WO2021012132A1 - 一种激光雷达系统 - Google Patents

一种激光雷达系统 Download PDF

Info

Publication number
WO2021012132A1
WO2021012132A1 PCT/CN2019/096928 CN2019096928W WO2021012132A1 WO 2021012132 A1 WO2021012132 A1 WO 2021012132A1 CN 2019096928 W CN2019096928 W CN 2019096928W WO 2021012132 A1 WO2021012132 A1 WO 2021012132A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
receiving
light
combiner
polarization
Prior art date
Application number
PCT/CN2019/096928
Other languages
English (en)
French (fr)
Inventor
石拓
Original Assignee
北京一径科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京一径科技有限公司 filed Critical 北京一径科技有限公司
Priority to US17/628,159 priority Critical patent/US20220268891A1/en
Priority to EP19938717.6A priority patent/EP4001964A4/en
Publication of WO2021012132A1 publication Critical patent/WO2021012132A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/499Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using polarisation effects

Definitions

  • the invention relates to a laser radar system, in particular to a frequency modulation laser radar system.
  • Lidar is a device that measures information such as the position and speed of a target object by emitting a laser beam to the target object and receiving the beam reflected from the target object.
  • Current lidars usually use Time Of Flight (TOF) technology to achieve ranging.
  • Frequency Modulated Continuous Wave (FMCW) lidars can achieve coherent ranging.
  • An existing FMCW lidar adopts a mechanical scanning scheme to control the angle of the emitted beam, so as to realize scanning in three-dimensional space. Because this scheme uses mechanical scanning, it has the following shortcomings: on the one hand, mass production costs are high, and on the other hand, it is difficult to pass the reliability certification of vehicle regulations.
  • Another existing FMCW lidar uses a circulator to split the transmitting and receiving signals.
  • the light received by the microelectromechanical system (MEMS) is effectively coupled into the fiber receiving end of the circulator. Not easy to achieve.
  • the receiving end of the circulator is extremely sensitive to the spot position of the incident light.
  • the MEMS scans back and forth at high speed, the efficiency of collecting the incident light is very low, and the FMCW lidar has high noise and short detection range.
  • the technical problem to be solved by the present invention is to provide a frequency modulated continuous wave (FMCW) lidar system, which reduces noise and increases signal-to-noise ratio by adopting a differential receiving mode, thereby increasing the detection range.
  • FMCW frequency modulated continuous wave
  • the laser radar system of the present invention includes: a laser emitting light source, a scanning unit, a transmitting and receiving coaxial optical unit, and a differential receiving unit.
  • the laser emitting light source includes a laser and a modulator.
  • the laser is used to generate the original output light signal, and the modulator is used to frequency modulate the original output light to generate a frequency modulation output light signal;
  • the transmitting and receiving coaxial optical unit is used to receive the frequency modulation
  • the outgoing light signal and the FM outgoing light signal are respectively transferred to the scanning unit and the differential receiving unit;
  • the scanning unit is used to reflect the FM outgoing light signal to the target object at a deflectable angle, and reflect the reflected light signal from the target object To the transmitting and receiving coaxial optical unit;
  • the transmitting and receiving coaxial optical unit which is also used for transmitting the reflected light signal to the differential receiving unit;
  • the differential receiving unit is used for differentially receiving the reflected light signal according to the received FM emitted light signal.
  • the lidar system further includes a control and digital signal processing unit, which are respectively connected to the laser emitting light source, the scanning unit, and the differential receiving unit for controlling the laser emitting light source, the scanning unit, and the differential receiving unit through a control signal. Take control.
  • the scanning unit includes a micro electromechanical system (MEMS) micro galvanometer.
  • MEMS micro electromechanical system
  • the laser is an external cavity laser, and its line width is less than or equal to 200 kHz.
  • the transmitting and receiving coaxial optical unit includes a transmitting collimating lens, a first beam splitter, a first polarization beam splitter-combiner, a first quarter wave plate, and a total reflection mirror ,
  • the frequency-modulated outgoing light signal generated by the generator forms the collimated light
  • the first beam splitter is used to divide the collimated light into the first light and the second light
  • the total reflection mirror is used to reflect the first light
  • the second fourth The half-wave plate is used to make the polarization direction of the first beam reflected by the total reflection mirror 45 degrees with the polarization direction of the second polarization splitter-combiner, and transmit it to the second polarization splitter-combiner Beamer
  • first polarization splitter-combiner used to receive the
  • the differential receiving unit includes a first receiving detector, a second receiving detector, and a differential receiver; the first receiving detector is used to receive the first local seismic source and the first reflected light The first beat frequency signal formed by signal superposition, the first electrical signal is obtained by processing the first beat frequency signal; the second receiving detector is used to receive the second beat frequency formed by the superposition of the second local seismic source and the second reflected light signal Signal, the second electrical signal is obtained by processing the second beat signal; the differential receiver is connected with the first receiving detector and the second receiving detector, and is used for receiving the first electrical signal and the second electrical signal.
  • the lidar system further includes a delay calibration module for calibrating the signal delay existing between the first electrical signal and the second electrical signal.
  • the modulator includes a phase modulation function for phase encoding the frequency-modulated outgoing light signal.
  • the micro electromechanical system (MEMS) micro galvanometer includes a two-dimensional micro electromechanical system micro galvanometer, which realizes the horizontal and vertical directions under the action of the driving signal of the control and digital signal processing unit The deflection.
  • the micro electromechanical system (MEMS) micro galvanometer includes two one-dimensional micro electromechanical system (MEMS) micro galvanometers, one of which is driving The horizontal direction deflection is realized under the action of the signal, and the other one-dimensional micro-electromechanical system (MEMS) micro galvanometer realizes the vertical direction deflection under the action of the driving signal of the control and digital signal processing unit.
  • MEMS micro electromechanical system
