WO2020054985A1 - 폴리 우레탄 필름의 제조 방법 및 그에 의해 제조된 폴리 우레탄 필름 - Google Patents
폴리 우레탄 필름의 제조 방법 및 그에 의해 제조된 폴리 우레탄 필름 Download PDFInfo
- Publication number
- WO2020054985A1 WO2020054985A1 PCT/KR2019/010349 KR2019010349W WO2020054985A1 WO 2020054985 A1 WO2020054985 A1 WO 2020054985A1 KR 2019010349 W KR2019010349 W KR 2019010349W WO 2020054985 A1 WO2020054985 A1 WO 2020054985A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane
- polyurethane resin
- weight
- film
- less
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
Definitions
- the present invention relates to a method for producing a polyurethane film and a polyurethane film produced thereby.
- Polyurethane (poly urethane) film has excellent mechanical properties such as strength, elongation properties, toughness and abrasion resistance, and is mainly used in the automotive field and the like.
- an extruded polyurethane pellet is melted in a solvent to prepare a polyurethane solution, and a polyurethane film is prepared by applying the polyurethane solution on a substrate.
- the polyurethane pellet having a high molecular weight is poorly soluble in a solvent, so the solid content of the prepared polyurethane solution is low at about 15% or less.
- the polyurethane solution having a low solid content cannot be applied over a certain thickness on the substrate, making it difficult to produce a thick polyurethane film.
- the polyurethane pellets have a problem that it is difficult to proceed with the further polymerization reaction, it is not easy to control the physical properties of the polyurethane film prepared from the polyurethane solution, and a highly toxic solvent to dissolve the high molecular weight polyurethane pellets There is a problem that should be used.
- polyurethane films having excellent durability and lifespan characteristics are required in the automotive field.
- PPF paint protection film
- a paint protection film is a polyurethane film as a main material, and is attached to the exterior of a vehicle through an adhesive provided on the lower surface of the polyurethane film.
- a functional coating layer such as an antifouling coating layer is provided.
- long-term performance implementation of the antifouling coating layer is one of the important factors, so that the quality and grade of the PPF product are determined according to the performance of the antifouling coating layer.
- the functional coating layer such as the antifouling coating layer
- the functional coating layer itself needs to be robust, but the interfacial adhesion between the polyurethane film, which is the main material of the PPF and the functional coating layer, must be excellent, and the functional coating layer is peeled off during PPF The phenomenon can be suppressed.
- the present invention is to provide a polyurethane film having a thick thickness, excellent durability, and excellent adhesion between a polyurethane base layer and a functional coating layer, and long-term reliability, and a manufacturing method thereof.
- An exemplary embodiment of the present invention comprises the steps of preparing a polyurethane resin composition comprising a polyurethane resin, a first isocyanate curing agent, and an organic solvent; Coating the polyurethane resin composition on a release film and heat-treating it to produce a laminate comprising a polyurethane resin layer; Preparing two polyurethane laminates and laminating the laminates so that the polyurethane resin layers of each of the laminates face each other, thereby forming a polyurethane base layer comprising two polyurethane resin layers provided in direct contact; Removing the release film provided on one surface of the polyurethane base layer, applying a functional coating composition on one surface of the polyurethane base layer and heat-treating to form a functional coating layer; And aging the polyurethane base layer on which the functional coating layer is provided on one surface.
- an exemplary embodiment of the present invention provides a polyurethane film produced by the above manufacturing method.
- the method of manufacturing a polyurethane film according to an exemplary embodiment of the present invention has a thick thickness and can easily manufacture a polyurethane film having excellent durability.
- the polyurethane film according to an exemplary embodiment of the present invention may have a thick thickness and excellent durability.
- FIG. 1 is a schematic view showing a method of manufacturing a polyurethane film according to an exemplary embodiment of the present invention.
- FIG. 2 is a view schematically showing an experiment for measuring the interface bonding force between the polyurethane resin layer according to an embodiment of the present invention.
- Figure 3 is a photograph of the polyurethane film after performing the bonding performance measurement experiment of the antifouling coating layer and the polyurethane base layer in Example 1 and Comparative Example 6 of the present invention.
- the unit “wt%” may mean a weight ratio of a component included in a member to a total weight of the member.
- the unit “parts by weight” may mean a ratio of weight between each component.
- polymerized unit may mean a form in which a monomer is reacted in a polymer, and specifically, the monomer undergoes a polymerization reaction to form a skeleton, for example, a main chain or a side chain of the polymer. It can mean form.
- the “weight average molecular weight” and “number average molecular weight” of a compound can be calculated using the molecular weight and molecular weight distribution of the compound.
- THF tetrahydrofuran
- a compound concentration of 1 wt% a standard sample (polystyrene, polystryere) and a sample sample are filtered (pore size). Is filtered through 0.45 mm), and injected into a GPC injector to compare the elution time of the sample sample with the calibration curve of the standard sample to obtain the molecular weight and molecular weight distribution of the compound.
- Infinity II 1260 (Agilient Co.) can be used as the measuring instrument, the flow rate can be set to 1.00 mL / min, and the column temperature can be set to 40.0 ° C.
- An exemplary embodiment of the present invention comprises the steps of preparing a polyurethane resin composition comprising a polyurethane resin, a first isocyanate curing agent, and an organic solvent; Coating the polyurethane resin composition on a release film and heat-treating it to produce a laminate comprising a polyurethane resin layer; Preparing two polyurethane laminates and laminating the laminates so that the polyurethane resin layers of each of the laminates face each other, thereby forming a polyurethane base layer comprising two polyurethane resin layers provided in direct contact; Removing the release film provided on one surface of the polyurethane base layer, applying a functional coating composition on one surface of the polyurethane base layer and heat-treating to form a functional coating layer; And aging the polyurethane base layer on which the functional coating layer is provided on one surface.
- the method of manufacturing a polyurethane film according to an exemplary embodiment of the present invention has a thick thickness and can easily manufacture a polyurethane film having excellent durability. Specifically, by forming a polyurethane base layer in which two polyurethane resin layers directly contact each other, a polyurethane film having a thicker thickness and improved durability can be manufactured. In addition, by forming a functional coating layer on one surface of the polyurethane base layer, it is possible to manufacture a polyurethane film with added functionality. More specifically, by forming an antifouling coating layer on one surface of the polyurethane base layer with the functional coating layer, durability and antifouling properties of the polyurethane film may be improved.
- the content of the first isocyanate-based curing agent may be more than 5 parts by weight and less than 7.5 parts by weight, or 5.5 parts by weight or more and 7.25 parts by weight or less based on 100 parts by weight of the polyurethane resin.
- the first isocyanate-based curing agent may include 2 to 6 isocyanate functional groups.
- the first isocyanate curing agent is H12MDI, a bifunctional isocyanate curing agent from Evonik, MHG-80B, a six-functional isocyanate curing agent from AsahiKASEI, MFA-100, a six-functional isocyanate curing agent from AsahiKASEI, and AsahiKASEI. It may include at least one of the trifunctional isocyanate-based curing agent of TKA-100.
- the polyurethane resin includes a polyol having a number average molecular weight of 1,800 g / mol or more and 2,200 g / mol or less; A chain extender comprising a diol having 4 to 10 carbon atoms; And it may be prepared by copolymerizing a mixture containing a second isocyanate-based curing agent in an organic solvent.
- the polyurethane resin may be a block copolymer including a soft segment and a hard segment.
- the soft segment of the polyurethane resin may include polymerization units derived from the polyol and the second isocyanate-based curing agent, and the hard segment of the polyurethane resin is derived from the chain extender and the second isocyanate-based curing agent. Polymerized units.
- the number average molecular weight of the polyol may be 1,800 g / mol or more, 2,200 g / mol or less, 1,950 g / mol or more, 2,050 g / mol or less, or 1,900 g / mol or more, 2,100 g / mol or less have.
- the number average molecular weight of the polyol is within the aforementioned range, it is possible to suppress the elongation of the polyurethane film from being reduced.
- the polyol may be a diol containing two hydroxyl groups.
- the polyol may include at least one of polycarbonate diol, polycaprolactone diol, polyester diol, and polyether diol.
- the content of the polyol may be 45% by weight or more and 55% by weight or less with respect to the weight of the mixture.
- the content of the polyol may be 48 wt% or more and 54 wt% or less, or 50 wt% or more and 53 wt% or less, based on the weight of the mixture.
- the chain extender may include diols having 4 to 10 carbon atoms, or diols having 4 to 6 carbon atoms.
- a chain extender comprising a diol having a carbon number in the above-described range can effectively extend the chain of the second isocyanate-based curing agent.
- the chain extender is 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 1,10-decanediol, 1,1-cyclohexanedimethanol and 1, 4-cyclohexanedimethanol.
- the content of the chain extender may be 10% by weight or more and 15% by weight or less based on the weight of the mixture, specifically, 10.5% by weight or more and 14% by weight or less, or 12% by weight or more It may be 12.5% by weight or less.
- the content of the chain extender in the mixture to the above-described range, it is possible to effectively improve the weight average molecular weight of the polyurethane resin.
- the chain extender can effectively form a hard segment of the polyurethane resin by reacting with the second isocyanate-based curing agent, and improve the mechanical properties of the polyurethane film produced. Can be improved.
- the second isocyanate-based curing agent may include 2 to 6 isocyanate functional groups.
- the second isocyanate-based curing agent may include two isocyanate functional groups.
- the second isocyanate-based curing agent is isophorone diisocyanate (IPDI), methylenediphenyl-4,4'-diisocyanate, 4,4'-methylenebiscyclohexyl diisocyanate, xylene diisocyanate ( XDI; xylene diisocyanate), naphthalene-1,5-diisocyanate, and cyclohexane diisocyanate.
- IPDI is isophorone diisocyanate
- XDI xylene diisocyanate
- naphthalene-1,5-diisocyanate and cyclohexane diisocyanate.
- the content of the second isocyanate-based curing agent may be 32.5 wt% or more and 40 wt% or less based on the weight of the mixture.
- the content of the second isocyanate-based curing agent may be 34 wt% or more and 38 wt% or less, or 35 wt% or more and 36.5 wt% or less, based on the weight of the mixture.
- the mixture may further include a catalyst, and the content of the catalyst may be 0.005 parts by weight or more and 0.02 parts by weight or less, or 0.008 parts by weight or more and 0.015 parts by weight or less with respect to 100 parts by weight of the mixture. You can. By adjusting the content of the catalyst to the above-described range, it is possible to effectively promote the polymerization reaction of the polyurethane resin, and to polymerize the polyurethane resin at a relatively low temperature.
- a catalyst used in the art can be used without limitation, and for example, dibutyl tin dilaurate (DBTDL) can be used.
- DBTDL dibutyl tin dilaurate
- the number of carbons constituting the diol used as the chain extender is smaller than the number of carbons constituting the polyol, and the diol in the mixture has higher fluidity than the polyol.
- the reaction of the chain extender and the second isocyanate-based curing agent may occur prior to the reaction of the polyol and the second isocyanate-based curing agent.
