WO2018181481A1 - 測光分注ノズルユニット、測光分注装置、および測光分注処理方法 - Google Patents

測光分注ノズルユニット、測光分注装置、および測光分注処理方法 Download PDF

Info

Publication number
WO2018181481A1
WO2018181481A1 PCT/JP2018/012779 JP2018012779W WO2018181481A1 WO 2018181481 A1 WO2018181481 A1 WO 2018181481A1 JP 2018012779 W JP2018012779 W JP 2018012779W WO 2018181481 A1 WO2018181481 A1 WO 2018181481A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
dispensing
cylinder
suction
photometric
Prior art date
Application number
PCT/JP2018/012779
Other languages
English (en)
French (fr)
Inventor
田島 秀二
中村 和博
悠 杉山
Original Assignee
ユニバーサル・バイオ・リサーチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーサル・バイオ・リサーチ株式会社 filed Critical ユニバーサル・バイオ・リサーチ株式会社
Priority to JP2019509978A priority Critical patent/JP7201241B2/ja
Priority to US16/496,723 priority patent/US11498064B2/en
Priority to CN201880020780.2A priority patent/CN110573886B/zh
Priority to EP18777725.5A priority patent/EP3605112B1/en
Publication of WO2018181481A1 publication Critical patent/WO2018181481A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • B01L3/0217Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids of the plunger pump type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/146Employing pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • B01L3/0279Interchangeable or disposable dispensing tips co-operating with positive ejection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1044Using pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1062General features of the devices using the transfer device for another function for testing the liquid while it is in the transfer device

Definitions

  • the present invention relates to a photometric dispensing nozzle unit, a photometric dispensing apparatus, and a photometric dispensing processing method, and more particularly, a sample, a reagent solution, or the like contained in a container is aspirated using a dispensing tip attached to the nozzle.
  • a metering / dispensing nozzle unit, a metering / dispensing device, and a metering / dispensing process that enable processing such as dispensing, agitation, and movement by discharging, as well as optical measurement of the object contained in the container.
  • the method Regarding the method.
  • magtration registered trademark
  • magnetic means are incorporated in the dispensing device so that a magnetic field can be applied to the dispensing tip.
  • a dispensing device with a magnetic force function a disposable dispensing tip whose tip can be inserted into the container is detachably attached to a container group consisting of a plurality of containers containing specimens, various reagents, etc.
  • the sample is dispensed, blended, etc. by inserting the tip of the dispensing tip into the container and sucking and storing a predetermined amount of the liquid sample using a gas suction / discharge mechanism and storing and discharging the sample.
  • the target substance was captured from the sample by the magnetic carrier and adsorbed on the inner wall of the dispensing tip to separate and extract it.
  • the present applicant provides a device in which a light measuring device is further incorporated in the dispensing device with magnetic function, from extraction of a target substance contained in a sample to optical measurement or detection of a labeled target substance. Can be done consistently.
  • the portion of the dispensing apparatus that extracts the target substance from the sample and the light measurement apparatus that performs light measurement by labeling the extracted target substance operate almost independently.
  • Each mechanism and parts are provided, and there is a possibility that the scale of the apparatus as a whole increases and the structure becomes complicated.
  • a large amount of liquid for example, about 1000 ⁇ L, is used for the nucleic acid extraction process. Only a very small amount of liquid, for example, about 5 ⁇ L, is used for the amplification treatment.
  • Dispensing cylinder can be replaced, and it is two types of cylinder members with different cylinder inner diameters and piston member outer diameters, consisting of a small inner diameter cylinder and a small diameter piston member, for example 0.5 ⁇ L to 30 ⁇ L minute.
  • a large amount of cylinder, a large-diameter internal cylinder, and a large-diameter piston member are used.
  • a large amount of cylinders of 20 ⁇ L to 1000 ⁇ L are exchanged.
  • a minute amount and a large amount of processing are performed using a cylinder having a mechanism that can handle both a minute amount and a large amount with one cylinder.
  • a first object of the present invention is to enable not only dispensing processing but also photometry processing using a common nozzle.
  • An object of the present invention is to provide a photometric dispensing nozzle unit, a photometric dispensing apparatus, and a photometric dispensing processing method that are simple, compact, and inexpensive, while suppressing an increase in scale and the number of parts.
  • the second object is to provide a versatile photometric dispensing nozzle unit, a photometric dispensing apparatus, and a highly versatile photometric dispensing nozzle unit capable of dispensing both minute and large quantities of liquid using a common nozzle. It is to provide a photometric dispensing process method.
  • a third object of the present invention is to provide a photometric dispensing nozzle unit, a photometric dispensing apparatus, and a photometric dispensing processing method in which the user can easily and easily replace the dispensing nozzle unit and the dispensing cylinder.
  • a nozzle capable of sucking and discharging a gas through a tip opening and mounting a dispensing tip, and a light guide end provided on the nozzle and capable of receiving or irradiating light at the tip of the nozzle
  • a cylinder having a cavity inside, a plunger slidably provided in the cavity, a dispensing cylinder having a suction / discharge port for sucking and discharging gas, and the suction / discharge port passing through the nozzle
  • a suction / discharge passage that communicates with the tip opening of the nozzle, and a light guide path that is optically connected to the light guide end through the nozzle without passing through the dispensing cylinder.
  • the “dispensing tip” includes, for example, a thick tube portion, a thin tube portion, and a transition portion that communicates the thick tube portion and the thin tube portion.
  • the thick tube portion includes a lower end of the nozzle.
  • a fitting opening that is fitted to the nozzle and attached to the nozzle, and the narrow tube portion has a tip opening portion through which liquid can flow in and out by suction and discharge of gas by the suction and discharge mechanism.
  • the dispensing tip and the nozzle are made of, for example, organic materials such as resins such as polypropylene, polystyrene, polyester, and acrylic, metals such as glass, ceramics, and stainless steel, metal compounds, and inorganic materials such as semiconductors.
  • the “light guide end” is one end of the light guide and is the end on the photometric target side.
  • the other end of the light guide is an end on the optical measuring device side.
  • the light guide end portion irradiates light (in this case, particularly referred to as “irradiation end”), receives light (in this case, particularly referred to as “light reception end”), and performs both (in this case, particularly "A pair of irradiation end and light receiving end”).
  • the “light guide” is a light-transmissive optical system member having translucency, for example, a long translucent member such as an optical fiber (bundle) and having flexibility. preferable.
  • the light guide path may contain an irradiation optical fiber, a light receiving optical fiber, or both.
  • the “flow path” is a passage through which a gas flows, and includes, for example, a hole, a groove, a gap, a pipe line, a pipe, and a recess.
  • the “nozzle” is provided with a hole along the axial direction inside and communicates with the tip opening.
  • the nozzle is preferably substantially cylindrical, and more preferably substantially cylindrical, and the “front end” surface and the “rear end” surface of the nozzle are provided so as to face each other along the axial direction. preferable.
  • the “suction / discharge port” is located before the tip of the plunger at the bottom dead center of the stroke of the plunger of the dispensing cylinder, or before the suction / discharge section where the suction / discharge is performed by sliding in the cavity of the cylinder. It is preferable to be provided so as to be located in the hollow portion. As will be described later, the suction / discharge port is preferably formed in the side wall of the dispensing cylinder.
  • the nozzle is further provided with a vent hole communicating with the tip opening.
  • the hole of the nozzle is a through hole along the axial direction, and can be inserted and fitted into the through hole, and the light guide path end is fixed inside. It further has a light guide path end fixing member (a ferrule unit or the like to be described later), and the suction / discharge flow path communicates with the tip opening and the vent hole, and the outer surface of the nozzle and the light guide path end fixing member.
  • the light guide end is formed inside the light guide end fixing member or attached to the tip thereof so as to be in non-contact with the nozzle. It is preferable.
  • the light guide path and the suction / discharge flow path do not contact each other.
  • the light guide end portion occupies the center of the tip opening portion, and the tip opening portion occupies the periphery thereof, so that optical measurement can be reliably performed.
  • the suction / discharge flow path can be easily formed by cutting or the like.
  • the light guide end portion includes the “light guide path end” and may include an optical system such as a rod lens optically connected to the light guide path end in addition to the light guide path end itself. .
  • the flow path passing through the nozzle inner flow path that is, the area sandwiched between the outer surface of the nozzle and the outer surface of the light guide path end fixing member, for example, at least a partial area of the flow path
  • the “suction / discharge channel” as a whole includes a suction / discharge port, the vent hole, a connection channel that connects and connects the suction / discharge port and the vent hole, the gap portion, and the tip opening. It is the flow path which connects and communicates a part.
  • the light guide path is not provided so as to pass through the dispensing cylinder provided at the upper part thereof coaxially with the normal nozzle, but “the light guide end portion and the optical fiber are not passed through the dispensing cylinder but through the nozzle. Will be connected ".
  • the nozzle and the dispensing cylinder are independently detachably attached and supported in parallel, and a partial area of the suction / discharge flow path is formed therein.
  • a photometric dispensing nozzle unit further having a member.
  • the light guide path extends along the axial direction of the cylindrical nozzle, while the suction / discharge flow path deviates from the axial direction of the nozzle.
  • the nozzle and the dispensing cylinder are provided in parallel. Accordingly, the length from the tip of the dispensing tip attached to the nozzle to the rear end of the plunger of the dispensing cylinder can be suppressed as compared with the case where the length is provided in series, and the scale of the apparatus can be prevented from being increased.
  • a nozzle extended in the axial direction by providing a light guide end and a light guide path inside, and a dispensing cylinder also extended in the axial direction to accommodate various capacities. It is valid.
  • the “partial region of the suction / discharge flow path” is, for example, a portion provided outside the nozzle and outside the dispensing cylinder, and is provided inside the nozzle or the dispensing rinder. Excluded parts are excluded. Since “the nozzle and the dispensing cylinder are independently detachably attached and are supported in parallel”, it is possible to replace only the dispensing cylinder or replace only the nozzle.
  • “Parallel” is a case where the axis of the nozzle and the axis of the dispensing cylinder are provided in parallel at a predetermined distance without penetrating each other. “Mounting” may be by screwing, fitting, or a combination thereof. According to the present invention, by providing the support member with built-in flow path to which the nozzle and the dispensing cylinder can be independently attached, the dispensing cylinder can handle the liquid amount corresponding to the processing purpose. It can be exchanged for various types and is versatile. In addition, since a partial region of the suction / discharge channel is formed in the support member with built-in channel, not only the nozzle and the dispensing cylinder but also the suction / discharge channel are supported.
  • the photometric dispensing nozzle unit can be reliably supported to increase the rigidity.
  • the flow path formed in the nozzle, the cavity in the dispensing cylinder, and the partial region are simultaneously communicated with each other to perform the suction discharge. It is preferable that the use flow path is completed.
  • the partial flow path provided in the support member with built-in flow path is provided with the connection flow path that is connected to and communicates with the vent hole and the suction / discharge port simultaneously with the mounting of the nozzle and the dispensing cylinder. Will be.
  • the nozzle has a nozzle horizontal hole provided through the side wall thereof, and the suction / discharge port is a cylinder horizontal hole provided through the side wall of the cylinder.
  • the partial region of the flow path includes a nozzle lateral hole of the nozzle attached to the flow path built-in support member and a cylinder lateral hole of the dispensing cylinder attached to the flow path built-in support member. It is a photometric dispensing nozzle unit having a connecting channel formed to communicate with each other.
  • the cylinder lateral hole is a side wall of the lower end portion of the dispensing cylinder, and further, a cavity below the tip of the plunger at the bottom dead center of the stroke of the plunger of the dispensing cylinder. It is preferably provided on the side wall of the part.
  • the nozzle lateral hole corresponds to the vent hole.
  • a part of the outer surface of the light guide path end fixing member is located at the nozzle horizontal hole position so as to communicate with the inner wall surface of the through hole of the nozzle, the tip opening, and the nozzle horizontal hole. It is preferable to provide a gap that is surrounded by a flat surface or a curved surface that is formed so as to be cut out along the axial direction toward the distal end.
  • a part of the outer surface of the light guide path end fixing member may include a curved surface or a flat surface formed so as to be cut out along the outer peripheral direction.
  • connection flow path is provided in the flow path built-in support member and is securely supported together with the nozzle and the dispensing cylinder, the connection flow path is firmly formed.
  • connection flow path can be formed in a straight line and communicated with each other at the shortest distance, the dead volume can be reduced and highly responsive processing can be performed.
  • the flow path built-in support member includes a flow path built-in support block, a nozzle mounting vertical hole and a cylinder mounting vertical hole formed in the flow path built-in support block, and the flow path built-in support.
  • the dispensing cylinder is mounted in close contact with the cylinder mounting vertical hole, and the connection flow path includes a nozzle horizontal hole of the mounted nozzle and the cylinder horizontal hole of the mounted cylinder. This is a photometric dispensing nozzle unit in communication with.
  • the connecting flow path can be formed linearly and horizontally, the nozzle and the dispensing cylinder communicate with each other at the shortest distance, thereby reducing dead volume in the flow path.
  • a highly responsive suction / discharge process can be performed.
  • the nozzle mounting vertical hole is in close contact with the nozzle from below, and the cylinder mounting vertical hole is in close contact with the dispensing cylinder from above to facilitate mounting.
  • any one of the contact surfaces between the nozzle and the nozzle mounting vertical hole and any of the contact surfaces between the dispensing cylinder and the cylinder mounting vertical hole Is a photometric dispensing nozzle unit in which a sealing member is provided so as to partition each contact surface vertically so as to sandwich the cylinder horizontal hole and the nozzle horizontal hole at the vertical position.
  • connection flow path and the suction / discharge flow path portion other than the connection flow path can be connected in a state of ensuring high airtightness.
  • a seal member is provided so as to surround each axis.
  • a sealing member is provided so that a nozzle horizontal hole and a 2nd nozzle horizontal hole may also be pinched
  • a fitting portion between the outer surface of the light guide path end fixing member and the inner wall surface of the nozzle, the fitting surface on either the outer surface or the inner wall surface above the nozzle lateral hole It is preferable that a seal member is provided to surround the axis so as to partition. Thereby, the airtightness with respect to the opening part of the rear end of a nozzle is securable.
  • the seal member includes an O-ring, a D-ring, an X packing, a Y packing, and the like.
  • “O-ring”, “D-ring”, “X packing”, and “Y packing” are ring-shaped members each having an O-shaped, D-shaped, X-shaped, Y-shaped cross section,
  • a ring-shaped gas or liquid formed of an elastic body, metal, or the like provided in a groove (for example, an O-ring, a D-ring) or a groove formed along the circumferential direction on the inner circumferential surface or outer circumferential surface. It is a member for sealing. When provided on the inner peripheral surface, it is provided so as to generate a compressive force in the radial direction, and when provided on the outer peripheral surface of the cylindrical body, it is provided so as to generate an expansion force in the radial direction.
  • the suction / discharge channel is preferably formed so as to pass through a region sandwiched between an outer surface of the light guide path end fixing member and an inner wall surface of the nozzle.
  • the sixth invention further includes a pressure sensor communicating with the tip opening of the nozzle, and the side wall of the nozzle is provided with a second nozzle lateral hole extending through the side wall.
  • a pressure sensor mounting hole that communicates with the tip opening through the second nozzle lateral hole, and that the pressure sensor is detachably mounted on the flow path built-in support block of the flow path built-in support member independently.
  • the second nozzle horizontal hole is provided in a region sandwiched between the seal members in the same manner as the nozzle horizontal hole, so that high airtightness can be secured for the connection between the pressure sensor flow path and the nozzle. become.
  • the cavity of the dispensing cylinder has a large diameter region having a large diameter inner peripheral surface, and a small diameter having a small diameter inner peripheral surface provided on the suction discharge port side of the large diameter region.
  • the plunger has a thick shaft portion slidably provided in the large diameter region, and protrudes along the axial direction from the tip surface of the thick shaft portion, and is slidable in the small diameter region.
  • the thin shaft portion is provided, and between the large diameter region and the small diameter region, a floating region is provided in which the thick shaft portion can move along the axial direction. It is a photometric dispensing nozzle unit provided so as to be located in the cavity at the tip of the small diameter region.
  • large diameter means a diameter larger than “small diameter”
  • the thick shaft portion and the thin shaft portion are formed in one plunger.
  • the large-diameter region and the small-diameter region are preferably cylindrical, and the thick shaft portion and the thin shaft portion are preferably columnar, and are formed coaxially.
  • the “thick axis” represents an axis that is thicker than the “thin axis”.
  • the stroke of the plunger that is, the stroke of the thick shaft portion, is the top dead center (the upper limit position of the thick shaft portion) and the bottom dead center (the lower limit position of the thick shaft portion) when the thick shaft portion moves up and down.
  • a distance along the axial direction (hereinafter referred to as “D”) between the thin shaft portions is formed to be shorter than the stroke of the plunger, and from the bottom dead center to the floating region
  • the total length along the axial direction of the large-diameter region (hereinafter referred to as “D0”) does not necessarily match. This is because there is a thickness (d1) of the thick shaft portion.
  • the “axis” is a “center axis” or “symmetric axis” extending through the cavity or the like.
  • the moving distance along the axial direction from the bottom dead center of the thick shaft portion to the tip surface of the thick shaft portion is d (d ⁇ D ⁇ D0 ⁇ d1), the small diameter region and the suction discharge port ahead
  • d2 be the sum of the lengths of the cavities up to the position along the axis.
  • a portion of the plunger that can be inserted into the small diameter region may be included in the thin shaft portion even if it does not slide.
  • a portion of the plunger that cannot be inserted into the small diameter region and can be inserted into the large diameter region may be included in the thick shaft portion even if it does not slide. Since the tip of the thin shaft portion should not protrude from the nozzle, the length of the thin shaft portion must be shorter than d2.
  • the distance from the bottom dead center of the tip surface of the thick shaft portion is d
  • the distance from the bottom dead center of the thin shaft portion is also d for the thin shaft portion.
  • the thick shaft portion is located at the bottom dead center
  • the thin shaft portion is also located at the bottom dead center.
  • the largest liquid amount as the minute amount is the upper end of the small diameter region.
  • the “floating region” is a region where a seal state is not generated by the thick shaft portion (and therefore the thin shaft portion), and has a maximum inner diameter larger than the large diameter over the entire circumference.
  • a seal member a member having a function of sealing gas, that is, a member having an airtight function, such as an O-ring, a D-ring, an X packing, and a Y packing does not function.
  • “(can move in a certain area)” means that it can move with a resistance smaller than the resistance received when sliding (the resistance received from that area). More specifically, for example, the resistance received from the floating region when the thick shaft portion moves in the floating region is the resistance received from the small diameter region when the thin shaft portion slides in the small diameter region (this is because the thick shaft portion is This is a case where the resistance is smaller (including 0) than the resistance received from the large diameter area when sliding in the large diameter area.
  • the seal member is provided along the circumferential direction on the outer peripheral surface of the thick shaft portion or the thin shaft portion, in addition to the case where the seal member is provided so as to surround the axis along the circumferential direction on each inner peripheral surface of the large diameter region or the small diameter region. May be provided to surround the axis. That is, the seal member is (1) when provided on the narrow shaft portion and the thick shaft portion, (2) when provided on the small diameter region and the thick shaft portion, (3) when provided on the narrow shaft portion and the large diameter region, (4) Any one of the small diameter region and the large diameter region is sufficient.
  • the tip of the thick shaft portion The length (d1) along the axial direction from the surface to the sealing position of the sealing member of the thick shaft portion, and the length along the axial direction from the tip surface of the thick shaft portion to the sealing position of the sealing member of the thin shaft portion It is necessary to have a length larger than the sum of the length (d3). That is, d0 ⁇ d1 + d3.
  • the length (d0) along the axial direction of the free area is defined as the distance from the lower end of the free area to the seal position of the seal member in the small diameter area, and d4 D0 + d4 ⁇ d1 + d3 where d3 is the length along the axial direction of the sliding portion and d1 is the distance from the tip surface of the thick shaft portion to the seal position of the seal member.
  • d4 0 approximately
  • the length (d0) along the axial direction of the free area is defined as a distance from the upper end of the free area to the seal position of the seal member in the large diameter area, If the length along the axial direction of the sliding portion is d1, and the distance from the tip surface of the thick shaft portion to the sealing position by the sealing member of the thin shaft portion is d3, d0 + d5 ⁇ d1 + d3.
  • the length (d0) along the axial direction of the free area is defined as the distance from the upper end of the free area to the seal position in the large diameter area, d5, and the small diameter from the lower end of the free area.
  • the stroke (D) of the plunger is longer than the length (d3). There must be. Therefore, the conditions of the relational expression of d2> d3 and d> d0> d3 are required. In this case, in the mass suction / discharge section, a gas corresponding to (d ⁇ d0) ⁇ S1 (large diameter cross-sectional area) is sucked into the large diameter region, and a large amount of liquid corresponding to the gas is sucked into the dispensing tip. become.
  • the large diameter region is cylindrical and the large diameter is, for example, 6 mm to 15 mm, preferably 10 mm, and the length of the large diameter region is, for example, 10 mm to 50 mm, preferably 30 mm. Its volume is about 200 ⁇ L to about 8500 ⁇ L.
  • the small diameter region is cylindrical and has a small diameter of, for example, 1 mm to 3 mm, preferably 1.5 mm, for example, from the tip surface (or seal position) of the seal member of the thin shaft portion to the tip surface of the thick shaft portion.
  • the length (d3) in the axial direction is, for example, 3 mm to 30 mm, and preferably 15.3 mm, for example, and the capacity thereof is about 2 ⁇ L to about 200 ⁇ L.
  • the minute amount is less than this capacity, and preferably about 26.5 ⁇ L or less, for example. Then, the large amount is, for example, about 27 ⁇ L to about 2000 ⁇ L.
  • the material of the cylinder for dispensing is glass, metal, resin or the like, for example, polystyrene, polyester, polypropylene (PP) or the like.