  • the laser radar system of the present invention adopts a MEMS laser radar in a frequency-modulated continuous wave transceiver mode, and adopts a differential receiving mode to greatly suppress noise, improve the signal-to-noise ratio, and realize a farther detection range limit. Further, the use of a special transmitting and receiving coaxial optical unit can realize high-efficiency optical signal collection, which greatly improves the sensitivity of the receiving end.
  • Fig. 1 is a structural block diagram showing a lidar system according to an exemplary embodiment.
  • Fig. 2 is a structural block diagram showing a lidar system according to another exemplary embodiment.
  • Fig. 3 is a schematic diagram showing the structure of a lidar system according to an exemplary embodiment.
  • Fig. 4 is a schematic structural diagram of a lidar system according to another exemplary embodiment.
  • Fig. 1 is a block diagram showing the structure of the lidar system of the present invention according to an exemplary embodiment.
  • the laser radar system of the present invention includes a laser emitting light source 11, a scanning unit 12, a transmitting and receiving coaxial optical unit 13, and a differential receiving unit 14.
  • the laser emitting light source 11 includes a laser 103 and a modulator 105.
  • the laser 103 is used to generate the original output light signal, and the modulator 105 is used to frequency-modulate the original output light to generate a frequency modulation output light signal;
  • the transmitting and receiving coaxial optical unit 13 is used to receive the frequency modulation output light signal from the laser emitting light source 11 , And transmit the FM output light signal to the scanning unit 12 and the differential receiving unit 14 respectively;
  • the scanning unit 12 is used to reflect the FM output light signal to the target object at a deflectable angle, and reflect the reflected light signal from the target object to Transmitting and receiving coaxial optical unit 13.
  • the transmitting and receiving coaxial optical unit 13 is also used to transmit the reflected light signal to the differential receiving unit 14.
  • the differential receiving unit 14 is used for differentially receiving the reflected light signal according to the received FM emitted light signal.
  • the lidar system of the present invention is a lidar that adopts a frequency-modulated continuous wave transceiver mode.
  • a differential receiving mode By adopting a differential receiving mode, the noise is greatly reduced, the signal-to-noise ratio is improved, and a longer detection range is achieved.
  • Fig. 2 is a structural diagram of another embodiment of the lidar system of the present invention.
  • the lidar system also includes a control and digital signal processing unit 15, which is connected to the laser emitting light source 11, the scanning unit 12, and the differential receiving unit 14, respectively, for controlling the laser emitting light source 11 and the scanning unit 12 through control signals.
  • the differential receiving unit 14 for control.
  • Fig. 3 is a structural diagram of another embodiment of the lidar system of the present invention.
  • the control and digital signal processing system 15 may include a Field-Programmable Gate Array (FPGA) (Field-Programmable Gate Array) 101, a MEMS driver 130, a semiconductor laser (LD) driver 102, and a modulator driver 104.
  • FPGA101 can also be replaced by MPSoC chip.
  • the FPGA101 is taken as an example to describe the structure of the control and digital signal processing system 15.
  • the MEMS driver 130 is connected to the FPGA 101, and the operation of the MEMS driver 130 is controlled by the FPGA 101.
  • Both the LD driver 102 and the modulator driver 104 are connected to the FPGA 101; at the same time, the LD driver 102 is connected to the laser 103 and the modulator driver 104 is connected to the modulator 105 for controlling the laser emitting light source 11.
  • the laser 103 and the modulator 105 are a silicon-based monolithic integrated chip.
  • the laser 103 may be an external cavity laser with a typical line width less than or equal to 200 kHz. Using a laser with a smaller line width can effectively reduce noise.
  • the laser 103 may be a semiconductor laser or other types of lasers, which is not specifically limited in this embodiment.
  • the modulator 105 is a Mach-Zehnder modulator (MZM), and the modulator waveguide part of the modulator may include lithium niobate materials, silicon materials, polymer materials, and the like.
  • MZM Mach-Zehnder modulator
  • the modulator 105 is a single sideband frequency modulator, or a double sideband frequency modulator.
  • the control signal output from FPGA101 to modulator 105 may be a frequency sweep signal, and the DC laser signal is frequency modulated by controlling modulator 105.
  • the signal after frequency modulation of the original emitted light by the modulator 105 may be FMCW.
  • the modulator 105 further includes a phase modulation function for phase encoding the frequency-modulated outgoing optical signal.
  • the phase encoding can be further implemented through the quadrature phase keying modulation method.
  • a crosstalk (equivalent to an electronic tag) can be added to each laser radar's outgoing light signal, and then the laser radar can identify whether the reflected light comes from itself or other laser radar systems according to the code when receiving.
  • the transmitting and receiving coaxial optical system 13 includes a transmitting collimating lens 110, a first beam splitter 111, a first polarization splitter-combiner 112, a first quarter wave plate 113, The mirror 116, the second quarter wave plate 118, the third quarter wave plate 114, the second polarization splitter-combiner 115, the first focus lens 117, and the second focus lens 119.
  • the laser radar system of the present invention can realize high-efficiency optical signal collection by adopting a special transmitting and receiving coaxial optical unit, thereby improving the sensitivity of the receiving end.
  • the original outgoing light signal emitted by the laser 103 is polarized light
  • the polarization direction of the frequency-modulated outgoing light signal generated after the original outgoing light signal is modulated by the modulator 105 is the first polarization direction.
  • the polarization directions of the first polarization splitter-combiner 112 and the second polarization splitter-combiner 115 are both set to be consistent with the first polarization direction, that is, set to be the same or parallel to the first polarization direction.
  • the optical axis planes of the first quarter wave plate 113, the second quarter wave plate 118, and the third quarter wave plate 114 form an angle of 45 degrees with the first polarization direction.
  • the frequency-modulated outgoing light signal can be amplified by an optical amplifier, and then collimated by the transmitting collimator lens 110 to form a collimated light. After passing through the first beam splitter 111, it is divided into a first beam and a second beam.