- butanediol when using butanediol as the chain extender, one of the two hydroxy groups of butanediol reacts with the isocyanate group of the second isocyanate-based curing agent, and the unreacted hydroxyl group of the butanediol is the second isocyanate.
- a second isocyanate-based curing agent having a long elongated chain structure may be formed. Thereafter, a second isocyanate-based curing agent having a long chain structure and the polyol may react to form a polyurethane resin having an increased weight average molecular weight.
- the weight average molecular weight of the polyurethane resin may be 40,000 g / mol or more and 70,000 g / mol or less.
- the weight average molecular weight of the polyurethane resin can be controlled.
- physical properties such as tensile strength and durability of the polyurethane film can be easily controlled.
- the copolymerization reaction may be performed at a temperature of 50 ° C or higher and 70 ° C or lower.
- the copolymerization reaction temperature within the above-described range, the polyurethane resin can be polymerized stably.
- the manufacturing cost and manufacturing time of the polyurethane film can be reduced.
- the polymerization reaction of the polyurethane resin may be performed in an organic solvent.
- a water-soluble solvent is used to prepare a polyurethane film
- the urethane particles must be processed into beads having a diameter of tens of nanometers to hundreds of nanometers and dispersed on the water-soluble solvent.
- additives such as various surfactants and monomers in order to effectively disperse the urethane particles on a water-soluble solvent, the manufacturing process of the polyurethane film is complicated, and there is a problem that manufacturing time and manufacturing cost are increased.
- the polyurethane resin is dissolved in the organic solvent, and it is necessary to add an additive of a dispersion stability system such as an additional dispersant and surfactant to the urethane composition. none. Therefore, it is possible to reduce the manufacturing time and manufacturing cost of the polyurethane film.
- a dispersion stability system such as an additional dispersant and surfactant
- the organic solvent is acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexane, toluene, xylene, ethylene glycol monomethyl ether (methyl cellosolve) and ethylene glycol monoethyl ether (ethyl Cellosolve).
- the above-described organic solvent used in the polymerization of the polyurethane resin is almost non-toxic, and by using the organic solvent, it is possible to prevent the harmful effects on the human body and the environment of the user.
- a composition comprising a polyurethane resin and an organic solvent
- a first isocyanate-based curing agent to reacting the mixture in an organic solvent
- the organic solvent of the polyurethane resin composition may be an organic solvent that is used when the polyurethane resin is prepared and remains.
- an additional organic solvent may be added to the polyurethane resin composition.
- the content of the organic solvent may be 30 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the polyurethane resin.
- the solid content of the polyurethane resin composition may be 20% or more and 70% or less, specifically 30% or more and 60% or less, 40% or more and 55% or less.
- the "solid content” may mean a solute or a solid material excluding a solvent in the entire solution, specifically, the solid content of the polyurethane resin composition is the polyurethane resin excluding the organic solvent, the first isocyanate-based curing agent And additives such as catalysts.
- the polyurethane resin composition may be thickly coated on the substrate, thereby making a polyurethane film having a thick thickness.
- FIG. 1 is a schematic view showing a method of manufacturing a polyurethane film according to an exemplary embodiment of the present invention.
- a laminate (100, 100 ') comprising a polyurethane resin layer (20, 20') and a release film (10, 10 ') by heat-treating the polyurethane resin composition applied on the release film Two can be produced.
- the two polyurethane resin layers 20 and 20 'included in the laminates 100 and 100' are positioned to face each other, and the two polyurethane resin layers are laminated by laminating the two laminates 100 and 100 '.
- bonding (20, 20 ') it is possible to form a polyurethane base layer 200 including a polyurethane resin layer provided in direct contact.
- the release film 10 provided on one surface of the polyurethane base layer 200 is removed, and the release film 10 is removed to apply the functional coating composition on one surface of the exposed polyurethane base layer 200 And, it may be heat-treated to form a functional coating layer 300.
- the polyurethane base layer 200 on which the functional coating layer 300 is provided on one side is aged, and even the release film 10 'provided on the other side of the polyurethane base layer 200 is removed to remove the polyurethane.
- the polyurethane film 1000 including the base layer 200 and the functional coating layer 300 may be manufactured.
- the method of applying the polyurethane resin composition on the release film is not particularly limited, for example, spray coating, gravure coating, microgravure coating, roll coating, flexo coating, screen Any of coating, spin coating, flow coating, knife coating, nozzle coating, rotary screen coating, reverse loss coating, comma coating, lip coating and slot die coating can be used.
- a laminate may be prepared by heat-treating the polyurethane resin composition applied on the release film to form a polyurethane resin layer on the release film.
- a polyurethane resin layer having a thickness of 10 ⁇ m or more and 250 ⁇ m or less can be formed on the release film by applying the polyurethane resin composition on the release film to a thickness of 20 ⁇ m or more and 500 ⁇ m or less and heat-treating it.
- the thickness of the formed polyurethane resin layer may be reduced. Accordingly, in consideration of the thickness of the polyurethane resin layer, which decreases as the organic solvent volatilizes, the thickness of the polyurethane resin composition applied on the release film can be adjusted.
- the polyurethane resin composition may be heat treated at a temperature of 100 ° C or higher and 150 ° C or lower.
- the heat treatment temperature conditions within the above-described range, the organic solvent contained in the polyurethane resin composition can be effectively volatilized to form the polyurethane resin layer.
- the polyurethane resin composition can be rapidly dried to suppress the swelling phenomenon of the organic solvent, and yellowing occurs in the polyurethane resin layer produced. Can be suppressed.
- the laminate may be laminated at a temperature of 80 ° C or higher and 140 ° C or lower.
- two laminates prepared by the above method are prepared, and then the two laminates are stacked so that each polyurethane resin layer is opposed to each other, and the polyurethane resin layer is heated in the above-described temperature range, thereby forming the two laminates.
- the laminate can be laminated.
- the surface in contact with the two polyurethane resin layers may melt and increase viscosity. Thereby, the two polyurethane resin layers are joined, and it may not be easy to peel the two polyurethane resin layers.
- two polyurethane resin layers may be bonded without using an adhesive or an adhesive film to produce a thick polyurethane film.
- lamination of the laminate may be performed at a temperature of 80 ° C or more and 140 ° C or less, 80 ° C or more and 130 ° C or less, or 100 ° C or more and 120 ° C or less.
- two laminates may be laminated through a method used in the art to directly bond the two polyurethane resin layers.
- the two polyurethane resin layers can be joined by laminating the laminates while passing the two laminates between two press rolls heated to 80 ° C. or more and 140 ° C. or less.
- the release film stacked on one side of the polyurethane base layer formed by directly contacting two polyurethane resin layers is removed, and the functional coating composition is applied on one side of the polyurethane base layer.
- the functional coating composition can do.
- the method of applying the above-described polyurethane resin composition can be adopted without limitation.
- the functional coating layer having a thickness of 3 ⁇ m or more and 20 ⁇ m or less is applied to the poly by coating the functional coating composition with a thickness of 8 ⁇ m or more and 60 ⁇ m or less on one surface of the polyurethane base layer. It can be formed on one surface of the urethane base layer.
- the heat treatment of the functional coating composition may be performed at a temperature of 80 ° C or higher and 130 ° C or lower. Specifically, at a temperature of 90 ° C or higher and 125 ° C or lower, or 100 ° C or higher and 120 ° C or lower, the functional coating composition may be heat treated to form a functional coating layer.
- the functional coating layer By heat-treating the functional coating composition in the above-described temperature range, the functional coating layer can be stably formed, and the function of the produced functional coating layer can be effectively prevented from deteriorating.
- the functional coating layer may include at least one function of anti-fouling property, self-recovering property, water repellency, and magic resistance.
- the functional coating layer may have at least an antifouling function. That is, the polyurethane film may include an antifouling coating layer as the functional coating layer. Through this, it is possible to easily manufacture a polyurethane film having antifouling performance.
- an antifouling coating composition may be applied to one surface of the polyurethane base layer and heat treated to form an antifouling coating layer.
- a urethane-based composition is applied on one surface of the polyurethane base layer, or a urethane-acrylate-based composition is applied and heat treated to form a urethane coating layer or a urethane-acrylate coating layer on one surface of the polyurethane base layer.
- the antifouling coating composition may include additives and / or functional resins and the like capable of further adding at least one function of self-recovery, water repellency, and magic resistance to the coating layer.
- the functional coating layer may further have at least one function of self-recovery, water repellency, and magic resistance, in addition to antifouling properties.
- the polyurethane base layer on which the functional coating layer is provided on one surface may be aged at a temperature of 30 ° C. or higher and 80 ° C. or lower for 12 hours to 48 hours.
- the polyurethane substrate layer having the functional coating layer provided on one surface may be aged at a temperature of 35 ° C or higher and 75 ° C or lower, 40 ° C or higher and 60 ° C or lower, or 45 ° C or higher and 55 ° C or lower.
- the polyurethane base layer having the functional coating layer on one surface under the above-described temperature and time conditions, it is possible to more effectively improve the interfacial bonding strength between the two polyurethane resin layers.
- the polyurethane resins present on the surfaces in contact with the two polyurethane resin layers may be further cured and combined. Thereby, the bonding force between the two polyurethane resin layers can be further improved.
- the polyurethane resin layer included in the laminate may be semi-cured to mature the two bonded polyurethane resin layers to finally produce a cured polyurethane film.
- the polyurethane resin contained in the polyurethane resin layer and the first isocyanate-based curing agent react to increase the weight average molecular weight of the polyurethane resin.
- an additional reaction between the trace amount of the polyol remaining in the semi-cured polyurethane resin layer, the chain extender, and the second isocyanate-based curing agent may proceed.
- the polyurethane film has an advantage of excellent long-term reliability of the functional coating layer.
- the method of manufacturing the polyurethane film is after the step of aging the polyurethane base layer having the functional coating layer on one side, removing the release film provided on the other side of the functional coating layer It may further include a step.
- the thickness of the polyurethane base layer may be 20 ⁇ m or more and 500 ⁇ m or less. Specifically, the thickness of the polyurethane base layer may be 40 ⁇ m or more and 450 ⁇ m or less, 100 ⁇ m or more and 300 ⁇ m or less, or 200 ⁇ m or more and 450 ⁇ m or less. That is, the method of manufacturing the polyurethane film may provide a polyurethane film having a thicker thickness than the conventional polyurethane film.
- the interface bonding force between two polyurethane resin layers in direct contact may be 14 Mpa or more. Through this, peeling of the two polyurethane resin layers from each other can be effectively suppressed.
- the polyurethane film including the polyurethane base layer provided by directly contacting the two polyurethane resin layers having excellent interfacial bonding strength may have excellent durability and lifespan characteristics.
- the total thickness of the polyurethane film may be 20 ⁇ m or more and 500 ⁇ m or less.
- the thickness of the polyurethane film including the polyurethane base layer and the functional coating layer may be 20 ⁇ m or more and 500 ⁇ m or less, 23 ⁇ m or more, 520 ⁇ m or less, or 45 ⁇ m or more and 200 ⁇ m or less.