  • the thick shaft portion when the plunger is raised along the axial direction by a distance d (d ⁇ d3 ⁇ d0) from the position of the bottom dead center of the distal end surface of the thick shaft portion of the plunger, the thick shaft portion The sealing member of the ascends in the floating area. During the movement so far, the thin shaft portion maintains the state where the small diameter region is disconnected from the large diameter region, so that the gas sucked from the nozzle remains in the small diameter region. . Therefore, a minute amount of liquid corresponding to the dispensing tip attached to the nozzle flows.
  • the distance d from the bottom dead center of the distal end surface of the thick shaft portion of the plunger exceeds the length (d3) position along the axial direction of the thin shaft portion, and d (d3 ⁇ d0 ⁇ d1 ⁇ d ⁇ D ⁇ D0 ⁇ d1)
  • the thin shaft portion is extracted from the small diameter region, and the blocking between the large diameter region and the small diameter region by the thin shaft portion is released.
  • the small-diameter region and the large-diameter region communicate with each other, the gas sucked from the nozzle reaches the large-diameter region, and a large amount of liquid flows into the dispensing tip attached to the nozzle. Will do.
  • This section is a mass suction and discharge section from the position from the bottom dead center of the plunger to the length (d0-d1) to the position of the top dead center (D) of the stroke.
  • a stepping motor or the like is used as a driving source.
  • the plunger is reciprocated along the axial direction using, for example, a stepping motor as a suction / discharge driving unit described later. Switching between a large amount of suction / discharge section of the dispensing cylinder and a minute amount of suction / discharge section is performed by switching the stroke of the stepping motor.
  • a rod portion formed narrower than the thick shaft portion extends in the axial direction on the opposite side to the suction / discharge port, and a plunger hole provided at the end on the opposite side of the suction / discharge port
  • the plunger is driven so as to be able to reciprocate with a stroke designated by the stepping motor.
  • the rod portion is provided so as to slide with the plunger hole.
  • the seventh invention can also be established as an invention of a dispensing cylinder independent of a photometric dispensing device.
  • one or more container groups each having a reaction container, a liquid container, or a dispensing tip container, and a nozzle that is capable of sucking and discharging gas through the tip opening and to which a dispensing chip can be attached.
  • the dispensing tip mounted on the nozzle by moving along the suction direction enables a suction / discharge drive unit to simultaneously suck and discharge liquid into the container group, and at least the received light is digital
  • a light measuring device that converts the data into a meter, a photometric dispensing process control unit that controls a dispensing process or a photometric process for the nozzle moving mechanism, the suction / discharge drive unit, and the light measuring device
  • the nozzle includes a light guide end capable of receiving or irradiating light at the tip of the nozzle
  • each component can be limited by the description of the second to seventh inventions.
  • the nozzle, the dispensing cylinder, the suction / discharge channel, the light guide end, the light guide, the suction / discharge drive unit, and the light measuring instrument of the photometric dispensing nozzle unit are provided in the nozzle head.
  • the nozzle moving mechanism includes a nozzle head moving mechanism that allows the nozzle to move by moving the nozzle head.
  • the “light measuring device” enables, for example, measurement of fluorescence and chemiluminescence, and includes a photoelectric conversion unit including at least a light receiving element, a light receiving element array, a CCD image sensor, a CMOS image sensor, and the like. And an optical filter.
  • a photoelectric conversion unit including at least a light receiving element, a light receiving element array, a CCD image sensor, a CMOS image sensor, and the like.
  • an optical filter In the case of fluorescence, it has a light emitting element, a light emitting element array, and an optical filter as an irradiation source of one or more kinds of excitation light.
  • a “photoelectric conversion unit” is a device that uses a photoelectric effect, and includes a photoelectric element, for example, a photodiode, a phototransistor, and the like, and also a photomultiplier tube, an APD (avalanche photodiode), or the like. It also includes a photon counting sensor having a multiplication effect.
  • the optical measuring device includes, for example, a connecting end array in which connecting ends at the other ends of the one or more light guides are arranged along a predetermined path, and the connecting end and the measuring end of the measuring device. It is a photometric dispensing device having an array body moving mechanism that is sequentially connected by relatively moving along the predetermined path.
  • the connection end array and the array moving mechanism are provided in the nozzle head.
  • connection end array supplies the irradiation light to the irradiation end and determines the intensity of the light received by the light receiving end. Will be formed to obtain. That is, the optical measuring instrument has one or more light sources and one or more photoelectric conversion units.
  • connection end one or two or more first connection ends that are optically connected to one or two or more of the irradiation ends via a light guide for irradiation, and one or more of the light receptions.
  • One or two or more second connection ends that are optically connected to the end via the light receiving light guide are each arranged along a predetermined path.
  • one or more first measurement ends optically connected to the one or more light sources of the measuring instrument can be sequentially connected to the first connection ends of the connection end array.
  • one or more second measurement ends optically connected to the one or more photoelectric conversion units of the measuring device are sequentially connected to the second connection ends of the connection end array.
  • an array body moving mechanism that moves relatively along the predetermined path is provided. In that case, for example, the pair of the first measurement end and the second measurement end corresponding to the pair of the irradiation end and the light receiving end is arranged on the measurement end arrangement surface of the measurement end arrangement body arranged on the measurement end arrangement surface.
  • connection end arrangement surface of the connection end arrangement is arranged on the connection end arrangement surface of the connection end arrangement, and the arrangement
  • the moving mechanism moves the connection end array surface and the measurement end array surface relative to each other so as to come close (non-contact) or slide to correspond to the connection end pair and the measurement end pair.
  • connection or blocking between the irradiation end and the light source includes the light receiving end and the photoelectric conversion unit. Sometimes it is sequentially performed in conjunction with connection and disconnection.
  • the ninth invention relates to one or two or more sets of photometric dispensing nozzle units, wherein each of the nozzles and each of the dispensing cylinders are independently detachably attached and supported in parallel, and the suction discharge unit
  • the photometric dispensing device further includes a channel built-in support body in which a partial region of the channel is formed.
  • the “support with a built-in channel” corresponds to a support member with a built-in channel when the nozzle, the dispensing cylinder, and the suction / discharge channel are only one set.
  • the channel built-in support is provided in the nozzle head.
  • the nozzle has a nozzle horizontal hole provided through the side wall thereof, and the suction / discharge port is a cylinder horizontal hole provided through the side wall of the cylinder.
  • the partial region of the flow path is configured so as to face the nozzle horizontal hole of the nozzle attached to and supported by the flow path built-in support and the nozzle horizontal hole attached to the flow path built-in support.
  • It is a photometric dispensing apparatus which is a connecting flow path communicating with the cylinder lateral hole of the supported dispensing cylinder.
  • the connecting cylinder and the nozzle can be connected at the shortest distance by forming the connecting channel so as to extend linearly inside the channel built-in support.
  • the support with a built-in channel includes a support block with a built-in channel, and one or more sets of nozzle mounting vertical holes and cylinder mounting vertical holes formed in the channel built-in support block. And the connecting flow path formed inside the flow path built-in support block and communicating between the nozzle mounting vertical hole and the cylinder mounting vertical hole in each set,
  • the dispensing cylinder is mounted in close contact with the nozzle mounting vertical hole, and the dispensing cylinder is mounted in close contact with the cylinder mounting vertical hole, and the connection flow path is attached to the nozzle horizontal hole of the mounted nozzle.
  • the photometric dispensing device is provided so as to be able to communicate with the cylinder side hole of the dispensing cylinder.
  • the flow path support block of the flow path support body further includes a pressure sensor communicating with the tip opening of each nozzle, and the side wall of the nozzle is provided with the side wall.
  • a second nozzle horizontal hole is provided therethrough, and the pressure sensor communicates with each of the tip openings through the second nozzle horizontal hole, and the pressure sensor is independent of the flow path supporting block.
  • the photometric dispensing device further includes a pressure sensor mounting hole that is detachably mounted, and is formed with a pressure sensor flow path that connects the mounted pressure sensor and the second nozzle lateral hole.
  • the cavity of the dispensing cylinder has a large-diameter region having a large-diameter inner peripheral surface, and a small-diameter region having a small-diameter inner peripheral surface provided on the suction discharge port side of the large-diameter region.
  • the plunger has a thick shaft portion slidably provided in the large-diameter region, and protrudes along the axial direction from the tip surface of the thick shaft portion, and is slidable in the small-diameter region.
  • a thin-shaft portion is provided between the large-diameter region and the small-diameter region, and a floating region in which the thick-shaft portion can move along the axial direction is provided.
  • the photometric dispensing process control unit determines whether the predetermined amount is a minute amount or a large amount when there is an instruction to suck and discharge a predetermined amount of liquid to the dispensing tip, When the determination result is very small, the thin shaft portion of the plunger of the dispensing cylinder has a small diameter area. If the determination result is large, the thick shaft portion of the plunger moves within the large diameter region.
  • a photometric dispensing apparatus having a minute quantity / large quantity discrimination instructing means for instructing the suction / ejection drive unit to move within a slidable mass suction / discharge section and to move a moving distance corresponding to the predetermined quantity It is.
  • the thick shaft from the tip surface (or seal position) of the seal member of the thin shaft portion of the minute amount suction / discharge section is used. Length d3 along the axial direction to the tip surface of the part, the maximum minute amount determined from the cross-sectional area S2 of the small diameter region, that is, d3 ⁇ S2 as a threshold, if smaller than that, it is determined as a minute amount, If it is larger than that, it is determined as a large amount.
  • the minute quantity / large quantity discrimination instruction means is constituted by, for example, a CPU, a ROM, a RAM, various external memories, a communication function such as a LAN, a CPU + program + memory including a program stored in the ROM, and the like.
  • the dispensing tip can be attached to the nozzle, that is, the tip is accommodated with the mounting opening provided at the upper end of the large tube portion of the dispensing tip on the upper side and the mouth portion of the thin tube portion on the lower side. It is preferable that the nozzle is mounted by being lowered by the nozzle moving mechanism.
  • the nozzle moving mechanism includes, for example, a nozzle head moving mechanism that relatively moves the nozzle head along the Y axis, and a nozzle Z axis moving mechanism that moves the nozzle provided in the nozzle head in the Z axis direction. It is preferable to have. Note that “relative” indicates that the relationship is established in relation to other objects to be compared.
  • nozzle head moving mechanism and the nozzle Z-axis moving mechanism together correspond to the nozzle moving mechanism.
  • one or two or more container groups each having a reaction container, a liquid container, or a dispensing tip container can be sucked and discharged through the tip opening and can be equipped with a dispensing chip.
  • Nozzle a cylinder having a cavity inside, a dispensing cylinder provided with a plunger sliding inside the cavity and having a gas suction / discharge port, and the suction / discharge port and the tip opening through the nozzle
  • a removal step of removing the dispensing tip from the nozzle, and a light guide end provided on the
  • the nozzles and the dispensing cylinders are independently detachably attached and supported in parallel, and the suction discharges
  • a photometric dispensing process further comprising a nozzle unit mounting step in which a channel built-in support body in which a partial region of the flow channel is formed is provided, and the nozzle and the dispensing cylinder are mounted on the channel built-in support body Is the method.
  • the cavity of the dispensing cylinder has a large diameter region having a large diameter inner peripheral surface, and a small diameter having a small diameter inner peripheral surface provided on the suction discharge port side of the large diameter region.
  • the plunger has a thick shaft portion slidably provided in the large diameter region, and protrudes along the axial direction from the tip surface of the thick shaft portion, and is slidable in the small diameter region.
  • the thin shaft portion is provided, and between the large diameter region and the small diameter region, a floating region is provided in which the thick shaft portion can move along the axial direction.
  • a discriminating step that is provided so as to be positioned in the cavity at the tip of the small-diameter region and discriminates whether the predetermined amount is minute or large when there is an instruction to suck or discharge a predetermined amount of liquid to the dispensing tip.
  • the mounting step includes dispensing a minute amount based on the determination result.
  • a large-volume dispensing tip is mounted, and in the suction and discharge process, when the predetermined amount is determined to be a minute amount, the thin shaft portion of the plunger of the dispensing cylinder can slide in the small diameter region.
  • a minute amount suction and discharge step of sucking and discharging the minute amount of liquid to the dispensing tip by sliding within a minute amount suction and discharge section and sliding a distance corresponding to the predetermined amount, and the predetermined amount If it is determined that there is a large amount, the thick shaft portion of the plunger is positioned in a large-volume suction / discharge section that can slide in the large-diameter region, and the distance corresponding to the predetermined amount is slid.
  • This is a photometric dispensing process method including a large-scale suction / discharge step of sucking and discharging the large amount of liquid with respect to the pouring tip.
  • the dispensing process and the photometric process are common to both the processes such as the nozzle, the nozzle moving mechanism or the photometric dispensing process control unit. Therefore, the scale of the apparatus can be prevented from being increased, the structure can be simplified, the number of parts can be reduced, and highly efficient processing can be performed.
  • the light guide path passes through the nozzle, but does not pass through the dispensing cylinder, and is optically connected to the light guide end section. Therefore, the light guide end section and the light guide path connected thereto are provided. The structural influence on the suction / discharge operation of the dispensing cylinder and the structural influence of the dispensing cylinder on the light guide path can be reduced. Therefore, it is easy to change or improve the structure of the dispensing cylinder.
  • the dispensing cylinder and the nozzle are independently detachably attached to the flow path built-in support member or the flow path built-in support and are supported in parallel. Therefore, various nozzles according to the measurement contents, for example, chemiluminescence measurement, fluorescence measurement, etc., and appropriate combination of dispensing cylinders that match the volume to be processed, nozzles and dispensing cylinders are independent of each other. It can be easily attached by exchanging them, and a highly versatile process can be performed.
  • the dispensing cylinder is provided in parallel with the nozzle, the position of the plunger of the dispensing cylinder is not added to the height of the nozzle, so the height of the plunger drive unit and the scale of the device can be suppressed. it can.
  • a part of the flow path is built in the flow path built-in support member (body), and the nozzle and the dispensing cylinder are attached to the flow path built-in support member (body), so that they can communicate with each other at the same time. Therefore, it is easy to handle, and the two can be firmly connected including the flow path.
  • a nozzle horizontal hole is provided in the side wall of the said nozzle, a cylinder horizontal hole is provided in the side wall of the said dispensing cylinder, These are provided in the said flow-path built-in support member (body). Since the communication is made through the connection channel, the nozzle and the dispensing cylinder can be connected in a straight line with the shortest distance. Therefore, the dead volume in the flow path can be reduced, and a quick and highly accurate process with high responsiveness can be performed. In particular, a minute amount of liquid can be reliably sucked and discharged.
  • the cylinder for dispensing is provided in parallel with the nozzle so that the cylinder horizontal hole provided through the side wall of the cylinder for dispensing and the position of the nozzle horizontal hole provided in the nozzle are aligned and approached horizontally.
  • the cylinder lateral hole and the nozzle lateral hole can be communicated with each other through a connection flow path. Accordingly, since the dispensing cylinder and the nozzle can be communicated with each other at the shortest distance, it is possible to further reduce the dead volume of the flow path and perform a highly responsive suction / discharge process. In particular, a minute amount of liquid can be reliably sucked and discharged.
  • the nozzle and the dispensing cylinder are each provided with a horizontal hole, and the mounting vertical hole in which the channel built-in support member or the flow channel built-in support is closely attached.
  • the connecting flow path formed in the flow path built-in support member can be easily communicated and attached. Therefore, dispensing and photometry processing can be performed easily and reliably, and highly reliable photometry dispensing processing can be executed without imposing a burden on the user.
  • the fifth invention by providing a sealing member so as to sandwich a horizontal hole between the mounting vertical hole, the dispensing cylinder or the nozzle, the nozzle, the dispensing cylinder, and the suction / discharge channel Since the airtightness of the connection can be reliably maintained, highly accurate and highly efficient processing can be executed.
  • the nozzles and the dispensing cylinders are provided to each set of the nozzles and the dispensing cylinders via a flow path provided with a pressure sensor on the flow path support member (body). It is provided so as to be detachable independently of the cylinder. Therefore, it is easy to attach the pressure sensor, and the pressure sensor according to the processing purpose can be used, and the reactivity is high.
  • the thirteenth aspect or the sixteenth aspect a small amount of liquid and a large amount of liquid are divided in advance, and a small diameter region of a plunger having an inner diameter and an outer diameter suitable for the division, and A large-diameter region and a thin shaft portion and a thick shaft portion of a cylinder are provided, and when dispensing is instructed, one of the above categories is judged, and a more appropriate drive position along the axial direction of the plunger is indicated.
  • appropriate dispensing can be executed in both a minute amount and a large amount, and dispensing processing with high versatility and accuracy can be performed.
  • a single dispensing cylinder Using a single dispensing cylinder, a small amount of liquid can be sucked and discharged to the dispensing tip only by movement along the axial direction of the plunger, and a large amount of liquid is also sucked and discharged. be able to. Therefore, it is not necessary to prepare a plurality of types of dispensing cylinders corresponding to the amount of liquid and replace or replace them, and the dispensing process can be executed quickly and easily.
  • FIG. 1 is a perspective view of a photometric dispensing device according to a first embodiment of the present invention.
  • FIG. 3 is a partially transparent side view of the apparatus shown in FIG. 2. It is a top view of the apparatus shown in FIG.
  • FIG. 4 is a partially enlarged perspective view showing a main part of the nozzle head of FIGS. 2 and 3. It is a perspective view which removes and shows some components of FIG. It is a figure which shows the chip
  • FIG. 6 is a partial sectional perspective view of FIG. 5 and an enlarged sectional side view thereof. It is a cross-sectional perspective view which shows operation
  • FIG. 1 shows a block diagram of a photometric dispensing apparatus 100 according to the first embodiment using a photometric dispensing nozzle unit according to the first embodiment of the present invention.
  • Nozzles 11 1 to 11 n that can be mounted with dispensing tips 211 1 to 211 n for large quantities or dispensing tips 212 1 to 212 n for minute quantities, and that can receive or irradiate light at the tip , and
  • the n photometric dispensing nozzle units 10 1 to 10 n communicated with the nozzles 11 1 to 11 n and have at least the dispensing cylinders 12 1 to 12 n for sucking and discharging gas to the dispensing tips.
  • a nozzle head 50 provided with a nozzle head moving mechanism 51 that enables the nozzle head 50 to move relative to the container group 20 along, for example, the X-axis direction, and a CPU that performs various controls.
  • an operation panel 65 having an operation unit such as a touch panel.
  • the nozzles 11 1 to 11 n provided in each set of the photometric dispensing nozzle units 10 1 to 10 n have light guide end portions 32 1 capable of receiving or irradiating light at the tips of the nozzles 11 1 to 11 n.
  • 32 n, and light guide paths 31 1 to 31 n that pass through the nozzles 11 1 to 11 n and are optically connected to the light guide end portions 32 1 to 32 n , 12 1 to 12 n include a cylinder having a cavity inside, a plunger provided slidably in the cavity, and a dispensing cylinder 12 1 to 12 n having a suction / discharge port bored in the cylinder. a further through the nozzles 11 1 ⁇ 11 n, having a suction discharge passage communicating with said with said suction and discharge ports nozzles 11 1 ⁇ 11 n of the tip opening.
  • One or more sets of the nozzles 11 1 to 11 n and the dispensing cylinders 12 1 to 12 n are independently detachably attached to the nozzle head 50 and supported in parallel.
  • the dispensing tips 211 1 to 211 n and 212 1 to 212 n that are moved along the nozzles 11 1 to 11 n can simultaneously suck and discharge liquids to the container groups 20 1 to 20 n .
  • the dispensing tip 211 1 ⁇ 211 n, 212 1 ⁇ 212 n which is attached to the nozzle 11 1 ⁇ 11 n using the suction and discharge drive portion 53 and removable to A removal mechanism 59, the nozzle Z-axis moving mechanism 58 that can move the nozzles 11 1 ⁇ 11 n along the Z-axis direction, the pipette tip 211 1 ⁇ 211 n of mounting the magnets to the nozzle, 212 1 It has a magnetic part 57 that can exert a magnetic field in the dispensing tip by being provided so as to be capable of moving forward and backward with respect to ⁇ 212 n .
  • the nozzle head 50 further includes a light measuring device 40.
  • the light measuring device 40 is provided corresponding to the light guide end portions 32 1 to 32 n , and the light guide end portions 32 1 to 32 n are provided with tips thereof as light guide portions 31 1 to 31 n .
  • a predetermined path in this example, along the Y-axis direction in which a plurality (n in this example) of connection ends 34 1 to 34 n provided with the rear end of the optical fiber (bundle) are provided on a horizontal plane as an array surface.
  • connection end array 30 arranged and supported so as to be integrated at intervals narrower than the intervals between the light guide end portions 32 1 to 32 n , and m types (for example)
  • m is capable of receiving light of specific wavelengths or specific wavelength bands of fluorescent light, and m can be irradiated with excitation light of m specific wavelengths or specific wavelength bands to be emitted for light emission.
  • There are types of specific wavelength measuring devices 40 j (j 1,... M, hereinafter omitted).
  • the optical fibers (31 1 to 31 n ) are composed of an irradiation optical fiber (bundle) 35 and a light receiving optical fiber (bundle) 36, the connection ends 34 1 to 34 n are the rear ends.
  • connection end for irradiation
  • second connection end for light reception
  • the light guide end portions 32 1 to 32 n correspond to pairs of an illumination end and a light reception end, respectively.
  • Each specific wavelength measuring device 40 j is provided close to (in non-contact with) or in contact with the arrangement surface, and along each connection end 34 i and the predetermined path (a linear path along the Y-axis direction).
  • Measurement ends 44 j that can be sequentially connected to each other, and each measurement end 44 j has two first measurement ends 42 j and second array arranged along the Y-axis direction when the emission is fluorescence. It has a measuring end 43 j .
  • These measurement ends are arranged, for example, on a measurement end arrangement surface, and the first measurement end 42 j is optically connected to an irradiation source provided in each specific wavelength measuring device 40 j to perform the second measurement.
  • the end 43 j is optically connected to a photoelectric conversion unit such as a photomultiplier provided in the specific wavelength measuring device 40 j .
  • a photoelectric conversion unit such as a photomultiplier provided in the specific wavelength measuring device 40 j .