  • the light is reflected, after passing through the total reflection mirror 116 and the second quarter-wave plate 118, the polarization direction is 45 degrees with the polarization direction of the second polarization splitter-combiner 115, and passes through the second polarization splitter-combiner After the detector 115, the light is split again and focused on the photosensitive surfaces of the first receiving detector 120 and the second receiving detector 125 through the first focusing lens 117 and the second focusing lens 119, respectively, as the first local seismic source and the second The source of the second earthquake.
  • the second beam of light After the second beam of light is transmitted, it passes through the first polarization beam splitter-combiner 112, and then passes through the first quarter-wave plate 113, and is reflected by the MEMS micro galvanometer 131 (described in detail below) in the scanning unit 12 Go to the forward space to be measured and illuminate the surface of the target object; the reflected light signal after diffuse reflection from the surface of the target object returns to the surface of the MEMS micro mirror 131 for reflection, and after passing through the first quarter wave plate 113, it is polarized It is rotated 90 degrees to be perpendicular to the first polarization direction, so that it is totally reflected by the first polarization beam splitter-combiner 112, and after passing through the third quarter wave plate 114, the polarization direction changes 45 degrees, and passes through the second polarization splitter.
  • the MEMS micro galvanometer 131 described in detail below
  • the light is split again, and the first focusing lens 117 and the second focusing lens 119 are respectively focused on the photosensitive surfaces of the first receiving detector 120 and the second receiving detector 125 to form first reflections.
  • the optical signal and the second reflected optical signal are respectively focused on the photosensitive surfaces of the first receiving detector 120 and the second receiving detector 125 to form first reflections.
  • the differential receiving unit 14 includes a first receiving detector 120, a second receiving detector 125, and a differential receiver 190.
  • the first receiving detector 120 and the second receiving detector 125 may be photodetectors.
  • the first receiving detector 120 is used to receive the first beat signal formed by superimposing the first seismic source and the first reflected light signal, the phase of which is the first phase, and the first electrical signal is obtained by processing the first beat signal.
  • a second receiving detector 125 for receiving a second beat signal formed by the superposition of the second seismic source and the second reflected light signal, the phase of which is the second phase, and the second beat signal is processed to obtain a second Electrical signal, where the difference between the first phase and the second phase is 180 degrees, thereby forming a differential detection;
  • the differential receiver 190 is connected to the first receiving detector 190 and the second receiving detector 125 for receiving the first An electrical signal and a second electrical signal.
  • the laser radar system of the present invention greatly reduces noise and improves the signal-to-noise ratio by adopting a differential receiving mode, thereby achieving a longer detection range.
  • the differential receiving unit 14 may include a first transimpedance amplifier (TIA) 121, a second receiving detector 125, and a differential receiver 190.
  • the signal received by the first receiving detector 120 is amplified by the first transimpedance amplifier (TIA) 121, and then sequentially passes through the first DC filter and low-pass filter circuit 122 and the first analog-to-digital converter chip 123, Complete the analog-digital conversion, input to FPGA101 for digital signal processing;
  • the signal received by the second receiving detector 125 is amplified by the second transimpedance amplifier (TIA) 126, and then sequentially passed through the second DC filter and low-pass filter circuit 127 After the second analog-to-digital converter chip 128 completes analog-to-digital conversion, it is input to FPGA101 for digital signal processing.
  • the differential receiver 190 may be configured to be connected to the field programmable gate array (FPGA) 101 of the control and digital signal processing system 15.
  • the differential receiver 190 may also be a part of the field programmable gate array (FPGA) 101 of the control and digital signal processing system 15, which is not specifically limited in this embodiment.
  • FPGA101 After FPGA101 receives the output signals of the first analog-to-digital converter chip 123 and the second analog-to-digital converter chip 128, it can also delay the signal existing between the first electrical signal and the second electrical signal through the delay calibration module Calibration is performed to accurately receive the first electrical signal and the second electrical signal generated by the first receiving detector 120 and the second receiving detector 125 to prevent errors caused by misalignment of the two signals due to a delay.
  • the delay calibration module may be included in the control and digital signal processing unit 15, or the delay calibration module may be a separate unit.
  • the first receiving detector 120 and the second receiving detector 125 may be directly connected to the differential receiver 190, which in turn is connected to the first transimpedance amplifier (TIA) 121, a first DC filter and low-pass filter circuit 122, a first analog-to-digital converter chip 123 and FPGA101.
  • TIA first transimpedance amplifier
  • a first DC filter and low-pass filter circuit 122 a first analog-to-digital converter chip 123 and FPGA101.
  • the scanning unit 12 may include a MEMS mirror, a prism, a mechanical mirror, a polarization grating, an optical phased array (OPA), and the like.
  • MEMS mirrors the mirror surface rotates or translates in one or two dimensions under electrostatic/piezoelectric/electromagnetic drive.
  • the scanning unit 12 includes a MEMS micro galvanometer 131.
  • the MEMS micro galvanometer 131 can perform two-dimensional deflection under the control of the FPGA101, so as to realize the scanning of the laser in the two-dimensional space.
  • the MEMS micro galvanometer 131 may be a two-dimensional microelectromechanical system (MEMS) micro galvanometer, which realizes the deflection in both horizontal and vertical directions under the action of the driving signal of the control and digital signal processing system 15 .
  • MEMS microelectromechanical system
  • the MEMS micro-vibration mirror 131 may include two one-dimensional MEMS micro-vibration mirrors.
  • One of the one-dimensional MEMS micro-vibration mirrors realizes horizontal deflection under the action of a driving signal, and the other one-dimensional MEMS micro-vibration The mirror is deflected in the vertical direction under the action of the driving signal.
  • the position of the two one-dimensional MEMS micro galvanometer mirrors is set to make the laser beam reflected by one one-dimensional MEMS micro galvanometer mirror and reach the other one-dimensional MEMS surface before being reflected to In order to achieve laser scanning at any angle in two-dimensional space.
  • the lidar system of the present invention is a lidar system that adopts a frequency modulated continuous wave (FMCW) transceiver mode.
  • FMCW frequency modulated continuous wave

