WO2018182289A2 - 열가소성 폴리 우레탄 필름 및 이의 제조 방법 - Google Patents

열가소성 폴리 우레탄 필름 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018182289A2
WO2018182289A2 PCT/KR2018/003600 KR2018003600W WO2018182289A2 WO 2018182289 A2 WO2018182289 A2 WO 2018182289A2 KR 2018003600 W KR2018003600 W KR 2018003600W WO 2018182289 A2 WO2018182289 A2 WO 2018182289A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
weight
thermoplastic polyurethane
isocyanate
less
Prior art date
Application number
PCT/KR2018/003600
Other languages
English (en)
French (fr)
Other versions
WO2018182289A3 (ko
Inventor
이상율
홍주희
박세정
김상환
김장순
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18778025.9A priority Critical patent/EP3584274A4/en
Priority to JP2019540437A priority patent/JP6973866B2/ja
Priority to CN201880009125.7A priority patent/CN110234688B/zh
Priority to US16/494,558 priority patent/US11299624B2/en
Publication of WO2018182289A2 publication Critical patent/WO2018182289A2/ko
Publication of WO2018182289A3 publication Critical patent/WO2018182289A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret

Definitions

  • the present invention relates to a thermoplastic polyurethane film having excellent durability and a method for producing the same.
  • Thermoplastic polyurethane (TPU) films have excellent mechanical properties such as strength, elongation characteristics, toughness and abrasion resistance, and are mainly used in automobiles and the like.
  • an extruded molded polyurethane pellet is dissolved in a solvent to prepare a polyurethane solution, and a polyurethane solution is applied onto a substrate to produce a thermoplastic polyurethane film.
  • polyurethane pellets having a high molecular weight do not dissolve well in a solvent, and the solid content of the polyurethane solution produced is low, about 15% or less.
  • Polyurethane solutions having a low solids content cannot be applied on the substrate to a predetermined thickness or more, and there is a problem that it is difficult to produce a thick polyurethane film.
  • polyurethane pellets are difficult to proceed further polymerization reaction, it is not easy to control the physical properties of the thermoplastic polyurethane film produced from the polyurethane solution, and to use a highly toxic solvent to dissolve the high molecular weight polyurethane pellets There is a problem.
  • thermoplastic polyurethane films having excellent durability and life characteristics in the automotive field.
  • thermoplastic polyurethane film having a thick thickness and excellent durability using a solvent having low toxicity while using a high molecular weight polyurethane resin Accordingly, there is a need for a technology capable of producing a thermoplastic polyurethane film having a thick thickness and excellent durability using a solvent having low toxicity while using a high molecular weight polyurethane resin.
  • the present invention is to provide a thermoplastic polyurethane film having a thick thickness, high tensile strength at break and excellent in durability and a method of manufacturing the same.
  • One embodiment of the present invention comprises a cured product of a polyurethane resin composition comprising a polyurethane resin, a first isocyanate-based curing agent and an organic solvent, the thermoplastic polyurethane film having a tensile strength at break of 50 MPa or more and 80 MPa or less To provide.
  • Another embodiment of the present invention preparing a polyurethane resin composition comprising a polyurethane resin, a first isocyanate-based curing agent and an organic solvent; Applying the polyurethane resin composition on a base film and performing heat treatment to form a polyurethane resin layer; And it provides a method for producing a thermoplastic polyurethane film comprising the step of further curing the polyurethane resin layer.
  • thermoplastic polyurethane film according to the exemplary embodiment of the present invention has an excellent tensile strength at break of 50 MPa or more and 80 MPa or less, which is excellent in durability.
  • thermoplastic polyurethane film according to the exemplary embodiment of the present invention is excellent in durability and can produce a thick thermoplastic polyurethane film.
  • the unit “wt%” may refer to the weight ratio of the components included in the member to the total weight of the member.
  • unit “parts by weight” may refer to the ratio of weight between each component.
  • polymerization unit may refer to a form in which a monomer is reacted in a polymer, and specifically, the monomer undergoes a polymerization reaction to form a backbone, for example, a main chain or a side chain of the polymer. It can mean a form.
  • the "weight average molecular weight” and “number average molecular weight” of a compound can be calculated using the molecular weight and molecular weight distribution of that compound. Specifically, tetrahydrofuran (THF) and a compound are added to a 1 ml glass bottle to prepare a sample sample having a compound concentration of 1 wt%, and a standard sample (polystyrene, polystryere) and a sample sample are filtered (pore size). Is filtered through 0.45 mm), and then injected into a GPC injector to compare the elution time of the sample sample with the calibration curve of the standard sample to obtain the molecular weight and molecular weight distribution of the compound. At this time, Infinity II 1260 (Agilient Co., Ltd.) can be used as a measuring device, the flow rate can be set to 1.00 mL / min, the column temperature is set to 40.0 °C.
  • THF tetrahydrofuran
  • One embodiment of the present invention comprises a cured product of a polyurethane resin composition comprising a polyurethane resin, a first isocyanate-based curing agent and an organic solvent, the thermoplastic polyurethane film having a tensile strength at break of 50 MPa or more and 80 MPa or less To provide.
  • thermoplastic polyurethane film according to the exemplary embodiment of the present invention has an excellent tensile strength at break of 50 MPa or more and 80 MPa or less, which is excellent in durability.
  • the thermoplastic polyurethane film has a tensile strength at break of 50 MPa or more and 80 MPa or less, 55 MPa or more and 75 MPa or less, 60 MPa or more and 70 MPa or less, 55 MPa or more and 62.5 MPa or less, or It may be 65 MPa or more and 72.5 MPa or less.
  • the thermoplastic polyurethane film satisfying the aforementioned range of tensile strength at break has an advantage of excellent shock absorption and durability against external force.
  • thermoplastic polyurethane film may have a tensile strength of 7.5 MPa or less at an elongation of 100%.
  • thermoplastic polyurethane film may have a tensile strength of 2.5 MPa or more and 7.5 MPa or less, or 3 MPa or more and 6 MPa or less at 100% elongation.
  • the thermoplastic polyurethane film having a tensile strength satisfying the above range at an elongation of 100% may have excellent processability.
  • the content of the first isocyanate-based curing agent may be 7.5 parts by weight or more and 15 parts by weight or less based on 100 parts by weight of the polyurethane resin.
  • the content of the first isocyanate-based curing agent may be 8 parts by weight or more and 14 parts by weight or less, or 10 parts by weight or more and 13 parts by weight or less based on 100 parts by weight of the polyurethane resin.
  • the first isocyanate-based curing agent may include 2 to 6 isocyanate functional groups.
  • the first isocyanate curing agent is H12MDI which is a bifunctional isocyanate curing agent of Evonik, MHG-80B which is a six-functional isocyanate curing agent of AsahiKASEI, MFA-100 which is a six-functional isocyanate curing agent of AsahiKASEI, and AsahiKASEI. It may include at least one of TKA-100 which is a trifunctional isocyanate curing agent.
  • the polyurethane resin may include a polyol having a number average molecular weight of 1,800 g / mol or more and 2,200 g / mol or less; Chain extenders including diols having 4 to 10 carbon atoms; And it may be a copolymer of a mixture comprising a second isocyanate-based curing agent.
  • the polyurethane resin may be a block copolymer including a soft segment and a hard segment.
  • the soft segment of the polyurethane resin may include polymerized units derived from the polyol and the second isocyanate-based curing agent, and the hard segment of the polyurethane resin is derived from the chain extender and the second isocyanate-based curing agent. Polymerized units may be included.
  • the number average molecular weight of the polyol may be 1,800 g / mol or more and 2,200 g / mol or less, 1,950 g / mol or more and 2,050 g / mol or less, or 1,900 g / mol or more and 2,100 g / mol or less have.
  • the number average molecular weight of the polyol is in the above-described range, it is possible to implement a thermoplastic polyurethane film having excellent durability.
  • by adjusting the number average molecular weight of the polyol in the above-described range it is possible to suppress that the elongation of the thermoplastic polyurethane film is reduced.
  • the polyol may include a diol containing two hydroxyl groups.
  • the polyol may include at least one of polycarbonate diol, polycaprolactone diol, polyester diol, and polyther diol.
  • the content of the polyol may be 50 wt% or more and 75 wt% or less with respect to the weight of the mixture. Specifically, the content of the polyol may be 55% by weight to 72.5% by weight, 65% by weight to 71% by weight, or 68% by weight to 74.5% by weight based on the weight of the mixture.
  • the chain extender may include a diol having 4 to 10 carbon atoms, or a diol having 4 to 6 carbon atoms.
  • Chain extenders comprising diols having a carbon number in the above range can effectively extend the chain of the second isocyanate-based curing agent.
  • the chain extender 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, opentylglycol, 1,10-decanediol, 1,1-cyclohexanedimethanol and 1, It may comprise at least one of 4-cyclohexanedimethanol.
  • the content of the chain extender may be 5 wt% or more and 15 wt% or less with respect to the weight of the mixture, and specifically, 5 wt% or more and 8 wt% or less, or 6 wt% or more. Up to 7.5% by weight.
  • the second isocyanate-based curing agent may include 2 to 6 isocyanate functional groups.
  • the second isocyanate-based curing agent may include two isocyanate functional groups.
  • the second isocyanate-based curing agent isophorone diisocyanate (IPDI), methylenephenyl-4,4'-diisocyanate, 4,4'-methylenebiscyclohexyl diisocyanate, xylene diisocyanate (XDI xylene diisocyanate), naphthalene-1,5-diisocyanate, and cyclohexane diisocyanate.
  • IPDI isophorone diisocyanate
  • methylenephenyl-4,4'-diisocyanate 4,4'-methylenebiscyclohexyl diisocyanate
  • XDI xylene diisocyanate naphthalene-1,5-diisocyanate
  • the content of the second isocyanate-based curing agent may be 20 wt% or more and 37.5 wt% or less with respect to the weight of the mixture.
  • the content of the second isocyanate-based curing agent may be 20 wt% or more and 27.5 wt% or less, or 21.5 wt% or more and 25 wt% or less with respect to the weight of the mixture.
  • the mixture may further include a catalyst.
  • a catalyst any catalyst used in the art may be used without limitation, and for example, dibutyl tin dilaurate (DBTDL) may be used.
  • the content of the catalyst may be 0.005 parts by weight or more and 0.02 parts by weight or less, or 0.008 parts by weight or more and 0.015 parts by weight or less based on 100 parts by weight of the mixture.
  • the weight average molecular weight of the polyurethane resin may be 40,000 g / mol or more and 70,000 g / mol or less.
  • the weight average molecular weight of the polyurethane resin By adjusting the weight average molecular weight of the polyurethane resin, physical properties such as tensile strength and durability of the thermoplastic polyurethane film can be easily controlled.
  • the organic solvent is acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexane, toluene, xylene, ethylene glycol monomethyl ether (methyl cellosolve) and ethylene glycol monoethyl ether (ethyl Cellosolves).
  • the above-described organic solvents used in the polyurethane resin polymerization have little toxicity, and by using the organic solvents, it is possible to prevent harmful effects on the human body and the environment of the user.
  • the content of the organic solvent may be 30 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the polyurethane resin.
  • the solid content of the polyurethane resin composition may be 20% or more and 70% or less, and specifically 30% or more and 60% or less, 40% or more and 55% or less.
  • the “solid content” may mean a solute or solid except the solvent in the entire solution.
  • the solid content of the polyurethane resin composition is the polyurethane resin except the organic solvent and the first isocyanate curing agent. And additives such as catalysts.
  • the polyurethane resin composition may be thickly applied onto the substrate, thereby producing a thick thermoplastic polyurethane film.
  • the thickness of the thermoplastic polyurethane film may be 10 ⁇ m or more and 250 ⁇ m or less. Specifically, the thickness of the thermoplastic polyurethane film may be 20 ⁇ m or more and 200 ⁇ m or less, or 30 ⁇ m or more and 180 ⁇ m or less. That is, the thermoplastic polyurethane film may have a thicker thickness than the conventional polyurethane film.
  • Another embodiment of the present invention preparing a polyurethane resin composition comprising a polyurethane resin, a first isocyanate-based curing agent and an organic solvent; Applying the polyurethane resin composition on a base film and performing heat treatment to form a polyurethane resin layer; And it provides a method for producing a thermoplastic polyurethane film comprising the step of further curing the polyurethane resin layer.