  • the luminescence is chemiluminescence or the like, it is sufficient that at least the second measurement end 43 j is provided.
  • the first connection end at the rear end of the irradiation optical fiber (bundle) 35 is arranged on the connection end array surface of the connection end array 30 so as to be connectable to the first measurement end 42 j
  • the second connection end at the rear end of the optical fiber (bundle) 36 is arranged on the connection end array surface of the connection end array 30 so as to be connectable to the second measurement end 43 j .
  • the nozzle head 50 sequentially includes the connection ends 34 i arranged on the connection end arrangement surface of the connection end arrangement body 30 and the measurement ends 44 j arranged on the measurement end arrangement surface.
  • the connection end array surface and the measurement end array surface are close to each other (non-contact) or slid so as to be connected, and the connection end array 30 is moved on the nozzle head 50 along the Y-axis direction.
  • An array body Y-axis moving mechanism 41 is provided as an array body moving mechanism to be moved.
  • the stage 20 is composed of a plurality (eight in this example) of container groups 20 i corresponding to the nozzles in which one nozzle enters and the other nozzles do not enter.
  • Each container group 20 i has a liquid storage unit group 27 i composed of a plurality of storage units that can store or store a reagent solution and the like, and one or more translucent members that are detachably attached to the nozzles.
  • the liquid storage unit group 27 i includes at least one liquid storage unit that stores at least a magnetic particle suspension, and two or more liquid storages that store a solution for separation and extraction used for separation and extraction of nucleic acids or fragments thereof. has a part, further amplification solution used for the amplification of nucleic acids, further sealing liquid for sealing the amplifying solution accommodated in PCR tubes 231 i as the reaction vessel to the PCR tubes in 231 i To accommodate.
  • n rows each container groups 20 1 ⁇ 20 n arranged in (like 8 rows in this example), four of the cartridge container 201 i ⁇ 204 i is loaded in tandem form
  • cartridge containers 205 to 207 containing three samples are loaded in parallel in the horizontal direction.
  • the nozzle head moving mechanism 51 includes a drive motor 51a attached to a pedestal on which the stage 20 is placed, a pulley 51b that is rotationally driven by the drive motor, and a pair of pulleys 51c.
  • a timing belt 51d that is stretched over the two pulleys 51b and 51c and can travel along the X-axis direction, and a leg 51e that is attached to the timing belt 51d and supports the frame 50a of the nozzle head 50.
  • the leg portion 51e is supported so as to be movable along the X-axis direction by, for example, a linear motion guide device 51f, and the lower side of the leg portion 51e is connected to the timing belt 51d.
  • a built-in support body 70 is attached to a cylinder mounting body 73.
  • the suction / discharge drive unit 53 is vertically engaged by screwing into the suction motor 53a attached to the mounting base 53e, the ball screw 53b rotated by the motor 53a, and the ball screw 53b.
  • a nut portion 53c that is movable in the direction, and a suction / discharge drive member 53d that is connected to the nut portion 53c and that can lift the plunger 12a of the dispensing cylinders 12 1 to 12 n .
  • the suction / discharge driving member 53d is formed with a hole or a gap that can be engaged with the flange 12t but is not in contact with the plunger 12a.
  • n (eight in this example) magnetic poles of permanent magnets are arranged in a line along the Y-axis direction as the magnetic force portion 57.
  • the nozzle Z-axis moving mechanism 58 is rotationally driven by a Z-axis driving motor 58a mounted on the frame 50a and the Z-axis driving motor 58a.
  • the Z-axis moving body 58d includes the suction motor 53a and the motor mounting base 53e, the cylinder mounting body 73 to which the dispensing cylinders 12 1 to 12 8 are mounted on the upper side, and the n groups (eight groups in this example).
  • the cartridge container 201 i 1,..., 8) includes four various chips, for example, a drilling chip, one large-volume dispensing chip 211 i , and two minute quantities.
  • a chip storage portion 21 i for storing a dispensing tip is provided, a liquid storage portion 27 i for storing eight extraction reagents and the like in the cartridge container 202 i , and a reaction container 23 i that can be set to a constant temperature state,
  • a liquid container that contains a product that can be set to a constant temperature is provided, and the cartridge container 203 i is provided with three liquid containers 27 i that contain a reagent for amplification, and the cartridge container 204 i.
  • the cartridge containers 205 and 206 are provided with a sample tube 26 i for storing a sample, and the cartridge container 207 stores a residual liquid.
  • the nozzle head 50, the measuring device 40, the m types specific wavelength measuring device 40 1 ⁇ 40 m of (six in this example) (m 8 in this example), the measuring portion 44 1-44 m (6 in this example, one is hidden by the connection end array 30) is attached to the nozzle head frame 50a so as to be arranged along the Y-axis direction on the upper side.
  • each of the connection ends 34 1 to 34 n includes the first connection end as the rear end of the irradiation optical fiber 35 and the second connection end as the rear end of the light receiving optical fiber 36.
  • the ends 44 1 to 44 m each include a first measuring end 42 i and a second measuring end 43 i , and the first measuring end 42 i is optically connected to the excitation light irradiation source, and
  • the second connection end 43i can be sequentially connected to the first connection end, and the second measurement end 43i is optically connected to the photoelectric conversion unit and can be sequentially connected to the second connection end in the Y-axis direction. It is arranged in a line along.
  • FIG. 5 is a main part of the nozzle head 50 of the photometric dispensing device 100 shown in FIGS. 2 and 3, and the cylinder mounting of the flow path built-in support body 70 attached to the Z-axis moving body 58d.
  • Body 73 and flow path support block 76, n sets (n 8) of nozzles 11 1 to 11 n attached thereto , dispensing cylinders 12 1 to 12 n , and pressure sensors 13 1 to 13 n ,
  • the chip removal mechanism 59 is shown.
  • the pressure sensor 13 1 to 13 n is communicated with the nozzles 11 1 to 11 n via a pipe line 72a communicating with the flow path provided therein.
  • the pressure sensors 13 1 to 13 n are connected to a pressure sensor substrate 13 a attached to the cylinder mounting body 73.
  • the chip removal mechanism 59 has two suction movement members 53d that can be moved downward by being pressed when the suction / discharge drive member 53d of the suction / discharge drive section 53 further descends beyond the suction / discharge section.
  • the injection pins 59b and 59b are connected to the lower end of the injection pin 59b and are provided below the flow path built-in support block 76, and surround the nozzles 11 1 to 11 n and move along the axial direction.
  • a tip removing member provided with a hole having an inner diameter smaller than the largest outer diameter of each of the dispensing tips 211 1 to 211 n and 212 1 to 212 n , which is larger than the nozzles 11 1 to 11 n. 59a.
  • the tip removal mechanism 59 is provided at the upper end of the injection pin 59b and is formed so as to surround the head 59d pressed by the suction / discharge driving member 53d and the injection pin 59b, and One end is attached to the body 73, and the other end has a spring 59c that reaches the head portion 59d and biases the head portion 59d upward.
  • FIG. 6 clearly shows the flow path built-in support 70 including the cylinder mounting body 73 shown in FIG. 5.
  • These dispensing cylinder 12 1 ⁇ 12 n are mounted on the cylinder mounting member 73 by the ring-shaped screw 12v.
  • Two vertical holes 59e are further provided at both ends at positions protruding in the distance X-axis direction.
  • the injection pin 59b is provided through the vertical hole 59e.
  • the nozzles 11 1 to 11 n are inserted into the channel built-in support 70 from the lower side and screwed with ring-shaped screws 11g to be attached in a row of n pieces (
  • FIG. 7 shows the structure of the nozzles 11 1 to 11 8 included in the photometric dispensing nozzle units 10 1 to 10 n .
  • a ring screw 11r for attaching the nozzle 11 to the support 70 by screwing is provided.
  • the tip 11q of the nozzle 11 can be mounted by fitting the mounting openings of the dispensing tips 211 and 212, and a nozzle lateral hole 11c is drilled through a side wall where a close contact surface is formed.
  • O-rings 11k and 11l provided so as to surround the axis along the outer periphery so as to sandwich the nozzle horizontal hole 11c vertically.
  • the optical system unit 11p includes a rod lens as the light guide end portion 32 i provided at the tip thereof, an irradiation optical fiber 35 optically connected to the rod lens (32 i ) and an end surface thereof, and a light receiving unit.
  • a lens retainer tube 11g which is fitted and attached to the retainer tube fitting portion 11f and holds the lens (32 i ) therein, and an outer peripheral surface of the cylindrical ferrule unit 11u are cut out along the axial direction. And a notch surface 11e formed as described above.
  • connection end array 30 is Y-connected so as to be optically connectable to the second measurement end 43 j and the first measurement end 42 j , respectively. They are arranged in a line along the axial direction (see FIGS. 4 and 10).
  • the outer peripheral surface of the ferrule units 11u flange 11v is provided, wherein the nozzle body such that the ferrule unit 11u by screws 11w screwed with the screw hole 11s bored in the nozzle body 11b does not move in the nozzle 11 i 11b is fixed.
  • FIG. 8 shows a cross section when a lower end 12d (described later) of the dispensing cylinder 12 is removed.
  • the dispensing cylinder 12 is provided with a cylinder 12b having a cavity (12c, 12r, 12q, 12p) inside, and a cylinder lateral hole 12e as a gas suction / discharge port at the lower end of the cylinder 12b.
  • min screwing said cylinder 12b from the lower side is inserted into the cylinder mounting vertical hole 75 8, inserted from the upper side of the cylinder mounting vertical hole 75 8 of the flow path internal support block 76 and attaching a note cylinder 12 8 in the flow path internal support block 76 the lower end 12d (see FIG.
  • a plunge having a flange 12t outside the cylinder 12b and engaged with a suction / discharge driving member 53d (see FIG. 9) driven by a stepping motor or the like.
  • a 12a
  • the cavity (12c, 12r, 12q, 12p) provided in the cylinder 12b is provided on the large-diameter region 12p having a large-diameter inner peripheral surface, and a small-diameter provided on the gas suction and discharge port side of the large-diameter region.
  • a small-diameter region 12c having an inner peripheral surface, and a large-diameter inner diameter larger than the large diameter between the large-diameter region 12p and the small-diameter region 12c, and the thick shaft portion 12h slides
  • the floating region 12q is not formed, and these regions are formed coaxially.
  • the cavity 12r is a portion to which the lower end 12d is inserted and attached (see FIG. 10).
  • the plunger 12a passes through an opening 12u provided at the other end of the cylinder 12b and is coaxial with the cavity provided along the axial direction of the cavity (12c, 12r, 12q, 12p) of the cylinder 12b.
  • a thick shaft portion 12h provided so as to be slidable in the large diameter region 12p, and projecting along the axial direction from the tip surface of the thick shaft portion 12h, and provided so as to be slidable in the small diameter region 12c.
  • a thin shaft portion 12f is provided so as to be slidable in the small diameter region 12c.
  • the sealing member 12 g (packing, etc.) is provided on the inner peripheral surface of the upper end portion of the small-diameter region 12c along the circumferential direction, the thick shaft A seal member 12k is also provided on the outer peripheral surface of the portion 12h along the circumferential direction. Further, inside the dispensing cylinder 12, one end is attached to an annular groove 121 formed in the upper end surface of the large diameter region 12p, and the other end is a plunger so as to stretch the thick shaft portion 12h. A coiled spring 12s wound around 12a is provided.
  • the thick shaft portion 12h is pressed against the step at the boundary between the small diameter region 12c, which is the bottom dead center, and the floating region 12q (FIG. 8A).
  • the step is provided so as to project inward in the downward direction.
  • FIG. 8B shows a state where the plunger 12a is pulled up, the thin shaft portion 12f passes through the small diameter region 12c, and the thick shaft portion 12h slides with the large diameter region 12p.
  • the length along the axial direction from the tip surface of the thin shaft portion 12f to the tip surface of the thick shaft portion is d3, and the length from the tip surface of the thick shaft portion 12h to the sealing position by the seal member 12k.
  • Figure 9 shows the operation with showing in detail the suction and discharge drive portion 53 and the tip removing mechanism 59 with respect to the dispensing cylinder 12 8 of the metering dispensing nozzle unit 108.
  • FIG. 9 (a) is shows a state in which the plunger 12a of the dispensing cylinder 12 8 is at the bottom dead center of its stroke, the suction and discharge driving member 53d of the suction and discharge drive portion 53 the plunger 12a It is not engaged with the flange 12t, and is located below the flange 12t.
  • the position of the suction / discharge drive member 53d is above the head portion 59d of the injection pin 59b of the chip removal mechanism 59 and is not in contact with the head portion 59d. Therefore, the chip removing member 59a is located above the front end portion 11q of the nozzle 11 8 because it is urged upward by a spring 59c.
  • FIG. 9C shows a state in which the suction / discharge driving member 53d is lowered further than the position of FIG. 9A. Then, the engagement of the plunger 12a with the flange 12t is released and the plunger 12a remains at its bottom dead center, but the suction / discharge drive member 53d pushes down the head 59d of the tip removal mechanism 59, and accordingly the injected pin 59b and pushes down the tip removing member 59a in its bottom, comprising a dispensing tip 211 8, 212 8 which should be attached to the distal end 11q of the nozzle 11 to be removed from the nozzle 11 .
  • Dispensing cylinder 12 8 inside the cavity (12c, 12q, 12p) and a cylinder 12b having, attached to the lower end of the cylinder 12b, from the lower side of the flow path internal support block 76 wherein is inserted into the cylinder mounting vertical hole 75 8, the cylinder mounting longitudinal hole 75 8 the passage internal support block inserted the cylinder 12b screwed dispensing cylinder 12 8 by the upper
  • the lower end 12d attached to 76 and the inside of the cavity (12c, 12r, 12q, 12p) are provided so as to be slidable along the axial direction, and are outside the cylinder 12b and driven by a stepping motor or the like.
  • a plunger 12a having a flange 12t engaged with the suction / discharge driving member 53d.
  • the cavities (12c, 12q, 12p) are provided on the large-diameter region 12p having a large-diameter inner peripheral surface and the small-diameter inner peripheral surface provided on the side of the cylinder lateral hole 12e as the suction / discharge port of the large-diameter region 12p.
  • the small-diameter region 12c having Here, a small diameter region 12c is formed in the lower end portion 12d, and a cylinder lateral hole 12e as the suction / discharge port is formed below the small diameter region 12c.
  • sealing member 12o is provided in the opening edge portion of the flow path internal support cylinder mounting longitudinal bore 75 1 to 75 8 of the block 76.
  • the nozzle 11 8 is inserted from below into the nozzle fitting vertical hole 74 8 of the channel built support 70, attached by a ring-shaped screw 11g, therefore, the dispensing cylinder 12 8 and the nozzle 11 8 is a detachable independently, so that are supported in parallel.
  • Nozzle horizontal hole 11c of the contact surface of the nozzle body 11b of the mounted the nozzle 11 8 are formed side wall as the vent holes provided to penetrate is formed in the interior of the flow path internal support block 76 and through the connecting channel 71 8 communicating with the cylinder lateral hole 12e as the suction and discharge ports.
  • the second nozzle lateral hole 11 d provided so as to penetrate the side wall at a position facing the nozzle lateral hole 11 c is a pressure sensor provided in the flow path built-in support block 76. passage 72 8 and the pressure sensor 13 8 communicates with the connecting portion 72b to be mounted.
  • the notch surface 11e provided so as to be notched on the outer peripheral surface of the ferrule unit 11u is an axis line extending from the tip side to the position beyond the nozzle horizontal hole 11c and not exceeding the length of the nozzle body 11b. It is formed to extend along the direction. Further, even on the opposite side to the axis, a similar notch surface is located at a position exceeding the second nozzle lateral hole 11d corresponding to the vent hole and not exceeding the length of the nozzle body 11b. It is formed so as to extend along the axial direction.
  • the gaps sandwiched between the respective notch surfaces 11e and the inner peripheral surface of the nozzle body 11b communicate with the nozzle lateral holes 11c and the second nozzle lateral holes 11d, respectively,
  • the lens holding tube 11g communicates with a clearance that is surrounded by the outer peripheral surface of the nozzle body 11b and the inner peripheral surface of the nozzle body 11b, and thus communicates with the tip opening 11a.
  • This gap corresponds to the gap portion, therefore, communicated from the distal end opening portion 11a, the gaps in the nozzle body 11b, up to the cylinder horizontal hole 12e as the nozzle lateral hole 11c, connecting channel 71 8 and suction and discharge ports to the channel corresponds to suction and discharge flow path, so that a part region of the connecting channel 71 8 that is provided inside of the flow path internal support block 76.
  • these lateral holes 11c and 11d are sandwiched between the O-rings 11k and 11l in the vertical direction to prevent gas leakage between the fitting surfaces and improve airtightness.
  • the nozzle 11 8 inside between the mating face of the ferrule units 11u to insert has been fitted gas leakage to be for the prevention of O- ring 11h is provided along the inner peripheral surface of the nozzle body 11b Yes.
  • the outer peripheral surface of a ferrule unit or the like as a light guide end fixing member to be inserted inside is cut along the axial direction or the radial direction instead of processing the nozzle body. Since it can be formed by processing so as to lack, formation and fixing of the flow path are easy.
  • FIG. 11 shows the operation of the dispensing cylinder 12 8 according to the present embodiment.
  • FIG. 11A and FIG. 11B show a suction operation for a minute amount of liquid.
  • the tip end surface of the thick shaft portion 12h is located at the lowermost end of the floating region 12q which is the bottom dead center of the thick shaft portion 12h, that is, at the boundary with the small diameter region 12c. Accordingly, the thin shaft portion 12f is inserted into the small diameter region 12c. In this state, the tips of the dispensing tips 211 and 212 attached to the nozzle 11 are inserted into the container in which the liquid is stored.
  • the stroke of the thick shaft portion 12h (or plunger 12a) is D
  • the distance along the axial direction from the bottom dead center of the distal end surface of the thick shaft portion 12h (or plunger 12a) is d
  • the sealing member of the thin shaft portion 12f Assuming that the length along the axial direction of (the member that seals gas) is d3, the length d0 along the axial direction of the floating region 12q is the sealing position of the sealing member from the tip surface of the thick shaft portion 12h.
  • the length is equal to or greater than the sum of the lengths d1 and d3 along the axial direction.
  • a cavity 12r at the lower end of the cylinder 12b is a portion to which the lower end 12d is attached by screwing.
  • FIG. 12 is a diagram for explaining the operation of the photometric dispensing nozzle units 10 1 to 10 n .
  • 12 (a) is, suction of the liquid reagent or the like of small amounts wearing the dispensing tips 212 8 minute amount for min at the tip portion 11q of the nozzle 11 with respect to the liquid containing portion 27 8 of the container group 20 8 It shows the state of the metering dispensing nozzle unit 108 for performing a discharge.
  • the plunger 12a as thin shaft portion 12f slides the small diameter area 12c is located very small amount suction and discharge sections.
  • FIG. 12 (b) by mounting the dispensing tips 211 8 mass for partial to the tip portion 11q of the nozzle 11, suction and discharge of liquid such as a large amount of the reagent to the liquid containing portion 27 8 of the container group 20 8 metering dispensing state of the nozzle unit 108 for performing shown.
  • the plunger 12a is positioned mass suction and discharge sections.
  • FIG. 12 (c) after the dispensing tip from the tip portion 11q of the nozzle 11 8 was removed using the chip removing member 59a, it is connected to the nozzle tip 11q to the opening of the reaction vessel 23 8 or sealed The optical state in the reaction vessel is detected by connecting through a lid.
  • the dispensing cylinder 120 is provided with a cylinder 120b having a cavity (120r, 120p) inside, and a cylinder lateral hole 120e at the lower end of the cylinder 120b as a gas suction / discharge port, is inserted from the lower side of the flow path internal support block 76 to the cylinder attachment longitudinal hole 75 8, by threaded engagement with the cylinder 120b inserted from the upper side of the cylinder mounting vertical hole 75 8, wherein a lower end portion 12d for attaching the dispensing cylinder 120 8 in the flow path internal support block 76 (see FIG.
  • the cavity (120r, 120p) provided in the cylinder 120b is a cavity 120r into which the large-diameter region 120p having a large-diameter inner peripheral surface and the lower end portion 12d are inserted and attached (see FIG. 10).
  • the plunger 120a has a thick shaft portion 120h that is slidably provided in the large diameter region 120p of the cylinder 120b through an opening 120u provided at the other end of the cylinder 120b.
  • Reference numeral 120k denotes a sealing member provided on the outer peripheral surface of the thick shaft portion 120h along the circumferential direction.
  • FIGS. 13A and 13B show a state where the plunger 120a is pulled up and the thick shaft portion 120h slides with the large diameter region 120p.
  • FIG. 13A shows the outer shape of the dispensing cylinder 120, which is the same as the outer shape of the dispensing cylinder 12.
  • step S1 the cartridge containers 205 and 206 that store the specimen to be tested in the stage 20, the cartridge container 207 that can store the remaining liquid, the cartridge container 201 i that stores various chips, various cleaning liquids for nucleic acid extraction, A cartridge container 202 i prepacked with various reagents, a cartridge container 203 i prepacked with a nucleic acid amplification reagent, and a cartridge container 204 having a PCR tube for nucleic acid amplification as a reaction container 23 i and containing a sealing lid 25 i is loaded. Further, the eight sets of photometric dispensing nozzle units 10 i are attached to the flow channel built-in support block 76. In step S2, the operation panel 65 is instructed to start separation and extraction processing and amplification processing by touching
  • step S3 the extraction control unit 62 provided in the CPU + program + memory 60 as the photometric dispensing process control unit of the photometric dispensing apparatus 100 instructs the nozzle head moving mechanism 51 to perform the nozzle head 50.
  • the move in the Y-axis direction the by positioning the appropriate chips accommodating portion 21 i of the cartridge container 201 i of each container groups 20 i, mounted drilling tip nozzle 11 by the nozzle Z-axis moving mechanism 58 Let Further, the nozzle head 50 is moved in the Y-axis direction so that the piercing tip is positioned above the first liquid storage part of the liquid storage part group 27 i of the container group, and the nozzle is moved by the nozzle Z-axis moving mechanism 58.
