット20からの散乱光は(Ls+2Lt)/cが成り立つ。従って、漏れ光Ls/cをタイミングトリガとすることで、2Lt/cを検出できる。
 光ファイバを用いた信号光路の伝播では一般的に環境温度等の影響により、光路長が変化する。トリガ信号17を測定開始点とした場合、この光路長変化を補正することはできない。一方、本発明の構成を用いることで、環境温度が変化した場合においても測定開始点を補正する必要なく、測定が可能となる。
 一般的にDFB-LDの変調信号に対する応答速度は1ns以下の高速応答が可能であり、且つ周波数の変化量は1GHz以上である。その結果、nsオーダの短いパルス幅を持つパルス信号のヘテロダイン検波に対応することが可能となる。一方、従来使用されている光周波数シフタの応答帯域は1MHzよりも小さく、またシフト量も1GHzよりも小さい。その結果、nsオーダの短いパルス幅を持つパルス信号のヘテロダイン検波に対応することが困難となる。
 以上、LD(laser diode)をバーストパルス的に直接変調した際に生じる周波数偏移を基準光とし、基準光を2分岐した信号光、局発光の光路長差を信号光路が長くなるように設定し、信号光路で生じる内部散乱光を測定開始のタイミングトリガとして用いる構成とすることで、従来不可であった、nsオーダの短パルスでのヘテロダイン検波を可能とし、且つ信号光路長に依存せず光アンテナ6からターゲット20までの距離を検出可能となる。
 このように、本実施の形態に係るレーザレーダ装置100は、第1の時間に第1の周波数f1をもつ第1の光を出力し、第2の時間に第2の周波数f0をもつ第2の光を出力する基準光源1である半導体レーザと、前記半導体レーザから出力された第1及び第2の光を信号光と局発光に分岐する偏波保持光カプラ2などの光分岐器と、前記信号光をパルス光に変調する光変調器と、前記光変調器で変調されたパルス光を空間に放射し、前記パルス光のターゲット20からの散乱光を受信光として受信する光アンテナ6と、前記受信光を、前記局発光を用いてヘテロダイン検波する光ヘテロダイン受信機と、前記光ヘテロダイン受信機でヘテロダイン検波された受信信号18を用いて、ターゲット20との距離を測定する測定部30と、を備え、前記光ヘテロダイン受信機は、前記第2の光の前記局発光を用いて、前記第1の光の前記受信光をヘテロダイン検波することを特徴とする。この構成によって、光周波数シフタを用いて局発光と信号光の周波数差を生成する従来技術よりも局発光と信号光の間に大きな周波数シフトを与えることができ、短いパルス幅のパルス光を用いてヘテロダイン検波することで、高分解能なレーザレーダ装置100を実現できる。具体的には、1GHz以上の周波数シフトを実現し、nsオーダの短いパルス幅のパルス光でのヘテロダイン検波が可能となる。また、光周波数シフタを用いて周波数シフトを行う従来技術よりも、ヘテロダイン検波方式を小型化したり、集積化したりすることができる。
 また、本実施の形態に係るレーザレーダ装置100では、測定部30はターゲット20からの散乱光の伝播時間を測定することにより、自装置とターゲット20との距離を測定することを特徴とする。この構成によって、従来技術よりも高分解能・高感度にターゲット20との距離を測定できる。
 また、本実施の形態に係るレーザレーダ装置100では、測定部30は、自装置内で前記パルス光が散乱されることにより生じる内部散乱光が測定部30で検出される時間を測定開始時間として、ターゲット20からの散乱光の伝播時間を測定することを特徴とする。この構成によって、環境温度が変化した場合においても測定開始点を補正する必要なく、測定が可能となる。また、あらかじめ測定開始時間を定める従来技術では光の伝播経路に伸縮が生じた場合に測定結果も影響を受ける。これに対して、本実施の形態の構成では、光の伝播経路に伸縮が生じても内部散乱光とターゲット20からの散乱光の検出される時間差が同じであれば、測定される距離に影響は生じない。従って、光の伝播経路に伸縮が生じた場合にも測定値が影響を受けない利点がある。