  • the method of manufacturing a thermoplastic polyurethane film according to an exemplary embodiment of the present invention may produce a thermoplastic polyurethane film having high durability at break and having excellent durability.
  • the thermoplastic polyurethane film manufactured by the method of manufacturing the thermoplastic polyurethane film may have a tensile strength at break of 50 MPa or more and 80 MPa or less.
  • the thermoplastic polyurethane film satisfying the above-described range of tensile strength at break has an excellent durability.
  • the content of the first isocyanate-based curing agent is 7.5 parts by weight or more and 15 parts by weight or less, 8 parts by weight or more and 14 parts by weight or less, or 10 parts by weight or more based on 100 parts by weight of the polyurethane resin. It may be up to 13 parts by weight.
  • the solid content of the polyurethane resin composition may be 20% or more and 70% or less, specifically 30% or more and 60% or less, 40% or more and 55% or less.
  • the polyurethane resin composition may be thickly applied onto the substrate, thereby producing a thick thermoplastic polyurethane film.
  • the polyurethane resin used in the method for producing the thermoplastic polyurethane film may include a polyol having a number average molecular weight of 1,800 g / mol or more and 2,200 g / mol or less; Chain extenders including diols having 4 to 10 carbon atoms; And a mixture containing a second isocyanate curing agent in a organic solvent.
  • polyols, chain extenders, first isocyanate-based curing agents, second isocyanate-based curing agents, organic solvents and catalysts used in the production method of the thermoplastic polyurethane film include polyols, chain extenders, It may be the same as the first isocyanate curing agent, the second isocyanate curing agent, the organic solvent and the catalyst.
  • the carbon number constituting the diol used as the chain extender is less than the carbon number constituting the polyol, the diol in the mixture is more fluid than the polyol.
  • the reaction of the chain extender and the second isocyanate-based curing agent may occur before the reaction of the polyol and the second isocyanate-based curing agent.
  • butanediol as a chain extender, one hydroxy group of two hydroxy groups of butanediol reacts with an isocyanate group of the second isocyanate-based curing agent, and the unreacted hydroxy group of the butanediol is a second isocyanate.
  • a second isocyanate curing agent having a long extended chain structure can be formed. Thereafter, the second isocyanate-based curing agent having a long extended chain structure and the polyol may react to form a polyurethane resin having an increased weight average molecular weight.
  • the copolymerization reaction for preparing the polyurethane resin may be carried out at a temperature of 50 °C to 70 °C.
  • the copolymerization reaction temperature in the above-mentioned range, the polyurethane resin can be stably polymerized and the polyurethane resin can be polymerized at a relatively low temperature, thereby reducing the manufacturing cost and manufacturing time of the thermoplastic polyurethane film. You can.
  • the content of the polyol is 50% by weight to 75% by weight, 55% by weight to 72.5% by weight, 65% by weight to 71% by weight, or 68% by weight based on the weight of the mixture It may be more than 74.5 wt%.
  • the content of the chain extender may be 5 wt% or more and 15 wt% or less, 5 wt% or more and 8 wt% or less, or 6 wt% or more and 7.5 wt% or less with respect to the weight of the mixture. have.
  • the content of the second isocyanate-based curing agent is 20 wt% or more and 37.5 wt% or less, 20 wt% or more and 27.5 wt% or less, or 21.5 wt% or more and 25 wt% based on the weight of the mixture. It may be: By adjusting the content of the second isocyanate-based curing agent in the above range, it is possible to stably perform the polymerization reaction of the polyurethane resin, it is possible to produce a thermoplastic polyurethane film with a high tensile strength at break.
  • the mixture may further include a catalyst.
  • a catalyst Through the catalyst, it is possible to promote the polymerization reaction of the polyurethane resin, the reaction of the polyurethane resin and the first isocyanate-based curing agent.
  • the content of the catalyst may be 0.005 parts by weight or more and 0.02 parts by weight or less, or 0.008 parts by weight or more and 0.015 parts by weight or less based on 100 parts by weight of the mixture. By adjusting the content of the catalyst in the above range, it is possible to effectively promote the polymerization reaction of the polyurethane resin, it is possible to polymerize the polyurethane resin at a relatively low temperature.
  • the polymerization reaction of the polyurethane resin may be carried out in an organic solvent.
  • a water-soluble solvent is used to prepare the thermoplastic polyurethane film
  • the urethane particles should be processed into a bead having a diameter of several tens of nanometers to several hundred nanometers to be dispersed on the water-soluble solvent.
  • additives such as various surfactants and monomers should be used, which makes the manufacturing process of the thermoplastic polyurethane film complicated, and there is a problem in that manufacturing time and manufacturing cost increase.
  • the polyurethane resin is dissolved in the organic solvent (dissolved), to add an additive of a dispersion stabilizer such as an additional dispersant and surfactant to the polyurethane resin composition. no need. Therefore, the manufacturing time and manufacturing cost of the thermoplastic polyurethane film can be reduced.
  • a dispersion stabilizer such as an additional dispersant and surfactant
  • the content of the organic solvent may be 30 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the polyurethane resin.
  • the polyurethane resin by reacting the mixture in an organic solvent to prepare a composition comprising a polyurethane resin and an organic solvent, by adding a first isocyanate-based curing agent to the composition, the polyurethane resin
  • the composition can be prepared. That is, the organic solvent of the polyurethane resin composition may be an organic solvent that is used during the preparation of the polyurethane resin and remains. In addition, an additional organic solvent may be added to the polyurethane resin composition.
  • the weight average molecular weight of the polyurethane resin may be 40,000 g / mol or more and 70,000 g / mol or less.
  • the weight average molecular weight of the polyurethane resin is adjusted by adjusting the number average molecular weight of the polyol, the carbon number of the diol used as the chain extender, the content of the polyol in the mixture, the content of the chain extender, the content of the second isocyanate-based curing agent, and the like. Can be controlled.
  • the weight average molecular weight of the polyurethane resin physical properties such as tensile strength and durability of the thermoplastic polyurethane film can be easily controlled.
  • the method of applying the polyurethane resin composition on the base film is not particularly limited, and for example, bar coating, blade coating, slot die coating ( Slot die coating, spray coating, spin coating, and gravure coating may be used.
  • the polyurethane resin composition may be applied on the base film in a thickness of 20 ⁇ m or more and 500 ⁇ m or less.
  • the polyurethane resin composition coated on the base film may be heat treated to form a polyurethane resin layer having a thickness of 10 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the polyurethane resin layer can be reduced. Therefore, in consideration of the thickness of the polyurethane resin layer reduced as the organic solvent is volatilized, the thickness of the polyurethane resin composition applied on the base film can be adjusted.
  • the polyurethane resin composition applied on the base film may be heat treated at a temperature of 100 ° C. or more and 150 ° C. or less to form a thermoplastic polyurethane resin layer.
  • a temperature of 100 ° C. or more and 150 ° C. or less to form a thermoplastic polyurethane resin layer.
  • the polyurethane resin layer may be further cured at a temperature of 40 ° C. or higher and 80 ° C. or lower for 12 hours to 48 hours.
  • the polyurethane resin layer formed by heat treatment of the polyurethane resin composition may be further cured in a semi-cured state to prepare a finally cured thermoplastic polyurethane film.
  • the polyurethane resin contained in the polyurethane resin layer and the first isocyanate-based curing agent reacts, or the remaining amount of the polyol and chain extender, the first isocyanate-based curing agent and The second isocyanate-based curing agent may react to provide a thermoplastic polyurethane film comprising a polyurethane resin having an increased weight average molecular weight.
  • the present invention by further curing the polyurethane resin layer at the above-described temperature and time conditions, it is possible to effectively react the polyurethane resin and the first isocyanate-based curing agent.
  • the thickness of the thermoplastic polyurethane film may be 10 ⁇ m or more and 250 ⁇ m or less. Specifically, the thickness of the thermoplastic polyurethane film may be 20 ⁇ m or more and 200 ⁇ m or less, or 30 ⁇ m or more and 180 ⁇ m or less.
  • the step of further curing the polyurethane resin layer may further comprise the step of removing the base film. That is, through the manufacturing method of the thermoplastic polyurethane film, it is possible to manufacture a laminate in which a thermoplastic polyurethane film is laminated on a base film, and by removing the base film to obtain a thermoplastic polyurethane film having a high tensile strength at break Can provide.
  • Polycarbonatediol (polycarbonatediol; PCDL, Asahi Kasei) having a number average molecular weight of 2,050 g / mol as a polyol, 1,4-butanediol (1,4-butanediol; 1,4BD, BASF), first H12MDI containing two isocyanate functional groups as an isocyanate-based curing agent (Evonik), isophorone diisocyanate (IPDI, Evonik) as a second isocyanate-based curing agent, dibutyl tin dilaurylate as a catalyst dilaurate (DBTDL), methyl ethyl ketone was prepared as an organic solvent.
  • PCDL isocyanate-based curing agent
  • IPDI isophorone diisocyanate
  • DBTDL catalyst dilaurate
  • methyl ethyl ketone was prepared as an organic solvent.
  • the prepared mixed solution was charged to a reactor, heated to 55 ° C. and maintained at a temperature while 0.005 parts by weight of catalyst was added to 100 parts by weight of the mixture. Thereafter, the mixture was reacted at 57 ° C. for 25 hours to prepare a composition including a polyurethane resin having a weight average molecular weight of about 52,000 g / mol. Thereafter, about 10 parts by weight of the first isocyanate-based curing agent was added to the composition based on 100 parts by weight of the prepared polyurethane resin to prepare a polyurethane resin composition. Solid content of the prepared polyurethane resin composition was about 46%.
  • the prepared polyurethane resin composition was applied at about 200 ⁇ m on a polyethylene terephthalate (PET) film, which is a base film. Thereafter, the polyurethane resin composition was heat-treated at 100 ° C. to form a polyurethane resin layer, and the polyurethane resin layer was further cured at 40 ° C. for 19 hours to finally prepare a thermoplastic polyurethane film having a thickness of 95 ⁇ m. .
  • PET polyethylene terephthalate
  • a polyol, a chain extender, a first isocyanate-based curing agent, a second isocyanate-based curing agent and a catalyst are used as in Table 1 below to prepare the polyurethane resin composition.
  • Table 1 below TKA-100 is a trifunctional isocyanate-based curing agent of AsahiKASEI.
  • a polyol, a chain extender, a first isocyanate-based curing agent, a second isocyanate-based curing agent and a catalyst are used as in Table 1 below to prepare the polyurethane resin composition.
  • MHG-80B is a six-functional isocyanate-based curing agent of AsahiKASEI.
  • thermoplastic polyurethane film prepared in Examples 1 to 4 and Comparative Examples 1 to 7 was processed according to the ASTM D-638 standard to prepare a specimen. Then, using an Ultimate Tensile Machine (UTM) machine (Model 3343, INSTRON Co., Ltd.), one end of the specimen is fixed and the other end is pulled at a speed of 300 mm / min, depending on the degree of stretching of the thermoplastic polyurethane film. Tensile strength was measured.
  • UTM Ultimate Tensile Machine
  • thermoplastic polyurethane film prepared in Comparative Examples 1 to 7 is less than 50 MPa tensile strength at break.
  • the elongation at break is similar to that of the thermoplastic polyurethane films prepared in Comparative Examples 1 to 7, but the tensile strength at break is similar. It was confirmed that 50 MPa or more and 80 MPa or less were satisfied. That is, it can be seen that the thermoplastic polyurethane film according to the exemplary embodiment of the present invention has excellent durability and stretching characteristics.
  • thermoplastic polyurethane film prepared in Examples 1 to 4 of the present invention satisfies the tensile strength of 7.5 MPa or less at an elongation of 100%, confirming that the processing is easy.
  • thermoplastic polyurethane film according to the exemplary embodiment of the present invention has high tensile strength at break and excellent durability. Furthermore, it can be seen that the thermoplastic polyurethane film according to the exemplary embodiment of the present invention is easy to process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 파단 시의 인장강도가 50 MPa 이상 80 MPa 이하로, 파단 시의 인장강도가 높아 내구성이 우수한 열가소성 폴리 우레탄 필름 및 이의 제조 방법에 관한 것이다.