- the polyurethane film having a thickness in the above-described range may be excellent in durability and long-term reliability of the functional coating layer.
- One embodiment of the present invention provides a polyurethane film produced by the above manufacturing method.
- the polyurethane film according to an exemplary embodiment of the present invention may have a thick thickness and excellent durability.
- a polyurethane film including a polyurethane base layer provided by directly contacting two polyurethane resin layers may have a thicker thickness than a conventional polyurethane film.
- the interface bonding force between the two polyurethane resin layers may be 14 Mpa or more.
- the polyurethane film may have excellent durability and lifespan characteristics.
- the thickness of the polyurethane base layer may be 20 ⁇ m or more and 500 ⁇ m or less.
- the thickness of the polyurethane base layer made of the two polyurethane resin layers may be 40 ⁇ m or more and 450 ⁇ m or less, 100 ⁇ m or more and 300 ⁇ m or less, or 200 ⁇ m or more and 450 ⁇ m or less. That is, the polyurethane film may have a thicker thickness than the conventional polyurethane film.
- polycarbonatediol PCDL, Asahi kasei
- PCDL polycarbonatediol
- 1,4-butanediol 1,4-butanediol
- 1,4BD BASF
- No. 1 H12MDI Evonik, Inc.
- IPDI diisocyanate diisocyanate
- DBTDL dibutyl tin dilaurate
- methyl ethyl ketone was prepared as an organic solvent.
- a mixture having a polyol content of about 52.6 wt%, a chain extender of about 12.3 wt%, and a content of the second isocyanate-based curing agent is about 35.1 wt%, 100 parts by weight of the mixture and about 50 of an organic solvent
- a mixed solution was prepared by mixing parts by weight.
- the prepared mixed solution was charged to the reactor, heated to 55 ° C., and the temperature was maintained, while 0.005 parts by weight of the catalyst was added to 100 parts by weight of the mixture.
- a composition including a polyurethane resin having a weight average molecular weight of about 51,000 g / mol was prepared.
- about 7 parts by weight of the first isocyanate-based curing agent was added to the composition based on 100 parts by weight of the prepared polyurethane resin, thereby preparing a polyurethane resin composition.
- the prepared polyurethane resin composition had a solids content of about 45%.
- the prepared polyurethane resin composition was applied on a release film of polyethylene terephthalate (PET) film to about 200 ⁇ m. Subsequently, the polyurethane resin composition was heat-treated at 100 ° C. to prepare a laminate in which a polyurethane resin layer having a thickness of 75 ⁇ m was formed on a release film. One more laminate was prepared in the same way, and the laminate was positioned such that the polyurethane resin layers of each of the two laminates faced each other. Thereafter, the two laminates were passed between a pair of press rolls heated to 100 ° C. to laminate the laminates, and the two polyurethane resin layers were joined to form a polyurethane base layer having a thickness of about 150 ⁇ m. .
- PET polyethylene terephthalate
- an antifouling coating composition (SH-PS01, Noru Paint Co.) was applied to 20 ⁇ m on one surface of the exposed polyurethane substrate layer. Thereafter, the antifouling coating composition was heat-treated to 120 ° C. to form an antifouling coating layer having a thickness of 8 ⁇ m.
- the polyurethane base layer having the antifouling coating layer formed on one side was aged at a temperature of 60 ° C. for 48 hours, and then the release film provided on the other side of the polyurethane base layer was removed to give the polyurethane having a thickness of about 158 ⁇ m.
- a film was prepared.
- a polyurethane film was prepared in the same manner as in Example 1, except that the temperature of laminating the laminate and the aging temperature of the polyurethane base layer formed on one surface of the antifouling coating layer were adjusted as shown in Table 1 below.
- a polyurethane film was prepared in the same manner as in Example 1, except that the temperature of laminating the laminate and the aging temperature of the polyurethane base layer formed on one surface of the antifouling coating layer were adjusted as shown in Table 1 below.
- a polyurethane base layer was formed in the same manner as in Example 1. After aging the polyurethane base layer at a temperature of 60 ° C. for 48 hours, the release film provided on one side of the polyurethane base layer is removed, and the antifouling coating composition (SH-PS01) on one side of the exposed polyurethane base layer , Presser paint Co.) was applied to 20 ⁇ m. Thereafter, the antifouling coating composition was heat-treated to 120 ° C. to form an antifouling coating layer having a thickness of 8 ⁇ m, and then aged at a temperature of 60 ° C. for 48 hours to prepare a polyurethane film having an antifouling coating layer.
- SH-PS01 antifouling coating composition
- Example 2 except that two stacks having a size of 15 cm and 2.5 cm are prepared, and the two 7.5 mm and 2.5 cm portions are laminated together, and the remaining portions are not combined.
- a polyurethane film sample according to Example 1 was prepared in the same manner as.
- samples according to Examples 2 to 5 and Comparative Examples 1 to 5 were prepared, respectively.
- the interfacial bonding force between the polyurethane resin layers of the samples according to Examples 1 to 5 and Comparative Examples 1 to 5 was measured using UTM (Ultimate Tensile Machine, Model 3343, INSTRON Co.).
- FIG. 2 is a view schematically showing an experiment for measuring the interface bonding force between the polyurethane resin layer according to an embodiment of the present invention.
- Example 1 Aging temperature (°C) Lamination temperature (°C) Interfacial bonding force (Mpa)
- Example 1 60 100 14.1
- Example 2 60 120 15.8
- Example 3 50 80 15.6
- Example 4 50 100 15.9
- Example 5 50 120 16.5 Comparative Example 1 -20 60 5.2 Comparative Example 2 -20 80 9.2 Comparative Example 3 -20 100 10.1 Comparative Example 4 -20 120 12.5 Comparative Example 5 25 60 11.1
- Examples 1 to 5 were performed by laminating the laminates at a temperature of 80 ° C. or higher and 140 ° C. or lower, and maturing the polyurethane base layer having an antifouling coating layer on one surface at a temperature of 30 ° C. or higher and 80 ° C. or lower.
- Example 5 confirmed that the interfacial bonding force of the two polyurethane resin layers was 14 Mpa or more.
- Comparative Example 1 and Comparative Example 5 in which the laminate was laminated at a temperature of 60 ° C. the interfacial bonding force of the two polyurethane resin layers was It was confirmed to be inferior.
- a polyurethane film having an antifouling coating layer prepared in Example 1 and Comparative Example 6 was prepared. Thereafter, the prepared polyurethane film was cut into 9 cm in width and 9 cm in length to prepare an experimental sample.
- each side of the experimental sample was held by 2 cm along the horizontal direction, and stretched until the length of the horizontal direction of the experimental sample not held was 5 cm to 12 cm.
- each of the upper and lower sides of the experimental sample was held along the vertical direction by 2 cm, and stretched until the length of the vertical direction of the experimental sample not held was 5 cm to 12 cm.
- Figure 3 is a photograph of the polyurethane film after performing the bonding performance measurement experiment of the antifouling coating layer and the polyurethane base layer in Example 1 and Comparative Example 6 of the present invention.
- Figure 3 (a) is a photograph of a polyurethane film after performing the bonding performance measurement experiment of the antifouling coating layer and the polyurethane base layer in Example 1
- Figure 3 (b) is in Comparative Example 6 This is a photograph of a polyurethane film after performing an experiment for measuring the bonding performance of the antifouling coating layer and the polyurethane base layer.
- Example 1 in which the polyurethane base layer formed on one surface of the antifouling coating layer was aged at a temperature of 60 ° C. for 48 hours, between the polyurethane base layer and the antifouling coating layer Since the interfacial bonding strength was excellent, it was confirmed that no peeling or lifting occurred between the polyurethane base layer and the antifouling coating layer after the experiment was performed.
- the method for manufacturing a polyurethane film according to an exemplary embodiment of the present invention includes a polyurethane substrate layer having excellent interfacial bonding strength between two polyurethane resin layers, and has excellent interfacial bonding strength between the polyurethane base layer and the functional coating layer. , It can be seen that the polyurethane film having excellent life characteristics and durability, and having a thick thickness can be easily produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명은 두꺼운 두께를 가지며 내구성이 우수하며, 기능성이 부가된 폴리 우레탄 필름의 제조 방법 및 이에 의해 제조된 폴리 우레탄 필름에 관한 것이다.
Description
본 발명은 폴리 우레탄 필름의 제조 방법 및 이에 의해 제조된 폴리 우레탄 필름에 관한 것이다.
폴리 우레탄(poly urethane) 필름은 강도, 신장 특성, 인성(toughness) 및 내마모성(abrasion resistance) 등의 기계적 물성이 우수하여, 자동차 분야 등에서 주요하게 사용되고 있다.
일반적으로, 압출되어 성형된 폴리 우레탄 펠렛을 용제에 녹여 폴리 우레탄 용액을 제조하고, 폴리 우레탄 용액을 기재 상에 도포하여 폴리 우레탄 필름을 제조하고 있다. 다만, 분자량이 높은 폴리 우레탄 펠렛은 용제에 잘 용해되지 않아, 제조되는 폴리 우레탄 용액의 고형분 함량은 약 15 % 이하로 낮다. 고형분 함량이 낮은 폴리 우레탄 용액은 기재 상에 일정 두께 이상으로 도포하는 것이 불가능하여, 두꺼운 폴리 우레탄 필름을 제조하는 것이 곤란한 문제가 있다. 또한, 폴리 우레탄 펠렛은 추가적인 중합 반응이 진행되기 어려워, 폴리 우레탄 용액으로부터 제조되는 폴리 우레탄 필름의 물성을 제어하는 것이 용이하지 않은 문제가 있고, 고분자량의 폴리 우레탄 펠렛을 용해시키기 위하여 독성이 강한 용제를 사용해야 되는 문제가 있다. 또한, 자동차 분야에서는 내구성과 수명 특성이 우수한 폴리 우레탄 필름이 요구되고 있다.
최근 자동차 등의 외관을 보호하기 위하여 페인트 프로텍션 필름(Paint Protection Film, PPF)이 사용되고 있으며, PPF는 폴리 우레탄 필름을 주요 소재로 하고, 폴리 우레탄 필름의 하면에 구비되는 점착제를 통해 자동차의 외관에 부착되고, 상면에는 방오 코팅층의 등의 기능성 코팅층이 구비되고 있다. 특히, 방오 코팅층의 성능에 따라 PPF 제품의 품질 및 등급이 정해질 만큼, 방오 코팅층의 장기적 성능 구현은 중요한 요소 중 하나이다.
이러한 방오 코팅층 등의 기능성 코팅층의 장기적 물성 구현을 위해서, 기능성 코팅층 자체적으로 견고해야하는 특징도 있지만, PPF의 주요 소재인 폴리 우레탄 필름과 기능성 코팅층 간의 계면 접착력이 우수하여야, PPF 사용 중에 기능성 코팅층이 벗겨지는 현상을 억제할 수 있다.