 また、本実施の形態に係るレーザレーダ装置100では、内部散乱光のもつ光路長LSは、前記局発光のもつ光路長LLより長いことを特徴とする。この構成により、信号光、局発光の光路長差を信号光路が長くなるように設定し、信号光路で生じる内部散乱光を測定開始のタイミングトリガとして用いる構成とすることで、従来困難であったnsオーダの短パルスでのヘテロダイン検波を行うことが可能となる。
 また、本実施の形態に係るレーザレーダ装置100では、測定部30は、局発光が測定部30で第1の周波数f1をもつ時間と、自装置内でパルス光が散乱されることにより生じる内部散乱光が測定部30で第1の周波数f1をもつ時間、との間で受信信号18に含まれる特定の信号を検出する動作を開始するトリガ信号17を受信し、該検出する動作を開始することを特徴とする。ここで、特定の信号の検出とは、例えば、閾値以上の振幅を持つ信号を検出することを示す。この構成によって、ターゲット20の距離特性の測定に必要となる内部散乱光とターゲット20からの散乱光に絞って、信号の検出を行うことができ、信号処理を効率的に行うことができる。
 また、本実施の形態に係るレーザレーダ装置100では、トリガ信号17の遅延時間を調整する遅延調整回路11を備えたことを特徴とする。この構成によって、トリガ信号17を局発光が測定部30で第1の周波数f1をもつ時間と、自装置内でパルス光が散乱されることにより生じる内部散乱光が測定部30で第1の周波数f1をもつ時間、との間に設定するようにトリガ信号17の遅延を制御することが可能となる。
 また、本実施の形態に係るレーザレーダ装置100では、パルス光の光路長を調整する光路長調整手段7である光路長調整部を備えたことを特徴とする。この構成によって、光アンテナ6の内部散乱光による信号光路長LSが局発光路長LLより長くなるように設定することができ、局発光がバランストレシーバ9に早く伝播するように設定できる。その結果、測定部30でアンテナ6の内部散乱光が検出されてからターゲット20からの散乱光が検出されるまでの間に局発光が検出されることがなく、アンテナ6の内部散乱光が検出される時間からターゲット20からの散乱光が検出されるまでの時間を高精度に測定することが可能となる。
 また、本実施の形態に係るレーザレーダ装置100では、標準光源1である光源は変調された電流が注入されることにより、前記第1の周波数f1及び前記第2の周波数f0をもつ光を出力することを特徴とする。この構成により、光周波数シフタで周波数変調を行い信号光と局発光に周波数差を与える従来技術よりも短時間での周波数変調が可能となり、信号光と局発光の周波数差を大きくすることができる。その結果、短いパルス幅のパルス光を用いて、高分解能なレーザレーダ装置100を実現することができる。
 また、本実施の形態に係るレーザレーダ装置100では、標準光源1である半導体レーザはDFB-LD (distributed feedback laser diode)により構成されることを特徴とする。この構成により、バーストパルス的に制御される注入電流制御信号14により、基準光源1からの出力光の光周波数はパルスON期間のみf1、パルスOFF期間にはf0の周波数で出力することができ、周波数変調を効率的に行うことができる。
 実施の形態2.
 実施の形態1では、受信信号18のある固定閾値以上のピークからターゲット20までの距離を検出するものであるのに対して、本実施の形態は受信信号18をデジタル変換し、デジタル変換後の周波数成分を解析することにより、実施の形態1で検出不可であったターゲット20の移動速度を検出可能とするものである。