  • the film covering the opening of the liquid storage part is perforated, and similarly, the nozzle head 50 is moved in the X-axis direction, and the other liquid storage parts of the liquid storage part group 27 i and The reaction vessel group 23 i is also sequentially drilled, and the drilling tip is detached from the tip storage portion 21 i by the tip removal mechanism 59.
  • step S4 said nozzle head 50 is moved again in the X-axis direction, is moved to the chip or the like containing portion 21 i, a large amount for partial lowers the each nozzle 11 i by the nozzle Z-axis moving mechanism 58 Insert the tip 211 i .
  • the dispensing tip 211 i is moved along the X-axis by the nozzle head moving mechanism 51, and the eighth of the liquid containing portion group 27 i is moved.
  • each binding buffer solution containing portion 27 i as a separate extraction solution (NaCl, SDS, isopropanol) is 500 [mu] L
  • the cleaning liquid 1 (NaCl, SDS, isopropanol) is 700 [mu] L
  • the cleaning liquid 2 (50% water, isopropanol 50%) is 700 [mu] L Will be prepared.
  • the minute amount / large amount determination instruction means 64 determines that the predetermined amount is large, and the thick shaft portion 12h is placed in the large amount suction / discharge section.
  • the large-diameter region 12p is slid at a distance D corresponding to a predetermined amount.
  • step S5 after moving to a sample tube 26 i housed the specimen by using said nozzle Z-axis moving mechanism 58, the dispensing tip 211 i lowered by inserting the small diameter portion 211 i a of the the suspension of samples accommodated in the sample tube 26 i by raising and lowering the suction and discharge driving member 53d of the suction and discharge drive portion 53, suspending the specimen in the liquid by repeating suction and discharge After that, the sample suspension is sucked into the dispensing tip 211 i .
  • the specimen suspension is moved by the nozzle head moving mechanism 51 to the first liquid storage part of the liquid storage part group 27 i in which Lysis 1 (enzyme) as a solution for separation and extraction is stored along the X axis. by, the dispensing by inserting the small diameter portion 211 i a chip 211 i repeat suction and discharge to agitate and said Lysis 1 and the sample suspension through the pores of the perforated films.
  • step S6 the reaction vessel the whole amount of the stirred liquid, consisting of the dispensing tip 211 i by suction and each reaction tube held in the housing hole that is set to 12 ° C. by the temperature controller 29 Incubate in 23 i .
  • the protein contained in the specimen is destroyed to reduce the molecular weight.
  • step S7 the binding buffer solution as a separation extraction solution contained in the third liquid storage section 27 i, by stirring and the reaction solution was further allowed to dehydrate the protein solubilized, nucleic acid or Disperse the fragments in the solution.
  • step S8 the dispensing tip 211 that the small-diameter portion to the liquid storage portion in 27 i of the third with i inserted through the hole of the film, the nozzle Z-axis moving mechanism to suck the whole amount raising the dispensing tips 211 i by 58, the reaction solution was transferred to a fourth liquid storage portion 27 i, the magnetic particle suspension contained in the fourth liquid storage section 27 i And the reaction solution are stirred.
  • a cation structure is formed in which Na + ions are bonded to hydroxyl groups formed on the surfaces of the magnetic particles contained in the magnetic particle suspension. Therefore, negatively charged DNA is captured by the magnetic particles.
  • step S9 the magnetic particles to the inner wall of the pipette tip 211 i dispensing tips 211 i small-diameter portion 211 i a of the magnet 571 of the magnetic unit 57 be brought close to the small diameter portion 211 i a of Adsorb.
  • the magnetic particles in a state of being adsorbed to the inner wall of the small-diameter portion 211 i a of dispensing tips 211 i, is raised by the nozzle Z-axis moving mechanism 58, the dispensing tip using the nozzle head moving mechanism 51 the 211 i moves from the liquid containing portion 27 i of the fourth to the fifth liquid storage portion 27 i, through the hole of the film inserting the small-diameter portion 211 i a.
  • step S10 inserted through the hole of the film using the pipette tip 211 i nozzle Z-axis moving mechanism 58 to the small-diameter portion 211 i a of.
  • the liquid containing portion of the sixth by repeating the suction and discharge for 27 i are accommodated in the cleaning liquid 2 (isopropanol), wherein the magnetic particles are stirred in the liquid to remove the NaCl and SDS, wash the protein.
  • step S11 by the nozzle Z-axis moving mechanism 58, the dispensing tip 211 i the small-diameter portion 211 i a is lowered through the holes in the small-diameter portion 211 i of the magnetic force the pipette tip 211 i In the state of being applied to a, by repeatedly sucking and discharging the distilled water at a slow flow rate, the cleaning liquid 2 (isopropanol) is replaced with water and removed.
  • the cleaning liquid 2 isopropanol
  • the nozzle head moving mechanism 51 is moved to the housing portion of the dispensing tip 211 i has been accommodated in the dispensing tip 211 i the chips accommodating portion group 21 i, the removing member 591 of the tip removing mechanism 59
  • the dispensing tip 211 i that has adsorbed the magnetic particles from the nozzle 11 i is desorbed together with the magnetic particles into the container.
  • step S12 based on said instruction from the nucleic acid amplification control unit 63, the small amount, mass determination indicated by the for new small quantity dispensing tip 212 i to the nozzle 11 i from the instructing means 64 of the nozzle head moving mechanism 51 and using the nozzle Z-axis moving mechanism 58 is mounted, said eighth solution containing a liquid accommodating section 27 i nucleic housed or the like by suction a small amount, pre-amplification solution is accommodated the reaction It transfers to the PCR tube as the container 23i, discharges, and introduce
  • step S13 desorbing the nozzle head moving mechanism 51, the small amount dispensing tip 212i mounted on the nozzle 11 i by the nozzle Z-axis moving mechanism 58 and the tip removing mechanism 58 to the chip or the like accommodating portion 21 i .
  • the nozzle head 50 is moved by the nozzle head moving mechanism 51, and the nozzle 11 i is moved above the sealing lid housing portion as the chip housing portion 21 i for housing the sealing lid 25 i of the container group 20. Move.
  • the nozzle Z-axis moving mechanism 58 is lowered to fit the recess 258 i on the upper side of the sealing lid 25 i by fitting it to the tip portion 11 q of the nozzle 11 i .
  • the sealing lid 25 i After being raised by the nozzle Z-axis moving mechanism 58, the sealing lid 25 i is positioned on the PCR tube (23 i ) using the nozzle head moving mechanism 51, and the nozzle Z-axis moving mechanism 58 The sealing lid 25 i is lowered and fitted into the opening of the PCR tube 231 i to be mounted and sealed.
  • step S14 by the photometry control unit 61 instructs the nozzle head moving mechanism 51, by moving along the nozzle head 50 in the X-axis, the nozzle 11 i, the sealing lid 25 i is mounted was positioned above the PCR tubes (23 i), by lowering by the Z-axis moving mechanism 58, and the distal end portion 11q of the nozzle 11 is mounted to the sealing lid 25 i the recess of the lower end portion 11q is brought into contact with or in close contact with the bottom of the recess.
  • step S15 the temperature controller 29 heats the cycle of temperature control by real-time PCR, for example, the PCR tube (23 i ) at 96 ° C. for 5 seconds in accordance with an instruction from the nucleic acid amplification control unit 63.
  • a cycle of heating at 15 ° C. for 15 seconds is instructed to be repeated 49 times, for example.
  • step S16 when the temperature control in each cycle is started by the nucleic acid amplification control unit 63, the photometry control unit 61 determines the start of the extension reaction step in each cycle, and the connection end array 30 is changed. A continuous or intermittent movement is instructed to each measurement end 44j of the measuring device 40. The moving speed is moved at a speed calculated based on the stable light receiving time, the fluorescence lifetime, and the number of each container group 20 i (eight in this example). As a result, the light reception from all the eight PCR tubes (23 i ) within the stable light receivable time is completed.
  • the “stable light receiving time” is a time during which the optical state capable of receiving light in the reaction container is stably maintained.
  • a real-time PCR intercalation method For example, a real-time PCR intercalation method, LUX method or hybridization
  • this corresponds to the time during which the extension reaction of each cycle of PCR is performed.
  • the time for annealing is equivalent to this.
  • step S17 the photometry control unit 61, for example, the nozzle 11 i of the first measurement end of the optical fiber (bundle) 31 i and the measurement end 44 (irradiation opening of the excitation light), a second measuring portion (emission The measuring device 40 is instructed to receive light by determining the moment of each optical connection to the light entrance.
  • the photometry control unit 61 can perform a clear measurement by heating a heater provided in each container group 20 i to prevent condensation of the sealing lid 25.
  • FIG. 14 shows an experimental example showing the performance of the photometric dispensing apparatus according to the present embodiment.
  • the experiment was performed at a room temperature of 20.9 ° C. and a humidity of 31%.
  • 10 ⁇ L, 20 ⁇ L, and 25 ⁇ L of distilled water were sucked from a weight-measured tube, and another 1.5 mL
  • the amount of suction when dispensing into a container of a volume is set to the weight of the weight-measured tube before dispensing and the weight after suction using the eight photometric dispensing nozzle units for five types of solutions.
  • the weight of the measured tube is measured, and the difference is measured as the suction amount.
  • the coefficient of variation of this photometric dispensing device is sufficiently greater than the coefficient of variation of other applicants' dispensing devices (eg, 10% or less for 10 ⁇ L, 3% or less for 25 ⁇ L, 1.5% or less for 200 ⁇ L). It was shown to be small and reliable in dispensing.
  • the coefficient of variation (CV) is measured, and it is shown that the coefficient of variation is small and the reliability is high.
  • the variation coefficient and the like of the dispensed amount for each lane are simultaneously measured.
  • FIG. 16 shows three sets of fluorescent (FITC yellow-green) solutions contained in two prepared containers using six photometric dispensing nozzle units (lanes 1 to 6) of the photometric dispensing apparatus 100 (lanes 1 to 6).
  • the results of fluorescence measurement for 20 ⁇ L of the fluorescent solution diluted in 0.1, 0.05, 0.025) are shown (lanes 1 to 3 ⁇ operation 1, lanes 4 to 6 ⁇ operation 2).