Description

열가소성 폴리 우레탄 필름 및 이의 제조 방법
본 명세서는 2017년 3월 27일에 한국특허청에 제출된 한국 특허 출원 제 10-2017-0038384호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 내구성이 우수한 열가소성 폴리 우레탄 필름 및 이의 제조 방법에 관한 것이다.
열가소성 폴리 우레탄(thermoplastic polyurethane, TPU) 필름은 강도, 신장 특성, 인성(toughness) 및 내마모성(abrasion resistance) 등의 기계적 물성이 우수하여, 자동차 분야 등에서 주요하게 사용되고 있다.
일반적으로, 압출되어 성형된 폴리 우레탄 펠렛을 용제에 녹여 폴리 우레탄 용액을 제조하고, 폴리 우레탄 용액을 기재 상에 도포하여 열가소성 폴리 우레탄 필름을 제조하고 있다. 다만, 분자량이 높은 폴리 우레탄 펠렛은 용제에 잘 용해되지 않아, 제조되는 폴리 우레탄 용액의 고형분 함량은 약 15 % 이하로 낮다. 고형분 함량이 낮은 폴리 우레탄 용액은 기재 상에 일정 두께 이상으로 도포하는 것이 불가능하여, 두꺼운 폴리 우레탄 필름을 제조하는 것이 곤란한 문제가 있다. 또한, 폴리 우레탄 펠렛은 추가적인 중합 반응이 진행되기 어려워, 폴리 우레탄 용액으로부터 제조되는 열가소성 폴리 우레탄 필름의 물성을 제어하는 것이 용이하지 않고, 고분자량의 폴리 우레탄 펠렛을 용해시키기 위하여 독성이 강한 용제를 사용해야 되는 문제가 있다.
또한, 자동차 분야에서는 내구성과 수명 특성이 우수한 열가소성 폴리 우레탄 필름이 요구되고 있다.
이에, 고분자량의 폴리우레탄 수지를 사용하면서도 독성이 낮은 용제를 사용하여, 두꺼운 두께를 가지며 내구성이 우수한 열가소성 폴리 우레탄 필름을 제조할 수 있는 기술이 필요한 실정이다.
본 발명은 두꺼운 두께를 가지며, 파단 시의 인장강도가 높아 내구성이 우수한 열가소성 폴리 우레탄 필름 및 이의 제조 방법을 제공하고자 한다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는, 폴리 우레탄 수지, 제1 이소시아네이트계 경화제 및 유기용제를 포함하는 폴리 우레탄 수지 조성물의 경화물을 포함하고, 파단 시의 인장강도가 50 MPa 이상 80 MPa 이하인 열가소성 폴리 우레탄 필름을 제공한다.
본 발명의 다른 실시상태는, 폴리 우레탄 수지, 제1 이소시아네이트계 경화제 및 유기용제를 포함하는 폴리 우레탄 수지 조성물을 제조하는 단계; 상기 폴리 우레탄 수지 조성물을 기재 필름 상에 도포하고, 열처리하여 폴리 우레탄 수지층을 형성하는 단계; 및 상기 폴리 우레탄 수지층을 추가 경화시키는 단계를 포함하는 열가소성 폴리 우레탄 필름의 제조 방법을 제공한다.
본 발명의 일 실시상태에 따른 상기 열가소성 폴리 우레탄 필름은 파단 시의 인장강도가 50 MPa 이상 80 MPa 이하로써, 내구성이 우수한 장점이 있다.
본 발명의 일 실시상태에 따른 열가소성 폴리 우레탄 필름의 제조 방법은 내구성이 우수하며 두께가 두꺼운 열가소성 폴리 우레탄 필름을 제조할 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 단위 "wt%"는 부재의 총 중량에 대하여, 부재에 포함되는 성분의 중량 비율을 의미할 수 있다.
본원 명세서 전체에서, 단위 "중량부"는 각 성분간의 중량의 비율을 의미할 수 있다.
본원 명세서 전체에서, 용어 "중합 단위"는 중합체 내에서 단량체가 반응된 형태를 의미할 수 있고, 구체적으로 그 단량체가 중합 반응을 거쳐서 그 중합체의 골격, 예를 들면, 주쇄 또는 측쇄를 형성하고 있는 형태를 의미할 수 있다.
본원 명세서 전체에서, 어떤 화합물의 “중량평균분자량” 및 “수평균분자량”은 그 화합물의 분자량과 분자량 분포를 이용하여 계산될 수 있다. 구체적으로, 1 ml의 유리병에 테트라하이드로퓨란(tetrahydrofuran, THF)와 화합물을 넣어 화합물의 농도가 1 wt%인 샘플 시료를 준비하고, 표준 시료(폴리스티렌, polystryere)와 샘플 시료를 필터(포어 크기가 0.45 mm)를 통해 여과시킨 후, GPC 인젝터(injector)에 주입하여, 샘플 시료의 용리(elution) 시간을 표준 시료의 캘리브레이션(calibration) 곡선과 비교하여 화합물의 분자량 및 분자량 분포를 얻을 수 있다. 이 때, 측정 기기로 Infinity II 1260(Agilient 社)를 이용할 수 있고, 유속은 1.00 mL/min, 컬럼 온도는 40.0 ℃로 설정할 수 있다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는, 폴리 우레탄 수지, 제1 이소시아네이트계 경화제 및 유기용제를 포함하는 폴리 우레탄 수지 조성물의 경화물을 포함하고, 파단 시의 인장강도가 50 MPa 이상 80 MPa 이하인 열가소성 폴리 우레탄 필름을 제공한다.
본 발명의 일 실시상태에 따른 상기 열가소성 폴리 우레탄 필름은 파단 시의 인장강도가 50 MPa 이상 80 MPa 이하로써, 내구성이 우수한 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 열가소성 폴리 우레탄 필름은 파단 시의 인장강도는 50 MPa 이상 80 MPa 이하, 55 MPa 이상 75 MPa 이하, 60 MPa 이상 70 MPa 이하, 55 MPa 이상 62.5 MPa 이하, 또는 65 MPa 이상 72.5 MPa 이하일 수 있다. 파단 시의 인장강도가 전술한 범위를 만족하는 상기 열가소성 폴리 우레탄 필름은 외력에 대한 충격 흡수 및 내구성이 우수한 장점이 있다.
또한, 상기 열가소성 폴리 우레탄 필름은 100 %의 연신율에서 인장강도가 7.5 MPa 이하일 수 있다. 구체적으로, 상기 열가소성 폴리 우레탄 필름은 100 %의 연신율에서 인장강도가 2.5 MPa 이상 7.5 MPa 이하, 또는 3 MPa 이상 6 MPa 이하일 수 있다. 100 %의 연신율에서 인장강도가 전술한 범위를 만족하는 상기 열가소성 폴리 우레탄 필름은 가공성이 우수할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제1 이소시아네이트계 경화제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 7.5 중량부 이상 15 중량부 이하일 수 있다. 구체적으로, 상기 제1 이소시아네이트계 경화제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 8 중량부 이상 14 중량부 이하, 또는 10 중량부 이상 13 중량부 이하일 수 있다. 상기 제1 이소시아네이트계 경화제의 함량을 전술한 범위로 조절함으로써, 파단 시의 인장강도가 전술한 범위를 만족하는 열가소성 폴리 우레탄 필름을 구현할 수 있다. 즉, 상기 폴리 우레탄 수지 조성물 내의 제1 이소시아네이트계 경화제의 함량을 전술한 범위로 조절함으로써, 내구성이 우수한 열가소성 폴리 우레탄 필름을 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제1 이소시아네이트계 경화제는 2 이상 6 이하의 이소시아네이트 관능기를 포함할 수 있다. 예를 들면, 제1 이소시아네이트 경화제는, Evonik 社의 2관능 이소시아네이트계 경화제인 H12MDI, AsahiKASEI 社의 6관능 이소시아네이트계 경화제인 MHG-80B, AsahiKASEI 社의 6관능 이소시아네이트계 경화제인 MFA-100, 및 AsahiKASEI 社의 3관능 이소시아네이트계 경화제인 TKA-100 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지는, 수평균분자량이 1,800 g/mol 이상 2,200 g/mol 이하인 폴리올; 탄소수 4 이상 10 이하의 디올을 포함하는 사슬 연장제; 및 제2 이소시아네이트계 경화제를 포함하는 혼합물의 공중합체일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지는 소프트 세그먼트(soft segment)와 하드 세그먼트(hard segment)를 포함하는 블록 공중합체(block copolymer)일 수 있다. 구체적으로, 상기 폴리 우레탄 수지의 소프트 세그먼트는 상기 폴리올과 제2 이소시아네이트계 경화제로부터 유래된 중합 단위를 포함할 수 있으며, 상기 폴리 우레탄 수지의 하드 세그먼트는 상기 사슬 연장제와 제2 이소시아네이트계 경화제로부터 유래된 중합 단위를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리올의 수평균분자량은 1,800 g/mol 이상 2,200 g/mol 이하, 1,950 g/mol 이상 2,050 g/mol 이하, 또는 1,900 g/mol 이상 2,100 g/mol 이하일 수 있다. 