 本実施の形態に係るレーザレーダ装置100の構成図を図5に示す。図5では、図2における信号検出回路12がAD (Analog-to-Digital)コンバータ21に置き換えられている。
 図6に各種信号のイメージ図を示す。本実施形態では、受信信号をAD変換後にFFT (Fast Fourier Transform)を行い、周波数成分を検出する。LDを直接変調する本方式では、環境温度等によりLD直接変調により生じる周波数シフト量が変化するため、ターゲット20の移動に伴い生じるドップラ周波数シフトと環境温度等により生じる周波数シフト量のずれを分離することができない。
 ここで、光アンテナ6等の内部散乱で生じた漏れ光はターゲット20の移動の影響を受けず、LDの周波数シフト量(ゼロドップラ)が検出可能である。図6(i)に示すようにゼロ点(漏れ光)のFFT結果よりゼロドップラ成分を抽出、このゼロドップラとターゲット20の散乱から取得した周波数成分の差分を抽出、周波数解析を行うことで、環境温度に依存せず、ターゲット20までの距離、及び移動速度が検出可能となる。
 このように、本実施の形態に係るレーザレーダ装置100は、第1の時間に第1の周波数をもつ第1の光を出力し、第2の時間に第2の周波数をもつ第2の光を出力する基準光源1である半導体レーザと、前記半導体レーザから出力された第1及び第2の光を信号光と局発光に分岐する偏波保持光カプラ2などの光分岐器と、前記信号光をパルス光に変調する光変調器と、前記光変調器から出力されたパルス光を空間に放射し、前記パルス光のターゲット20からの散乱光を受信光として受信する光アンテナ6と、前記受信光を、前記局発光を用いてヘテロダイン検波する光ヘテロダイン受信機と、前記光ヘテロダイン受信機でヘテロダイン検波された受信信号18を用いて、ターゲット20の移動特性を測定する測定部30と、を備え、前記光ヘテロダイン受信機は、前記第2の光の前記局発光を用いて、前記第1の光の前記受信光をヘテロダイン検波することを特徴とする。この構成によって、光周波数シフタを用いて信号光と局発光の周波数差を生成する従来技術よりも大きな周波数シフトを基準光源1によって実現できる。その結果、短いパルス幅のパルス光を用いてヘテロダイン検波することにより、ターゲット20の移動速度を広範囲(広い周波数範囲)で検出可能なレーザレーダ装置100を実現することができる。
 また、本実施の形態に係るレーザレーダ装置100では、測定部30は、ターゲット20からの散乱光がもつ周波数を測定することにより、ターゲット20の移動速度を測定することを特徴とする。この構成によって、従来技術よりも高い範囲でターゲット20の移動速度を測定することができる。
 また、本実施の形態に係るレーザレーダ装置100では、測定部30は、自装置内で前記パルス光が散乱されることにより生じる内部散乱光のもつ周波数とターゲット20からの散乱光のもつ周波数の差分を測定することにより、ターゲット20の移動速度を測定することを特徴とする。この構成により、ターゲット20からの散乱光に含まれるドップラ周波数シフトと環境温度等により生じる周波数シフト量のずれを分離できない環境であっても、内部散乱光から環境温度等により生じる周波数シフト量を検出でき、高精度にターゲット20からの散乱光に含まれるドップラ周波数シフトを測定できる。
1:基準光源、2:偏波保持光カプラ、3:半導体光増幅器、4:光増幅器、5:偏波保持光サーキュレータ、6:光アンテナ6、7:光路長調整手段、8:偏波保持光カプラ、9:バランストレシーバ、10:時系列信号生成ユニット、11:遅延調整回路、12:信号検出回路、13:信号処理部、14:注入電流制御信号、15:パルス生成信号、16:トリガ信号、17:トリガ信号(遅延調整後)、18:受信信号、19:検出信号、20:ターゲット、21:ADコンバータ、30:測定部、50:局発光路、51:受信光路、100:レーザレーダ装置