  • the measurement result is a table of the peak value of fluorescence (a) (digital value obtained by the photoelectric conversion unit), raw data (b) obtained when measured by the measuring device 40 (connection end array 30 And obtained calibration curve (c). From these measurement results, it is shown that the amount of fluorescence corresponding to the concentration can be obtained with high accuracy.
  • the light guide end of the photometric dispensing nozzle unit only the case where both the irradiation end and the light receiving end are provided in the nozzle unit has been described, but only one of the irradiation end or the light receiving end is provided. Also good.
  • the other is outside the photometric dispensing nozzle unit and / or outside the dispensing tip attached to the nozzle, and the tip opening of the nozzle or the mouth of the dispensing tip is positioned above it.
  • a possible location for example a stage. Further, it is below the transparent bottom of the container placed on the stage.
  • a vertical common axis in which both the irradiation end and the light receiving end pass through the mouth portion and the attachment opening portion of the dispensing tip attached to the nozzle It is preferable to be positioned so as to be positioned on the line.
  • the present invention relates to a photometric dispensing nozzle unit, a photometric dispensing apparatus, and a photometric dispensing processing method, and performs inspection, optical measurement, and recording of a sample collected from a patient or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本発明は測光分注ノズルユニット、測光分注装置、および測光分注処理方法であって、装置規模の拡大を防止し、構造が簡単で扱いやすい測光分注ノズルユニット、測光分注装置、および測光分注処理方法を提供することを目的とする。 先端開口部を通して気体の吸引吐出が行われかつ分注チップが装着可能なノズルと、該ノズルに設けられ、該ノズルの先端で光の受光または照射可能な導光端部と、内部に空洞を有するシリンダ、該空洞内を摺動可能に設けられたプランジャ、および気体の吸引吐出が行われる吸引吐出口を有する分注用シリンダと、該ノズルを通り、該吸引吐出口と前記ノズルの先端開口部と連通する吸引吐出用流路と、前記分注用シリンダを経由せずに前記ノズルを通って前記導光端部と光学的に接続される導光路と、を有するように構成する。

Description

測光分注ノズルユニット、測光分注装置、および測光分注処理方法
 本発明は、測光分注ノズルユニット、測光分注装置、および測光分注処理方法に関し、詳しくは、容器に収容した検体、試薬溶液等の対象をノズルに装着した分注チップを用いて吸引し吐出することで分注、撹拌、移動等の処理を可能とするとともに、容器に収容した前記対象について光学的な測定をも可能とする測光分注ノズルユニット、測光分注装置および測光分注処理方法に関する。
 近年、検体の分析を行うための装置として、本出願人により提案されたMagtration(登録商標)テクノロジーに基づき、分注チップ内に磁場の印加を可能とするように分注装置に磁力手段を組み込んだ磁力機能付分注装置を用いて、検体、種々の試薬等を収容する複数の容器からなる容器群に対して、該容器内に先端が挿入可能な使い捨ての分注チップを着脱可能にノズルに装着し、該容器内に分注チップの先端を挿入させて、気体の吸引吐出機構を用いて液体試料を所定量吸引して貯留しかつ吐出可能とすることで試料の分注、配合等を行い、かつ磁性担体および前記磁力手段を用いて、サンプル内から目的物質を磁性担体に捕獲して分注チップの内壁に吸着させてその分離および抽出を行っていた。
 また、本出願人は、該磁力機能付分注装置にさらに光測定装置を組み込んだ装置を提供して、サンプルに含まれる目的物質の抽出から、標識化した目的物質の光学的測定または検出までを一貫して行うことを可能とした。
 しかしながら、従来の装置にあっては、サンプルからの目的物質の抽出を行う分注装置の部分と、抽出した目的物質を標識化して光測定を行う光測定装置とは、ほぼ独立して動作する機構や部品が各々設けられており、装置全体としては装置規模が拡大しかつ構造が複雑化するおそれがあった。
 また、従来では、サンプルから核酸等の目的物質を抽出し、抽出した目的物質をPCR等により増幅し、その際に蛍光等の測定までを一貫して行う場合には、分注する液の量に大きな差があるために、種々の容量の分注用シリンダを用意したり、または液量の相違により分注装置を交換する必要があり、やはり装置規模が増大し、部品点数が増え、また、処理が複雑化し、さらには処理時間がかかるおそれがあった。
 例えば、サンプルから核酸を抽出して、核酸の塩基配列を決定する処理を行う場合には、核酸の抽出処理には、大量、例えば1000μL程度の液量が使用されるのに対して、核酸の増幅処理には、微小量、例えば5μL程度の液量が使用されるにすぎない。
 したがって、例えば、0.5~1000μLの広い範囲の分注量に対応することが必要とされており、従来にあっては、大量用のシリンダ装置を用いて微小量の処理も兼用して行うか、分注用シリンダを交換可能とし、シリンダの内径及びピストン部材の外径が異なる2種類のシリンダ部材であって、小径の内径のシリンダおよび小径のピストン部材よりなり、例えば、0.5μL~30μLの微小量のシリンダと、大径の内径のシリンダおよび大径のピストン部材よりなり、例えば、20μL~1000μLの大量のシリンダとを交換して用いる場合があった。
 さらには、1のシリンダで微小量にも大量にも対応する機構のシリンダを用いて微小量および大量の処理を行っていた。
 そのため、大量用のシリンダを用いて微小量の処理も兼用して行う場合には、微小量について高い精度を得ることができないおそれがあった。また、分注用シリンダを交換して用いる場合には、高い精度を得ることができるとしても、ユーザに大きな負担をかけるとともに、分注処理が中断されて効率かつ迅速な処理を行うことができないおそれがあった。
 一方、微小量にも大量にも対応する機構のシリンダを用いて微小量および大量の処理を行う場合には、プランジャおよびシリンダの全長が大きくなり、したがって、装置規模が大きくなってユーザによる取り扱いが難しくなり、また、機構が複雑化して、製造の手間がかかり、高価となるおそれがあるという問題点を有していた。
 すると、光の測定と液体の吸引吐出の双方を行うことができるようにノズルと分注用シリンダとを一体的に形成した場合には、液量の相違および測定の内容によって各種のノズルユニットを用意する必要があり、取り扱いが煩雑になるおそれがあった。
WO97/44671 WO2012/157685A1 特開2013-250191号公報 特開2011-163771号公報 特開平6-94584号公報 特開2005-249521号公報 特開平9-29111号公報
 そこで、本発明は、以上の問題点を解決するためになされたものであり、その第1の目的は、分注処理のみならず測光処理を共通のノズルを用いて可能とすることで、装置規模の拡大および部品点数の増大を抑制し、構造が簡単でコンパクトで安価な測光分注ノズルユニット、測光分注装置、および測光分注処理方法を提供することである。
 その第2の目的は、共通のノズルを用いて、微小量および大量のいずれの液体の分注処理をも可能とすることができる汎用性の高い測光分注ノズルユニット、測光分注装置、および測光分注処理方法を提供することである。
 その第3の目的は、ユーザにとって、分注ノズルユニットや分注用シリンダの交換が容易で扱いやすい測光分注ノズルユニット、測光分注装置、および測光分注処理方法を提供することである。
 第1の発明は、先端開口部を通して気体の吸引吐出が行われかつ分注チップが装着可能なノズルと、該ノズルに設けられ、該ノズルの先端で光の受光または照射可能な導光端部と、内部に空洞を有するシリンダ、該空洞内を摺動可能に設けられたプランジャ、および気体の吸引吐出が行われる吸引吐出口を有する分注用シリンダと、該ノズルを通り、該吸引吐出口と前記ノズルの先端開口部とを連通する吸引吐出用流路と、前記分注用シリンダを経由せずに前記ノズルを通って前記導光端部と光学的に接続された導光路と、を有する測光分注ノズルユニットである。
 ここで、「分注チップ」は、例えば、太管部と、細管部と、該太管部と該細管部とを連通する移行部とからなり、前記太管部には、前記ノズルの下端に嵌合して前記ノズルに装着される装着用開口部を有し、前記細管部には、前記吸引吐出機構による気体の吸引吐出によって液体が流入および流出可能な先端口部とを有するのが好ましい。該分注チップおよびノズルは、例えば、ポリプロピレン、ポリスチレン、ポリエステル、アクリル等の樹脂等の有機物、ガラス、セラミックス、ステンレススチール等の金属、金属化合物、半導体等の無機物によって製造される。
 「導光端部」は、前記導光路の一端であって、測光対象側の端部である。該導光路の他端は光測定器側の端部である。導光端部は、光を照射する場合(この場合を特に「照射端」という)、光を受光する場合(この場合を特に「受光端」という)およびその両者を行う場合(この場合を特に「照射端と受光端の対」という)がある。該導光路と光学的に接続されるレンズを有する場合がある。「導光路」は、透光性を有する導光可能な光学系部材であって、例えば、光ファイバ(束)等の透光性のある長尺状部材であって可撓性を有するのが好ましい。導光路には、照射用光ファイバまたは受光用光ファイバまたはこれらの両者を含有する場合がある。「流路」は、気体が流れる通路であって、例えば、孔、溝、隙間、管路、管、凹部を含む。「ノズル」は、内部に軸線方向に沿った孔が設けられ、前記先端開口部と連通している。該ノズルは、例えば、略筒状、さらには略円筒状であることが好ましく、該ノズルの「先端」面と「後端」面は、該軸線方向に沿って対向するように設けられるのが好ましい。
 「吸引吐出口」は、前記分注用シリンダのプランジャの行程の下死点における該プランジャの先端よりも先、または、シリンダの空洞内を摺動して吸引吐出が行われる吸引吐出区間より先の空洞部分に位置するように設けられるのが好ましい。後述するように吸引吐出口は、分注用シリンダの側壁に穿設されるのが好ましい。
 なお、該ノズルには、前記先端開口部の他に該先端開口部と連通する通気孔がさらに設けられている。前記測光分注ノズルユニットは、例えば、前記ノズルの前記孔は軸線方向に沿った貫通孔であって、該貫通孔内に挿入かつ嵌合可能で該導光路端を内部に固定して設けた導光路端固定部材(後述するフェルールユニット等)をさらに有し、前記吸引吐出用流路は、前記先端開口部および前記通気孔と連通するように前記ノズルの外側面と前記導光路端固定部材の外面との間に形成されたノズル内流路を有し、前記導光端部は、該導光路端固定部材の内部に設けられまたはその先端に取り付けられて前記ノズルと非接触に形成されるのが好ましい。これによって、前記導光路と前記吸引吐出用流路とが互いに接触することがない。この場合には、前記導光端部が先端開口部の中央を占め、その周りを先端開口部が占めることになるので、光学的測定を確実に行うことができることになる。
 また、前記ノズル内流路として、前記ノズルの前記貫通孔の内壁面と前記導光路端固定部材の外面との間の間隙部を設けることによって該導光路端固定部材の外面の加工、例えば、切削等によって吸引吐出用流路を容易に形成することができる。なお、前記導光端部は前記「導光路端」を含有し、該導光路端自体の場合の他、該導光路端とそれに光学的に接続するロッドレンズ等の光学系を含む場合がある。なお、ノズル内流路、すなわち、前記ノズルの外側面と前記導光路端固定部材の外面とで挟まれた領域を通る流路としては、その他、例えば、該流路の少なくとも一部領域が、前記ノズルの側壁内に形成した流路またはノズルの内壁面を削って設けた隙間、凹部または溝等があり得る。
 この場合、前記「吸引吐出用流路」は、全体としては吸引吐出口、前記通気孔、該吸引吐出口と前記通気孔とを接続して連通する連結流路、前記間隙部および前記先端開口部を、接続かつ連通する流路である。導光路は、通常ノズルと同軸にその上部に設けられる分注用シリンダを通るように設けるのではなく、「前記分注用シリンダを経由せずに前記ノズルを通って前記導光端部と光学的に接続される」ことになる。
 第2の発明は、前記ノズルおよび前記分注用シリンダが各々独立して着脱可能に取り付けられて並列に支持されかつ前記吸引吐出用流路の一部領域が内部に形成された流路内蔵支持部材をさらに有する測光分注ノズルユニットである。
 前記導光路は該筒状のノズルの軸線方向に沿って延びる一方、前記吸引吐出用流路は、該ノズルの軸線方向から逸れるのが好ましい。これによって、導光の阻害が小さく、光ファイバ等からなる導光路の劣化を防止することができる。そのため、ノズルと分注用シリンダを並列に設けている。これによって、ノズルに装着した分注チップの先端から分注用シリンダのプランジャの後端までの長さを直列に設けた場合に比較して抑制し、装置規模の拡大を防止することができる。特に、導光端部や導光路を内部に設けることで軸方向に伸長させたノズルや、種々の容量に対応するためにやはり軸方向に伸長させた分注用シリンダを組み合わせる場合に対して特に有効である。
 「吸引吐出用流路の一部領域」とは、例えば、前記ノズルの外部であって前記分注用シリンダの外部に設けられた部分であり、前記ノズル内部または前記分注用リシンダ内部に設けられた部分は除かれる。
 「ノズルおよび分注用シリンダを独立して着脱可能に取り付けられ並列に支持する」ので、分注用シリンダのみを交換することまたはノズルのみを交換することが可能である。
 「並列」は、前記ノズルの軸線および前記分注用シリンダの軸線が互いを貫通することなく所定距離離れて平行に設けられている場合である。「取付け」には、螺合、嵌合、それらの組合せによる場合がある。本発明によれば、前記ノズルおよび分注用シリンダが独立して取り付け可能である流路内蔵支持部材を設けることによって、分注用シリンダを処理目的に応じた液量を取り扱うことができる最適の種類のものと交換することができて汎用性がある。また、該流路内蔵支持部材に前記吸引吐出用流路の一部領域が内部に形成されているので、前記ノズル、分注用シリンダのみならず、吸引吐出用流路についても支持することになり、該測光分注ノズルユニットを確実に支持して剛性を高めることができる。また、該ノズル、分注用シリンダの該流路内蔵支持部材への取り付けによって、ノズル内に形成された流路、分注用シリンダ内の空洞および該一部領域が同時に連通して前記吸引吐出用流路が完成することが好ましい。
 なお、前記流路内蔵支持部材に設けられた一部領域は、前記ノズルおよび前記分注用シリンダの取り付けと同時に、該通気孔および前記吸引吐出口と接続して連通する前記連結流路が設けられていることになる。
 第3の発明は、前記ノズルは、その側壁を貫いて設けられたノズル横孔を有し、前記吸引吐出口は前記シリンダの側壁を貫いて設けられたシリンダ横孔であり、前記吸引吐出用流路の前記一部領域は、前記流路内蔵支持部材に取り付けられた前記ノズルの前記ノズル横孔と、該流路内蔵支持部材に取り付けられた前記分注用シリンダの前記シリンダ横孔との間を連通するように形成された連結流路を有する測光分注ノズルユニットである。
 ここで、前記シリンダ横孔は、分注用シリンダの下端部分の側壁であって、さらには、該分注用シリンダのプランジャの行程の下死点における該プランジャの先端よりも下側にある空洞部分の側壁に設けるのが好ましい。また、ノズル横孔は前記通気孔に相当することになる。
 この場合、前記間隙部として、前記ノズルの前記貫通孔の内壁面と、前記先端開口部および前記ノズル横孔と連通するように前記導光路端固定部材の外面の一部を前記ノズル横孔位置を含み先端方向に向かい軸方向に沿って切り欠くように形成された平面または曲面と、で囲まれ前記先端開口部において外部に開口する間隙を設けるのが好ましい。その場合、前記導光路端固定部材の外面の一部が外周方向に沿って切り欠くように形成された曲面または平面を含むことがある。
 本発明によれば、連結流路が流路内蔵支持部材に設けられていて、前記ノズルおよび分注用シリンダとともに確実に支持されているので堅固に形成されていることになる。また、連結流路を直線状に形成して最短距離で連通することができるので、デッドボリュームを削減して、応答性の高い処理を行うことができることになる。
 第4の発明は、前記流路内蔵支持部材は、流路内蔵支持ブロックと、該流路内蔵支持ブロックに穿設されたノズル取付用縦孔およびシリンダ取付用縦孔と、該流路内蔵支持ブロックの内部に形成され前記ノズル取付用縦孔およびシリンダ取付用縦孔との間を連通する前記連結流路とを有し、前記ノズルは、該ノズル取付用縦孔に密接して取り付けられ、前記分注用シリンダは、該シリンダ取付用縦孔に密接して取り付けられ、前記連結流路は、取り付けられた前記ノズルのノズル横孔と、取り付けられた前記分注用シリンダの前記シリンダ横孔と連通する測光分注ノズルユニットである。
 この場合、前記連結流路は、直線状かつ水平に形成することができるので、前記ノズルと前記分注用シリンダとの間を最短距離で連通することになり、流路内のデッドボリュームを削減して応答性の高い吸引吐出処理を行うことができることになる。なお、前記ノズル取付用縦孔はノズルが下側から密接し、前記シリンダ取付用縦孔は分注用シリンダを上側から密接するようにして、取り付けやすくしている。
 第5の発明は、前記ノズルと前記ノズル取付用縦孔との間の各密接面のいずれか、および前記分注用シリンダと前記シリンダ取付用縦孔との間の各密接面のいずれかには、前記シリンダ横孔および前記ノズル横孔を各々上下位置で挟むようにシール部材が各密接面を上下に仕切るように設けられた測光分注ノズルユニットである。
 これによって、前記連結流路と、該連結流路以外の前記吸引吐出用流路部分との間を高い気密性を確保した状態で接続することができることになる。前記ノズル、前記ノズル取付用縦孔、分注用シリンダおよびシリンダ取付用縦孔が上下方向に沿った軸線を有する場合には、各軸線を囲むようにシール部材が設けられることになる。なお、第2のノズル横孔が設けられている場合には、ノズル横孔および第2のノズル横孔をも上下位置で挟むようにシール部材が設けられるのが好ましい。
 また、前記導光路端固定部材の外面と前記ノズルの内壁面との間の嵌合部分であって、前記ノズル横孔の上側には、前記外面または内壁面のいずれかにはその嵌合面を仕切るように前記軸線を囲むシール部材が設けられるのが好ましい。これによって、ノズルの後端の開口部に対する気密性を確保することができる。
 ここで、シール部材には後述するように、O-リング、D-リング、Xパッキン、Yパッキン等を含む。「O-リング」、「D-リング」、「Xパッキン」、「Yパッキン」とは、各々断面がO字状、D字状、X字状、Y字状のリング状部材であって、内周面または外周面に周方向に沿って形成された溝内(例えば、O-リング、D-リング)または溝なしに設けられ、弾性体や金属等で形成されたリング状の気体や液体を封止するための部材である。内周面に設けられる場合には、半径方向に圧縮力を生じさせるように設け、円柱体の外周面に設けられる場合には、半径方向に膨張力を生じさせるように設ける。
 また、前記吸引吐出用流路は、前記導光路端固定部材の外面と前記ノズルの内壁面との間に挟まれた領域を通るように形成されるのが好ましい。
 第6の発明は、前記ノズルの前記先端開口部と連通する圧力センサをさらに有し、前記ノズルの前記側壁には、該側壁を貫いて第2のノズル横孔が設けられ、該圧力センサは、該第2のノズル横孔を介して前記先端開口部と連通し、前記流路内蔵支持部材の流路内蔵支持ブロックには、前記圧力センサが独立して着脱可能に取り付けられる圧力センサ取付孔がさらに設けられ、かつ取り付けられた前記圧力センサと前記第2のノズル横孔とを連通する圧力センサ用流路が形成される測光分注ノズルユニットである。
 この場合、前記第2のノズル横孔が前記ノズル横孔と同様シール部材に挟まれる領域に設けられることによって、圧力センサ用流路と前記ノズルとの接続について高い気密性を確保することができることになる。
 第7の発明は、前記分注用シリンダの前記空洞は、大径の内周面を有する大径領域、および前記大径領域の前記吸引吐出口側に設けられ小径の内周面を有する小径領域を有し、前記プランジャは、前記大径領域を摺動可能に設けられた太軸部、および該太軸部の先端面から前記軸線方向に沿って突出しかつ前記小径領域を摺動可能に設けられた細軸部を有し、前記大径領域と前記小径領域との間には、前記太軸部が前記軸線方向に沿って遊動可能な遊動領域を設け、前記吸引吐出口は、前記小径領域の先の空洞に位置するように設けられた測光分注ノズルユニットである。
 ここで、「大径」は「小径」よりも大きな径をいい、該太軸部と該細軸部は1のプランジャに形成されている。大径領域、小径領域は好ましくは円筒状であり、太軸部および細軸部は好ましくは円柱状であり、これらは同軸に形成される。
 また、「太軸」は「細軸」よりも太い軸を表す。プランジャの行程、すなわち、太軸部の行程は、該太軸部が上下運動を行うときの上死点(太軸部の上限の位置)と下死点(太軸部の下限の位置)との間の軸線方向に沿った距離(以下、「D」とする)をいい、前記細軸部の軸線方向の長さは前記プランジャの行程よりも短く形成され、前記下死点から、遊動領域および大径領域の軸線方向に沿った全長(以下、「D0」とする)とは必ずしも一致しない。なぜならば、太軸部の厚み(d1)があるからである。「軸線」とは、前記空洞等を貫いて延びる「中心軸線」または「対称軸線」である。
 ここで、前記太軸部の下死点から太軸部の先端面までの軸線方向に沿った移動距離をd(d≦D≦D0-d1)、前記小径領域およびその先の前記吸引吐出口の位置までの空洞の前記軸線に沿った長さの和をd2とする。ここで、プランジャの内、小径領域に挿入可能な部分は、たとえ摺動しなくても細軸部に含めることがある。プランジャの内、小径領域に挿入不能で、大径領域に挿入可能な部分はたとえ摺動しなくても太軸部に含めることがある。前記細軸部の先端はノズルから飛び出してはならないので、細軸部の長さはd2よりも短くなければならない。また、太軸部の先端面の下死点からの距離をdとした場合、細軸部についても、細軸部の下死点からの距離もdである。すると、太軸部が下死点に位置する場合には、細軸部についてもその下死点に位置する。一方、太軸部と同様、微小量として最も液量が大きいのは小径領域の上端である。
 ここで、「遊動領域」とは、前記太軸部(したがって前記細軸部とも)によってシール状態が生じない領域であって、全周に渡って前記大径よりも大きい極大径の内径を有する内周面をもつ極大径領域(全周遊動領域)、または一部遊動領域であって、例えば、軸線方向に沿った溝が該領域の内周面に形成されている領域である。この領域ではシール部材(気体をシールする機能、すなわち気密機能を有する部材、例えば、O-リング、D-リング、Xパッキン、Yパッキン等)が機能しない。なお、ここでは、「(ある領域を)遊動可能」とは、(その領域から受ける抵抗が)摺動する場合に受ける抵抗よりも小さい抵抗で移動可能であることをいう。より具体的には、例えば、太軸部が遊動領域を移動する際に遊動領域から受ける抵抗が、細軸部が小径領域を摺動する際に小径領域から受ける抵抗(これは太軸部が大径領域を摺動する際に大径領域から受ける抵抗よりも小さいと考えらえる)と比べて小さい(0を含む)ような場合である。
 したがって、シール部材は、前記大径領域または小径領域の各内周面において周方向に沿って軸線を囲むように設ける場合の他、前記太軸部または細軸部の外周面において周方向に沿って軸線を囲むように設ける場合がある。すなわち、シール部材は、(1) 細軸部および太軸部に設ける場合、(2) 小径領域および太軸部に設ける場合、(3) 細軸部および大径領域に設ける場合、(4) 小径領域および大径領域に設ける場合のいずれかであれば足りる。