상기 폴리올의 수평균분자량이 전술한 범위 내인 경우, 내구성이 우수한 열가소성 폴리 우레탄 필름을 구현할 수 있다. 또한, 상기 폴리올의 수평균분자량을 전술한 범위로 조절함으로써, 열가소성 폴리 우레탄 필름의 신율이 감소되는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리올은 2개의 하이드록시기를 함유하는 디올을 포함할 수 있다. 구체적으로, 상기 폴리올은 폴리카보네이트디올, 폴리카프로락톤디올, 폴리에스터디올 및 폴리이서디올 중 1종 이상을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리올의 함량은 상기 혼합물의 중량에 대하여 50 중량% 이상 75 중량% 이하일 수 있다. 구체적으로, 상기 폴리올의 함량은 상기 혼합물의 중량에 대하여, 55 중량% 이상 72.5 중량% 이하, 65 중량% 이상 71 중량% 이하, 또는 68 중량% 이상 74.5 중량% 이하일 수 있다. 상기 혼합물 내의 상기 폴리올의 함량을 전술한 범위로 조절함으로써, 파단 시의 인장강도가 높은 열가소성 폴리 우레탄 필름을 제조할 수 있다. 또한, 상기 폴리올의 함량을 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지에 포함되는 하드 세그먼트의 함량이 과도하게 많아지는 것을 억제하여, 열가소성 폴리 우레탄 필름의 가공성이 저하되는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 사슬 연장제는 탄소수 4 이상 10 이하의 디올, 또는 탄소수 4 이상 6 이하의 디올을 포함할 수 있다. 전술한 범위의 탄소수를 가지는 디올을 포함하는 사슬 연장제는 상기 제2 이소시아네이트계 경화제의 사슬을 효과적으로 연장시킬 수 있다. 구체적으로, 상기 사슬 연장제는 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 오펜틸글리콜, 1,10-데칸디올, 1,1-시클로헥산디메탄올 및 1,4-시클로헥산디메탄올 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 사슬 연장제의 함량은 상기 혼합물의 중량에 대하여 5 중량% 이상 15 중량% 이하일 수 있으며, 구체적으로, 5 중량% 이상 8 중량% 이하, 또는 6 중량% 이상 7.5 중량% 이하일 수 있다. 상기 혼합물 내의 사슬 연장제의 함량을 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지의 중량평균분자량을 향상시킬 수 있고, 상기 열가소성 폴리 우레탄 필름의 내구성이 저하되는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제2 이소시아네이트계 경화제는 2 이상 6 이하의 이소시아네이트 관능기를 포함할 수 있다. 구체적으로, 상기 제2 이소시아네이트계 경화제는 2 개의 이소시아네이트 관능기를 포함할 수 있다. 예를 들면, 상기 제2 이소시아네이트계 경화제는 이소포론디이소시아네이트(IPDI; isophorone diisocyanate), 메틸렌페닐-4,4'-디이소시아네이트, 4,4'-메틸렌비스시클로헥실디이소시아네이트, 크실렌디이소시아네이트(XDI; xylene diisocyanate), 나프탈렌-1,5-디이소시아네이트 및 시클로헥산디이소아네이트(cyclohexane diisocyanate) 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제2 이소시아네이트계 경화제의 함량은 상기 혼합물의 중량에 대하여 20 중량% 이상 37.5 중량% 이하일 수 있다. 구체적으로, 상기 제2 이소시아네이트계 경화제의 함량은 상기 혼합물의 중량에 대하여, 20 중량% 이상 27.5 중량% 이하, 또는 21.5 중량% 이상 25 중량% 이하일 수 있다. 상기 제2 이소시아네이트계 경화제의 함량을 전술한 범위로 조절함으로써, 폴리 우레탄 수지의 중합 반응을 안정적으로 수행할 수 있고, 파단 시의 인장강도가 높은 열가소성 폴리 우레탄 필름을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 혼합물은 촉매를 더 포함할 수 있다. 상기 촉매로서 당업계에서 사용되는 촉매를 제한없이 사용할 수 있고, 예를 들어 디부틸주석디라우레이트(dibutyl tin dilaurate; DBTDL)를 사용할 수 있다. 또한, 상기 촉매의 함량은 상기 혼합물 100 중량부에 대하여 0.005 중량부 이상 0.02 중량부 이하, 또는 0.008 중량부 이상 0.015 중량부 이하일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지의 중량평균분자량은 40,000 g/mol 이상 70,000 g/mol 이하일 수 있다. 상기 폴리 우레탄 수지의 중량평균분자량을 조절함으로써, 상기 열가소성 폴리 우레탄 필름의 인장강도 및 내구성 등의 물성을 용이하게 제어할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 유기용제는 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로헥산, 톨루엔, 크실렌, 에틸렌글리콜모노메틸에테르 (메틸셀로솔브) 및 에틸렌글리콜모노에틸에테르(에틸셀로솔브) 중 적어도 하나를 포함할 수 있다. 상기 폴리 우레탄 수지 중합 시에 사용되는 전술한 종류의 유기용제는 독성이 거의 없는 것으로서, 상기 유기용제를 사용함으로써 사용자의 인체 및 환경에 유해한 영향을 미치는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 유기용제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 30 중량부 이상 80 중량부 이하일 수 있다. 상기 유기용제의 함량을 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지 조성물의 고형분 함량을 제어할 수 있고, 상기 폴리 우레탄 수지 조성물의 코팅성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지 조성물의 고형분 함량은 20 % 이상 70 % 이하일 수 있고, 구체적으로 30 % 이상 60 % 이하, 40 % 이상 55 % 이하일 수 있다. 본 명세서에 있어서, 상기 “고형분”은 용액 전체에서 용제를 제외한 용질 또는 고형물을 의미할 수 있으며, 구체적으로 상기 폴리 우레탄 수지 조성물의 고형분이란 상기 유기용제를 제외한 상기 폴리 우레탄 수지, 제1 이소시아네이트계 경화제 및 촉매 등의 첨가제를 총칭하는 것일 수 있다. 상기 폴리 우레탄 수지 조성물의 고형분 함량이 전술한 범위 내인 경우, 상기 폴리 우레탄 수지 조성물을 기재 상에 두껍게 도포할 수 있으며, 이를 통해 두께가 두꺼운 열가소성 폴리 우레탄 필름을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열가소성 폴리 우레탄 필름의 두께는 10 ㎛ 이상 250 ㎛ 이하일 수 있다. 구체적으로, 열가소성 폴리 우레탄 필름의 두께는 20 ㎛ 이상 200 ㎛ 이하, 또는 30 ㎛ 이상 180 ㎛ 이하일 수 있다. 즉, 상기 열가소성 폴리 우레탄 필름은 기존의 폴리 우레탄 필름 대비, 두꺼운 두께를 가질 수 있다.
본 발명의 다른 실시상태는, 폴리 우레탄 수지, 제1 이소시아네이트계 경화제 및 유기용제를 포함하는 폴리 우레탄 수지 조성물을 제조하는 단계; 상기 폴리 우레탄 수지 조성물을 기재 필름 상에 도포하고, 열처리하여 폴리 우레탄 수지층을 형성하는 단계; 및 상기 폴리 우레탄 수지층을 추가 경화시키는 단계를 포함하는 열가소성 폴리 우레탄 필름의 제조 방법을 제공한다.
본 발명의 일 실시상태에 따른 열가소성 폴리 우레탄 필름의 제조 방법은 파단 시의 인장강도가 높아 내구성이 우수한 열가소성 폴리 우레탄 필름을 제조할 수 있다. 구체적으로, 상기 열가소성 폴리 우레탄 필름의 제조 방법에 의해 제조된 상기 열가소성 폴리 우레탄 필름은, 파단 시의 인장강도가 50 MPa 이상 80 MPa 이하일 수 있다. 파단 시의 인장강도가 전술한 범위를 만족하는 상기 열가소성 폴리 우레탄 필름은 내구성이 우수한 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 제1 이소시아네이트계 경화제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 7.5 중량부 이상 15 중량부 이하, 8 중량부 이상 14 중량부 이하, 또는 10 중량부 이상 13 중량부 이하일 수 있다. 상기 1 이소시아네이트계 경화제의 함량을 전술한 범위로 조절함으로써, 열가소성 폴리 우레탄 필름의 파단 시의 인장강도를 효과적으로 증가시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지 조성물의 고형분 함량은 20 % 이상 70 % 이하, 구체적으로 30 % 이상 60 % 이하, 40 % 이상 55 % 이하일 수 있다. 상기 폴리 우레탄 수지 조성물의 고형분 함량이 전술한 범위 내인 경우, 상기 폴리 우레탄 수지 조성물을 기재 상에 두껍게 도포할 수 있으며, 이를 통해 두께가 두꺼운 열가소성 폴리 우레탄 필름을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열가소성 폴리 우레탄 필름의 제조 방법에 사용되는 폴리 우레탄 수지는 수평균분자량이 1,800 g/mol 이상 2,200 g/mol 이하인 폴리올; 탄소수 4 이상 10 이하의 디올을 포함하는 사슬 연장제; 및 제2 이소시아네이트계 경화제를 포함하는 혼합물을 유기용제에서 공중합 반응시켜 제조할 수 있다.