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达系统包括激光发射光源(11)、扫描单元(12)、发射接收同轴光学单元(13)、差分接收单元(14);激光发射光源(11),包括激光器(103)和调制器(105);发射接收同轴光学单元(13)用于接收调频出射光信号,并将其分别传递到扫描单元(12)和差分接收单元(14),还用于将反射光信号传递至差分接收单元(14);扫描单元(12),用于以可偏转的角度将调频出射光信号反射至目标对象,以及将来自目标对象的反射光信号反射至发射接收同轴光学单元(13);差分接收单元(14),用于根据接收的调频出射光信号,对反射光信号进行差分接收。该激光雷达系统,通过采用差分接收方式,降低噪声,增大信噪比,增加了探测距离。

Description

一种激光雷达系统 技术领域
本发明涉及一种激光雷达系统,尤其涉及一种调频激光雷达系统。
背景技术
激光雷达(LIDAR)是通过向目标对象发射激光光束并接收从目标对象反射的光束来测量目标对象的位置、速度等信息的装置。目前的激光雷达通常采用飞行时间(Time Of Flight,简称TOF)技术实现测距。而近年来出现的调频连续波(Frequency Modulated Continuous Wave,简称FMCW)激光雷达,则可以实现相干测距。
现有的一种FMCW激光雷达,采用机械扫描式方案进行发射光束的角度控向,从而实现三维空间的扫描。由于该方案采用机械扫描,因此存在以下缺点:一方面量产成本较高,另一方面通过车规可靠性认证难度较大。
现有的另一种FMCW激光雷达,其采用环形器的方案,用于发射和接收信号的分路,然而,将微机电系统(MEMS)接收到的光线有效耦合进入环形器的光纤接收端是不容易实现的。尤其是环形器接收端对入射光线的光斑位置极其敏感,在MEMS高速来回扫描的情况下,收集入射光的效率很低,而且这种FMCW激光雷达的噪声大,探测距离短。
发明内容
本发明所要解决的技术问题在于提供一种调频连续波(FMCW)激光雷达系统,通过采用差分接收方式,降低噪声,增大信噪比,从而增加探测距离。
本发明的激光雷达系统包括:激光发射光源、扫描单元、发射接收同轴光学单元、差分接收单元。激光发射光源,包括激光器和调制 器,其中,激光器,用于生成原始出射光信号,调制器,用于对原始出射光进行频率调制生成调频出射光信号;发射接收同轴光学单元用于接收调频出射光信号,并将调频出射光信号分别传递到扫描单元和差分接收单元;扫描单元,用于以可偏转的角度将调频出射光信号反射至目标对象,以及将来自目标对象的反射光信号反射至发射接收同轴光学单元;发射接收同轴光学单元,还用于将反射光信号传递至差分接收单元;差分接收单元,用于根据接收的调频出射光信号,对反射光信号进行差分接收。
可选地,在上述激光雷达系统中,还包括控制及数字信号处理单元,分别与激光发射光源、扫描单元和差分接收单元连接,用于通过控制信号对激光发射光源、扫描单元和差分接收单元进行控制。
可选地,在上述激光雷达系统中,扫描单元包括微机电系统(MEMS)微振镜。
可选地,在上述激光雷达系统中,激光器为外腔激光器,其线宽小于或等于200kHz。
可选地,在上述激光雷达系统中,发射接收同轴光学单元包括发射准直透镜、第一分光片、第一偏振分束-合束器、第一四分之一波片、全反射镜、第二四分之一波片、第三四分之一波片、第二偏振分束-合束器、第一聚焦透镜以及第二聚焦透镜,其中,发射准直透镜,用于将调制器生成的调频出射光信号形成准直光;第一分光片,用于将准直光分为第一束光和第二束光;全反射镜,用于反射第一束光;第二四分之一波片,用于使经全反射镜反射的第一光束的偏振方向与第二偏振分束-合束器的偏振方向成45度,并将其传递至第二偏振分束-合束器;第一偏振分束-合束器,用于接收第二光束,并将其传送至第一四分之一波片;第一四分之一波片,用于接收经过第一偏振分束-合束器后的第二光束,并将其通过扫描单元反射至目标对象,并且用于使来自目标对象的反射光信号的偏振方向与调制器生成的调频出射光信号的偏振方向垂直,从而被第一偏振分束-合束器全反射至第三四 分之一波片;第一偏振分束-合束器,还用于将经过第一四分之一波片后的反射光信号全反射至第三四分之一波片;第三四分之一波片,用于将被第一偏振分束-合束器全反射的光偏振45度,并将其传递至第二偏振分束-合束器;第二偏振分束-合束器,用于对所接收的光进行分光;第一聚焦透镜以及第二聚焦透镜,分别用于聚焦被第二偏振分束-合束器分光的光束,以得到源自第一束光的第一本地振荡源和第二本地振荡源和源自第二束光的第一反射光信号和第二反射光信号。
可选地,在上述激光雷达系统中,差分接收单元包括第一接收探测器、第二接收探测器和差分接收器;第一接收探测器,用于接收第一本地震荡源和第一反射光信号叠加形成的第一拍频信号,对第一拍频信号处理得到第一电信号;第二接收探测器,用于接收第二本地震荡源和第二反射光信号叠加形成的第二拍频信号,对第二拍频信号处理得到第二电信号;差分接收器,与第一接收探测器和第二接收探测器连接,用于接收第一电信号和第二电信号。
可选地,在上述激光雷达系统中,激光雷达系统还包括延时校准模块,用于对第一电信号和第二电信号之间存在的信号延时进行校准。
可选地,在上述激光雷达系统中,调制器包含相位调制功能,用于对调频出射光信号进行相位编码。
可选地,在上述激光雷达系统中,微机电系统(MEMS)微振镜包括一个二维微机电系统微振镜,在控制及数字信号处理单元的驱动信号作用下实现水平和垂直两个方向的偏转。