 (1) の場合には、該遊動領域の軸線方向に沿った長さ(d0)は、シール部材の軸方向に沿った幅が無視できるほど小さいとすると(以下同じ)、太軸部の先端面から太軸部のシール部材のシール位置までの軸線方向に沿った長さ(d1)と、太軸部の先端面から細軸部の前記シール部材のシール位置までの軸線方向に沿った長さ(d3)との和よりも大きい長さを有することが必要である。すなわち、d0≧d1+d3である。
 (2) の場合には、該遊動領域の軸線方向に沿った長さ(d0)は、前記遊動領域の下端から小径領域の前記シール部材のシール位置までの距離をd4とし、細軸部の摺動部分の軸線方向に沿った長さをd3とし、太軸部の先端面からシール部材のシール位置までの距離をd1とすると、d0+d4≧d1+d3である。なお、図8(b)にあっては、近似的にd4=0と考えると、軸方向について最短の長さの遊動領域として、ほぼd0=d1+d3となる。
 (3) の場合には、該遊動領域の軸線方向に沿った長さ(d0)は、前記遊動領域の上端から大径領域の前記シール部材のシール位置までの距離をd5とし、太軸部の摺動部分の軸線方向に沿った長さをd1とし、太軸部の先端面から細軸部のシール部材によるシール位置までの距離をd3とすると、d0+d5≧d1+d3となる。
 (4) の場合には、該遊動領域の軸線方向に沿った長さ(d0)は、前記遊動領域の上端から大径領域の前記シール位置までの距離をd5とし、遊動領域の下端から小径領域のシール位置までの距離をd4とし、太軸部の摺動部分の軸線方向に沿った長さをd1とし、細軸部の摺動部分の軸線方向に沿った長さをd3とすると、d0+d4+d5≧d1+d3ということになる。
 したがって、前記細軸部が前記小径領域内を摺動する際には、該太軸部が前記遊動領域内を軸線方向に沿って遊動または一部遊動することになる。これによって、前記細軸部が前記小径領域を摺動する間における遊動領域と太軸部と細軸部で囲まれた領域内での真空化によるプランジャに対する駆動力の増大を防止してプランジャの円滑な駆動を実現することができる。
 また、細軸部が前記小径領域から抜出された状態でさらに太軸部の摺動により吸引を可能とするには、前記プランジャの行程(D)は、前記長さ(d3)よりも長くなければならない。したがって、d2>d3、d>d0>d3の関係式の条件が要求されていることになる。この場合、大量吸引吐出区間では、(d-d0)×S1(大径断面積)に相当する気体が大径領域に吸引され、それに応じた大量の液体が分注チップ内に吸引されることになる。一方、微小量吸引吐出区間では、0≦d≦d3<d0であって、d×S2(小径断面積)に相当する気体が吸引可能であり、それに応じて微小量の液体が前記分注チップ内に吸引されることになる。
 前記大径領域にあっては、円筒状であって前記大径は、例えば6mm~15mm、好ましくは 10mmで、大径領域の長さは、例えば10mm~50mm、好ましくは30mmであり、したがって、その容量は、約200μL~約8500μLである。
 前記小径領域にあっては、筒状であって前記小径は、例えば1mm~3mm、好ましくは例えば1.5mmで、細軸部のシール部材の先端面(またはシール位置)から太軸部の先端面までの軸線方向の長さ(d3)は、例えば3mm~30mmであり、好ましくは、例えば15.3mmであり、したがって、その容量は、約2μL~約200μLである。後述するように、この量が閾値に相当するとすれば、微小量としては、この容量以下ということになり、好ましくは、例えば約26.5μL以下である。すると大量とは、例えば、約27μL~約2000μLである。該分注用シリンダの素材は、ガラス、金属、樹脂等であって、例えば、ポリスチレン、ポリエステル、ポリプロピレン(P.P)等である。
 本発明にあっては、前記プランジャの太軸部の先端面が下死点の位置から、距離d(d≦d3<d0)だけ該プランジャを軸線方向に沿って上昇させると、前記太軸部のそのシール部材は前記遊動領域内を上昇する。それまでの移動の間、前記細軸部は前記小径領域を大径領域との間の連通を遮断した状態を維持するので、ノズルから吸引された気体は、前記小径領域内に留まることになる。したがって、前記ノズルに装着された分注チップ内にそれに相当する微小量の液体が流入することになる。この位置からプランジャを前記d(≦d3)だけ下降させて下死点に戻れば、吸引した気体が前記ノズルから吐出され、ノズルに装着された分注チップ内に吸引された微小量の液体が流出されることになる。これが微小量の液体の吸引吐出が可能となる理由である。
 一方、前記プランジャの太軸部の先端面の下死点からの距離dが前記細軸部の軸線方向に沿った長さ(d3)位置を越えて、d(d3<d0-d1<d≦D≦D0-d1) にまで軸線方向に沿って上昇させると、前記細軸部は前記小径領域から抜出され、前記細軸部による前記大径領域と前記小径領域との間の遮断が解除され、前記小径領域と前記大径領域とが連通し、大径領域内にノズルから吸引された気体が大径領域にまで達し、前記ノズルに装着された分注チップ内に大量の液体が流入することになる。この位置d=Dまで達した後、前記プランジャを下死点にまで下降させると、前記(D-d0)×S1に相当する気体を前記小径領域を通してノズルから吐出させ、大量の液体の吸引吐出が可能となる。
 すなわち、前記プランジャの下死点から、前記細軸部のシール部材の先端面(またはシール位置)から太軸部の先端面までの軸線方向の長さ(d3)の位置までが微小量吸引吐出区間であり、前記プランジャの下死点から前記長さ(d0-d1)までの位置から、前記行程の上死点(D)の位置までが大量吸引吐出区間となる。
 該分注用シリンダを駆動するには、駆動源としてステッピングモータ等を用いる。使用時には、前記プランジャは、後述する吸引吐出駆動部として、例えばステッピングモータ等を用いて前記軸線方向に沿って往復運動が行われる。分注用シリンダの大量の吸引吐出区間と、微小量の吸引吐出区間との切換は、前記ステッピングモータのストロークを切り換えることによって行われる。なお、前記太軸部には該太軸部よりも細く形成されたロッド部分が軸線方向に沿って吸引吐出口と反対側に延び、吸引吐出口の反対側の端に設けたプランジャ用孔部から外部に飛び出すように設けられ、該プランジャは、前記ステッピングモータによって指定されたストロークで往復運動可能となるように駆動されている。該ロッド部分は前記プランジャ用孔部と摺動するように設けられている。
 この場合、前記大径領域と前記極大径領域との境には、該空洞の内壁面を仕切るように、吸引吐出口方向に向かって、外側方向に突設した少なくとも1の段差または先太りの傾斜面が内壁面に形成されている。この場合、前記太軸部は、プランジャの下死点の位置において、前記極大径領域と小径領域との間に設けられた段差または傾斜面と密接するように形成され、その位置では前述したように前記細軸部の全体が前記小径領域内に挿入されていることになる。なお、第7の発明は、分注用シリンダの発明として、測光分注装置とは独立なものとしても成立し得るものである。
 第8の発明は、反応容器、液収容部または分注チップ収容部を各々有する1または2以上の容器群と、先端開口部を通して気体の吸引吐出が行われかつ分注チップが装着可能なノズル、内部に空洞を有するシリンダおよび該空洞内を摺動するプランジャが設けられ気体の吸引吐出口を有する分注用シリンダ、および前記ノズルを通り該吸引吐出口と前記先端開口部とを連通する吸引吐出用流路を有する1または2以上の測光分注ノズルユニットと、前記ノズルを前記容器群に対して相対的に移動可能とするノズル移動機構と、前記分注用シリンダの前記プランジャを上下方向に沿って移動させて前記ノズルに装着した前記分注チップが前記容器群に一斉に液体の吸引吐出を可能とする吸引吐出駆動部と、少なくとも受光した光をディジタルデータに変換する光測定器と、前記ノズル移動機構、前記吸引吐出駆動部、および前記光測定器に対して、分注処理または測光処理を制御する測光分注処理制御部とを有し、前記ノズルは、該ノズルの先端で光の受光または照射可能な導光端部、および前記分注用シリンダを経由せずに前記ノズルを通って該導光端部と光学的に接続される導光路を有し、前記光測定器は、前記導光路と光学的に接続される測光分注装置である。
 ここで、第2の発明から第7の発明の記載により、各構成要素を限定することが可能である。また、前記測光分注ノズルユニットが有するノズル、分注用シリンダおよび吸引吐出用流路、導光端部、導光路、吸引吐出駆動部、光測定器はノズルヘッドに設けるのが好ましい。その際、ノズル移動機構には、ノズルヘッドを移動することによってノズルを移動可能とするノズルヘッド移動機構を含有することが好ましい。
 「光測定器」は、例えば、蛍光、化学発光の測定を可能にするものであって、少なくとも受光素子、受光素子アレイ、CCDイメージセンサ、CMOSイメージセンサ等の撮像センサを含有する光電変換部を有し、また光フィルタを有する。蛍光の場合には、1または2以上の種類の励起光の照射源としての発光素子、発光素子アレイ、また光フィルタを有する。「光電変換部」とは、光電効果を利用した装置であって、光電素子、例えば、フォトダイオード、フォトトランジスタ等を含有し、さらに、光電子増倍管、APD(アバランシェ・フォトダイオード)のような増倍効果を有するフォトンカウンティングセンサ等も含有する。
 なお、前記光測定器としては、例えば前記1または2以上の導光路の他端の接続端が所定経路に沿って配列された接続端配列体と、前記接続端と測定器の測定端とを前記所定経路に沿って相対的に移動させることで順次接続させる配列体移動機構を有する測光分注装置である。ここで、該接続端配列体と配列体移動機構は、前記ノズルヘッドに設けるのが好ましい。
 もし、前記導光端部として照射端と受光端の対が設けられた場合には、前記接続端配列体は、照射端に照射用の光を供給し前記受光端で受光した光の強度を得るように形成されることになる。すなわち、光測定器は、1または2以上の光源および1または2以上の光電変換部を有することになる。その場合、前記接続端としては、1または2以上の前記照射端と照射用導光路を介して光学的に接続される1または2以上の第1の接続端、および1または2以上の前記受光端と受光用導光路を介して光学的に接続される1または2以上の第2の接続端が各々所定の経路に沿って配列される。また、前記測定器の前記1または2以上の光源と光学的に接続された1または2以上の第1の測定端が、前記接続端配列体の前記第1の接続端と順次接続可能であり、かつ、前記測定器の前記1または2以上の光電変換部と光学的に接続された1または2以上の第2の測定端が、前記接続端配列体の前記第2の接続端と順次接続可能となるように、前記所定経路に沿って相対的に移動させる配列体移動機構を有することになる。その場合、例えば、前記照射端および受光端の対に相当する前記第1の測定端と第2の測定端の対は、測定端配列面に配列された測定端配列体の測定端配列面に配列され、同様に、前記照射端および受光端の対に相当する該前記第1の接続端および第2の接続端の対は前記接続端配列体の接続端配列面に配列され、前記配列体移動機構は、該接続端配列面と該測定端配列面とが近接(非接触)してまたは摺動するように相対的に移動させて、前記接続端対および前記測定端対に属する対応する各要素同士の同時の接続または遮断を可能にして、前記測光分注処理制御部の測光制御部からの指示に基づいて、1対または2対以上の前記照射端および受光端の対ごとに、前記照射端と前記光源との接続または遮断が、前記受光端と前記光電変換部との接続および遮断と連動して順次行なわれることがある。
 第9の発明は、1または2以上の組の測光分注ノズルユニットについて、前記各ノズルおよび前記各分注用シリンダが独立して着脱可能に取り付けられて並列に支持され、かつ前記吸引吐出用流路の一部領域が内部に形成された流路内蔵支持体をさらに有する測光分注装置である。
 ここで、「流路内蔵支持体」は、ノズル、分注用シリンダおよび吸引吐出用流路が1組のみの場合には、流路内蔵支持部材に相当する。また、流路内蔵支持体は、前記ノズルヘッドに設けられることになる。
 第10の発明は、前記ノズルは、その側壁を貫いて設けられたノズル横孔を有し、前記吸引吐出口は前記シリンダの側壁を貫いて設けられたシリンダ横孔であり、前記吸引吐出用流路の前記一部領域は、前記流路内蔵支持体に取り付けられて支持された前記ノズルの前記ノズル横孔と、該流路内蔵支持体に取り付けられて前記ノズル横孔に対向するように支持された前記分注用シリンダの前記シリンダ横孔との間を連通する連結流路である測光分注装置である。
 ここで、前記連結流路を前記流路内蔵支持体の内部に直線状に延びるように形成することで最短距離で前記分注用シリンダとノズルを結ぶことができる。
 第11の発明は、前記流路内蔵支持体は、流路内蔵支持ブロックと、該流路内蔵支持ブロックに穿設された1または2以上の組のノズル取付用縦孔およびシリンダ取付用縦孔と、該流路内蔵支持ブロックの内部に形成され、各組において前記ノズル取付用縦孔および前記シリンダ取付用縦孔との間を連通する前記連結流路とを有し、前記ノズルは、前記ノズル取付用縦孔に密接して取り付けられ、前記分注用シリンダは、該シリンダ取付用縦孔に密接して取り付けられ、前記連結流路は、取り付けられた前記ノズルのノズル横孔と、取り付けられた前記分注用シリンダの前記シリンダ横孔と連通可能に設けられた測光分注装置である。
 第12の発明は、前記流路内蔵支持体の流路内蔵支持ブロックには、前記各ノズルの前記先端開口部と連通する圧力センサをさらに有し、前記ノズルの前記側壁には、該側壁を貫いて第2のノズル横孔が設けられ、該圧力センサは、該第2のノズル横孔を介して前記各先端開口部と連通し、前記流路内蔵支持ブロックには、前記圧力センサが独立して着脱可能に取り付けられる圧力センサ取付孔がさらに設けられ、かつ取り付けられた圧力センサと前記第2のノズル横孔とを連通する圧力センサ用流路が形成された測光分注装置である。
 第13の発明は、前記分注用シリンダの空洞は、大径の内周面を有する大径領域、および前記大径領域の前記吸引吐出口側に設けられ小径の内周面を有する小径領域を有し、前記プランジャは前記大径領域を摺動可能に設けられた太軸部、および該太軸部の先端面から前記軸線方向に沿って突出しかつ前記小径領域を摺動可能に設けられた細軸部を有し、前記大径領域と前記小径領域との間には、前記太軸部が前記軸線方向に沿って遊動可能な遊動領域を設け、前記吸引吐出口は前記小径領域の先の空洞に位置し、前記測光分注処理制御部は、前記分注チップに対する所定量の液体の吸引吐出の指示があった場合に、該所定量が微小量か大量かを判別し、該判別結果が微小量の場合には、前記分注用シリンダのプランジャの細軸部が小径領域内を摺動可能な微小量吸引吐出区間内に位置させて前記所定量に応じた移動距離を移動させ、前記判別結果が大量の場合には、前記プランジャの太軸部が大径領域内を摺動可能な大量吸引吐出区間内に位置させて、前記所定量に応じた移動距離を移動させるように前記吸引吐出駆動部に対して指示する微小量・大量判別指示手段を有する測光分注装置である。
 ここで、「所定量が微小量か大量かを判別する」には、例えば、閾値として、前記微少量吸引吐出区間の前記細軸部のシール部材の先端面(またはシール位置)から前記太軸部の先端面までの軸線方向に沿った長さd3、小径領域の断面積S2より定まる最大微小量、すなわち、d3×S2を閾値として、それより小さい場合には、微小量と判別し、それよりも大きい場合には、大量と判別する。または、前記大量吸引吐出区間の前記大径領域の断面積S1で、その下死点からの距離が所定距離s、例えば1mm、すなわち、s×S1を閾値として、それより小さい場合には、微小量と判別し、それよりも大きい場合には、大量と判別する。
 該微小量・大量判別指示手段は、例えば、CPU、ROM、RAM、各種外部メモリ、LAN等の通信機能、およびROM等に格納されたプログラム等からなるCPU+プログラム+メモリによって構成する。
 前記分注チップは、前記ノズルに装着可能な状態で、すなわち、分注チップの太管部の上端に設けられた装着用開口部を上側に、細管部の口部を下側にしてチップ収容部に収容しておき、前記ノズルを、前記ノズル移動機構により下降させることで装着させることが好ましい。なお、ノズル移動機構は、例えば、ノズルヘッドをY軸に沿って相対的に移動させるノズルヘッド移動機構と、ノズルヘッドに設けられた前記ノズルをZ軸方向に移動させるノズルZ軸移動機構とを有することが好ましい。なお、「相対的」とは、比較すべき他の対象との関係において成り立つことを示すものである。したがって、「相対的に移動」する場合には、対象の一方(例えば、ノズル)が動いて、対象の他方(例えば、容器群)が静止している場合、対象の一方が静止して、対象の他方が動く場合、またはその両方の場合(速度が異なる場合)が含まれ得る。前記ノズルヘッド移動機構および前記ノズルZ軸移動機構は併せて前記ノズル移動機構に相当する。
 第14の発明は、反応容器、液収容部または分注チップ収容部を各々有する1または2以上の容器群に対して、先端開口部を通して気体の吸引吐出が行われかつ分注チップが装着可能なノズル、内部に空洞を有するシリンダおよび該空洞内を摺動するプランジャが設けられ気体の吸引吐出口を有する分注用シリンダ、および前記ノズルを通り該吸引吐出口と前記先端開口部とを連通する吸引吐出用流路を有する1または2以上の測光分注ノズルユニットの前記ノズルを、前記ノズル移動機構によって相対的に移動する移動工程と、前記ノズル移動機構によって前記ノズルに分注チップを装着する装着工程と、前記吸引吐出駆動部によって、前記分注チップに対して前記容器群に収容されている液体の吸引吐出を一斉に行う吸引吐出工程と、前記分注チップを前記ノズルから除去する除去工程と、前記ノズル移動機構によって前記ノズルの先端部を前記反応容器の開口部に直接的または間接的に連係し、前記ノズルに設けた導光端部および前記分注用シリンダを経由せずに前記ノズルを通って前記導光端部と光学的に接続する導光路を介して光測定器と反応容器を光学的に接続して測定を行う光測定工程とを有する測光分注処理方法である。
 第15の発明は、前記1または2以上の組の測光分注ノズルユニットについて、前記各ノズルおよび前記各分注用シリンダが独立して着脱可能に取り付けられて並列に支持されかつ前記各吸引吐出用流路の一部領域が内部に形成された流路内蔵支持体が設けられ、該流路内蔵支持体に前記ノズルおよび前記分注用シリンダを取り付けるノズルユニット取付工程をさらに有する測光分注処理方法である。
 第16の発明は、前記分注用シリンダの前記空洞は、大径の内周面を有する大径領域、および前記大径領域の前記吸引吐出口側に設けられ小径の内周面を有する小径領域を有し、前記プランジャは、前記大径領域を摺動可能に設けられた太軸部、および該太軸部の先端面から前記軸線方向に沿って突出しかつ前記小径領域を摺動可能に設けられた細軸部を有し、前記大径領域と前記小径領域との間には、前記太軸部が前記軸線方向に沿って遊動可能な遊動領域を設け、前記吸引吐出口は、前記小径領域の先の空洞に位置するように設けられ、前記分注チップへの所定量の液体の吸引または吐出の指示があった場合には、所定量が微小量か大量化を判別する判別工程をさらに有し、前記装着工程は、該判別結果に基づいて、微小量用分注チップまたは大量用分注チップを装着し、前記吸引吐出工程は、前記所定量が微小量と判別された場合には、前記分注用シリンダのプランジャの細軸部が小径領域内を摺動可能な微小量吸引吐出区間内に位置させて前記所定量に応じた距離を摺動させることで前記分注チップに対して前記微少量の液体を吸引吐出させる微小量吸引吐出工程と、前記所定量が大量と判別された場合には、前記プランジャの太軸部が大径領域内を摺動可能な大量吸引吐出区間内に位置させて前記所定量に応じた距離を摺動させることで、前記分注チップに対して前記大量の液体を吸引吐出させる大量吸引吐出工程とを有する測光分注処理方法である。
 第1、第8または第14の発明によると、測光分注ノズルユニットを設けることによって、分注処理と測光処理とをノズル、ノズル移動機構または測光分注処理制御部等の前記両処理に共通の部品や機構を用いて行うことができるので、装置規模の拡大を防止し、かつ構造を簡素化し、部品点数を削減し、効率の高い処理を行うことができる。また、前記導光路は、ノズル内を通るが、前記分注用シリンダ内を通らずに、前記導光端部と光学的に接続されているので、導光端部およびそれと接続する導光路を設けることによる分注用シリンダの吸引吐出動作に与える構造上の影響および分注用シリンダが前記導光路に与える構造上の影響を互いに小さくすることができる。したがって、分注用シリンダの構造の変更や改良が容易である。
 第2、第9または第15の発明によると、前記分注用シリンダと前記ノズルを独立に着脱可能に前記流路内蔵支持部材または流路内蔵支持体に取り付けて並列に支持するようにしているので、測定内容、例えば、化学発光の測定、蛍光の測定等に応じた各種のノズル、および処理すべき容量に合致した適切な分注用シリンダの組合せを、ノズルおよび分注用シリンダをそれぞれ独立に交換することで容易に取り付けることができて、汎用性の高い処理を行うことができる。
 分注用シリンダをノズルと並列に設けているので、分注用シリンダのプランジャの位置はノズルの高さに加算されたものではないので、プランジャ駆動部の高さ及び装置規模を抑制することができる。
 前記流路の一部を前記流路内蔵支持部材(体)に内蔵し、ノズルと分注用シリンダとを該流路内蔵支持部材(体)に取り付けることで同時に両者の間を連通することができるので、取扱いが容易であるとともに、両者の間を流路を含め堅固に連結することができる。
 第3の発明または第10の発明によると、前記ノズルの側壁にノズル横孔を設け、前記分注用シリンダの側壁にシリンダ横孔を設け、これらを前記流路内蔵支持部材(体)に設け連結流路で連通させているので、ノズルおよび分注用シリンダ間を直線状で最短距離で連結することができる。したがって、流路内のデッドボリュームを削減して応答性の高い迅速で高い精度の処理を行うことができることになる。特に、微小量の液体の吸引吐出を確実に行うことができることになる。
 また、前記分注用シリンダの側壁を貫いて設けたシリンダ横孔と前記ノズルに設けたノズル横孔の位置を水平に揃えかつ接近するように前記分注用シリンダを前記ノズルと並列して設け、かつ該シリンダ横孔と前記ノズル横孔との間を連結流路で連通させることができる。したがって、分注用シリンダと前記ノズルとを最短距離で連通することができるので、さらに一層流路のデッドボリュームを削減して応答性の高い吸引吐出処理を行うことができることになる。特に微小量の液体の吸引吐出を確実に行うことができることになる。
 第4の発明または第11の発明によると、前記ノズル、分注用シリンダに各々横孔を設け、前記流路内蔵支持部材または流路内蔵支持体にこれらが密接して取り付けられる取付用縦孔を設け、これらを該取付用縦孔に取り付けることによって、該流路内蔵支持部材に形成された連結流路で容易に連通させ、かつ取り付けることができる。したがって、分注および測光処理を容易かつ確実に行うことができ、信頼性の高い測光分注処理をユーザに負担をかけることなく実行することができることになる。
 第5の発明によれば、前記取付用縦孔または分注用シリンダまたはノズルに横孔を挟むようにシール部材を設けることによって、前記ノズル、分注用シリンダおよび前記吸引吐出用流路の間の接続の気密性を確実に保つことができるので、精度が高く、かつ効率性の高い処理を実行することができることになる。
 第6の発明または第12の発明によれば、ノズルと分注用シリンダの各組に、さらに圧力センサを前記流路支持部材(体)に設けた流路を介して前記ノズルや分注用シリンダと独立に着脱可能に設けている。したがって、圧力センサの取り付けが容易であり、その処理目的に応じた圧力センサを使用することができて反応性が高い。
 第7の発明、第13の発明または第16の発明によると、微小量の液量と大量の液量を予め区分しておき、その区分に適した内径及び外径を有するプランジャの小径領域および大径領域およびシリンダの細軸部および太軸部を設け、分注の指示があった場合に、前記区分のいずれかを判断して、より適切なプランジャの軸線方向に沿った駆動位置を指示することで、微小量および大量のいずれにおいても適切な分注を実行することができて、汎用性および精度の高い分注処理を行うことができる。
 1の分注用シリンダを用いて、プランジャの軸線方向に沿った移動のみによって、分注チップに対して微小量の液体の吸引吐出を行うことができるとともに、大量の液体の吸引吐出をも行うことができる。したがって、液体の量に応じた分注用シリンダを複数種類用意して交換や取り換えを行う必要がなく分注処理を迅速かつ容易に実行することができる。
 異なる外径を持つ太軸部と細軸部を同一のプランジャに設けるとともに異なる内径を持つ大径領域と小径領域とを同一のシリンダに設けることによって、複数種類のシリンダを設ける必要がなく、安価でコンパクトに製造することができる。
本発明の第1の実施の形態に係る測光分注装置のブロック図である。 本発明の第1の実施の形態に係る測光分注装置の斜視図である。 図2に示す装置の一部透視側面図である。 図2に示す装置の平面図である。 図2および図3のノズルヘッドの要部を示す一部拡大斜視図である。 図5の一部部品を除去して示す斜視図である。 図3の一部拡大側面図に基づくチップ除去動作を示す図である。 本発明の第1の実施の形態に係る測光分注ノズルユニットのノズルの分解斜視図である。 本発明の第1の実施の形態に係る測光分注ノズルユニットの分注用シリンダの断面図である。 図5の一部断面斜視図およびその拡大断面側面図である。 本発明の第1の実施の形態に係る分注用シリンダの動作を示す断面斜視図である。 本発明の第1の実施の形態に係る測光分注ノズルユニットの動作説明図である。 本発明の第2の実施の形態に係る測光分注ノズルユニットの分注用シリンダの斜視図およびその断面斜視図である。 本発明の第1の実施の形態に係る測光分注装置の蒸留水分注の実験結果例を示す表である。 本発明の第1の実施の形態に係る測光分注装置の所定蛍光溶液に対する実験結果例を示す表である。 本発明の第1の実施の形態に係る測光分注装置の所定濃度の蛍光溶液に対する実験結果例を示す表及びグラフである。