이에, 두꺼운 두께를 가지며 내구성이 우수하고, 외층에 구비되는 기능성 코팅층의 장기 신뢰성이 우수한 폴리 우레탄 필름을 제조할 수 있는 기술이 필요한 실정이다.
본 발명은 두꺼운 두께를 가지며 내구성이 우수하고, 폴리 우레탄 기재층과 기능성 코팅층 간에 접착력이 우수하여 장기 신뢰성이 좋은 폴리 우레탄 필름 및 이의 제조 방법을 제공하고자 한다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는, 폴리 우레탄 수지, 제1 이소시아네이트계 경화제, 및 유기용제를 포함하는 폴리 우레탄 수지 조성물을 제조하는 단계; 상기 폴리 우레탄 수지 조성물을 이형 필름 상에 도포하고 열처리하여, 폴리 우레탄 수지층을 포함하는 적층체를 제조하는 단계; 상기 적층체를 2개 준비하고 상기 적층체 각각의 폴리 우레탄 수지층이 서로 대향하도록 상기 적층체를 합지하여, 직접 접하여 구비되는 2 개의 폴리 우레탄 수지층을 포함하는 폴리 우레탄 기재층을 형성하는 단계; 상기 폴리 우레탄 기재층의 일면에 구비된 이형 필름을 제거하고, 상기 폴리 우레탄 기재층의 일면 상에 기능성 코팅제 조성물을 도포하고 열처리하여, 기능성 코팅층을 형성하는 단계; 및 상기 기능성 코팅층이 일면 상에 구비된 상기 폴리 우레탄 기재층을 숙성하는 단계;를 포함하는 폴리 우레탄 필름의 제조 방법을 제공한다.
또한, 본 발명의 일 실시상태는, 상기 제조 방법으로 제조되는 폴리 우레탄 필름을 제공한다.
본 발명의 일 실시상태에 따른 폴리 우레탄 필름의 제조 방법은 두꺼운 두께를 가지며, 내구성이 우수한 폴리 우레탄 필름을 용이하게 제조할 수 있다.
본 발명의 일 실시상태에 따른 폴리 우레탄 필름은 두께가 두꺼우며, 내구성이 우수할 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시상태에 따른 폴리 우레탄 필름의 제조 방법을 나타낸 모식도이다.
도 2는 본 발명의 일 실시상태에 따른 폴리 우레탄 수지층 간의 계면 접합력을 측정하는 실험을 개략적으로 나타낸 도면이다.
도 3은 본 발명의 실시예 1 및 비교예 6에서 방오 코팅층과 폴리 우레탄 기재층의 접합성능 측정 실험을 수행한 후의 폴리 우레탄 필름을 촬영한 사진이다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 단위 "wt%"는 부재의 총 중량에 대하여, 부재에 포함되는 성분의 중량 비율을 의미할 수 있다.
본원 명세서 전체에서, 단위 "중량부"는 각 성분간의 중량의 비율을 의미할 수 있다.
본원 명세서 전체에서, 용어 "중합 단위"는 중합체 내에서 단량체가 반응된 형태를 의미할 수 있고, 구체적으로 그 단량체가 중합 반응을 거쳐서 그 중합체의 골격, 예를 들면, 주쇄 또는 측쇄를 형성하고 있는 형태를 의미할 수 있다.
본원 명세서 전체에서, 어떤 화합물의 “중량평균분자량” 및 “수평균분자량”은 그 화합물의 분자량과 분자량 분포를 이용하여 계산될 수 있다. 구체적으로, 1 ml의 유리병에 테트라하이드로퓨란(tetrahydrofuran, THF)와 화합물을 넣어 화합물의 농도가 1 wt%인 샘플 시료를 준비하고, 표준 시료(폴리스티렌, polystryere)와 샘플 시료를 필터(포어 크기가 0.45 mm)를 통해 여과시킨 후, GPC 인젝터(injector)에 주입하여, 샘플 시료의 용리(elution) 시간을 표준 시료의 캘리브레이션(calibration) 곡선과 비교하여 화합물의 분자량 및 분자량 분포를 얻을 수 있다. 이 때, 측정 기기로 Infinity II 1260(Agilient 社)를 이용할 수 있고, 유속은 1.00 mL/min, 컬럼 온도는 40.0 ℃로 설정할 수 있다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는, 폴리 우레탄 수지, 제1 이소시아네이트계 경화제, 및 유기용제를 포함하는 폴리 우레탄 수지 조성물을 제조하는 단계; 상기 폴리 우레탄 수지 조성물을 이형 필름 상에 도포하고 열처리하여, 폴리 우레탄 수지층을 포함하는 적층체를 제조하는 단계; 상기 적층체를 2개 준비하고 상기 적층체 각각의 폴리 우레탄 수지층이 서로 대향하도록 상기 적층체를 합지하여, 직접 접하여 구비되는 2 개의 폴리 우레탄 수지층을 포함하는 폴리 우레탄 기재층을 형성하는 단계; 상기 폴리 우레탄 기재층의 일면에 구비된 이형 필름을 제거하고, 상기 폴리 우레탄 기재층의 일면 상에 기능성 코팅제 조성물을 도포하고 열처리하여, 기능성 코팅층을 형성하는 단계; 및 상기 기능성 코팅층이 일면 상에 구비된 상기 폴리 우레탄 기재층을 숙성하는 단계;를 포함하는 폴리 우레탄 필름의 제조 방법을 제공한다.
본 발명의 일 실시상태에 따른 폴리 우레탄 필름의 제조 방법은 두꺼운 두께를 가지며, 내구성이 우수한 폴리 우레탄 필름을 용이하게 제조할 수 있다. 구체적으로, 2 개의 폴리 우레탄 수지층이 직접 접하는 폴리 우레탄 기재층을 형성함으로써, 보다 두꺼운 두께를 가지고 내구성이 향상된 폴리 우레탄 필름을 제조할 수 있다. 또한, 상기 폴리 우레탄 기재층의 일면 상에 기능성 코팅층을 형성함으로써, 기능성이 부가된 폴리 우레탄 필름을 제조할 수 있다. 보다 구체적으로, 상기 기능성 코팅층으로 방오 코팅층을 상기 폴리 우레탄 기재층의 일면 상에 형성함으로써, 상기 폴리 우레탄 필름의 내구성 및 방오성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제1 이소시아네이트계 경화제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 5 중량부 초과 7.5 중량부 미만, 또는 5.5 중량부 이상 7.25 중량부 이하일 수 있다. 상기 제1 이소시아네이트계 경화제의 함량을 전술한 범위로 조절함으로써, 2 개의 폴리 우레탄 수지층 간의 계면 접합력 및 상기 폴리 우레탄 필름의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제1 이소시아네이트계 경화제는 2 이상 6 이하의 이소시아네이트 관능기를 포함할 수 있다. 예를 들면, 제1 이소시아네이트 경화제는, Evonik 社의 2관능 이소시아네이트계 경화제인 H12MDI, AsahiKASEI 社의 6관능 이소시아네이트계 경화제인 MHG-80B, AsahiKASEI 社의 6관능 이소시아네이트계 경화제인 MFA-100, 및 AsahiKASEI 社의 3관능 이소시아네이트계 경화제인 TKA-100 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지는 수평균분자량이 1,800 g/mol 이상 2,200 g/mol 이하인 폴리올; 탄소수 4 이상 10 이하의 디올을 포함하는 사슬 연장제; 및 제2 이소시아네이트계 경화제를 포함하는 혼합물을 유기용제에서 공중합 반응시켜 제조될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지는 소프트 세그먼트(soft segment)와 하드 세그먼트(hard segment)를 포함하는 블록 공중합체(block copolymer)일 수 있다. 구체적으로, 상기 폴리 우레탄 수지의 소프트 세그먼트는 상기 폴리올과 제2 이소시아네이트계 경화제로부터 유래된 중합 단위를 포함할 수 있으며, 상기 폴리 우레탄 수지의 하드 세그먼트는 상기 사슬 연장제와 제2 이소시아네이트계 경화제로부터 유래된 중합 단위를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리올의 수평균분자량은 1,800 g/mol 이상 2,200 g/mol 이하, 1,950 g/mol 이상 2,050 g/mol 이하, 또는 1,900 g/mol 이상 2,100 g/mol 이하일 수 있다. 상기 폴리올의 수평균분자량이 전술한 범위 내인 경우, 폴리 우레탄 필름의 신율이 감소되는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리올은 2개의 하이드록시기를 함유하는 디올일 수 있다. 구체적으로, 상기 폴리올은 폴리카보네이트디올, 폴리카프로락톤디올, 폴리에스터디올 및 폴리이서디올 중 1종 이상을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리올의 함량은 상기 혼합물의 중량에 대하여 45 중량% 이상 55 중량% 이하일 수 있다. 구체적으로, 상기 폴리올의 함량은 상기 혼합물의 중량에 대하여, 48 중량% 이상 54 중량% 이하, 또는 50 중량% 이상 53 중량% 이하일 수 있다. 상기 혼합물 내의 상기 폴리올의 함량을 전술한 범위로 조절함으로써, 폴리 우레탄 수지의 중합 반응을 안정적으로 수행할 수 있고, 상기 폴리 우레탄 필름의 가공성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 사슬 연장제는 탄소수 4 이상 10 이하의 디올, 또는 탄소수 4 이상 6 이하의 디올을 포함할 수 있다. 전술한 범위의 탄소수를 가지는 디올을 포함하는 사슬 연장제는 상기 제2 이소시아네이트계 경화제의 사슬을 효과적으로 연장시킬 수 있다. 구체적으로, 상기 사슬 연장제는 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 네오펜틸글리콜, 1,10-데칸디올, 1,1-시클로헥산디메탄올 및 1,4-시클로헥산디메탄올 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 사슬 연장제의 함량은 상기 혼합물의 중량에 대하여 10 중량% 이상 15 중량% 이하일 수 있으며, 구체적으로, 10.5 중량% 이상 14 중량% 이하, 또는 12 중량% 이상 12.5 중량% 이하일 수 있다. 상기 혼합물 내의 사슬 연장제의 함량을 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지의 중량평균분자량을 효과적으로 향상시킬 수 있다. 또한, 상기 사슬 연장제의 함량이 전술한 범위 내인 경우, 상기 사슬 연장제는 제2 이소시아네이트계 경화제와 반응하여 폴리 우레탄 수지의 하드 세그먼트를 효과적으로 형성할 수 있고, 제조되는 폴리 우레탄 필름의 기계적 물성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제2 이소시아네이트계 경화제는 2 이상 6 이하의 이소시아네이트 관능기를 포함할 수 있다. 구체적으로, 상기 제2 이소시아네이트계 경화제는 2 개의 이소시아네이트 관능기를 포함할 수 있다. 예를 들면, 상기 제2 이소시아네이트계 경화제는 이소포론디이소시아네이트(IPDI; isophorone diisocyanate), 메틸렌다이페닐-4,4'-디이소시아네이트, 4,4'-메틸렌비스시클로헥실디이소시아네이트, 크실렌디이소시아네이트(XDI; xylene diisocyanate), 나프탈렌-1,5-디이소시아네이트 및 시클로헥산디이소아네이트(cyclohexane diisocyanate) 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제2 이소시아네이트계 경화제의 함량은 상기 혼합물의 중량에 대하여 32.5 중량% 이상 40 중량% 이하일 수 있다. 