Claims (12)

  1.  第1の時間に第1の周波数をもつ第1の光を出力し、第2の時間に第2の周波数をもつ第2の光を出力する半導体レーザと、
    前記半導体レーザから出力された第1及び第2の光を信号光と局発光に分岐する光分岐器と、
    前記信号光をパルス光に変調する光変調器と、
    前記光変調器で変調されたパルス光を空間に放射し、前記パルス光のターゲットからの散乱光を受信光として受信する光アンテナと、
    前記受信光を、前記局発光を用いてヘテロダイン検波する光ヘテロダイン受信機と、
    前記光ヘテロダイン受信機でヘテロダイン検波された受信信号を用いて、前記ターゲットとの距離または前記ターゲットの移動特性を測定する測定部と、を備え、
    前記光ヘテロダイン受信機は、前記第2の光の前記局発光を用いて、前記第1の光の前記受信光をヘテロダイン検波する
    ことを特徴とするレーザレーダ装置。
  2.  前記測定部は、前記ターゲットからの散乱光の伝播時間を測定することにより、自装置と前記ターゲットとの距離を測定する
    ことを特徴とする請求項1に記載のレーザレーダ装置。
  3.  前記測定部は、自装置内で前記パルス光が散乱されることにより生じる内部散乱光が前記測定部で検出される時間を測定開始時間として、前記伝播時間を測定する
    ことを特徴とする請求項2に記載のレーザレーダ装置。
  4.  前記測定部は、前記ターゲットからの散乱光がもつ周波数を測定することにより、前記ターゲットの移動速度を測定する
    ことを特徴とする請求項1に記載のレーザレーダ装置。
  5.  前記測定部は、自装置内で前記パルス光が散乱されることにより生じる内部散乱光のもつ周波数と前記ターゲットからの散乱光のもつ周波数の差分を測定することにより、前記移動速度を測定する
    ことを特徴とする請求項4に記載のレーザレーダ装置。
  6.  前記内部散乱光のもつ光路長は、前記局発光のもつ光路長より長いことを特徴とする請求項3又は請求項5に記載のレーザレーダ装置。
  7.  前記測定部は、前記局発光が前記測定部で前記第1の周波数をもつ時間と、自装置内で前記パルス光が散乱されることにより生じる内部散乱光が前記測定部で前記第1の周波数をもつ時間、との間で前記受信信号に含まれる特定の信号を検出する動作を開始するトリガ信号を受信し、該動作を開始することを特徴とする請求項1乃至6のいずれか1項に記載のレーザレーダ装置。
  8.  前記トリガ信号の遅延時間を調整する遅延調整回路を備えた
    ことを特徴とする請求項7に記載のレーザレーダ装置。
  9.  前記パルス光の光路長を調整する光路長調整部を備えた
    ことを特徴とする請求項1乃至8のいずれか1項に記載のレーザレーダ装置。
  10.  前記半導体レーザは変調された電流が注入されることにより、前記第1及び前記第2の周波数をもつ光を出力することを特徴とする請求項1乃至9のいずれか1項に記載のレーザレーダ装置。
  11.  前記半導体レーザは単一波長の連続発振を行う
    ことを特徴とする請求項1乃至10のいずれか1項に記載のレーザレーダ装置。
  12.  前記半導体レーザはDFB-LD (distributed feedback laser diode)により構成される
    ことを特徴とする請求項1乃至11のいずれか1項に記載のレーザレーダ装置。
PCT/JP2017/015135 2017-04-13 2017-04-13 レーザレーダ装置 WO2018189863A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17905724.5A EP3605140B1 (en) 2017-04-13 2017-04-13 Laser radar device
JP2017547017A JP6274368B1 (ja) 2017-04-13 2017-04-13 レーザレーダ装置
PCT/JP2017/015135 WO2018189863A1 (ja) 2017-04-13 2017-04-13 レーザレーダ装置
CN201780089368.1A CN110520753B (zh) 2017-04-13 2017-04-13 激光雷达装置
US16/492,551 US11550042B2 (en) 2017-04-13 2017-04-13 Laser radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015135 WO2018189863A1 (ja) 2017-04-13 2017-04-13 レーザレーダ装置