 続いて、図面に基づいて本発明の実施の形態について説明する。なお、この実施の形態は特に指定のない限り本発明を制限するものと解釈してはならない。また、各実施の形態または各実施の形態例において同一物は同一の符号で表し説明を省略した。
 図1は、本発明の第1の実施の形態に係る測光分注ノズルユニットを用いた第1の実施の形態に係る測光分注装置100のブロック図を示す。
 該測光分注装置100は、大きくは複数(この例ではn個、n≧1、図15,16のレーンに相当)の容器群20(i=1,…n)が配列されたステージ20と、大量用分注チップ211~211または微小量用分注チップ212~212が装着可能であるとともに、先端で光の受光または照射を可能とするノズル11~11n、および該ノズル11~11と連通し、前記分注チップに対して気体の吸引吐出を行う前記分注用シリンダ12~12を少なくとも有するn組の測光分注ノズルユニット10~10が設けられたノズルヘッド50と、該ノズルヘッド50を前記容器群20に対して、例えばX軸方向に沿って相対的に移動可能とするノズルヘッド移動機構51と、種々の制御を行うCPU、ROM、RAM、各種外部メモリ、LAN等の通信機能、およびROM等に格納されたプログラム等からなる前記測光分注処理制御部としてのCPU+プログラム+メモリ60と、液晶ディスプレイ等の表示部や操作キー、タッチパネル等の操作部を有する操作パネル65とを有する。
 前記測光分注ノズルユニット10~10の各組に設けられた前記ノズル11~11は、該ノズル11~11の先端で光の受光または照射可能な導光端部32~32と、前記ノズル11~11内を通り、該導光端部32~32と光学的に接続される導光路31~31とを有し、前記分注用シリンダ12~12は、内部に空洞を有するシリンダおよび該空洞内を摺動可能に設けられたプランジャ、および該シリンダに穿設された吸引吐出口を有する分注用シリンダ12~12を有し、さらに、該ノズル11~11を通り、該吸引吐出口と前記ノズル11~11の先端開口部とを連通する吸引吐出用流路を有する。
 前記ノズルヘッド50には、さらに、1または2以上の組の前記ノズル11~11、前記分注用シリンダ12~12が独立して着脱可能に取り付けられて並列に支持され、かつ前記吸引吐出用流路の一部領域としての連結流路71~71が内部に形成された流路内蔵支持体70と、前記分注用シリンダ12~12のプランジャを上下方向に沿って移動させて該ノズル11~11に装着した前記分注チップ211~211,212~212が前記容器群20~20に対して一斉に液体の吸引吐出を可能とする吸引吐出駆動部53と、前記吸引吐出駆動部53を用いて前記ノズル11~11に装着された分注チップ211~211,212~212を除去可能とするチップ除去機構59と、前記ノズル11~11をZ軸方向に沿って移動可能とするノズルZ軸移動機構58と、磁石を前記ノズルに装着した前記分注チップ211~211,212~212に対して進退可能に設けることによって該分注チップ内に磁場を及ぼすことができる磁力部57とを有する。
 該ノズルヘッド50は、さらに、光測定器40を有する。
 該光測定器40は、前記導光端部32~32に対応して設けられ、該導光端部32~32にその先端が設けられ導光部31~31としての光ファイバ(束)の後端が設けられた複数(この例ではn個)の接続端34~34を、配列面としての水平面上に設けた所定経路(この例ではY軸方向に沿った一直線状の経路)に沿って前記導光端部32~32間の間隔よりも狭い間隔で集積化するように配列して支持する接続端配列体30と、例えば、m種類(この例では6種類)の蛍光の特定波長または特定波長帯の光を各々受光可能であるとともに、前記光の発光のために照射するm種類の特定波長または特定波長帯の励起光を照射可能なm種類の特定波長測定器40(j=1,…m、以下省略)を有する。なお、光ファイバ(31~31)が、照射用光ファイバ(束)35、受光用光ファイバ(束)36からなる場合には、その後端として、前記接続端34~34は第1の接続端(照射用)および第2の接続端(受光用)からなり、各々Y軸方向に沿った一直線上の経路に沿って配列して支持されることになる。この場合、前記導光端部32~32は照光端と受光端の対に各々相当することになる。
 各特定波長測定器40には、前記配列面に近接(非接触)若しくは接触して設けられて、該各接続端34と前記所定経路(Y軸方向に沿った直線状経路)に沿って順次接続可能な測定端44を有し、各測定端44は、発光が蛍光の場合には、Y軸方向に沿って配列された2つの第1の測定端42および第2の測定端43を有している。これらの測定端は例えば、測定端配列面上に配列され、該第1の測定端42は、各特定波長測定器40に設けられた照射源と光学的に接続し、第2の測定端43は、該特定波長測定器40に設けられた光電子増倍管等の光電変換部と光学的に接続している。発光が化学発光等の場合には、少なくとも第2の測定端43が設けられていればよい。すると、前記照射用光ファイバ(束)35の後端の第1の接続端は前記第1の測定端42と接続可能に前記接続端配列体30の接続端配列面に配列され、前記受光用光ファイバ(束)36の後端の第2の接続端は前記第2の測定端43と接続可能に前記接続端配列体30の前記接続端配列面に配列されている。
 さらに、前記ノズルヘッド50には、前記接続端配列体30の接続端配列面に配列された前記各接続端34と、前記測定端配列面に配列された前記各測定端44とを順次接続するように前記接続端配列面と測定端配列面との間を近接した状態(非接触)でまたは摺動して、前記接続端配列体30をY軸方向に沿ってノズルヘッド50上で移動させる配列体移動機構としての配列体Y軸移動機構41を有する。
 前記ステージ20は、1のノズルが進入し他のノズルが進入しない各ノズルに対応した複数(この例では8個)の容器群20からなる。各容器群20には、試薬液等を収容しまたは収容可能な複数の収容部からなる液収容部群27と、前記ノズルに着脱可能に装着される透光性のある1または2以上の前記密閉蓋25を収容する密閉蓋収容部を含むとともに、ノズルに着脱可能に装着される複数の大量用分注チップ211や微小量用分注チップ212や穿孔用チップを収容するチップ等収容部群21と、PCR用チューブ等の温度制御が可能な反応容器23~23を有する。前記液収容部群27には、少なくとも磁性粒子懸濁液を収容する1または2以上の液収容部、核酸またはその断片の分離および抽出に用いる分離抽出用溶液を収容する2以上の液収容部を有し、さらに、核酸の増幅に用いる増幅用溶液、さらに、前記反応容器としてのPCR用チューブ231に収容した前記増幅用溶液を該PCR用チューブ231内に密閉するための密閉液を収容する。
 図2乃至図4は、図1に示す測光分注装置100をより具体化した(n=8,m=6の場合)斜視図、側面図および平面図を各々示す。
 前記ステージ20上には、n列状(この例では8列状)に配列された各容器群20~20ごとに、4本のカートリッジ容器201~204が縦一列状に装填され、かつ3本のサンプルを収容するカートリッジ容器205~207が横方向に並列に装填されている。
 図2に示すように、前記ノズルヘッド移動機構51は、該ステージ20を載置している台座に取り付けられた駆動モータ51aと、該駆動モータに回転駆動されるプーリ51bおよび対となるプーリ51cと、2つのプーリ51b,51cに掛け渡されてX軸方向に沿って走行可能なタイミングベルト51dと、該タイミングベルト51dに取り付けられて前記ノズルヘッド50の枠体50aを支える脚部51eとを有する。該脚部51eは、例えば直動案内装置51fによってX軸方向に沿って移動可能に支持され、該脚部51eの下側は前記タイミングベルト51dと連結されている。
 前記ノズルヘッド50において、前記流路内蔵支持体70の流路内蔵支持ブロック76に独立に着脱可能に取り付けられて並列に支持されたノズル11~11(この例ではn=8)および分注用シリンダ12~12(この例ではn=8)を各々有する測光分注ノズルユニット10~10を有し、前記分注用シリンダ12~12はその上側が前記流路内蔵支持体70のシリンダ取付体73に取り付けられている。また、各測光分注ノズルユニット10~10(この例ではn=8)には、圧力センサ13~13(この例ではn=8)が各々設けられている。該圧力センサ13~13は圧力センサ用基板13aと接続されている。
 該ノズルヘッド50において、前記吸引吐出駆動部53は、取付台53eに取り付けられた吸引用モータ53aと、該モータ53aによって回転駆動されるボール螺子53bと、該ボール螺子53bに螺合して上下方向に移動可能なナット部53cと、該ナット部53cと連結して前記分注用シリンダ12~12のプランジャ12aを引き上げ可能とする吸引吐出駆動部材53dとを有する。該吸引吐出駆動部材53dには、前記フランジ12tと係合可能であるが、該プランジャ12aとは接触しないようなサイズの孔または隙間が形成されている。また、前記ノズルヘッド50には、磁力部57として永久磁石の磁極がn個(この例では8個)Y軸方向に沿って一列状に配列されている。
 図3に示すように、前記ノズルヘッド50において、前記ノズルZ軸移動機構58は、前記枠体50aに載置されたZ軸駆動用モータ58aと、該Z軸駆動用モータ58aによって回転駆動されるボール螺子58bと、該ボール螺子58bに螺合するナット部58cと、該ナット部58cに連結する壁状のZ軸移動体58dとを有する。
 該Z軸移動体58dには、前記吸引用モータ53aおよびモータ取付台53e、前記分注用シリンダ12~12をその上側で取り付けるシリンダ取付体73、前記n組(この例では8組)の前記ノズル11~11(この例ではn=8)および前記分注用シリンダ12~12)が独立し着脱可能に取り付けられて並列に支持され、かつ前記吸引吐出用流路の一部領域である前記連結流路71~71(この例ではn=8)が内部に形成された流路内蔵支持体70の流路内蔵支持ブロック76が取り付けられている。
 図4に示すように、前記カートリッジ容器201(i=1,…8)には4本の各種チップ、例えば、穿孔用チップ、1本の大量用分注チップ211、2本の微小量用分注チップを収容するチップ等収容部21が設けられ、前記カートリッジ容器202には8個の抽出用試薬等を収容する液収容部27および恒温状態に設定可能な反応容器23i、恒温状態に設定可能な生成物を収容する液収容部が設けられ、カートリッジ容器203には、増幅用試薬が収容されている3個の液収容部27が設けられ、前記カートリッジ容器204には、PCR用チューブ(23)および密閉蓋25を収容するチップ等収容部21としての密閉蓋収容部が設けられている。前記カートリッジ容器205,206にはサンプルが収容されるサンプルチューブ26が設けられ、カートリッジ容器207には残液を収容する。
 該ノズルヘッド50には、前記測定器40が、前記m種類(この例では6種類)の特定波長測定器40~40(この例ではm=8)が、各測定端44~44(この例ではm=6、1個は前記接続端配列体30に隠されている)を上側にY軸方向に沿って配列されるように前記ノズルヘッド枠体50aに取り付けられている。該特定波長測定器40~40の上側を、前記各接続端34~34(この例ではn=8)がY軸方向に沿って配列された接続端配列体30が、Y軸方向に沿って移動可能に設けられている。各接続端34~34は前述したように、照射用光ファイバ35の後端としての第1の接続端および受光用光ファイバ36の後端としての第2の接続端からなり、各測定端44~44は各々第1の測定端42i、および第2の測定端43からなり、第1の測定端42は前記励起光の照射源と光学的に接続し、かつ前記第1の接続端と順次接続可能であり、第2の測定端43iは前記光電変換部と光学的に接続し、かつ前記第2の接続端と順次接続可能となるように各々Y軸方向に沿って一列状に配列されている。
 図5は、図2および図3に示す前記測光分注装置100の前記ノズルヘッド50の要部であって、前記Z軸移動体58dに取り付けられた前記流路内蔵支持体70の前記シリンダ取付体73および流路内蔵支持ブロック76、これらに取り付けられたn組(n=8)のノズル11~11、分注用シリンダ12~12、および圧力センサ13~13、さらにチップ除去機構59を示すものである。
 前記シリンダ取付体73には8本の分注用シリンダ12~12(n=8)がプランジャ12aを上側にして取り付けられ、下端部分は前記流路内蔵支持体70のシリンダ取付用縦孔75~75(n=8)に密接するように支持されている。これらの分注用シリンダ12~12はリング状螺子12vにより前記シリンダ取付体73にねじ止めされている。
 前記流路内蔵支持体70には、n個の圧力センサ13~13が内部に設けられた流路と連通する管路72aを介して前記ノズル11~11と連通している。圧力センサ13~13は前記シリンダ取付体73に取りつけられた圧力センサ用基板13aと接続している。
 図5に示すように、チップ除去機構59は、前記吸引吐出駆動部53の吸引吐出駆動部材53dが吸引吐出区間を越えてさらに下降することによって押圧されて下方向への移動が可能な2本のインジェクトピン59b,59bと、該インジェクトピン59bの下端で連結し前記流路内蔵支持ブロック76の下側に設けられるとともに、前記ノズル11~11を囲み軸線方向に沿って移動可能に設けられ前記ノズル11~11よりも大きいが、前記各分注チップ211~211,212~212の最も大きな外径よりも小さい内径を持つ孔が形成されたチップ除去部材59aとを有する。
 さらに、該チップ除去機構59は、前記インジェクトピン59bの上端に設けられ、前記吸引吐出駆動部材53dによって押圧される頭部59dと、前記インジェクトピン59bを囲むように形成され、前記シリンダ取付体73に一端が取り付けられ他端が前記頭部59dに達して該頭部59dを上方向に付勢するばね59cとを有する。
 図6は図5に示すシリンダ取付体73を含む前記流路内蔵支持体70を顕わに示すものであって、前記シリンダ取付体73には、n個(この例では、n=8)の縦孔が一列状に長手方向に沿って配列され、8本の分注用シリンダ12~12(n=8)がプランジャ12aを上側にして該縦孔に各々上側から挿入され、下端部分は前記流路内蔵支持体70のシリンダ取付用縦孔75~75(n=8)に密接かつ嵌合するように支持されている。これらの分注用シリンダ12~12は前記リング状螺子12vにより前記シリンダ取付体73に取り付けられている。前記シリンダ取付体73には、前記分注用シリンダ12~12を取り付ける一列状に配列されたn個(n=8)の縦孔の他に、その列の両外側に位置しかつ所定距離X軸方向に突き出た位置にある両端部にさらに2つの縦孔59eが設けられている。該縦孔59eには、前記インジェクトピン59bが貫通して設けられている。
 図6に示すように、前記流路内蔵支持体70には、前記ノズル11~11を下側から挿入してリング状螺子11gによってねじ止めして取り付けることができる一列状にn個(この例では、8個)のノズル取付用縦孔74~74(n=8)が配列され、さらに、圧力センサ用流路72~72が設けられている。
 図7は、前記測光分注ノズルユニット10~10が有するノズル11~11の構造を示すものである。
 ノズル11は(この例ではi=1)、先端に先端開口部11aを有する略筒状のノズル本体11bと、該ノズル本体11b内に挿入されて前記光学系ユニット11pと、前記流路内蔵支持体70に該ノズル11を螺子止めにより取り付けるためのリング螺子11rとを有している。
 該ノズル11の先端部11qは、前記分注チップ211,212の装着用開口部が嵌合により装着可能であり、密接面が形成された側壁を貫いてノズル横孔11cが穿設され、該ノズル横孔11cを上下方向に挟むようにその外周に沿って軸線を囲むように設けられたO-リング11k,11lが設けられている。
 前記光学系ユニット11pは、その先端に設けられた前記導光端部32としてのロッドレンズと、該ロッドレンズ(32)とその端面で光学的に接続した照射用光ファイバ35および受光用光ファイバ36からなる導光路31と、該導光路31が内部を通り、前記ノズル本体11b内に挿入されて嵌合する前記導光路端固体部材としての、フェルールユニット11uと、該フェルールユニット11uの押え管嵌合部11fに嵌合して取り付けられ、内部に前記レンズ(32)が保持されるレンズ押え管11gと、円筒状の前記フェルールユニット11uの外周面を軸線方向に沿って切り欠くように形成した切欠き面11eとを有する。なお、前記照射用光ファイバ35および前記受光用光ファイバ36の一端は前記ロッドレンズ(32)と光学的に接続し、該照射用光ファイバ35および該受光用光ファイバ36の他端は、各々第1の接続端および第2の接続端として、前記第2の測定端43および前記第1の測定端42と各々光学的に接続可能となるように前記接続端配列体30にY軸方向に沿って各々一列状に配列されている(図4および図10参照)。
 前記フェルールユニット11uの外周面にはフランジ11vが設けられ、ノズル本体11bに穿設された螺子孔11sと螺合する螺子11wによって前記フェルールユニット11uがノズル11内で動かないように前記ノズル本体11bに固定されている。
 図8は、分注用シリンダ12の後述する下端部12dを除去した場合の断面を示すものである。
 該分注用シリンダ12は、内部に空洞(12c,12r,12q,12p)を有するシリンダ12bと、該シリンダ12bの下端にあって、気体の吸引吐出口としてのシリンダ横孔12eが設けられて、前記流路内蔵支持ブロック76の下側から前記シリンダ取付用縦孔75内に挿入されて、該シリンダ取付用縦孔75の上側から挿入された前記シリンダ12bと螺合することで分注用シリンダ12を前記流路内蔵支持ブロック76に取り付ける下端部12d(図10参照)と、前記空洞(12c,12r,12q,12p)内を前記軸線方向に沿って摺動可能に設けられ、シリンダ12bの外部にあって、ステッピングモータ等によって駆動される吸引吐出駆動部材53d(図9参照)と係合するフランジ12tを有するプランジャ12aとを有する。
 前記シリンダ12b内に設けられた前記空洞(12c,12r,12q,12p)は、大径の内周面を有する大径領域12p、および該大径領域の気体の吸引吐出口側に設けられ小径の内周面を有する小径領域12cを有するとともに、該大径領域12pと小径領域12cとの間には、前記大径よりも大きい極大径の内径を有し、前記太軸部12hが摺動しない遊動領域12qを有し、これらの領域は同軸に形成されている。また、空洞12rは、前記下端部12dが挿入して取り付けられる部分である(図10参照)。
 前記プランジャ12aは、該シリンダ12bの他端に設けられた開口部12uを貫通して前記シリンダ12bの空洞(12c,12r,12q,12p)の軸線方向に沿って設けられた前記空洞と同軸に設けられ前記大径領域12pを摺動可能に設けられた太軸部12hと、該太軸部12hの先端面から前記軸線方向に沿って突出しかつ前記小径領域12cを摺動可能に設けられた細軸部12fとを有する。
 さらに、本実施の形態に係る分注用シリンダ12にあっては、該小径領域12cの上端部の内周面に周方向に沿ってシール部材12g(パッキン等)が設けられ、前記太軸部12hの外周面に周方向に沿ってもシール部材12kが設けられている。また、該分注用シリンダ12の内部にあっては、前記大径領域12pの上端面に穿設された環状溝12lに一端が取り付けられ、他端が前記太軸部12hを突っ張るようにプランジャ12aに巻装されたコイル状ばね12sが設けられている。前記太軸部12hは下死点である小径領域12cと遊動領域12qとの境界の段差に押し付けられている(図8(a))。該段差は、前記下方向に向かって、内側方向に突設するように設けられている。図8(b)は、前記プランジャ12aが引き上げられて、前記細軸部12fが小径領域12cを抜けて、前記太軸部12hが大径領域12pと摺動する状態を示している。
 この場合、前記細軸部12fの先端面から前記太軸部の先端面までの軸線方向に沿った長さをd3、前記太軸部12hの先端面からシール部材12kによるシール位置までの長さをd1、前記小径領域12c内の前記シール部材12gによるシール位置までの距離をd4とすると、前記遊動領域12qの軸方向に沿った長さ(d0)は、d0+d4>d1+d3の関係があることになる。
 図9は、前記測光分注ノズルユニット10の前記分注用シリンダ12に対する前記吸引吐出駆動部53および前記チップ除去機構59を詳細に示すとともにその動作を示すものである。
 図9(a)は、前記分注用シリンダ12のプランジャ12aがその行程の下死点にある状態を示すものであり、前記吸引吐出駆動部53の前記吸引吐出駆動部材53dは前記プランジャ12aのフランジ12tとは係合せず、該フランジ12tの下方に位置している。この吸引吐出駆動部材53dの位置は、前記チップ除去機構59の前記インジェクトピン59bの頭部59dの上方にあり、該頭部59dと接触していない。したがって、前記チップ除去部材59aは、ばね59cによって上方に付勢されているため前記ノズル11の先端部11qの上側に位置している。
 図9(b)は、前記分注用シリンダ12のプランジャ12aが引き上げられて、前記ノズル11の先端開口部先端11aから気体を吸引する状態を示すものであり、前記吸引吐出駆動部53の前記吸引吐出駆動部材53dが前記プランジャ12aのフランジ12tと係合してプランジャ12aを引き上げている状態を示すものである。したがって、該吸引吐出駆動部材53dは、前記チップ除去機構59の前記頭部59dに対して一層上方に離れることになり、チップ除去部材59aは図9(a)の場合と変わらず、前記先端部11qの上側に位置している。
 図9(c)は、前記吸引吐出駆動部材53dを図9(a)の位置よりもさらに下側に降下させた状態を示している。すると、前記プランジャ12aのフランジ12tとの係合が解除されて、プランジャ12aはその下死点に留まるものの、該吸引吐出駆動部材53dは、前記チップ除去機構59の前記頭部59dを押し下げ、したがって、前記インジェクトピン59bおよびその下端にあるチップ除去部材59aを押し下げて、前記ノズル11の先端部11qに装着されているはずの分注チップ211,212をノズル11から除去することになる。
 図10(a)および図10(b)は、本発明の第1の実施の形態に係る前記測光分注ノズルユニット10を形成する前記ノズル11、前記分注用シリンダ12、およびこれらが取り付けられた前記流路内蔵支持体ブロック76に形成された流路71,72を示すものである。
 本実施の形態に係る分注用シリンダ12は、内部に空洞(12c,12q,12p)を有するシリンダ12bと、該シリンダ12bの下端に取り付けられ、前記流路内蔵支持ブロック76の下側から前記シリンダ取付用縦孔75内に挿入されて、該シリンダ取付用縦孔75の上側から挿入された前記シリンダ12bと螺合することで分注用シリンダ12を前記流路内蔵支持ブロック76に取り付ける下端部12dと、前記空洞(12c,12r,12q,12p)内を前記軸線方向に沿って摺動可能に設けられ、シリンダ12bの外部にあって、ステッピングモータ等によって駆動される前記吸引吐出駆動部材53dと係合するフランジ12tを有するプランジャ12aとを有する。
 前記空洞(12c,12q,12p)は、大径の内周面を有する大径領域12p、および該大径領域12pの前記吸引吐出口としてのシリンダ横孔12e側に設けられ小径の内周面を有する小径領域12cを有する。ここで、前記下端部12dには小径領域12cが形成され、該小径領域12cの下方に前記吸引吐出口としてのシリンダ横孔12eが穿設されている。
 また、前記流路内蔵支持ブロック76のシリンダ取付用縦孔75~75の開口縁部にはシーリング部材12oが設けられている。
 一方、ノズル11は、前記流路内蔵支持体70の前記ノズル取付用縦孔74に下側から挿入されて、リング状螺子11gにより取り付けられ、したがって、該分注用シリンダ12と該ノズル11は独立に着脱可能であって、並列に支持されていることになる。
 取り付けられた該ノズル11のノズル本体11bの密接面が形成された側壁を貫通するように設けられた前記通気孔としてのノズル横孔11cは、前記流路内蔵支持ブロック76の内部に形成された連結流路71を介して前記吸引吐出口としてのシリンダ横孔12eと連通する。また、該ノズル本体11において、前記ノズル横孔11cと対向する位置で側壁を貫通するように設けられた第2のノズル横孔11dは、前記流路内蔵支持ブロック76に設けられた圧力センサ用流路72および圧力センサ13が取り付けられる連結部72bと連通する。
 前記フェルールユニット11uの外周面に切り欠くように設けられた前記切欠き面11eは先端側から前記ノズル横孔11cを越える位置であって、該ノズル本体11bの長さを越えない位置にまで軸線方向に沿って延びるように形成されている。また、軸線に対して反対側においても、同様の切欠き面が通気孔に相当する前記第2のノズル横孔11dを越える位置であって、該ノズル本体11bの長さを越えない位置にまで軸線方向に沿って延びるように形成されている。したがって、該各切欠き面11eと該ノズル本体11bの内周面で挟まれた隙間は、前記ノズル横孔11cおよび前記第2のノズル横孔11dと各々連通し、さらにこれらの隙間は、前記レンズ押え管11gの外周面と該ノズル本体11bの内周面で囲まれた全周にわたる隙間と連通し、したがって、前記先端開口部11aと連通することになる。この隙間は、前記間隙部に相当し、したがって、先端開口部11aから、該ノズル本体11b内の隙間、前記ノズル横孔11c、連結流路71および吸引吐出口としてのシリンダ横孔12eまで連通する流路は吸引吐出用流路に相当し、その一部領域が該流路内蔵支持ブロック76の内部に設けられた該連結流路71ということになる。