또한, 상기 열가소성 폴리 우레탄 필름의 제조 방법에서 사용되는 폴리올, 사슬 연장제, 제1 이소시아네이트계 경화제, 제2 이소시아네이트계 경화제, 유기용제 및 촉매 등은 상기 열가소성 폴리 우레탄 필름에서의 폴리올, 사슬 연장제, 제1 이소시아네이트계 경화제, 제2 이소시아네이트계 경화제, 유기용제 및 촉매 등과 동일한 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 사슬 연장제로 사용되는 디올을 구성하는 탄소수는 상기 폴리올을 구성하는 탄소수보다 작아, 상기 혼합물 내에서 상기 디올은 상기 폴리올보다 유동성이 높다. 이에 의해, 상기 혼합물 내에서, 상기 사슬 연장제와 제2 이소시아네이트계 경화제의 반응이 상기 폴리올과 제2 이소시아네이트계 경화제의 반응보다 먼저 일어날 수 있다. 구체적으로, 사슬 연장제로 부탄디올을 사용하는 경우, 부탄디올의 2 개의 하이드록시기 중 1 개의 하이드록시기가 상기 제2 이소시아네이트계 경화제의 이소시아네이트기와 반응하여 결합하고, 상기 부탄디올의 미반응 하이드록시기가 제2 이소시아네이트계 경화제의 새로운 이소시아네이트기와 결합하는 과정이 반복되면서, 길게 연장된 사슬 구조를 가지는 제2 이소시아네이트계 경화제가 형성될 수 있다. 이후, 길게 연장된 사슬 구조를 가지는 제2 이소시아네이트계 경화제와 상기 폴리올이 반응하여, 중량평균분자량이 증가된 폴리 우레탄 수지를 형성할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지를 제조하기 위한 공중합 반응은 50 ℃ 이상 70 ℃ 이하의 온도에서 수행될 수 있다. 상기 공중합 반응 온도를 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지를 안정적으로 중합할 수 있고, 비교적 낮은 온도에서 폴리 우레탄 수지를 중합할 수 있으므로, 상기 열가소성 폴리 우레탄 필름의 제조 비용 및 제조 시간을 감소시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리올의 함량은 상기 혼합물의 중량에 대하여 50 중량% 이상 75 중량% 이하, 55 중량% 이상 72.5 중량% 이하, 65 중량% 이상 71 중량% 이하, 또는 68 중량% 이상 74.5 중량% 이하일 수 있다. 상기 혼합물 내의 상기 폴리올의 함량을 전술한 범위로 조절함으로써, 폴리 우레탄 수지의 중합 반응을 안정적으로 수행할 수 있고, 파단 시의 인장강도가 높은 열가소성 폴리 우레탄 필름을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 사슬 연장제의 함량은 상기 혼합물의 중량에 대하여 5 중량% 이상 15 중량% 이하, 5 중량% 이상 8 중량% 이하, 또는 6 중량% 이상 7.5 중량% 이하일 수 있다. 상기 혼합물 내의 사슬 연장제의 함량을 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지의 중량평균분자량을 향상시킬 수 있고, 상기 열가소성 폴리 우레탄 필름의 내구성이 저하되는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제2 이소시아네이트계 경화제의 함량은 상기 혼합물의 중량에 대하여 20 중량% 이상 37.5 중량% 이하, 20 중량% 이상 27.5 중량% 이하, 또는 21.5 중량% 이상 25 중량% 이하일 수 있다. 상기 제2 이소시아네이트계 경화제의 함량을 전술한 범위로 조절함으로써, 폴리 우레탄 수지의 중합 반응을 안정적으로 수행할 수 있고, 파단 시의 인장강도가 높은 열가소성 폴리 우레탄 필름을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 혼합물은 촉매를 더 포함할 수 있다. 상기 촉매를 통해, 상기 폴리 우레탄 수지의 중합 반응, 상기 폴리 우레탄 수지와 상기 제1 이소시아네이트계 경화제의 반응을 촉진시킬 수 있다. 상기 촉매의 함량은 상기 혼합물 100 중량부에 대하여 0.005 중량부 이상 0.02 중량부 이하, 또는 0.008 중량부 이상 0.015 중량부 이하일 수 있다. 상기 촉매의 함량을 전술한 범위로 조절함으로써, 폴리 우레탄 수지의 중합 반응을 효과적으로 촉진시킬 수 있고, 비교적 낮은 온도에서 폴리 우레탄 수지를 중합시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지의 중합 반응은 유기용제에서 수행될 수 있다. 열가소성 폴리 우레탄 필름을 제조하기 위하여 수용성 용제를 사용하는 경우, 우레탄 입자를 수십 나노미터 내지 수백 나노미터의 직경을 가지는 구슬(bead) 형태로 가공하여 수용성 용제 상에 분산시켜야 된다. 이 때, 우레탄 입자를 수용성 용제 상에 효과적으로 분산시키기 위해서 각종 계면활성제 및 모노머 등의 첨가제를 사용해야 되므로, 열가소성 폴리 우레탄 필름의 제조 공정이 복잡해지며, 제조 시간 및 제조 비용이 증가되는 문제가 있다.
반면, 본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지는 상기 유기용제에 용해(dissolve)되어 있는 상태로, 상기 폴리 우레탄 수지 조성물에 추가적인 분산제 및 계면 활성제 등의 분산 안정계의 첨가제를 부가할 필요가 없다. 따라서, 상기 열가소성 폴리 우레탄 필름의 제조 시간 및 제조 비용을 감소시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 유기용제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 30 중량부 이상 80 중량부 이하일 수 있다. 상기 유기용제의 함량을 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지 조성물을 열처리하는 단계에서 상기 폴리 우레탄 수지 조성물이 급격하게 건조되어 유기용제가 부풀어 오르는 현상을 억제할 수 있고, 열가소성 폴리 우레탄 필름의 두께가 얇아지는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 유기용제에서 상기 혼합물을 반응시켜, 폴리 우레탄 수지 및 유기용제를 포함하는 조성물을 제조할 수 있고, 상기 조성물에 제1 이소시아네이트계 경화제를 첨가하여, 상기 폴리 우레탄 수지 조성물을 제조할 수 있다. 즉, 상기 폴리 우레탄 수지 조성물의 유기용제는 상기 폴리 우레탄 수지의 제조시에 사용되고 잔류하는 유기용제일 수 있다. 또한, 상기 폴리 우레탄 수지 조성물에 추가의 유기용제를 첨가할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지의 중량평균분자량은 40,000 g/mol 이상 70,000 g/mol 이하일 수 있다. 상기 폴리올의 수평균분자량, 상기 사슬 연장제로 사용되는 디올의 탄소수, 상기 혼합물 내의 폴리올의 함량, 사슬 연장제의 함량, 제2 이소시아네이트계 경화제의 함량 등을 조절하여, 상기 폴리 우레탄 수지의 중량평균분자량을 제어할 수 있다. 상기 폴리 우레탄 수지의 중량평균분자량을 조절함으로써, 상기 열가소성 폴리 우레탄 필름의 인장강도 및 내구성 등의 물성을 용이하게 제어할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지 조성물을 기재 필름 상에 도포하는 방법은 특별히 제한되지 않으며, 예를 들면, 바 코팅(bar coating), 블레이드 코팅(blade coating), 슬롯 다이 코팅(slot die coating), 스프레이 코팅(spray coating), 스핀 코팅(spin coating) 및 그라비아 코팅(Gravure coating) 중 어느 하나의 방법을 이용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지 조성물을 상기 기재 필름 상에 20 ㎛ 이상 500 ㎛ 이하의 두께로 도포할 수 있다. 