구체적으로, 상기 제2 이소시아네이트계 경화제의 함량은 상기 혼합물의 중량에 대하여, 34 중량% 이상 38 중량% 이하, 또는 35 중량% 이상 36.5 중량% 이하일 수 있다. 상기 제2 이소시아네이트계 경화제의 함량을 전술한 범위로 조절함으로써, 폴리 우레탄 수지를 효과적으로 중합할 수 있으며, 제조되는 폴리 우레탄 필름의 가공성 및 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 혼합물은 촉매를 더 포함할 수 있고, 상기 촉매의 함량은 상기 혼합물 100 중량부에 대하여 0.005 중량부 이상 0.02 중량부 이하, 또는 0.008 중량부 이상 0.015 중량부 이하일 수 있다. 상기 촉매의 함량을 전술한 범위로 조절함으로써, 폴리 우레탄 수지의 중합 반응을 효과적으로 촉진시킬 수 있고, 비교적 낮은 온도에서 폴리 우레탄 수지를 중합시킬 수 있다. 상기 촉매로서 당업계에서 사용되는 촉매를 제한없이 사용할 수 있고, 예를 들어 디부틸주석디라우레이트(dibutyl tin dilaurate; DBTDL)를 사용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 사슬 연장제로 사용되는 디올을 구성하는 탄소수는 상기 폴리올을 구성하는 탄소수보다 작아, 상기 혼합물 내에서 상기 디올은 상기 폴리올보다 유동성이 높다. 이에 의해, 상기 혼합물 내에서, 상기 사슬 연장제와 제2 이소시아네이트계 경화제의 반응이 상기 폴리올과 제2 이소시아네이트계 경화제의 반응 보다 먼저 일어날 수 있다. 구체적으로, 사슬 연장제로 부탄디올을 사용하는 경우, 부탄디올의 2 개의 하이드록시기 중 1 개의 하이드록시기가 상기 제2 이소시아네이트계 경화제의 이소시아네이트기와 반응하여 결합하고, 상기 부탄디올의 미반응 하이드록시기가 제2 이소시아네이트계 경화제의 새로운 이소시아네이트기와 결합하는 과정이 반복되면서, 길게 연장된 사슬 구조를 가지는 제2 이소시아네이트계 경화제가 형성될 수 있다. 이후, 길게 연장된 사슬 구조를 가지는 제2 이소시아네이트계 경화제와 상기 폴리올이 반응하여, 중량평균분자량이 증가된 폴리 우레탄 수지를 형성할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지의 중량평균분자량은 40,000 g/mol 이상 70,000 g/mol 이하일 수 있다. 상기 폴리올의 수평균분자량, 상기 사슬 연장제로 사용되는 디올의 탄소수, 상기 혼합물 내의 폴리올의 함량, 사슬 연장제의 함량, 제2 이소시아네이트계 경화제의 함량 등을 조절하여, 상기 폴리 우레탄 수지의 중량평균분자량을 제어할 수 있다. 상기 폴리 우레탄 수지의 중량평균분자량을 조절함으로써, 상기 폴리 우레탄 필름의 인장강도 및 내구성 등의 물성을 용이하게 제어할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 공중합 반응은 50 ℃ 이상 70 ℃ 이하의 온도에서 수행될 수 있다. 상기 공중합 반응 온도를 전술한 범위로 조절함으로써, 폴리 우레탄 수지를 안정적으로 중합할 수 있다. 또한, 비교적 낮은 온도에서 폴리 우레탄 수지를 중합할 수 있으므로, 상기 폴리 우레탄 필름의 제조 비용 및 제조 시간을 감소시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지의 중합 반응은 유기용제에서 수행될 수 있다. 폴리 우레탄 필름을 제조하기 위하여 수용성 용제를 사용하는 경우, 우레탄 입자를 수십 나노미터 내지 수백 나노미터의 직경을 가지는 구슬(bead) 형태로 가공하여 수용성 용제 상에 분산시켜야 된다. 이 때, 우레탄 입자를 수용성 용제 상에 효과적으로 분산시키기 위해서 각종 계면활성제 및 모노머 등의 첨가제를 사용해야 되므로, 폴리 우레탄 필름의 제조 공정이 복잡해지며, 제조 시간 및 제조 비용이 증가되는 문제가 있다.
반면, 본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지는 상기 유기용제에 용해(dissolve)되어 있는 상태로, 상기 우레탄 조성물에 추가적인 분산제 및 계면 활성제 등의 분산 안정계의 첨가제를 부가할 필요가 없다. 따라서, 상기 폴리 우레탄 필름의 제조 시간 및 제조 비용을 감소시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 유기용제는 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 및 시클로헥산, 톨루엔, 크실렌, 에틸렌글리콜모노메틸에테르 (메틸셀로솔브) 및 에틸렌글리콜모노에틸에테르(에틸셀로솔브) 중 적어도 하나를 포함할 수 있다. 상기 폴리 우레탄 수지 중합 시에 사용되는 전술한 종류의 유기용제는 독성이 거의 없는 것으로서, 상기 유기용제를 사용함으로써 사용자의 인체 및 환경에 유해한 영향을 미치는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 유기용제에서 상기 혼합물을 반응시켜, 폴리 우레탄 수지 및 유기용제를 포함하는 조성물을 제조할 수 있고, 상기 조성물에 제1 이소시아네이트계 경화제를 첨가하여, 상기 폴리 우레탄 수지 조성물을 제조할 수 있다. 즉, 상기 폴리 우레탄 수지 조성물의 유기용제는 상기 폴리 우레탄 수지의 제조시에 사용되고 잔류하는 유기용제일 수 있다. 또한, 상기 폴리 우레탄 수지 조성물에 추가의 유기용제를 첨가할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 유기용제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 30 중량부 이상 80 중량부 이하일 수 있다. 상기 유기용제의 함량을 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지 조성물을 열처리하는 단계에서 상기 폴리 우레탄 수지 조성물이 급격하게 건조되어 유기용제가 부풀어 오르는 현상을 억제할 수 있고, 폴리 우레탄 필름의 두께가 얇아지는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지 조성물의 고형분 함량은 20 % 이상 70 % 이하, 구체적으로 30 % 이상 60 % 이하, 40 % 이상 55 % 이하일 수 있다. 본 명세서에 있어서, 상기 “고형분”은 용액 전체에서 용제를 제외한 용질 또는 고형물을 의미할 수 있으며, 구체적으로 상기 폴리 우레탄 수지 조성물의 고형분이란 상기 유기용제를 제외한 상기 폴리 우레탄 수지, 제1 이소시아네이트계 경화제 및 촉매 등의 첨가제를 총칭하는 것일 수 있다. 상기 폴리 우레탄 수지 조성물의 고형분 함량이 전술한 범위 내인 경우, 상기 폴리 우레탄 수지 조성물을 기재 상에 두껍게 도포할 수 있으며, 이를 통해 두께가 두꺼운 폴리 우레탄 필름을 제조할 수 있다.
도 1은 본 발명의 일 실시상태에 따른 폴리 우레탄 필름의 제조 방법을 나타낸 모식도이다. 도 1을 참고하면, 이형 필름 상에 도포된 폴리 우레탄 수지 조성물을 열처리하여, 폴리 우레탄 수지층(20, 20') 및 이형 필름(10, 10')을 포함하는 적층체(100, 100') 2 개를 제조할 수 있다. 상기 적층체(100, 100')에 포함된 2개의 폴리 우레탄 수지층(20, 20')이 서로 대향하도록 위치시키고, 2 개의 적층체(100, 100')를 합지시켜 2 개의 폴리 우레탄 수지층(20, 20')을 접합하여, 직접 접하여 구비되는 폴리 우레탄 수지층을 포함하는 폴리 우레탄 기재층(200)을 형성할 수 있다. 이후, 폴리 우레탄 기재층(200)의 일면 상에 구비된 이형 필름(10)을 제거하고, 이형 필름(10)이 제거되어 노출된 폴리 우레탄 기재층(200)의 일면 상에 기능성 코팅제 조성물을 도포하고, 열처리하여 기능성 코팅층(300)을 형성할 수 있다. 이후, 기능성 코팅층(300)이 일면 상에 구비된 폴리 우레탄 기재층(200)을 숙성하고, 폴리 우레탄 기재층(200)의 타면 상에 구비된 이형 필름(10')을 마저 제거하여, 폴리 우레탄 기재층(200)과 기능성 코팅층(300)을 포함하는 폴리 우레탄 필름(1000)을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지 조성물을 이형 필름 상에 도포하는 방법은 특별히 제한되지 않으며, 예를 들면, 스프레이 코팅, 그라비어 코팅, 마이크로그라비어 코팅, 롤 코팅, 플렉소 코팅, 스크린 코팅, 스핀 코팅, 플로우 코팅, 나이프 코팅, 노즐 코팅, 로터리 스크린 코팅, 리버스 로스 코팅, 콤마 코팅, 립 코팅 및 슬롯다이 코팅 중 어느 하나의 방법을 이용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이형 필름 상에 도포된 폴리 우레탄 수지 조성물을 열처리하여, 이형 필름 상에 폴리 우레탄 수지층을 형성함으로써 적층체를 제조할 수 있다. 구체적으로, 상기 폴리 우레탄 수지 조성물을 이형 필름 상에 20 ㎛ 이상 500 ㎛ 이하의 두께로 도포하고 열처리함으로써, 이형 필름 상에 두께가 10 ㎛ 이상 250 ㎛ 이하인 폴리 우레탄 수지층을 형성할 수 있다. 상기 이형 필름 상에 도포된 상기 폴리 우레탄 수지 조성물을 열처리하는 과정에서, 상기 폴리 우레탄 수지 조성물에 포함된 유기용제가 휘발됨에 따라, 형성되는 폴리 우레탄 수지층의 두께가 줄어들 수 있다. 이에, 유기용제가 휘발됨에 따라 감소되는 폴리 우레탄 수지층의 두께를 고려하여, 상기 이형 필름 상에 도포되는 상기 폴리 우레탄 수지 조성물의 두께를 조절할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 수지 조성물을 100 ℃ 이상 150 ℃ 이하의 온도에서 열처리할 수 있다. 상기 열처리 온도 조건을 전술한 범위로 조절함으로써, 상기 폴리 우레탄 수지 조성물에 포함된 유기용제를 효과적으로 휘발시켜 폴리 우레탄 수지층을 형성할 수 있다. 또한, 상기 폴리 우레탄 수지 조성물을 전술한 온도 범위에서 열처리함으로써, 상기 폴리 우레탄 수지 조성물이 급격하게 건조되어 유기용제가 부풀어 오르는 현상을 억제할 수 있고, 제조되는 폴리 우레탄 수지층에 황변 현상이 발생되는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 80 ℃ 이상 140 ℃ 이하의 온도에서 상기 적층체를 합지할 수 있다. 구체적으로, 상기 방법으로 제조한 적층체를 2 개 준비한 다음, 각각의 폴리 우레탄 수지층이 대향하도록 상기 2 개의 적층체를 적층하고, 전술한 온도 범위에서 폴리 우레탄 수지층을 가열하여, 상기 2 개의 적층체를 합지할 수 있다. 상기 폴리 우레탄 수지층이 가열되어 폴리 우레탄 수지층의 온도가 유리전이온도에 도달되면, 상기 2 개의 폴리 우레탄 수지층이 접하고 있는 면이 녹아 점성이 증가될 수 있다. 이에 의해, 상기 2 개의 폴리 우레탄 수지층이 접합되고, 접합된 2 개의 폴리 우레탄 수지층을 박리시키는 것이 용이하지 않을 수 있다.