Publications (1)

Publication Number Publication Date
WO2018189863A1 true WO2018189863A1 (ja) 2018-10-18

Family

ID=61158278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015135 WO2018189863A1 (ja) 2017-04-13 2017-04-13 レーザレーダ装置

Country Status (5)

Country Link
US (1) US11550042B2 (ja)
EP (1) EP3605140B1 (ja)
JP (1) JP6274368B1 (ja)
CN (1) CN110520753B (ja)
WO (1) WO2018189863A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244281A (zh) * 2019-07-19 2019-09-17 北京一径科技有限公司 一种激光雷达系统
EP3719537A1 (de) 2019-04-04 2020-10-07 Sick Ag Messen von abständen
JP2022507051A (ja) * 2018-11-13 2022-01-18 ブラックモア センサーズ アンド アナリティクス エルエルシー 位相エンコーディングlidarにおける内部反射減算のためのレーザー位相追跡方法およびシステム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3754364B1 (en) * 2018-03-29 2023-01-11 Mitsubishi Electric Corporation Laser radar device
CN108761487B (zh) * 2018-07-13 2024-02-23 中国电子科技集团公司第二十六研究所 一种大带宽激光测风雷达系统
CN111308486A (zh) * 2020-03-30 2020-06-19 维沃移动通信有限公司 激光测距装置、方法及电子设备
US11592558B2 (en) * 2020-05-18 2023-02-28 Gm Cruise Holdings Llc Time of flight lidar system using coherent detection scheme
CN113176581B (zh) * 2021-03-15 2021-12-31 北京华信科创科技有限公司 一种多普勒脉冲激光测风装置、方法及系统
FR3122737B1 (fr) * 2021-05-06 2023-05-19 Office National Detudes Rech Aerospatiales Systeme lidar a impulsions

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135480A (ja) * 1982-02-04 1983-08-12 Mitsubishi Electric Corp レ−ザレ−ダ装置
JPS59166884A (ja) * 1983-03-14 1984-09-20 Mitsubishi Electric Corp レ−ザレ−ダ装置
US5237331A (en) * 1992-05-08 1993-08-17 Henderson Sammy W Eyesafe coherent laser radar for velocity and position measurements
JP2000338246A (ja) 1999-05-28 2000-12-08 Mitsubishi Electric Corp コヒーレントレーザレーダ装置
JP2007085758A (ja) * 2005-09-20 2007-04-05 Mitsubishi Electric Corp ライダー装置
JP2009115696A (ja) * 2007-11-08 2009-05-28 Mitsubishi Electric Corp 光波レーダ装置
JP2010127840A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp 光波レーダ装置
JP2015108557A (ja) * 2013-12-05 2015-06-11 三菱電機株式会社 レーザレーダ装置
JP2015129646A (ja) 2014-01-06 2015-07-16 株式会社豊田中央研究所 レーダ装置および距離速度測定方法
JP2016166816A (ja) * 2015-03-10 2016-09-15 三菱電機株式会社 コヒーレントレーザレーダ装置および目標測定方法
JP2017032459A (ja) * 2015-08-04 2017-02-09 日本電気株式会社 目標識別レーザ観測システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082364A (en) * 1990-08-31 1992-01-21 Russell James T Rf modulated optical beam distance measuring system and method
JP3440682B2 (ja) * 1996-03-25 2003-08-25 株式会社豊田中央研究所 光ファイバレーザドップラ流速計
JPH11337446A (ja) * 1998-05-26 1999-12-10 Nippon Telegr & Teleph Corp <Ntt> 光反射試験器
US7295290B2 (en) * 2003-05-30 2007-11-13 Mitsubishi Denki Kabushiki Kaisha Coherent laser radar
EP1672382A1 (de) * 2004-12-18 2006-06-21 Leica Geosystems AG Einkanal-Heterodyn -Distanzmessverfahren
JP5738436B2 (ja) * 2011-12-21 2015-06-24 三菱電機株式会社 レーザレーダ装置
WO2015087380A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
WO2015087564A1 (ja) * 2013-12-10 2015-06-18 三菱電機株式会社 レーザレーダ装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135480A (ja) * 1982-02-04 1983-08-12 Mitsubishi Electric Corp レ−ザレ−ダ装置
JPS59166884A (ja) * 1983-03-14 1984-09-20 Mitsubishi Electric Corp レ−ザレ−ダ装置
US5237331A (en) * 1992-05-08 1993-08-17 Henderson Sammy W Eyesafe coherent laser radar for velocity and position measurements
JP2000338246A (ja) 1999-05-28 2000-12-08 Mitsubishi Electric Corp コヒーレントレーザレーダ装置
JP2007085758A (ja) * 2005-09-20 2007-04-05 Mitsubishi Electric Corp ライダー装置
JP2009115696A (ja) * 2007-11-08 2009-05-28 Mitsubishi Electric Corp 光波レーダ装置
JP2010127840A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp 光波レーダ装置
JP2015108557A (ja) * 2013-12-05 2015-06-11 三菱電機株式会社 レーザレーダ装置
JP2015129646A (ja) 2014-01-06 2015-07-16 株式会社豊田中央研究所 レーダ装置および距離速度測定方法
JP2016166816A (ja) * 2015-03-10 2016-09-15 三菱電機株式会社 コヒーレントレーザレーダ装置および目標測定方法
JP2017032459A (ja) * 2015-08-04 2017-02-09 日本電気株式会社 目標識別レーザ観測システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605140A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022507051A (ja) * 2018-11-13 2022-01-18 ブラックモア センサーズ アンド アナリティクス エルエルシー 位相エンコーディングlidarにおける内部反射減算のためのレーザー位相追跡方法およびシステム
JP7208388B2 (ja) 2018-11-13 2023-01-18 ブラックモア センサーズ アンド アナリティクス エルエルシー 位相エンコーディングlidarにおける内部反射減算のためのレーザー位相追跡方法およびシステム
EP3719537A1 (de) 2019-04-04 2020-10-07 Sick Ag Messen von abständen
CN110244281A (zh) * 2019-07-19 2019-09-17 北京一径科技有限公司 一种激光雷达系统
WO2021012132A1 (zh) * 2019-07-19 2021-01-28 北京一径科技有限公司 一种激光雷达系统