상기 기재 필름 상에 도포된 상기 폴리 우레탄 수지 조성물을 열처리하여, 두께가 10 ㎛ 이상 250 ㎛ 이하인 폴리 우레탄 수지층을 형성할 수 있다. 상기 폴리 우레탄 수지 조성물을 열처리하는 과정에서, 상기 폴리 우레탄 수지 조성물에 포함된 유기용제가 휘발됨에 따라, 제조되는 폴리 우레탄 수지층의 두께가 줄어들 수 있다. 따라서, 유기용제가 휘발됨에 따라 감소되는 폴리 우레탄 수지층의 두께를 고려하여, 상기 기재 필름 상에 도포되는 상기 폴리 우레탄 수지 조성물의 두께를 조절할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 기재 필름 상에 도포된 상기 폴리 우레탄 수지 조성물을 100 ℃ 이상 150 ℃ 이하의 온도에서 열처리하여, 열가소성 폴리 우레탄 수지층을 형성할 수 있다. 전술한 온도 범위에서 상기 폴리 우레탄 수지 조성물을 열처리함으로써, 상기 폴리 우레탄 수지 조성물에 포함된 유기용제를 효과적으로 휘발시켜 반경화된 폴리 우레탄 수지층을 형성할 수 있다. 또한, 상기 폴리 우레탄 수지 조성물을 전술한 온도 범위에서 열처리함으로써, 폴리 우레탄 수지층에 황변 현상이 발생되는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지층을 40 ℃ 이상 80 ℃ 이하의 온도에서 12 시간 이상 48 시간 이하의 시간 동안 추가 경화할 수 있다. 상기 폴리 우레탄 수지 조성물을 열처리하여 형성된 폴리 우레탄 수지층은 반경화 상태로, 이를 추가 경화시켜, 최종적으로 경화된 열가소성 폴리 우레탄 필름을 제조할 수 있다.
상기 폴리 우레탄 수지층을 추가 경화시키는 과정에서, 상기 폴리 우레탄 수지층에 포함된 폴리 우레탄 수지와 상기 제1 이소시아네이트계 경화제가 반응하거나, 잔존하는 미량의 폴리올 및 사슬 연장제, 제1 이소시아네이트계 경화제 및 제2 이소시아네이트계 경화제가 반응하여, 중량평균분자량이 증가된 폴리 우레탄 수지를 포함하는 열가소성 폴리 우레탄 필름을 제공할 수 있다.
본 발명의 일 실시상태에 따르면, 전술한 온도 및 시간 조건에서 상기 폴리 우레탄 수지층을 추가 경화시킴으로써, 상기 폴리 우레탄 수지와 제1 이소시아네이트계 경화제를 효과적으로 반응시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열가소성 폴리 우레탄 필름의 두께는 10 ㎛ 이상 250 ㎛ 이하일 수 있다. 구체적으로, 열가소성 폴리 우레탄 필름의 두께는 20 ㎛ 이상 200 ㎛ 이하, 또는 30 ㎛ 이상 180 ㎛ 이하일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지층을 추가 경화한 다음 기재 필름을 제거하는 단계를 더 포함할 수 있다. 즉, 상기 열가소성 폴리 우레탄 필름의 제조 방법을 통해, 기재 필름 상에 열가소성 폴리 우레탄 필름이 적층된 적층체를 제조할 수 있으며, 상기 기재 필름을 제거하여 파단 시의 인장강도가 높은 열가소성 폴리 우레탄 필름을 제공할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
폴리 우레탄 수지 조성물의 제조
폴리올로서 수평균분자량이 2,050 g/mol인 폴리카보네이트디올(polycarbonatediol; PCDL, Asahi kasei 社), 사슬 연장제로서 1,4-부탄디올(1,4-butanediol; 1,4BD, 바스프 社), 제1 이소시아네이트계 경화제로서 2개의 이소시아네이트 관능기를 포함하는 H12MDI(Evonik 社), 제2 이소시아네이트계 경화제로서 디이소시안산 이소포론(isophorone diisocyanate; IPDI, Evonik 社), 촉매로서 디부틸주석디라우릴레이트(dibutyl tin dilaurate; DBTDL), 유기용제로서 메틸에틸케톤을 준비하였다. 이후, 폴리올의 함량이 약 70.03 wt%, 사슬 연장제의 함량이 약 6.64 wt%, 제2 이소시아네이트계 경화제의 함량이 약 23.33 wt%인 혼합물을 제조하고, 상기 혼합물 100 중량부와 유기용제 약 50 중량부를 혼합하여 혼합 용액을 제조하였다.
제조된 혼합 용액을 반응기에 장입시키고, 55 ℃까지 승온시키고 온도를 유지하면서, 혼합물 100 중량부에 대하여 촉매를 0.005 중량부 첨가하였다. 이후, 57℃에서 25 시간 동안 반응시켜, 중량평균분자량이 약 52,000 g/mol인 폴리 우레탄 수지를 포함하는 조성물을 제조하였다. 이후, 제조된 폴리 우레탄 수지 100 중량부에 대하여 약 10 중량부의 제1 이소시아네이트계 경화제를 조성물에 첨가하여, 폴리 우레탄 수지 조성물을 제조하였다. 제조된 폴리 우레탄 수지 조성물의 고형분 함량은 약 46 %이었다.
열가소성 폴리 우레탄 필름의 제조
제조된 폴리 우레탄 수지 조성물을 기재 필름인 폴리에틸렌 테레프타레이트(polyethylene terephthalate; PET) 필름 상에 약 200 ㎛로 도포하였다. 이후, 폴리 우레탄 수지 조성물을 100 ℃로 열처리하여 폴리 우레탄 수지층을 형성하고, 폴리 우레탄 수지층을 40 ℃에서 19 시간 동안 추가 경화시켜, 95 ㎛의 두께를 가지는 열가소성 폴리 우레탄 필름을 최종적으로 제조하였다.
실시예 2 내지 실시예 4
폴리 우레탄 수지 조성물을 제조하기 위해서 폴리올, 사슬 연장제, 제1 이소시아네이트계 경화제, 제2 이소시아네이트계 경화제 및 촉매를 하기 표 1과 같이 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 폴리 우레탄 필름을 제조하였다. 하기 표 1에서 TKA-100은 AsahiKASEI 社의 3관능 이소시아네이트계 경화제이다.
비교예 1 내지 비교예 7
폴리 우레탄 수지 조성물을 제조하기 위해서 폴리올, 사슬 연장제, 제1 이소시아네이트계 경화제, 제2 이소시아네이트계 경화제 및 촉매를 하기 표 1과 같이 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 폴리 우레탄 필름을 제조하였다. 하기 표 1에서 MHG-80B는 AsahiKASEI 社의 6관능 이소시아네이트계 경화제이다.
Figure PCTKR2018003600-appb-T000001
열가소성 폴리 우레탄 필름의 인장강도 측정
열가소성 폴리 우레탄 필름의 인장강도를 측정하기 위하여, 실시예 1 내지 실시예 4 및 비교예 1 내지 비교예 7에서 제조된 열가소성 폴리 우레탄 필름을 ASTM D-638 규격에 따라 가공하여 시편을 제작하였다. 이후, Ultimate Tensile Machine(UTM) 기계(Model 3343, INSTRON 社)을 사용하여, 상기 시편의 일단을 고정시키고 타단을 300 mm/min의 속도로 잡아당기며, 열가소성 폴리 우레탄 필름이 연신되는 정도에 따른 인장강도를 측정하였다.
실시예 1 내지 실시예 4 및 비교예 1 내지 비교에 7에서 제조된 열가소성 폴리 우레탄 필름의 연신율에 따른 인장강도를 하기 표 2에 나타내었다.
인장강도(MPa) 파단 시
100%연신율 300%연신율 500%연신율 인장강도(MPa) 연신율(%)
실시예 1 3.58 6.59 22.36 71.08 729
실시예 2 3.70 5.83 16.25 62.19 710
실시예 3 5.40 10.04 28.16 66.97 645
실시예 4 3.94 7.45 23.70 56.76 626
비교예 1 3.50 7.84 17.98 39.96 667
비교예 2 6.14 12.85 29.76 31.51 513
비교예 3 2.32 1.70 6.37 27.32 681
비교예 4 2.60 2.82 9.54 41.18 707
비교예 5 3.03 3.63 9.82 47.53 736
비교예 6 2.08 2.45 4.70 24.64 761
비교예 7 2.06 1.94 5.13 33.83 736
상기 표 2를 참고하면, 비교예 1 내지 비교예 7에서 제조된 열가소성 폴리 우레탄 필름은 파단 시의 인장강도가 50 MPa 미만인 것을 확인하였다. 반면, 본 발명의 실시예 1 내지 실시예 4에서 제조된 열가소성 폴리 우레탄 필름은, 비교예 1 내지 비교예 7에서 제조된 열가소성 폴리 우레탄 필름과 파단 시의 연신율은 비슷하나, 파단 시의 인장강도가 50 MPa 이상 80 MPa 이하를 만족하는 것을 확인하였다. 즉, 본 발명의 일 실시상태에 따른 열가소성 폴리 우레탄 필름은 내구성 및 연신 특성이 우수한 것을 알 수 있다.
또한, 본 발명의 실시예 1 내지 실시예 4에서 제조된 열가소성 폴리 우레탄 필름은 100 %의 연신율에서 인장강도가 7.5 MPa 이하를 만족하고 있어, 가공이 용이한 것을 확인하였다.
따라서, 본 발명의 일 실시상태에 따른 열가소성 폴리 우레탄 필름은 파단 시의 인장강도가 높아, 내구성이 우수한 것을 알 수 있다. 나아가, 본 발명의 일 실시상태에 따른 열가소성 폴리 우레탄 필름은 가공이 용이한 것을 알 수 있다.