따라서, 본 발명의 일 실시상태에 따른 폴리 우레탄 필름의 제조 방법은 접착제 또는 접착필름을 사용하지 않고 2 개의 폴리 우레탄 수지층을 접합하여, 두께가 두꺼운 폴리 우레탄 필름을 제조할 수 있다.
또한, 상기 적층체의 합지는 80 ℃ 이상 140 ℃ 이하, 80 ℃ 이상 130 ℃ 이하, 또는 100 ℃ 이상 120 ℃ 이하의 온도에서 수행될 수 있다. 상기 적층체의 합지 온도를 전술한 온도 범위로 조절함으로써, 상기 2 개의 폴리 우레탄 수지층 간의 계면 접합력을 효과적으로 향상시킬 수 있다. 또한, 전술한 온도 조건에서 상기 2 개의 적층체를 합지함으로써, 폴리 우레탄 수지층이 과도하게 녹아 이형 필름 밖으로 흘러내려 폴리 우레탄 필름의 두께가 얇아지는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 당 업계에서 사용되는 방법을 통해 2 개의 적층체를 합지하여, 상기 2 개의 폴리 우레탄 수지층을 직접 접합할 수 있다. 예를 들면, 80 ℃ 이상 140 ℃ 이하로 가열된 2 개의 압착롤 사이에 상기 2 개의 적층체를 통과시키면서, 적층체를 합지시켜 상기 2 개의 폴리 우레탄 수지층을 접합할 수 있다.
본 발명의 일 실시상태에 따르면, 2 개의 폴리 우레탄 수지층이 직접 접하여 구비되어 형성된 폴리 우레탄 기재층의 일면 상에 적층된 이형 필름을 제거하고, 폴리 우레탄 기재층의 일면 상에 기능성 코팅제 조성물을 도포할 수 있다. 기능성 코팅제 조성물을 도포하는 방법으로, 전술한 폴리 우레탄 수지 조성물을 도포하는 방법을 제한없이 채택하여 사용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 기능성 코팅제 조성물을 상기 폴리 우레탄 기재층의 일면 상에 8 ㎛ 이상 60 ㎛ 이하의 두께로 도포하고 열처리함으로써, 두께가 3 ㎛ 이상 20 ㎛ 이하인 기능성 코팅층을 상기 폴리 우레탄 기재층의 일면 상에 형성할 수 있다. 상기 폴리 우레탄 기재층의 일면 상에 전술한 범위의 두께를 가지는 기능성 코팅층을 형성함으로써, 상기 폴리 우레탄 필름의 내구성을 향상시킬 수 있고, 상기 기능성 코팅층의 장기 신뢰성을 확보할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 기능성 코팅제 조성물의 열처리는 80 ℃ 이상 130 ℃ 이하의 온도에서 수행될 수 있다. 구체적으로, 90 ℃ 이상 125 ℃ 이하, 또는 100 ℃ 이상 120 ℃ 이하의 온도에서, 상기 기능성 코팅제 조성물을 열처리하여 기능성 코팅층을 형성할 수 있다. 전술한 온도 범위에서 상기 기능성 코팅제 조성물을 열처리함으로써, 상기 기능성 코팅층을 안정적으로 형성할 수 있고, 제조되는 기능성 코팅층의 기능이 저하되는 것을 효과적으로 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 기능성 코팅층은 방오성, 자기복원성, 발수성, 및 내매직성 중 적어도 하나의 기능을 포함할 수 있다. 구체적으로, 상기 기능성 코팅층은 적어도 방오성 기능을 가질 수 있다. 즉, 상기 폴리 우레탄 필름은 상기 기능성 코팅층으로서 방오 코팅층을 포함할 수 있다. 이를 통해, 방오 성능이 구비된 폴리 우레탄 필름을 용이하게 제조할 수 있다.
예를 들면, 상기 폴리 우레탄 기재층의 일면 상에 방오 코팅제 조성물을 도포하고 열처리하여 방오 코팅층을 형성할 수 있다. 구체적으로, 상기 폴리 우레탄 기재층의 일면 상에 우레탄계 조성물을 도포하거나, 또는 우레탄-아크릴레이트계 조성물을 도포하고, 열처리하여 우레탄 코팅층 또는 우레탄-아크릴레이트 코팅층을 상기 폴리 우레탄 기재층의 일면 상에 형성하여, 방오 코팅층이 구비된 폴리 우레탄 필름을 제조할 수 있다.
또한, 상기 방오 코팅제 조성물은, 코팅층에 자기복원성, 발수성 및 내매직성 중 적어도 하나의 기능을 더 부가할 수 있는 첨가제 및/또는 기능성 수지 등을 포함할 수 있다. 따라서, 상기 기능성 코팅층은 방오성 이외에, 자기복원성, 발수성 및 내매직성 중 적어도 하나의 기능을 더 가질 수 있다.
본 발명의 일 실시상태에 따르면, 상기 기능성 코팅층이 일면 상에 구비된 상기 폴리 우레탄 기재층을 30 ℃ 이상 80 ℃ 이하의 온도에서 12 시간 이상 48 시간 이하의 시간 동안 숙성할 수 있다. 구체적으로, 상기 기능성 코팅층이 일면 상에 구비된 상기 폴리 우레탄 기재층을 35 ℃ 이상 75 ℃ 이하, 40 ℃ 이상 60 ℃ 이하, 또는 45 ℃ 이상 55 ℃ 이하의 온도에서 숙성할 수 있다.
전술한 온도 및 시간 조건에서 상기 기능성 코팅층이 일면 상에 구비된 상기 폴리 우레탄 기재층을 숙성함으로써, 2 개의 폴리 우레탄 수지층 간의 계면 접합력을 더욱 효과적으로 향상시킬 수 있다. 상기 접합된 2 개의 폴리 우레탄 수지층을 포함하는 적층체가 숙성되는 과정에서, 상기 2 개의 폴리 우레탄 수지층이 접하고 있는 면에 존재하는 폴리 우레탄 수지들이 추가 경화하여 결합될 수 있다. 이에 의해, 상기 2개의 폴리 우레탄 수지층 간의 접합력을 보다 향상시킬 수 있다.
또한, 상기 적층체에 포함된 폴리 우레탄 수지층은 반경화 상태로, 접합된 2 개의 폴리 우레탄 수지층을 숙성시켜 최종적으로 경화된 폴리 우레탄 필름을 제조할 수 있다. 상기 합지된 적층체가 숙성되는 과정에서, 상기 폴리 우레탄 수지층에 포함된 폴리 우레탄 수지와 상기 제1 이소시아네이트계 경화제가 반응하여, 상기 폴리 우레탄 수지의 중량평균분자량이 증가될 수 있다. 또한, 상기 반경화된 폴리 우레탄 수지층에 잔존하는 미량의 폴리올, 사슬 연장제 및 제2 이소시아네이트계 경화제 간의 추가적인 반응이 진행될 수 있다.
또한, 상기 숙성 과정을 통해, 상기 폴리 우레탄 기재층의 일면과 상기 기능성 코팅층 간의 계면 접합력을 효과적으로 향상시킬 수 있다. 이를 통해, 상기 폴리 우레탄 필름이 제품으로서 사용되는 과정에서, 상기 기능성 코팅층이 상기 폴리 우레탄 기재층의 일면으로부터 박리되는 현상을 효과적으로 억제할 수 있다. 따라서, 상기 폴리 우레탄 필름은 기능성 코팅층의 장기 신뢰성이 우수한 이점이 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 필름의 제조 방법은 상기 기능성 코팅층이 일면 상에 구비된 상기 폴리 우레탄 기재층을 숙성한 단계 이후, 상기 기능성 코팅층의 타면 상에 구비된 이형 필름을 제거하는 단계를 더 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 기재층의 두께는 20 ㎛ 이상 500 ㎛ 이하일 수 있다. 구체적으로, 상기 폴리 우레탄 기재층의 두께는 40 ㎛ 이상 450 ㎛ 이하, 100 ㎛ 이상 300 ㎛ 이하, 또는 200 ㎛ 이상 450 ㎛ 이하일 수 있다. 즉, 상기 폴리 우레탄 필름의 제조 방법은 기존의 폴리 우레탄 필름 대비, 두꺼운 두께를 가지는 폴리 우레탄 필름을 제공할 수 있다.
또한, 직접 접하고 있는 2 개의 폴리 우레탄 수지층 간의 계면 접합력은 14 Mpa 이상일 수 있다. 이를 통해, 상기 2 개의 폴리 우레탄 수지층이 서로 박리되는 것이 효과적으로 억제될 수 있다. 계면 접합력이 우수한 상기 2 개의 폴리 우레탄 수지층이 직접 접하여 구비된 폴리 우레탄 기재층을 포함하는 폴리 우레탄 필름은 내구성 및 수명 특성이 우수할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 필름의 총 두께는 20 ㎛ 이상 500 ㎛ 이하일 수 있다. 구체적으로, 상기 폴리 우레탄 기재층 및 기능성 코팅층을 포함하는 상기 폴리 우레탄 필름의 두께는 20 ㎛ 이상 500 ㎛ 이하, 23 ㎛ 이상 520 ㎛ 이하, 또는 45 ㎛ 이상 200 ㎛ 이하일 수 있다. 전술한 범위의 두께를 가지는 상기 폴리 우레탄 필름은 내구성이 우수하고, 기능성 코팅층의 장기 신뢰성이 우수할 수 있다.
본 발명의 일 실시상태는, 상기 제조 방법으로 제조되는 폴리 우레탄 필름을 제공한다.
본 발명의 일 실시상태에 따른 폴리 우레탄 필름은 두께가 두꺼우며, 내구성이 우수할 수 있다. 구체적으로, 2 개의 폴리 우레탄 수지층이 직접 접하여 구비되는 폴리 우레탄 기재층을 포함하는 폴리 우레탄 필름은, 기존의 폴리 우레탄 필름 대비 두꺼운 두께를 가질 수 있다.