可选地,在上述激光雷达系统中,微机电系统(MEMS)微振镜包括两个一维微机电系统(MEMS)微振镜,其中一个一维微机电系统(MEMS)微振镜在驱动信号作用下实现水平方向偏转,另一个一维微机电系统(MEMS)微振镜在控制及数字信号处理单元的驱动信号作用下实现垂直方向偏转。
本发明的激光雷达系统采用调频连续波收发方式的MEMS激光雷达,采用差分接收方式大幅抑制噪声,提高信噪比,实现更远的探测 距离极限。进一步的,采用特殊的发射接收同轴光学单元,可以实现高效率的光信号收集,大幅提高了接收端的灵敏度。
附图说明
图1是根据一示例性实施例示出的一种激光雷达系统的结构框图。
图2是根据另一示例性实施例示出的一种激光雷达系统的结构框图。
图3是根据一示例性实施例示出的一种激光雷达系统的结构示意图。
图4是根据另一示例性实施例的一种激光雷达系统的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的系统的例子。
图1是根据一示例性实施例示出的本发明的激光雷达系统的结构框图。如图1所示,本发明的激光雷达系统包括激光发射光源11,扫描单元12、发射接收同轴光学单元13、差分接收单元14。激光发射光源11包括激光器103和调制器105。其中,激光器103用于生成原始出射光信号,调制器105用于对原始出射光进行频率调制产生调频出射光信号;发射接收同轴光学单元13用于接收来自激光发射光源11的调频出射光信号,并将调频出射光信号分别传递到扫描单元12和差分接收单元14;扫描单元12用于以可偏转的角度将调频出射光信号反射至目标对象,以及将来自目标对象的反射光信号反射至发射接收同轴光学单元13。发射接收同轴光学单元13还用于将反射光信号传递至差分接收单元14。差分接收单元14,用于根据接收的调频出 射光信号,对反射光信号进行差分接收。
本发明的激光雷达系统是一种采用调频连续波收发方式的激光雷达,通过采用差分接收方式,大幅度地降低噪声,提高信噪比,从而实现更远的探测距离。
图2是本发明的激光雷达系统的另一实施例的结构图。如图2所示,激光雷达系统还包括控制及数字信号处理单元15,分别与激光发射光源11、扫描单元12和差分接收单元14连接,用于通过控制信号对激光发射光源11、扫描单元12和差分接收单元14进行控制。
图3是本发明的激光雷达系统的另一实施例的结构图。参见图3,控制及数字信号处理系统15可以包括FPGA(Field-Programmable Gate Array)即现场可编程门阵列101,MEMS驱动器130,半导体激光器(LD)驱动器102,调制器驱动器104。其中,FPGA101也可以用MPSoC芯片代替。在以下描述中,以FPGA101为例,对控制及数字信号处理系统15的结构进行说明。其中,MEMS驱动器130与FPGA101连接,通过FPGA101来控制MEMS驱动器130的操作。LD驱动器102和调制器驱动器104均连接至FPGA101;同时LD驱动器102连接至激光器103以及调制器驱动器104连接至调制器105,以用于对激光发射光源11的控制。
根据本发明的一个实施例,激光器103与调制器105为硅基单片集成芯片。
根据本发明的一个实施例,激光器103可以为外腔激光器,其典型线宽小于或等于200kHz。采用线宽较小的激光器,能够有效降低噪声。
根据本发明的一个实施例,激光器103可以是半导体激光器,也可以是其他类型的激光器,在本实施例中不做具体限定。
根据本发明的一个实施例,调制器105为马赫-曾德尔调制器(MZM),该调制器的调制器波导部分可以包含铌酸锂材料、硅材料、聚合物材料等。
根据本发明的一个实施例,调制器105为单边带频率调制器,或 者双边带频率调制器。FPGA101输出至调制器105的控制信号可以是扫频信号,通过控制调制器105对直流激光信号进行频率调制。优选的,经过调制器105对原始出射光进行频率调制后的信号可以是FMCW。
根据本发明的一个实施例,调制器105进一步包含相位调制功能,用于对调频出射光信号进行相位编码。在具体实施过程中,可以在频率调制基础上进一步通过正交相位键控调制方式实现相位编码。通过相位编码,可以为每一个激光雷达的出射光信号增加一个串扰(相当于一个电子标签),之后激光雷达在接收时可以根据编码识别反射光是来自与其自身还是其他激光雷达系统。
根据本发明的一个实施例,发射接收同轴光学系统13包括发射准直透镜110、第一分光片111、第一偏振分束-合束器112、第一四分之一波片113、全反射镜116、第二四分之一波片118、第三四分之一波片114、第二偏振分束-合束器115、第一聚焦透镜117以及第二聚焦透镜119。本发明的激光雷达系统通过采用特殊的发射接收同轴光学单元,可以实现高效率的光信号收集,从而提高接收端的灵敏度。
激光器103发出的原始出射光信号为偏振光,原始出射光信号经过调制器105调制后生成的调频出射光信号的偏振方向为第一偏振方向。第一偏振分束-合束器112及第二偏振分束-合束器115的偏振方向均设置为与第一偏振方向一致,即,设置为与第一偏振方向同方向或平行。第一四分之一波片113、第二四分之一波片118及第三四分之一波片114的光轴面与第一偏振方向成45度角。