Claims (14)

  1. 폴리 우레탄 수지, 제1 이소시아네이트계 경화제 및 유기용제를 포함하는 폴리 우레탄 수지 조성물의 경화물을 포함하고,
    파단 시의 인장강도가 50 MPa 이상 80 MPa 이하인 열가소성 폴리 우레탄 필름.
  2. 청구항 1에 있어서,
    상기 제1 이소시아네이트계 경화제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 7.5 중량부 이상 15 중량부 이하인 열가소성 폴리 우레탄 필름.
  3. 청구항 1에 있어서,
    상기 제1 이소시아네이트계 경화제는 2 이상 6 이하의 이소시아네이트 관능기를 포함하는 열가소성 폴리 우레탄 필름.
  4. 청구항 1에 있어서,
    상기 폴리 우레탄 수지는, 수평균분자량이 1,800 g/mol 이상 2,200 g/mol 이하인 폴리올; 탄소수 4 이상 10 이하의 디올을 포함하는 사슬 연장제; 및 제2 이소시아네이트계 경화제를 포함하는 혼합물의 공중합체인 열가소성 폴리 우레탄 필름.
  5. 청구항 4에 있어서,
    상기 폴리올의 함량은 상기 혼합물의 중량에 대하여 50 중량% 이상 75 중량% 이하인 열가소성 폴리 우레탄 필름.
  6. 청구항 4에 있어서,
    상기 사슬 연장제의 함량은 상기 혼합물의 중량에 대하여 5 중량% 이상 15 중량% 이하인 열가소성 폴리 우레탄 필름.
  7. 청구항 4에 있어서,
    상기 제2 이소시아네이트계 경화제의 함량은 상기 혼합물의 중량에 대하여 20 중량% 이상 37.5 중량% 이하인 열가소성 폴리 우레탄 필름.
  8. 청구항 1에 있어서,
    상기 폴리 우레탄 수지 조성물의 고형분 함량은 20 % 이상 70 % 이하인 열가소성 폴리 우레탄 필름.
  9. 청구항 1에 있어서,
    두께가 10 ㎛ 이상 250 ㎛ 이하인 열가소성 폴리 우레탄 필름.
  10. 청구항 1에 따른 열가소성 폴리 우레탄 필름의 제조 방법에 있어서,
    폴리 우레탄 수지, 제1 이소시아네이트계 경화제 및 유기용제를 포함하는 폴리 우레탄 수지 조성물을 제조하는 단계;
    상기 폴리 우레탄 수지 조성물을 기재 필름 상에 도포하고, 열처리하여 폴리 우레탄 수지층을 형성하는 단계; 및
    상기 폴리 우레탄 수지층을 추가 경화시키는 단계를 포함하는 열가소성 폴리 우레탄 필름의 제조 방법.
  11. 청구항 10에 있어서,
    상기 열처리는 100 ℃ 이상 150 ℃ 이하의 온도에서 수행되는 열가소성 폴리 우레탄 필름의 제조 방법.
  12. 청구항 10에 있어서,
    상기 추가 경화는 40 ℃ 이상 80 ℃ 이하의 온도에서 12 시간 이상 48 시간 이하의 시간 동안 수행되는 열가소성 폴리 우레탄 필름의 제조 방법.
  13. 청구항 10에 있어서,
    상기 폴리 우레탄 수지는 수평균분자량이 1,800 g/mol 이상 2,200 g/mol 이하인 폴리올; 탄소수 4 이상 10 이하의 디올을 포함하는 사슬 연장제; 및 제2 이소시아네이트계 경화제를 포함하는 혼합물을 유기용제에서 공중합 반응시켜 제조되는 열가소성 폴리 우레탄 필름의 제조 방법.
  14. 청구항 13에 있어서,
    상기 공중합 반응은 50 ℃ 이상 70 ℃ 이하의 온도에서 수행되는 열가소성 폴리 우레탄 필름의 제조 방법.
PCT/KR2018/003600 2017-03-27 2018-03-27 열가소성 폴리 우레탄 필름 및 이의 제조 방법 WO2018182289A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18778025.9A EP3584274A4 (en) 2017-03-27 2018-03-27 THERMOPLASTIC POLYURETHANE FILM AND PRODUCTION METHOD THEREFOR
JP2019540437A JP6973866B2 (ja) 2017-03-27 2018-03-27 熱可塑性ポリウレタンフィルムおよびその製造方法
CN201880009125.7A CN110234688B (zh) 2017-03-27 2018-03-27 热塑性聚氨酯膜及其制备方法
US16/494,558 US11299624B2 (en) 2017-03-27 2018-03-27 Thermoplastic polyurethane film and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0038384 2017-03-27
KR20170038384 2017-03-27