또한, 상기 2 개의 폴리 우레탄 수지층 간의 계면 접합력은 14 Mpa 이상일 수 있다. 계면 접합력이 전술한 범위를 만족하는 2 개의 폴리 우레탄 수지층이 직접 접하여 구비됨에 따라, 상기 폴리 우레탄 필름은 내구성 및 수명 특성이 우수할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리 우레탄 기재층의 두께는 20 ㎛ 이상 500 ㎛ 이하일 수 있다. 구체적으로, 상기 2 개의 폴리 우레탄 수지층으로 이루어진 폴리 우레탄 기재층의 두께는 40 ㎛ 이상 450 ㎛ 이하, 100 ㎛ 이상 300 ㎛ 이하, 또는 200 ㎛ 이상 450 ㎛ 이하일 수 있다. 즉, 상기 폴리 우레탄 필름은 기존의 폴리 우레탄 필름 대비, 두꺼운 두께를 가질 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
폴리 우레탄 수지 조성물의 제조
폴리올로서 수평균분자량이 2,050 g/mol인 폴리카보네이트디올(polycarbonatediol; PCDL, Asahi kasei 社), 사슬 연장제로서 1,4-부탄디올(1,4-butanediol; 1,4BD, 바스프 社), 제1 이소시아네이트계 경화제로서 2개의 이소시아네이트 관능기를 포함하는 H12MDI(Evonik 社), 제2 이소시아네이트계 경화제로서 디이소시안산 이소포론(isophorone diisocyanate; IPDI, Evonik 社), 촉매로서 디부틸주석디라우레이트(dibutyl tin dilaurate; DBTDL), 유기용제로서 메틸에틸케톤을 준비하였다. 이후, 폴리올의 함량이 약 52.6 wt%, 사슬 연장제의 함량이 약 12.3 wt%, 제2 이소시아네이트계 경화제의 함량이 약 35.1 wt%인 혼합물을 제조하고, 상기 혼합물 100 중량부와 유기용제 약 50 중량부를 혼합하여 혼합 용액을 제조하였다.
제조된 혼합 용액을 반응기에 장입시키고, 55 ℃까지 승온시키고 온도를 유지하면서, 혼합물 100 중량부에 대하여 촉매를 0.005 중량부 첨가하였다. 57℃에서 25 시간 동안 반응시켜, 중량평균분자량이 약 51,000 g/mol인 폴리 우레탄 수지를 포함하는 조성물을 제조하였다. 이후, 제조된 폴리 우레탄 수지 100 중량부에 대하여 약 7 중량부의 제1 이소시아네이트계 경화제를 상기 조성물에 첨가하여, 폴리 우레탄 수지 조성물을 제조하였다. 제조된 폴리 우레탄 수지 조성물의 고형분 함량은 약 45 %이었다.
기능성이 부가된 폴리 우레탄 필름의 제조
제조된 폴리 우레탄 수지 조성물을 이형 필름인 폴리에틸렌 테레프타레이트(polyethylene terephthalate; PET) 필름 상에 약 200 ㎛로 도포하였다. 이후, 폴리 우레탄 수지 조성물을 100 ℃로 열처리하여, 이형 필름 상에 75 ㎛의 두께를 가지는 폴리 우레탄 수지층이 형성된 적층체를 제조하였다. 동일한 방법으로 적층체를 하나 더 제조하고, 2 개의 적층체 각각의 폴리 우레탄 수지층이 서로 대향하도록, 적층체를 위치시켰다. 이후, 2 개의 적층체를 100 ℃로 가열된 한 쌍의 압착롤 사이에 통과시켜 적층체를 합지하여, 2 개의 폴리 우레탄 수지층을 접합하여, 두께가 약 150 ㎛인 폴리 우레탄 기재층을 형성하였다.
이후, 폴리 우레탄 기재층의 일면 상에 구비된 이형 필름을 제거하고, 노출된 폴리 우레탄 기재층의 일면 상에 방오 코팅제 조성물(SH-PS01, 노루 페인트 社)을 20 ㎛로 도포하였다. 이후, 방오 코팅제 조성물을 120 ℃로 열처리하여, 두께가 8 ㎛인 방오 코팅층을 형성하였다.
이후, 방오 코팅층이 일면 상에 형성된 폴리 우레탄 기재층을 60 ℃의 온도에서 48 시간 동안 숙성시킨 후, 폴리 우레탄 기재층의 타면에 구비된 이형 필름을 제거하여, 약 158 ㎛의 두께를 가지는 폴리 우레탄 필름을 제조하였다.
실시예 2 내지 실시예 5
적층체를 합지하는 온도 및 방오 코팅층이 일면 상에 형성된 폴리 우레탄 기재층의 숙성 온도를 하기 표 1과 같이 조절한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 폴리 우레탄 필름을 제조하였다.
비교예 1 내지 비교예 5
적층체를 합지하는 온도 및 방오 코팅층이 일면 상에 형성된 폴리 우레탄 기재층의 숙성 온도를 하기 표 1과 같이 조절한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 폴리 우레탄 필름을 제조하였다.
비교예 6
상기 실시예 1과 동일한 방법으로 폴리 우레탄 기재층을 형성하였다. 폴리 우레탄 기재층을 60 ℃의 온도에서 48 시간 동안 숙성시킨 후, 폴리 우레탄 기재층의 일면 상에 구비된 이형 필름을 제거하고, 노출된 폴리 우레탄 기재층의 일면 상에 방오 코팅제 조성물(SH-PS01, 노루 페인트 社)을 20 ㎛로 도포하였다. 이후, 방오 코팅제 조성물을 120 ℃로 열처리하여, 두께가 8 ㎛인 방오 코팅층을 형성한 후, 60 ℃의 온도에서 48시간 동안 숙성시켜, 방오 코팅층이 구비된 폴리 우레탄 필름을 제조하였다.
폴리 우레탄 수지층 간의 계면 접합력 측정 실험
가로 15 cm, 세로 2.5 cm의 크기를 가지는 적층체 2 개를 제조하고, 가로 7.5 cm, 세로 2.5 cm 부분만 2 개의 적층체를 합지하고, 나머지 부분은 합지하지 않은 것을 제외하고, 상기 실시예 1과 동일한 방법으로 실시예 1에 따른 폴리 우레탄 필름 샘플을 제조하였다. 또한, 전술한 방법과 동일한 방법으로, 각각 실시예 2 내지 실시예 5 및 비교예 1 내지 비교예 5에 따른 샘플을 제조하였다.
실시예 1 내지 실시예 5 및 비교예 1 내지 비교예 5에 따른 샘플의 폴리 우레탄 수지층 간의 계면 접합력은 UTM(Ultimate Tensile Machine, Model 3343, INSTRON 社)을 이용하여 측정하였다.
도 2는 본 발명의 일 실시상태에 따른 폴리 우레탄 수지층 간의 계면 접합력을 측정하는 실험을 개략적으로 나타낸 도면이다.
도 2에서 보듯이, 실시예 1에 따른 샘플에서 접합되지 않은 2 개의 폴리 우레탄 수지층(20, 20') 각각의 단부를 UTM(30)에 고정시키고 단부를 잡아당기며, 2 개의 폴리 우레탄 수지층이 서로 박리되는 시점에서의 샘플에 인가된 인장강도를 측정하였다. 전술한 방법과 동일한 방법으로, 실시예 2 내지 실시예 5 및 비교예 1 내지 비교예 5에 따른 샘플의 폴리 우레탄 수지층 간의 계면 접합력을 측정하였고, 그 결과를 하기 표 1에 나타내었다.
숙성 온도(℃) | 합지 온도(℃) | 계면 접합력(Mpa) | |
실시예 1 | 60 | 100 | 14.1 |
실시예 2 | 60 | 120 | 15.8 |
실시예 3 | 50 | 80 | 15.6 |
실시예 4 | 50 | 100 | 15.9 |
실시예 5 | 50 | 120 | 16.5 |
비교예 1 | -20 | 60 | 5.2 |
비교예 2 | -20 | 80 | 9.2 |
비교예 3 | -20 | 100 | 10.1 |
비교예 4 | -20 | 120 | 12.5 |
비교예 5 | 25 | 60 | 11.1 |
상기 표 1을 참고하면, 80 ℃ 이상 140 ℃ 이하의 온도에서 적층체를 합지시키고, 방오 코팅층이 일면 상에 형성된 폴리 우레탄 기재층을 30 ℃ 이상 80 ℃ 이하의 온도에서 숙성한 실시예 1 내지 실시예 5는 2 개의 폴리 우레탄 수지층의 계면 접합력이 14 Mpa 이상인 것을 확인하였다.반면, 60 ℃의 온도에서 적층체를 합지한 비교예 1 및 비교예 5는 2 개의 폴리 우레탄 수지층의 계면 접합력이 열등한 것을 확인하였다. 또한, - 20 ℃의 온도에서 방오 코팅층이 일면 상에 형성된 폴리 우레탄 기재층을 숙성시킨 비교예 2 내지 비교예 4는, 적층체의 합지 온도를 80 ℃ 이상 140 ℃ 이하로 조절한 경우에도, 2 개의 폴리 우레탄 수지층의 계면 접합력이 열등한 것을 확인하였다.
폴리 우레탄 기재층에 대한 기능성 코팅층의 접합성능 측정 실험
상기 실시예 1 및 비교예 6에서 제조한 방오 코팅층이 구비된 폴리 우레탄 필름을 준비하였다. 이후, 준비된 폴리 우레탄 필름을 가로 9 cm, 세로 9 cm로 재단하여, 실험용 샘플을 제조하였다.
이후, 가로 방향을 따라 실험용 샘플의 양 옆을 각각 2 cm씩 잡고, 잡지 않은 실험용 샘플의 가로 방향의 길이가 5 cm에서 12 cm가 될 때까지 연신하였다. 이후, 세로 방향을 따라 실험용 샘플의 위아래를 각각 2 cm씩 잡고, 잡지 않은 실험용 샘플의 세로 방향의 길이가 5 cm에서 12 cm가 될 때까지 연신하였다.
이후, 실험용 샘플의 폴리 우레탄 기재층과 방오 코팅층 간에 박리나 들뜸이 발생되었는지를 육안으로 확인하였다.
도 3은 본 발명의 실시예 1 및 비교예 6에서 방오 코팅층과 폴리 우레탄 기재층의 접합성능 측정 실험을 수행한 후의 폴리 우레탄 필름을 촬영한 사진이다.
구체적으로, 도 3의 (a)는 실시예 1에서 방오 코팅층과 폴리 우레탄 기재층의 접합성능 측정 실험을 수행한 후의 폴리 우레탄 필름을 촬영한 사진이고, 도 3의 (b)는 비교예 6에서 방오 코팅층과 폴리 우레탄 기재층의 접합성능 측정 실험을 수행한 후의 폴리 우레탄 필름을 촬영한 사진이다.