调频出射光信号可以先通过光放大器放大后,再由发射准直透镜110准直后形成准直光,经过第一分光片111后分为第一束光和第二束光,其中第一束光被反射,经过全反射镜116、第二四分之一波片118后,偏振方向与第二偏振分束-合束器115的偏振方向成45度,经过第二偏振分束-合束器115后,再次被分光,分别通过第一聚焦透镜117和第二聚焦透镜119聚焦在第一接收探测器120和第二接收探测器125 的光敏面上,分别作为第一本地震荡源和第二本地震荡源。第二束光透射后,经过第一偏振分束-合束器112,再经过第一四分之一波片113后,通过扫描单元12中的MEMS微振镜131(下文进行详细描述)反射到前向待测空间中去,照射到目标对象表面上;经过目标对象表面漫反射后的反射光信号返回到MEMS微振镜131表面反射,经过第一四分之一波片113后,偏振被旋转90度至与第一偏振方向垂直,从而被第一偏振分束-合束器112全反射,此后经过第三四分之一波片114后偏振方向改变45度,经过第二偏振分束-合束器115后,再次被分光,分别通过第一聚焦透镜117和第二聚焦透镜119聚焦在第一接收探测器120和第二接收探测器125的光敏面上,分别形成第一反射光信号和第二反射光信号。
如图3所示,差分接收单元14,包括第一接收探测器120、第二接收探测器125和差分接收器190,第一接收探测器120、第二接收探测器125可以为光电探测器。其中,第一接收探测器120,用于接收第一本地震荡源和第一反射光信号叠加形成的第一拍频信号,其相位为第一相位,对第一拍频信号处理得到第一电信号;以及第二接收探测器125,用于接收第二本地震荡源和第二反射光信号叠加形成的第二拍频信号,其相位为第二相位,对第二拍频信号处理得到第二电信号,其中,第一相位和第二相位之间的差为180度,从而形成差分检测;差分接收器190,与第一接收探测器190和第二接收探测器125连接,用于接收第一电信号和第二电信号。本发明的激光雷达系统通过采用差分接收方式,大幅度地降低噪声,提高信噪比,从而实现更远的探测距离。
如图3所示,在一个实施例中,差分接收单元14除了包括第一接收探测器120、第二接收探测器125和差分接收器190,还可以包括第一跨阻放大器(TIA)121、第一直流滤波及低通滤波器122、第一模数转换器123,以及第二跨阻放大器(TIA)126、第二直流滤波及低通滤波器127、第二模数转换器128。其中,第一接收探测器120接收 到的信号被第一跨阻放大器(TIA)121放大后,再依次经过第一直流滤波及低通滤波器电路122、第一模数转换器芯片123,完成模拟数字转换,输入到FPGA101进行数字信号处理;第二接收探测器125接收到的信号被第二跨阻放大器(TIA)126放大后,再依次经过第二直流滤波及低通滤波器电路127、第二模数转换器芯片128后完成模拟数字转换,输入到FPGA101进行数字信号处理。
根据本发明的一个实施例,如图3所示,差分接收器190可以设置为与控制及数字信号处理系统15的现场可编程门阵列(FPGA)101连接。差分接收器190也可以为控制及数字信号处理系统15的现场可编程门阵列(FPGA)101的一部分,在本实施例中不做具体限定。
FPGA101在接收到第一模数转换器芯片123和第二模数转换器芯片128的输出信号后,还可以通过延时校准模块对第一电信号和第二电信号之间存在的信号延时进行校准,从而准确接收第一接收探测器120和第二接收探测器125生成的第一电信号和第二电信号,防止由于存在延时造成两路信号没有对准造成的误差。根据本发明的实施例,延时校准模块可以包括在控制及数字信号处理单元15中,或者延时校准模块可以是单独的单元。
根据本发明的一个实施例,如图4所示,第一接收探测器120和第二接收探测器125可以直接连接至差分接收器190,差分接收器190再依次连接至第一跨阻放大器(TIA)121、第一直流滤波及低通滤波器电路122、第一模数转换器芯片123和FPGA101。
根据本发明的一个实施例,扫描单元12可以包括MEMS反射镜、棱镜、机械镜、偏振光栅、光学相控阵(OPA)等。对于MEMS反射镜,反射镜面在静电/压电/电磁驱动下在一维或二维方向上发生旋转或平移。
根据本发明的一个实施例,扫描单元12包括MEMS微振镜131。其中,MEMS微振镜131可以在FPGA101的控制下进行二维偏转,从而实现激光在二维空间的扫描。
根据本发明的一个实施例,MEMS微振镜131可以为一个二维微机电系统(MEMS)微振镜,在控制及数字信号处理系统15的驱动信号作用下实现水平和垂直两个方向的偏转。
根据本发明的另一个实施例,MEMS微振镜131可以包括两个一维MEMS微振镜,其中一个一维MEMS微振镜在驱动信号作用下实现水平方向偏转,另一个一维MEMS微振镜在驱动信号作用下实现垂直方向偏转,两个一维MEMS微振镜的位置设置为:使得激光经过一个一维MEMS微振镜反射后,达到另一个一维MEMS表面后,再被反射到空间中去,从而实现激光在二维空间的任意角度扫描。
本发明的激光雷达系统是一种采用调频连续波(FMCW)收发方式的激光雷达系统,通过采用差分接收方式,大幅度地降低噪声,提高信噪比,从而实现更远的探测距离;进一步地采用特殊的光学系统,通过光学偏振的控制,大幅提高发射和接收光学系统的效率,实现高效的光信号收集,大幅提高了接收端的灵敏度,具体地,使用微机电系统微振镜实现光束的控向扫描,来实现高效的光信号收集。
以上实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种激光雷达系统,其特征在于,包括激光发射光源、扫描单元、发射接收同轴光学单元、差分接收单元;
    所述激光发射光源,包括激光器和调制器,其中,所述激光器,用于生成原始出射光信号,所述调制器,用于对所述原始出射光进行频率调制生成调频出射光信号;