Also Published As

Publication number Publication date
EP3605140B1 (en) 2021-07-07
EP3605140A1 (en) 2020-02-05
EP3605140A4 (en) 2020-04-15
CN110520753A (zh) 2019-11-29
CN110520753B (zh) 2023-05-30
JPWO2018189863A1 (ja) 2019-04-18
US20210141067A1 (en) 2021-05-13
US11550042B2 (en) 2023-01-10
JP6274368B1 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6274368B1 (ja) レーザレーダ装置
JP5322184B2 (ja) 分布型光ファイバセンサ
US6700655B2 (en) Optical fiber characteristic measuring device
US11326981B2 (en) Optical fiber characteristics measuring apparatus and optical fiber characteristics measuring method
CN112654840B (zh) 光纤特性测定装置以及光纤特性测定方法
RU191111U1 (ru) Оптоволоконный когерентный доплеровский лидар
JP2007085758A (ja) ライダー装置
CN115210603B (zh) 激光雷达及激光雷达控制方法
JP2001356070A (ja) 光ファイバ歪測定装置
US10408925B1 (en) Low probability of intercept laser range finder
US11933903B2 (en) Laser radar device
CA2615327C (en) Optical fiber characteristic measuring system
CN115867782A (zh) 光纤特性测定装置、光纤特性测定程序以及光纤特性测定方法
WO2015129118A1 (ja) 特性測定装置、過渡吸収応答測定装置および過渡吸収応答測定方法
Shibuya et al. Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode
JP7192959B2 (ja) 測距装置及び測距方法
JP2001165808A (ja) 後方散乱光の測定方法およびその装置
JP4061281B2 (ja) 光パルス試験器
JPWO2020246269A1 (ja) コヒーレントライダ装置
JP2014174069A (ja) レーザ測距装置
US20240133720A1 (en) Measurement device, method of adjusting measurement device, and measurement method
KR20150040398A (ko) 비행시간법을 이용한 레이저 펄스 기반 고분해능 물리량 측정 장치
JP2008051622A (ja) 光ファイバ特性測定装置
RU2434247C1 (ru) Способ формирования интерференционного сигнала в доплеровских лидарах
Fernández-Ruiz et al. > 10 dB SNR enhancement in distributed acoustic sensors through first order phase noise cancellation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017547017

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017905724

Country of ref document: EP

Effective date: 20191028