도 3의 (a) 및 (b)를 참고하면, 방오 코팅층이 일면 상에 형성된 폴리 우레탄 기재층을 60 ℃의 온도에서 48 시간 동안 숙성시킨 실시예 1의 경우, 폴리 우레탄 기재층과 방오 코팅층 간의 계면 접합력이 우수하여, 실험 수행 후에 폴리 우레탄 기재층과 방오 코팅층 간에 박리나 들뜸이 발생되지 않는 것을 확인하였다. 반면, 폴리 우레탄 기재층을 먼저 숙성시킨 후, 방오 코팅층을 이후에 형성하고 따로 숙성한 비교예 6의 경우, 실험 수행 후에 폴리 우레탄 기재층과 방오 코팅층 간에 박리 현상 및 들뜸 현상이 발생되고, 방오 코팅층이 훼손되는 것을 확인하였다.
따라서, 본 발명의 일 실시상태에 따른 폴리 우레탄 필름의 제조 방법은, 2 개의 폴리 우레탄 수지층의 계면 접합력이 우수한 폴리 우레탄 기재층을 포함하고, 폴리 우레탄 기재층과 기능성 코팅층 간의 계면 접합력이 우수하여, 수명 특성 및 내구성이 우수하고, 두꺼운 두께를 가지는 폴리 우레탄 필름을 용이하게 제조할 수 있음을 알 수 있다.
[부호의 설명]
100, 100': 적층체
10, 10': 이형 필름
20, 20': 폴리 우레탄 수지층
200: 폴리 우레탄 기재층
300: 기능성 코팅층
1000: 폴리 우레탄 필름
400: 계면 접합력 측정 실험 장치
Claims (16)
- 폴리 우레탄 수지, 제1 이소시아네이트계 경화제, 및 유기용제를 포함하는 폴리 우레탄 수지 조성물을 제조하는 단계;상기 폴리 우레탄 수지 조성물을 이형 필름 상에 도포하고 열처리하여, 폴리 우레탄 수지층을 포함하는 적층체를 제조하는 단계;상기 적층체를 2개 준비하고 상기 적층체 각각의 폴리 우레탄 수지층이 서로 대향하도록 상기 적층체를 합지하여, 직접 접하여 구비되는 2 개의 폴리 우레탄 수지층을 포함하는 폴리 우레탄 기재층을 형성하는 단계;상기 폴리 우레탄 기재층의 일면에 구비된 이형 필름을 제거하고, 상기 폴리 우레탄 기재층의 일면 상에 기능성 코팅제 조성물을 도포하고 열처리하여, 기능성 코팅층을 형성하는 단계; 및상기 기능성 코팅층이 일면 상에 구비된 상기 폴리 우레탄 기재층을 숙성하는 단계;를 포함하는 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 있어서,상기 폴리 우레탄 수지 조성물의 열처리는 100 ℃ 이상 150 ℃ 이하의 온도에서 수행되는 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 있어서,상기 적층체의 합지는 80 ℃ 이상 140 ℃ 이하의 온도에서 수행되는 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 있어서,상기 기능성 코팅제 조성물의 열처리는 80 ℃ 이상 130 ℃ 이하의 온도에서 수행되는 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 있어서,상기 숙성은 30 ℃ 이상 80 ℃ 이하의 온도에서 12 시간 이상 48 시간 이하의 시간 동안 수행되는 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 있어서,상기 제1 이소시아네이트계 경화제의 함량은 상기 폴리 우레탄 수지 100 중량부에 대하여 5 중량부 초과 7.5 중량부 미만인 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 있어서,상기 폴리 우레탄 수지는 수평균분자량이 1,800 g/mol 이상 2,200 g/mol 이하인 폴리올; 탄소수 4 이상 10 이하의 디올을 포함하는 사슬 연장제; 및 제2 이소시아네이트계 경화제를 포함하는 혼합물을 유기용제에서 공중합 반응시켜 제조되는 폴리 우레탄 필름의 제조 방법.
- 청구항 7에 있어서,상기 공중합 반응은 50 ℃ 이상 70 ℃ 이하의 온도에서 수행되는 폴리 우레탄 필름의 제조 방법.
- 청구항 7에 있어서,상기 폴리올의 함량은 상기 혼합물 100 중량부에 대하여 45 중량부 이상 55 중량부 이하인 폴리 우레탄 필름의 제조 방법.
- 청구항 7에 있어서,상기 사슬 연장제의 함량은 상기 혼합물 100 중량부에 대하여 10 중량부 이상 15 중량부 이하인 폴리 우레탄 필름의 제조 방법.
- 청구항 7에 있어서,상기 제2 이소시아네이트계 경화제의 함량은 상기 혼합물 100 중량부에 대하여 32.5 중량부 이상 40 중량부 이하인 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 있어서,상기 폴리 우레탄 수지 조성물의 고형분 함량은 20 % 이상 70 % 이하인 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 있어서,상기 기능성 코팅층은 방오성, 자기복원성, 발수성, 및 내매직성 중 적어도 하나의 기능을 포함하는 폴리 우레탄 필름의 제조 방법.
- 청구항 1에 따른 제조 방법으로 제조되는 폴리 우레탄 필름.
- 청구항 14에 있어서,상기 폴리 우레탄 기재층에 포함되는 상기 2 개의 폴리 우레탄 수지층 간의 계면 접합력은 14 Mpa 이상인 폴리 우레탄 필름.
- 청구항 14에 있어서,상기 폴리 우레탄 기재층의 두께는 20 ㎛ 이상 500 ㎛ 이하인 폴리 우레탄 필름.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180110263A KR20200031350A (ko) | 2018-09-14 | 2018-09-14 | 폴리 우레탄 필름의 제조 방법 및 그에 의해 제조된 폴리 우레탄 필름 |
KR10-2018-0110263 | 2018-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054985A1 true WO2020054985A1 (ko) | 2020-03-19 |
Family
ID=69777829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/010349 WO2020054985A1 (ko) | 2018-09-14 | 2019-08-14 | 폴리 우레탄 필름의 제조 방법 및 그에 의해 제조된 폴리 우레탄 필름 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20200031350A (ko) |
WO (1) | WO2020054985A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102121025B1 (ko) * | 2020-04-29 | 2020-06-09 | 이계영 | 차량용 램프 코팅방법 |
KR20240011308A (ko) * | 2022-07-18 | 2024-01-26 | 주식회사 상보 | 자가복원성 페인트 보호필름 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080113886A (ko) * | 2007-06-26 | 2008-12-31 | 코오롱패션머티리얼 (주) | 휘도와 강도가 개선된 시인성 형광/축광 폴리우레탄 필름의제조 방법 |
KR20100031158A (ko) * | 2008-09-12 | 2010-03-22 | 주식회사 코오롱 | 열가소성 폴리우레탄 필름 |
KR20110008884A (ko) * | 2009-07-21 | 2011-01-27 | 코오롱인더스트리 주식회사 | 열가소성 폴리우레탄 필름 |
KR20150055175A (ko) * | 2013-11-11 | 2015-05-21 | 주식회사 이에스디웍 | 열전도성 테이프 및 열전도성 테이프 제조 방법 |
KR20150119850A (ko) * | 2013-02-19 | 2015-10-26 | 빅텍크노스 컴퍼니 엘티디. | 열방사성 필름 및 열방사성 점착 테이프 |
-
2018
- 2018-09-14 KR KR1020180110263A patent/KR20200031350A/ko not_active Application Discontinuation
-
2019
- 2019-08-14 WO PCT/KR2019/010349 patent/WO2020054985A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080113886A (ko) * | 2007-06-26 | 2008-12-31 | 코오롱패션머티리얼 (주) | 휘도와 강도가 개선된 시인성 형광/축광 폴리우레탄 필름의제조 방법 |
KR20100031158A (ko) * | 2008-09-12 | 2010-03-22 | 주식회사 코오롱 | 열가소성 폴리우레탄 필름 |
KR20110008884A (ko) * | 2009-07-21 | 2011-01-27 | 코오롱인더스트리 주식회사 | 열가소성 폴리우레탄 필름 |
KR20150119850A (ko) * | 2013-02-19 | 2015-10-26 | 빅텍크노스 컴퍼니 엘티디. | 열방사성 필름 및 열방사성 점착 테이프 |
KR20150055175A (ko) * | 2013-11-11 | 2015-05-21 | 주식회사 이에스디웍 | 열전도성 테이프 및 열전도성 테이프 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20200031350A (ko) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7560004B2 (en) | Adhesive and sealing layers for electrophoretic displays | |
WO2019013551A1 (ko) | 자가복원 폴리우레탄계 중합체 및 이의 제조방법 | |
WO2020054985A1 (ko) | 폴리 우레탄 필름의 제조 방법 및 그에 의해 제조된 폴리 우레탄 필름 | |
EP2931795A1 (en) | Transparent polyimide substrate and method for fabricating the same | |
WO2012091283A2 (ko) | 편광판용 점착제 조성물 및 이를 포함하는 편광판 | |
WO2017003249A1 (ko) | 기재 필름 | |
CN113913128B (zh) | 一种聚氨酯保护膜用胶黏剂、制备方法及聚氨酯保护膜 | |
WO2018174498A1 (ko) | 열가소성 폴리 우레탄 필름의 제조 방법 및 그에 의해 제조된 열가소성 폴리 우레탄 필름 | |
CN114196354A (zh) | 一种含羧基减粘胶组合物及其制备方法和用途 | |
WO2010147363A2 (ko) | 웨이퍼 가공용 시트 | |
WO2020022799A1 (ko) | 접착제 조성물 | |
WO2021194072A1 (ko) | 표면 보호 필름 | |
WO2018182289A2 (ko) | 열가소성 폴리 우레탄 필름 및 이의 제조 방법 | |
KR101444394B1 (ko) | 충격흡수 및 실링용 도전시트 | |
WO2018169334A1 (ko) | 열가소성 폴리 우레탄 필름 및 이의 제조 방법 | |
WO2021101332A1 (ko) | 표면 보호 필름 | |
WO2022050808A1 (ko) | 폴리 우레탄계 점착제 조성물, 이를 포함하는 표면 보호 필름, 표면 보호 필름의 제조 방법 및 유기 발광 전자 장치 제조 방법 | |
WO2022039445A1 (ko) | 점착제 조성물 및 표면 보호 필름 | |
KR102131734B1 (ko) | 열가소성 폴리 우레탄 필름의 제조 방법 및 이에 의해 제조된 열가소성 폴리 우레탄 필름 | |
WO2021080216A1 (ko) | 폴리우레탄 점착필름 | |
WO2024035084A1 (ko) | 자가치유층을 포함하는 태양광용 백시트 및 이의 제조 방법 | |
CN113207296A (zh) | 粘着膜 | |
WO2018044008A1 (ko) | 하드코팅용 조성물, 이를 이용한 데코시트 및 데코시트의 제조방법 | |
WO2023177255A1 (ko) | 저탄소 배출 공정을 이용하여 제조되는 친환경 점착제 수지, 이를 포함하는 점착제 조성물 및 이를 이용하여 형성된 점착제층 | |
KR101956772B1 (ko) | 내용제성이 우수한 대전방지 이형필름 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19860495 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19860495 Country of ref document: EP Kind code of ref document: A1 |