    所述发射接收同轴光学单元,用于接收所述调频出射光信号,并将所述调频出射光信号分别传递到所述扫描单元和所述差分接收单元;
    所述扫描单元,用于以可偏转的角度将所述调频出射光信号反射至目标对象,以及将来自目标对象的反射光信号反射至所述发射接收同轴光学单元;
    所述发射接收同轴光学单元,还用于将所述反射光信号传递至所述差分接收单元;
    所述差分接收单元,用于根据接收的所述调频出射光信号,对所述反射光信号进行差分接收。
  2. 根据权利要求1所述的激光雷达系统,其特征在于,还包括控制及数字信号处理单元,分别与所述激光发射光源、所述扫描单元和所述差分接收单元连接,用于通过控制信号对所述激光发射光源、所述扫描单元和所述差分接收单元进行控制。
  3. 根据权利要求1所述的激光雷达系统,其特征在于,所述扫描单元包括微机电系统(MEMS)微振镜。
  4. 根据权利要求1所述的激光雷达系统,其特征在于,所述激光器为外腔激光器,其线宽小于或等于200kHz。
  5. 根据权利要求1至4中任一项所述的激光雷达系统,其特征在于,所述发射接收同轴光学单元包括发射准直透镜、第一分光片、第一偏振分束-合束器、第一四分之一波片、全反射镜、第二四分之一波片、第三四分之一波片、第二偏振分束-合束器、第一聚焦透镜以及第二聚焦透镜,其中,
    所述发射准直透镜,用于将所述调制器生成的调频出射光信号形成准直光;
    所述第一分光片,用于将所述准直光分为第一束光和第二束光;
    所述全反射镜,用于反射所述第一束光;
    所述第二四分之一波片,用于使经所述全反射镜反射的第一光束的偏振方向与所述第二偏振分束-合束器的偏振方向成45度,并将其传递至所述第二偏振分束-合束器;
    所述第一偏振分束-合束器,用于接收所述第二光束,并将其传送至所述第一四分之一波片;
    所述第一四分之一波片,用于接收经过所述第一偏振分束-合束器后的第二光束,并将其通过所述扫描单元反射至所述目标对象,并用于使来自所述目标对象的所述反射光信号的偏振方向与所述调制器生成的调频出射光信号的偏振方向垂直,从而被所述第一偏振分束-合束器全反射至所述第三四分之一波片;
    所述第一偏振分束-合束器,还用于将经过第一四分之一波片后的所述反射光信号全反射至所述第三四分之一波片;
    所述第三四分之一波片,用于将被所述第一偏振分束-合束器全反射的光偏振45度,并将其传递至所述第二偏振分束-合束器;
    所述第二偏振分束-合束器,用于对所接收的光进行分光;
    所述第一聚焦透镜以及所述第二聚焦透镜,分别用于聚焦被所述第二偏振分束-合束器分光的光束,以得到源自所述第一束光的第一本地振荡源和第二本地振荡源以及源自所述第二束光的第一反射光信号和第二反射光信号。
  6. 根据权利要求5所述的激光雷达系统,其特征在于,所述差分接收单元包括第一接收探测器、第二接收探测器和差分接收器;
    所述第一接收探测器,用于接收所述第一本地震荡源和第一反射光信号叠加形成的第一拍频信号,对所述第一拍频信号处理得到第一电信号;
    所述第二接收探测器,用于接收所述第二本地震荡源和第二反射光信号叠加形成的第二拍频信号,对所述第二拍频信号处理得到第二电信号;
    所述差分接收器,与所述第一接收探测器和所述第二接收探测器连接,用于接收所述第一电信号和所述第二电信号。
  7. 根据权利要求6所述的激光雷达系统,其特征在于,所述激光雷达系统还包括延时校准模块,用于对所述第一电信号和所述第二电信号之间存在的信号延时进行校准。
  8. 根据权利要求1所述的激光雷达系统,其特征在于,所述调制器包含相位调制功能,用于对所述调频出射光信号进行相位编码。
  9. 根据权利要求3所述的激光雷达系统,其特征在于,所述微机电系统(MEMS)微振镜包括一个二维微机电系统(MEMS)微振镜,在所述控制及数字信号处理单元的驱动信号作用下实现水平和垂直两个方向的偏转。
  10. 根据权利要求3所述的激光雷达系统,其特征在于,所述微机电系统(MEMS)微振镜包括两个一维微机电系统(MEMS)微振镜,其中一个一维微机电系统(MEMS)微振镜在驱动信号作用下实现水平方向偏转,另一个一维微机电系统(MEMS)微振镜在所述控制及数字信号处理单元的驱动信号作用下实现垂直方向偏转。
PCT/CN2019/096928 2019-07-19 2019-07-20 一种激光雷达系统 WO2021012132A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/628,159 US20220268891A1 (en) 2019-07-19 2019-07-20 Lidar system
EP19938717.6A EP4001964A4 (en) 2019-07-19 2019-07-20 LIDAR SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910654293.8A CN110244281B (zh) 2019-07-19 2019-07-19 一种激光雷达系统
CN201910654293.8 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021012132A1 true WO2021012132A1 (zh) 2021-01-28