Publications (2)

Publication Number Publication Date
WO2018182289A2 true WO2018182289A2 (ko) 2018-10-04
WO2018182289A3 WO2018182289A3 (ko) 2018-11-22

Family

ID=63676309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003600 WO2018182289A2 (ko) 2017-03-27 2018-03-27 열가소성 폴리 우레탄 필름 및 이의 제조 방법

Country Status (7)

Country Link
US (1) US11299624B2 (ko)
EP (1) EP3584274A4 (ko)
JP (1) JP6973866B2 (ko)
KR (2) KR20180109743A (ko)
CN (1) CN110234688B (ko)
TW (1) TWI673303B (ko)
WO (1) WO2018182289A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111154413A (zh) * 2018-11-08 2020-05-15 中山新亚洲胶粘制品有限公司 一种pu膜及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11096288B2 (en) * 2019-12-20 2021-08-17 Xerox Corporation Flexible conductive printed circuits with printed overcoats

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038384A (ko) 2015-09-30 2017-04-07 삼성전자주식회사 반도체 장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668534B2 (ja) * 1987-10-06 1997-10-27 日本ポリウレタン工業 株式会社 押出成形、射出成形用熱可塑性ポリウレタン樹脂組成物
DE69101815T2 (de) 1990-07-30 1994-08-11 Miles Inc Wässrige Zweikomponent-Polyurethandispersionen.
JPH07228651A (ja) 1994-02-18 1995-08-29 Asahi Chem Ind Co Ltd ポリウレタンエマルジョンの製造方法
JPH11293191A (ja) * 1998-04-10 1999-10-26 Nippon Polyurethane Ind Co Ltd 水性印刷インキ用ポリウレタン系エマルジョン及びそれを用いた水性印刷インキ
JP4200661B2 (ja) 2001-02-08 2008-12-24 宇部興産株式会社 熱可塑性ポリウレタン
JP4239214B2 (ja) 2003-01-31 2009-03-18 日本ポリウレタン工業株式会社 ラミネートフィルムの製造方法
KR100748254B1 (ko) 2006-06-19 2007-08-10 주식회사 동성에프앤티 투습·방수 기능을 갖는 심 실링 테이프 및 그 제조 방법
WO2008004810A1 (en) 2006-07-04 2008-01-10 Kolon Glotech Inc. A high-visible cloth, a high-visible fluorescent/axis-lighting polyurethane film, and a method for preparation thereof
KR100901199B1 (ko) 2007-06-26 2009-06-08 코오롱패션머티리얼 (주) 휘도와 강도가 개선된 시인성 형광/축광 폴리우레탄 필름의제조 방법
KR20100031158A (ko) 2008-09-12 2010-03-22 주식회사 코오롱 열가소성 폴리우레탄 필름
KR20110008884A (ko) 2009-07-21 2011-01-27 코오롱인더스트리 주식회사 열가소성 폴리우레탄 필름
JPWO2011010588A1 (ja) 2009-07-22 2012-12-27 株式会社クラレ キーパッド用ポリウレタンフィルム
KR20140139593A (ko) 2012-03-29 2014-12-05 우베 고산 가부시키가이샤 수성 폴리우레탄 수지 분산체
CN104379643A (zh) * 2012-06-27 2015-02-25 拜耳材料科技股份有限公司 介电聚氨酯薄膜
JP5715616B2 (ja) 2012-09-28 2015-05-07 富士フイルム株式会社 ポリウレタン樹脂およびその製造方法、ならびにその利用
JP6347397B2 (ja) * 2012-12-26 2018-06-27 三菱ケミカル株式会社 ポリカーボネートジオールおよびそれを用いたポリウレタン
WO2015056763A1 (ja) 2013-10-17 2015-04-23 東レ・オペロンテックス株式会社 ポリウレタン弾性繊維およびその製造方法
KR20160093302A (ko) 2015-01-29 2016-08-08 백성현 실내외 장식용 폴리우레탄 점착시트
CN105949745A (zh) 2016-05-24 2016-09-21 无锡市长安曙光手套厂 一种透明tpu薄膜及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038384A (ko) 2015-09-30 2017-04-07 삼성전자주식회사 반도체 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111154413A (zh) * 2018-11-08 2020-05-15 中山新亚洲胶粘制品有限公司 一种pu膜及其制造方法

Also Published As

Publication number Publication date
EP3584274A4 (en) 2020-03-25
KR102338825B1 (ko) 2021-12-14
JP6973866B2 (ja) 2021-12-01
CN110234688A (zh) 2019-09-13
KR20180109743A (ko) 2018-10-08
US20200010677A1 (en) 2020-01-09
TW201840662A (zh) 2018-11-16
EP3584274A2 (en) 2019-12-25
JP2020506263A (ja) 2020-02-27
US11299624B2 (en) 2022-04-12
WO2018182289A3 (ko) 2018-11-22
CN110234688B (zh) 2022-04-12
TWI673303B (zh) 2019-10-01
KR20200058360A (ko) 2020-05-27

Similar Documents

Publication Publication Date Title
CN110156952B (zh) 一种可双重固化聚氨酯增韧树脂及其制备方法与应用
WO2019013551A1 (ko) 자가복원 폴리우레탄계 중합체 및 이의 제조방법
CN113637139B (zh) 一种有机硅改性tpu的组合物及其制备方法
EP2010588A1 (en) Organosilicon-polyurea base polymer, elastomer prepared therefrom, preparation thereof and use of the same
WO2018182289A2 (ko) 열가소성 폴리 우레탄 필름 및 이의 제조 방법
CN110563925A (zh) 一种酸酐改性环氧丙烯酸树脂、碱显像高耐热聚氨酯树脂及其阻焊油墨
TW200804500A (en) Thermosetting resin composition containing low-chlorine multifunctional aliphatic glycidyl ether compound, cured product of such composition and use thereof
WO2018174498A1 (ko) 열가소성 폴리 우레탄 필름의 제조 방법 및 그에 의해 제조된 열가소성 폴리 우레탄 필름
WO2020054985A1 (ko) 폴리 우레탄 필름의 제조 방법 및 그에 의해 제조된 폴리 우레탄 필름
WO2018169334A1 (ko) 열가소성 폴리 우레탄 필름 및 이의 제조 방법
WO2021194072A1 (ko) 표면 보호 필름
KR101893728B1 (ko) 우레탄 기반의 형상기억고분자 및 이를 포함하는 조성물
Zhang et al. Facile preparation of homogenous waterborne poly (urethane/acrylate) composites and the correlation between microstructure and improved properties
JPH01190712A (ja) 光ファイバー被覆用樹脂組成物
JPH07165856A (ja) ポリウレタン樹脂の製造方法およびポリウレタン樹脂組成物
EP0604825B1 (en) Low-temperature liquid urethane prepolymer
KR20210013841A (ko) 페인트보호필름용 우레탄계 필름 및 이를 포함하는 페인트보호필름
CS229006B1 (cs) Způsob zostřování polydionů, obsahujících hydroxylová skupiny, pomocí polyisokyanátů

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778025

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019540437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018778025

Country of ref document: EP

Effective date: 20190918