Family

ID=67892941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096928 WO2021012132A1 (zh) 2019-07-19 2019-07-20 一种激光雷达系统

Country Status (4)

Country Link
US (1) US20220268891A1 (zh)
EP (1) EP4001964A4 (zh)
CN (1) CN110244281B (zh)
WO (1) WO2021012132A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210603A (zh) * 2021-10-20 2022-10-18 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764342B (zh) * 2019-11-01 2022-02-18 北京一径科技有限公司 一种时间测量装置和方法
CN113036590B (zh) * 2019-12-23 2022-12-09 上海禾赛科技有限公司 激光器、包括其的激光雷达以及激光雷达的扫描方法
CN113075691A (zh) * 2020-01-03 2021-07-06 华为技术有限公司 一种tof深度传感模组和图像生成方法
CN111856481B (zh) * 2020-07-29 2021-07-06 杭州视光半导体科技有限公司 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统
CN111896934B (zh) * 2020-07-29 2023-04-18 西安知微传感技术有限公司 一种mems激光雷达接收系统及方法
CN112639529B (zh) * 2020-07-30 2022-03-29 华为技术有限公司 一种激光雷达和智能车辆
CN113567994B (zh) * 2020-08-05 2022-05-10 北京一径科技有限公司 激光雷达的光学系统和激光雷达系统
CN112731349B (zh) * 2020-12-23 2024-02-06 深圳砺剑天眼科技有限公司 一种可用于激光雷达的噪点识别方法和系统
WO2022188090A1 (zh) * 2021-03-11 2022-09-15 深圳市速腾聚创科技有限公司 固态激光雷达的微振镜控制方法、装置和固态激光雷达
CN113204002A (zh) * 2021-04-07 2021-08-03 华中科技大学 一种二维扫描激光雷达系统
CN113156401B (zh) * 2021-04-19 2023-01-24 中国电子科技集团公司第五十八研究所 一种收发分置激光雷达光学系统
CN113721225A (zh) * 2021-08-31 2021-11-30 深圳市镭神智能系统有限公司 一种调频连续波激光雷达
CN115372267A (zh) * 2022-08-25 2022-11-22 苏州大学 一种基于微振镜扫描仪的光声成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308211A (zh) * 2008-06-24 2008-11-19 中国电子科技集团公司第十一研究所 激光差分扫描探测方法及系统
CN104111451A (zh) * 2014-07-23 2014-10-22 中国科学院上海光学精密机械研究所 差分干涉合成孔径激光三维成像雷达收发装置
CN105721051A (zh) * 2016-01-19 2016-06-29 中国科学院上海光学精密机械研究所 基于2×2 180°光学桥接器的自由空间相干光通信探测装置
CN106940444A (zh) * 2017-02-27 2017-07-11 南京红露麟激光雷达科技有限公司 基于微波差分增益的相干多普勒测风激光雷达
US20170212219A1 (en) * 2015-05-27 2017-07-27 University Corporation For Atmospheric Research Micropulse differential absorption lidar
WO2018189863A1 (ja) * 2017-04-13 2018-10-18 三菱電機株式会社 レーザレーダ装置
CN109991622A (zh) * 2019-04-30 2019-07-09 深圳市镭神智能系统有限公司 一种激光雷达

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344594B (zh) * 2008-05-14 2010-10-20 中国科学院上海光学精密机械研究所 扫描合成孔径激光成像雷达
CN101477198B (zh) * 2009-01-14 2012-06-13 中国科学院上海光学精密机械研究所 通用的合成孔径激光成像雷达光学天线
CN102004243B (zh) * 2010-09-29 2012-07-25 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达光学桥接外差接收和复值处理系统
US10976413B2 (en) * 2017-02-14 2021-04-13 Baidu Usa Llc LIDAR system with synchronized MEMS mirrors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308211A (zh) * 2008-06-24 2008-11-19 中国电子科技集团公司第十一研究所 激光差分扫描探测方法及系统
CN104111451A (zh) * 2014-07-23 2014-10-22 中国科学院上海光学精密机械研究所 差分干涉合成孔径激光三维成像雷达收发装置
US20170212219A1 (en) * 2015-05-27 2017-07-27 University Corporation For Atmospheric Research Micropulse differential absorption lidar
CN105721051A (zh) * 2016-01-19 2016-06-29 中国科学院上海光学精密机械研究所 基于2×2 180°光学桥接器的自由空间相干光通信探测装置
CN106940444A (zh) * 2017-02-27 2017-07-11 南京红露麟激光雷达科技有限公司 基于微波差分增益的相干多普勒测风激光雷达
WO2018189863A1 (ja) * 2017-04-13 2018-10-18 三菱電機株式会社 レーザレーダ装置
CN109991622A (zh) * 2019-04-30 2019-07-09 深圳市镭神智能系统有限公司 一种激光雷达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210603A (zh) * 2021-10-20 2022-10-18 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN115210603B (zh) * 2021-10-20 2023-06-23 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法

Also Published As

Publication number Publication date
CN110244281B (zh) 2021-07-23
US20220268891A1 (en) 2022-08-25
EP4001964A4 (en) 2023-08-23
EP4001964A1 (en) 2022-05-25
CN110244281A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2021012132A1 (zh) 一种激光雷达系统
US20220113417A1 (en) Laser radar and laser radar detection method
JP7402868B2 (ja) 走査lidarにおけるデスキャン補正
US20230015081A1 (en) Techniques for spectral scanning in a lidar system
US11187807B2 (en) Precisely controlled chirped diode laser and coherent lidar system
US11555923B2 (en) LIDAR system with speckle mitigation
CN110749893B (zh) 一种二维扫描激光雷达装置及电子设备
CN114325639A (zh) 可用于雷达的光学组件及硅光芯片
US20230341524A1 (en) Multiple beam, single mems lidar
US10310085B2 (en) Photonic integrated distance measuring pixel and method of distance measurement
JP6222409B1 (ja) レーザレーダ装置
JP7419394B2 (ja) モードフィールド拡大器を備えたlidarシステム
CN211426799U (zh) 一种二维扫描激光雷达装置及电子设备
CN110133616B (zh) 一种激光雷达系统
CN110749892B (zh) 一种二维扫描激光雷达装置及电子设备
US20210396879A1 (en) Continuous-wave light detection and ranging (lidar) system
WO2020086202A1 (en) Lidar system with fiber tip reimaging
CN116736265B (zh) 光芯片、fmcw激光雷达及可移动设备
CN209911553U (zh) 一种激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019938717

Country of ref document: EP

Effective date: 20220221