 これらの横孔11c,11dは、前述したように、前記O-リング11k,11lにより上下方向に挟まれて嵌合面間を通る気体漏れを防止して気密性を高めている。また、該ノズル11の内部に挿入されて嵌合するフェルールユニット11uの嵌合面間の気体漏れを防止するためのO-リング11hが該ノズル本体11bの内周面に沿って設けられている。本実施の形態に係るノズルによれば、ノズル本体を加工するのではなく内部に挿入される導光路端固定部材としてのフェルールユニット等の外周面を軸方向に沿ってまたは半径方向に沿って切り欠くように加工することで形成することができるので、流路の形成および固定が容易である。
 図11は、本実施の形態に係る分注用シリンダ12の動作を示すものである。図11(a)および図11(b)は、微小量の液体の吸引動作を示すものである。
 図11(a)にあっては、前記太軸部12hの下死点である前記遊動領域12qの最下端、すなわち前記小径領域12cとの境界に前記太軸部12hの先端面が位置し、したがって、前記細軸部12fは前記小径領域12c内に挿入されている。この状態で、前記ノズル11に装着した分注チップ211,212の先端を、液体が収容されている容器内に挿入する。
 前記太軸部12h(またはプランジャ12a)の行程をD、太軸部12h(またはプランジャ12a)の先端面の下死点からの軸線方向に沿った距離をd、前記細軸部12fのシール部材(気体をシールする部材)の軸線方向に沿った長さをd3とすると、前記遊動領域12qの軸線方向に沿った長さd0は、前記太軸部12hの先端面からそのシール部材のシール位置までの軸線方向に沿った長さd1とd3との和以上の長さとなる。前記下端部12d内を含めて小径領域12cの長さをd2とすると、前述したように、0≦d≦D、d3<d2、d3<Dである。なお、該シリンダ12bの下端にある空洞12rは、前記下端部12dが螺合により取り付けられる部分である。
 図11(b)にあっては、前記プランジャ12aを前記下死点から距離d(<d3)だけ上昇させると、前記細軸部12fが前記小径領域12cを摺動して距離dだけ上昇し、太軸部12hは遊動領域12q内を距離dだけ遊動する。このため、該太軸部12hの移動によって真空部分が生ずることがないのでプランジャ12aには、大きな負荷がかからず、円滑に前記ノズル11に装着された分注チップ211,212内に液体がS2×d(S2は小径領域断面積)に相当する量だけ流入する。
 ここで、この図11(a)と図11(b)のd<d3が微小量吸引吐出区間に相当する。
 図11(c)にあっては、前記プランジャ12aを前記下死点から距離d=d3だけ移動させると、前記細軸部12fが前記小径領域12cから抜け出し、前記太軸部12hが前記大径領域12pへ進入し、前記ノズル11の先端開口部11aを通る気体の前記遊動領域12qおよび大径領域12pへの吸引が開始されることになる。
 図11(d)にあっては、前記プランジャ12aを前記下死点から距離d(=D>d3) だけ移動させると、前記細軸部12fは前記遊動領域12q内を遊動し、前記太軸部12hが前記大径領域12p内を摺動し、前記ノズル11に装着した分注チップ内に液体がS1×(D-d0)(S1は大径領域の軸線方向に垂直な断面積)吸引されることになる。
 この図11(c)と図11(d)のd>d0>d3が大量吸引吐出区間に相当する。
 図12は測光分注ノズルユニット10~10の動作を説明する図である。
 図12(a)は、前記ノズル11の先端部11qに微小量用分注チップ212を装着して前記容器群20の液収容部27に対して微小量の試薬等の液体の吸引吐出を行う場合の測光分注ノズルユニット10の状態を示す。分注用シリンダ12にあっては、細軸部12fが小径領域12c内を摺動するように前記プランジャ12aは微小量吸引吐出区間に位置している。
 図12(b)は、前記ノズル11の先端部11qに大量用分注チップ211を装着して、前記容器群20の液収容部27に対して大量の試薬等の液体の吸引吐出を行う場合の測光分注ノズルユニット10の状態を示す。分注用シリンダ12にあっては、太軸部12hが前記大径領域12p内を摺動するように、前記プランジャ12aは大量吸引吐出区間に位置している。
 図12(c)は、前記ノズル11の先端部11qから分注チップを前記チップ除去部材59aを用いて除去した後、該ノズル先端部11qを反応容器23の開口部に連結させまたは密閉蓋を介して連結させて、反応容器内の光学的状態を検出する。
 図13は、測光分注ノズルユニット10について、前記流路内蔵支持ブロック76に対しノズル11はそのままで、分注用シリンダ12の代わりに、大量吸引吐出用の分注用シリンダ120を用いることができる。すなわち、検査目的に合わせて、ノズル11をそのままで、分注用シリンダのみを最適なものと交換することができる。該分注用シリンダ120にあっては、内部に空洞(120r,120p)を有するシリンダ120bと、該シリンダ120bの下端にあって、気体の吸引吐出口としてのシリンダ横孔120eが設けられて、前記流路内蔵支持ブロック76の下側から前記シリンダ取付用縦孔75内に挿入されて、該シリンダ取付用縦孔75の上側から挿入された前記シリンダ120bと螺合することで、前記分注用シリンダ120を前記流路内蔵支持ブロック76に取り付ける下端部12d(図10参照)と、前記空洞(120r,120p)内を前記軸線方向に沿って摺動可能に設けられ、シリンダ120bの外部にあって、ステッピングモータ等によって駆動される吸引吐出駆動部材53d(図9参照)と係合するフランジ120tとを有するプランジャ120aとを有する。
 前記シリンダ120b内に設けられた前記空洞(120r,120p)は、大径の内周面を有する大径領域120p、および前記下端部12dが挿入して取り付けられる空洞120rである(図10参照)。
 前記プランジャ120aは、該シリンダ120bの他端に設けられた開口部120uを貫通して前記シリンダ120bの前記大径領域120pを摺動可能に設けられた太軸部120hを有する。なお、符号120kは、該太軸部120hの外周面に周方向に沿って設けられたシーリング部材である。
 また、該分注用シリンダ120の内部にあっては、前記大径領域120pの上端面に穿設された環状溝120lに一端が取り付けられ他端が前記太軸部120hを突っ張るようにプランジャ120aに巻装されたコイル状ばね(図示せず)が設けられている。前記太軸部120hは下死点である前記空洞120rとの境界の段差に押し付けられる。該段差は、前記下方向に向かって、内側方向に突設するように設けられている。図13(a)および図13(b)は、前記プランジャ120aが引き上げられて、前記太軸部120hが大径領域120pと摺動する状態を示している。なお、図13(a)は、該分注用シリンダ120の外形を示すものであるが、前記分注用シリンダ12の外形と同様である。
 続いて、本実施の形態に係る測光分注装置100の動作について、細菌が含まれる検体の核酸のリアルタイムPCRおよびその光測定を行うまでの一連の処理動作について以下に説明する。
 ステップS1で、前記ステージ20に検査対象の検体を収容したカートリッジ容器205,206、残液を収容可能とするカートリッジ容器207、各種チップが収容されたカートリッジ容器201、核酸抽出用の各種洗浄液、各種試薬がプレパックされたカートリッジ容器202、核酸増幅用試薬がプレパックされたカートリッジ容器203および反応容器23としての核酸増幅用のPCRチューブを有しかつ密閉蓋25が収容されたカートリッジ容器204を装填する。また、前記流路内蔵支持ブロック76に前記8組の測光分注ノズルユニット10を取り付ける。
 ステップS2で、前記操作パネル65として、タッチパネル等へのタッチにより、分離抽出処理および増幅処理の開始を指示する。
 ステップS3で、前記測光分注装置100の前記測光分注処理制御部としてのCPU+プログラム+メモリ60に設けられた抽出制御部62は、前記ノズルヘッド移動機構51に指示して、前記ノズルヘッド50をY軸方向に移動させて、前記各容器群20のカートリッジ容器201の該当するチップ等収容部21に位置させて、前記ノズルZ軸移動機構58によりノズル11に穿孔用チップを装着させる。さらに該ノズルヘッド50をY軸方向に移動して、前記容器群の液収容部群27の最初の液収容部の上方に前記穿孔用チップを位置させ、ノズルZ軸移動機構58によりノズルを下降させることで、前記液収容部の開口部を被覆するフィルムを穿孔し、同様にして、前記ノズルヘッド50をX軸方向に移動させて該液収容部群27の他の液収容部および反応容器群23についても順次穿孔し、該穿孔用チップを前記チップ除去機構59によってチップ等収容部21内に脱着する。
 ステップS4で、前記ノズルヘッド50を再度X軸方向に移動させて、チップ等収容部21にまで移動させ、かつ前記各ノズル11を前記ノズルZ軸移動機構58によって下降させて大量用分注チップ211を装着させる。次に、前記ノズルZ軸移動機構58によって上昇させた後、該分注チップ211を前記ノズルヘッド移動機構51によってX軸に沿って移動させて、前記液収容部群27の第8の液収容部27に進み、該液収容部27から所定量のisopropanolを吸引し、再びX軸に沿って移動させて第3の液収容部27と第5の液収容部27に収容されている溶液成分(NaCl, SDS溶液)、および前記第6の液収容部27に収容した蒸留水に、所定量ずつ分注することによって、第3、第5、第6の各液収容部27内に分離抽出用溶液として各々結合バッファ液(NaCl,SDS,isopropanol)が500μL、洗浄液1(NaCl,SDS,isopropanol)が700μL、洗浄液2(水50%,isopropanol 50%)が700μL調製されることになる。その際、前記抽出制御部62からの指示に基づき前記微小量・大量判別指示手段64は、前記所定量が大量であると判別されることになり、太軸部12hが前記大量吸引吐出区間に位置されて、所定量に応じた距離Dで前記大径領域12pを摺動させることになる。
 ステップS5では、検体が収容されているサンプルチューブ26にまで移動した後、前記ノズルZ軸移動機構58を用いて、分注チップ211の細径部211aを下降挿入させて、前記吸引吐出駆動部53の吸引吐出駆動部材53dを上昇および下降させることで該サンプルチューブ26に収容されている検体の懸濁液について、吸引吐出を繰り返すことで該検体を液中に懸濁させた後、該検体懸濁液を分注チップ211内に吸引する。該検体懸濁液は前記ノズルヘッド移動機構51によってX軸に沿って分離抽出用溶液としての Lysis 1(酵素)が収容されている液収容部群27の第1の液収容部にまで移動させて、穿孔されたフィルムの孔を通して前記分注チップ211の細径部211aを挿入して前記検体懸濁液と前記 Lysis 1とを攪拌するため吸引吐出を繰り返す。
 ステップS6で、攪拌した該液の全量を、前記分注チップ211によって吸引し、前記温度制御器29によって12℃に設定された前記収容孔に保持された各反応用チューブからなる前記反応容器23に収容してインキュベーションを行なう。これによって、前記検体に含まれるタンパク質を破壊して低分子化する。所定時間経過後、該反応液を前記反応用チューブに残したまま、前記分注チップ211を前記ノズルヘッド移動機構51によって前記液収容部27の第2の液収容部27にまで移動し、ノズルZ軸移動機構58および前記吸引吐出駆動部53を用いて該第2の液収容部27内に収容されている液の全量を吸引し、ノズルヘッド移動機構51により前記分注チップ211を用いて移送し、前記第3の液収容部27内に前記フィルムの孔を貫通して前記細径部を挿入して前記反応溶液を吐出する。
 ステップS7で、該第3の液収容部27内に収容されている分離抽出溶液としての結合バッファ液と、前記反応溶液とを攪拌して、可溶化したタンパク質をさらに脱水させ、核酸またはその断片を溶液中に分散させる。
 ステップS8で、前記分注チップ211を用いて該第3の液収容部27中にその細径部を前記フィルムの孔を貫通して挿入し、全量を吸引してノズルZ軸移動機構58により該分注チップ211を上昇させ、該反応溶液を、第4の液収容部27にまで移送し、該第4の液収容部27内に収容されている磁性粒子懸濁液と前記反応溶液とを攪拌する。該磁性粒子懸濁液内に含まれる磁性粒子の表面に形成された水酸基にNa+イオンが結合するカチオン構造が形成されている。そのために負に帯電したDNAが磁性粒子に捕獲される。
 ステップS9で、前記分注チップ211の細径部211aに前記磁力部57の磁石571を接近させることによって該分注チップ211の細径部211aの内壁に前記磁性粒子を吸着させる。該磁性粒子を該分注チップ211の細径部211aの内壁に吸着させた状態で、前記ノズルZ軸移動機構58により上昇させ、前記ノズルヘッド移動機構51を用いて該分注チップ211を該第4の液収容部27から第5の液収容部27にまで移動させ、前記フィルムの孔を貫通して前記細径部211aを挿入する。
 前記磁力部57の前記磁石571を該分注チップ211の細径部211aから離間させることによって前記細径部211a内への磁力を除去した状態で、該第5の液収容部27iに収容されている洗浄液1(NaCl, SDS, isopropanol)について吸引吐出を繰り返すことにより、前記磁性粒子を前記内壁から離脱させて洗浄液1中で攪拌することでタンパク質を洗浄する。その後、前記磁力部57の磁石571を再び前記分注チップ211の細径部211aに接近させることで前記磁性粒子を細径部211aの内壁に吸着させた状態で、前記分注チップ211を、前記ノズルZ軸移動機構58により該第5の液収容部27から第6の液収容部27にまで前記ノズルヘッド移動機構51により移動させる。
 ステップS10で、前記分注チップ211の細径部211aをノズルZ軸移動機構58を用いて前記フィルムの孔を貫通して挿入する。前記磁力部57の磁石571を前記分注チップ211の細径部211aから離間させることで前記細径部211a内への磁力を除去した状態で、該第6の液収容部27に収容されている洗浄液2(isopropanol)について吸引吐出を繰り返すことで、前記磁性粒子を液中で攪拌させ NaCl および SDS を除去し、タンパク質を洗浄する。その後、前記磁力部57の磁石571を再び前記分注チップ211の細径部211aに接近させることで前記磁性粒子を細径部211aの内壁に吸着させた状態で、前記分注チップ211を、前記ノズルZ軸移動機構58により上昇させた後、該第6の液収容部27から、蒸留水が収容されている前記第7の液収容部27に前記ノズルヘッド移動機構51によって移動させる。
 ステップS11で、前記ノズルZ軸移動機構58によって、前記分注チップ211の細径部211aを前記孔を通って下降させ、前記磁力を前記分注チップ211の細径部211a内に及ぼした状態で、ゆっくりとした流速での前記蒸留水の吸引吐出を繰り返すことで、洗浄液2(isopropanol)を水と置き換えて除去する。その後、前記磁力部57の磁石571を前記分注チップ211の細径部211aから離間させて磁力を除去した状態で前記磁性粒子を前記解離液としての蒸留水中で吸引吐出を繰り返すことで攪拌して、前記磁性粒子が保持していた核酸またはその断片を磁性粒子から液中に解離(溶出)する。その後、前記分注チップ211の細径部211aに前記磁石571を接近させることで細径部内に磁場を及ぼし磁性粒子を内壁に吸着させ、前記第8の液収容部内に前記抽出した核酸等を含有する溶液を残留させる。ノズルヘッド移動機構51により前記分注チップ211を前記チップ等収容部群21の該分注チップ211が収容されていた収容部にまで移動させ、前記チップ除去機構59の前記除去部材591を用いて該ノズル11から磁性粒子を吸着した該分注チップ211を前記磁性粒子と共に該収容部内に脱着させる。
 続く、ステップS12からステップS15は、核酸増幅工程に該当する。
 ステップS12において、前記核酸増幅制御部63からの指示に基づき、前記微少量・大量判別指示手段64からの指示により該ノズル11に新たな微小量用分注チップ212を前記ノズルヘッド移動機構51およびノズルZ軸移動機構58を用いて装着し、前記第8の液収容部内27に収容された核酸等を含有する溶液を微小量吸引して、予め増幅用溶液が収容された前記反応容器23iとしてのPCR用チューブにまで移送して吐出して該容器内に導入する。
 ステップS13において、前記ノズルヘッド移動機構51、ノズルZ軸移動機構58及び前記チップ除去機構58によって前記ノズル11に装着した前記微小量用分注チップ212iを前記チップ等収容部21に脱着する。前記ノズルヘッド移動機構51によって、前記ノズルヘッド50を移動させて、前記ノズル11に前記容器群20の密閉蓋25を収容するチップ等収容部21としての密閉蓋収容部の上方にまで移動させる。前記ノズルZ軸移動機構58を用いて下降させることによって、前記密閉蓋25の上側の窪み258をノズル11の先端部11qに嵌合させることで装着する。該ノズルZ軸移動機構58によって上昇させた後、前記ノズルヘッド移動機構51を用いて該密閉蓋25を前記PCR用チューブ(23)上に位置させ、前記ノズルZ軸移動機構58によって、密閉蓋25を下降させてPCR用チューブ231の開口部と嵌合させて装着密閉する。
 ステップS14において、前記測光制御部61により、前記ノズルヘッド移動機構51に指示して、ノズルヘッド50をX軸に沿って移動させることにより、前記ノズル11を、前記密閉蓋25が装着されたPCR用チューブ(23)の上方に位置させ、前記Z軸移動機構58によって下降させることによって、前記ノズル11の先端部11qを前記密閉蓋25の窪み内に装着させて、その下端部11qを該窪み底面に接触または密着させる。
 その際、ステップS15において、前記核酸増幅制御部63の指示により前記温度制御器29はリアルタイムPCRによる温度制御のサイクル、例えば、該PCR用チューブ(23)を96℃で5秒間加熱し、60℃で15秒間加熱するというサイクルを、例えば49回繰り返すように指示する。
 ステップS16において、前記測光制御部61は、前記核酸増幅制御部63による各サイクルでの温度制御が開始されると、各サイクルでの伸長反応工程の開始を判断し、前記接続端配列体30を前記測定器40の各測定端44jに対し、連続的または間欠的な移動を指示する。その移動速度は、安定的受光可能時間、蛍光寿命および前記各容器群20の個数(この例では8個)等に基づいて算出された速度で移動させることになる。これによって前記安定的受光可能時間内での全8個のPCR用チューブ(23)からの受光が完了することになる。ここで、「安定的受光可能時間」とは、反応容器内の受光可能な光学的状態が安定的に維持される時間であって、例えば、リアルタイムPCRのインターカレーション法やLUX法またはハイブリダイゼーション法のTaqManプローブの場合には、PCRの各サイクルの伸長反応が行われる時間がこれに相当する。なお、ハイブリダイゼーション法でFRETプローブを用いる場合はアニーリングが行われる時間がこれに相当する。
 ステップS17において、前記測光制御部61は、例えば前記ノズル11の光ファイバ(束)31と前記測定端44の第1の測定端(励起光の照射口)、第2の測定端(発光の入射口)との各光学的接続の瞬間を判断して受光を前記測定器40に指示する。
 この測定は、指数関数的な増幅が行われるサイクルについて実行され、該測定に基づいて増幅曲線が得られ、該増幅曲線に基づき種々の解析が行われることになる。なお、測定の際に、前記測光制御部61は、前記各容器群20に設けられたヒーターを加熱して前記密閉蓋25の結露を防止して、明瞭な測定を行うことができる。
 図14は、本実施の形態に係る測光分注装置の性能を示す実験例を示す。該実験は室温20.9℃、湿度31%で実行されたものであって、本測光分注装置100を用いて、蒸留水10μL,20μL,25μLを重量測定済みチューブより吸引し、他の1.5mLの容量の容器に分注する場合の吸引量を、5種類の溶液について、前記8個の測光分注ノズルユニットを用いて、分注前の前記重量測定済みチューブの重量と、吸引後の該重量測定済みチューブの重量を測定し、その差を吸引量として測定したものである。その結果の最大最小値の差(max‐min)、平均(Average)、偏差値(SD)、6倍の偏差値(6SD)、変動係数(Coefficient of Variation)、精度(Accuracy)を測定したものである。その結果、本測光分注装置の変動係数は、本出願人の他の分注装置の変動係数(例えば、10μLでは10%以下、25μLでは3%以下、200μLでは1.5%以下)よりも十分に小さく、分注の信頼性が高いことが示された。
 図15は、前記測光分注装置100の前記測光分注ノズルユニット11i(i=1~8)を用いて、8個の同一蛍光(FITC黄緑)の蛍光液容量(各20μL)に励起光(Ch0)の照射を行って、その発光量(AD変換値)を5回繰り返して測定した場合の、平均値(AVE)、最大値(MAX)、最小値(MIN)、偏差値(SD)、変動係数(CV)を測定したものであり、変動係数が小さく、信頼性が高いことが示されている。また、各レーンごとの分注量についても同時にその変動係数等の測定が行われている。
 図16は、前記測光分注装置100の6組(レーン1~6)の測光分注ノズルユニットを用いて、用意した2容器に収容した蛍光(FITC黄緑)溶液を各々3種類の濃度(0.1,0.05,0.025)で希釈化した蛍光液溶液20μLについて蛍光を測定した結果を示すものである(レーン1~3→作業1、レーン4~6→作業2)。測定した結果は、その蛍光のピーク値(a)(光電変換部によって得られたデジタル値)の表、前記測定器40で測定した際に得られた生データ(b)(接続端配列体30の移動に伴う時間変化として得られている)、および作成した検量線(c)として示されている。これらの測定結果から、濃度に応じた蛍光量が高い精度で得られることが示されている。
 以上説明した各実施の形態は、本発明をより良く理解させる為に具体的に説明したものであって、別形態を制限するものではない。したがって、発明の主旨を変更しない範囲で変更可能である。例えば、測光分注ノズルユニットの例として、第1の実施の形態に係る分注用シリンダ12についてのみ、その測光分注装置およびその方法について説明したが、第2の実施の形態に係る分注用シリンダ120を用いることができることは言うまでもない。また、以上の説明で用いた数値、回数、形状、個数(例えば、測光分注装置で用いた測光分注ノズルユニットの組数は8の場合に限られない。大きい場合も小さい場合もある。)、量等についてもこれらの場合に限定されるものではない。また、測光分注ノズルユニットの導光端部の例として、照射端と受光端の双方を該ノズルユニットに設ける場合についてのみ説明したが、照射端または受光端の一方のみを設ける場合であっても良い。この場合、その他方は、該測光分注ノズルユニット外または/および該ノズルに装着された分注チップ外であって、該ノズルの先端開口部または前記分注チップの口部がその上方に位置付け可能な場所、例えば、ステージである。さらには該ステージに載置された容器の透明な底部の下側である。分注チップを前記ノズルに装着した場合には、前記照射端および前記受光端の両方が前記ノズルに装着された前記分注チップの前記口部と前記装着用開口部を共通に通る垂直共通軸線上に位置するように位置付け可能に設けられるのが好ましい。
 本発明は、測光分注ノズルユニット、測光分注装置および測光分注処理方法に関し,患者等から採取した検体の検査、その光学的測定およびその記録を行うものであって、特に、遺伝子、免疫系、アミノ酸、蛋白質、糖等の生体高分子、生体低分子の扱いが要求される分野、例えば、生化学分野、工業分野、食品、農産、水産加工等の農業分野、製剤分野、衛生、保健、免疫、疾病、遺伝等の医療分野等の様々な分野で利用可能である。
 10~10(n=1,…8,…) 測光分注ノズルユニット
 11~11(n=1,…8,…) ノズル
 12~12(n=1,…8,…) 分注用シリンダ
 13~13(n=1,…8,…) 圧力センサ
 20              ステージ
 20~20(n=1,…8,…) 容器群
 29              温度制御器
 40              光測定器
 50              ノズルヘッド
 51              ノズルヘッド移動機構
 53              吸引吐出駆動部
 57              磁力部
 58              ノズルZ軸移動機構
 59              チップ除去機構
 60              CPU+プログラム+メモリ(測光分注処理制御部) 
 70              流路内蔵支持体
 71~71(n=1,…8,…) 連結流路(吸引吐出用流路)
 72~72(n=1,…8,…) 圧力センサ用流路
 100             測光分注装置

Claims (16)

  1.  先端開口部を通して気体の吸引吐出が行われかつ分注チップが装着可能なノズルと、
     該ノズルに設けられ、該ノズルの先端で光の受光または照射可能な導光端部と、
     内部に空洞を有するシリンダ、該空洞内を摺動可能に設けられたプランジャ、および気体の吸引吐出が行われる吸引吐出口を有する分注用シリンダと、
     該ノズルを通り、該吸引吐出口と前記ノズルの先端開口部とを連通する吸引吐出用流路と、
     前記分注用シリンダを経由せずに前記ノズルを通って前記導光端部と光学的に接続された導光路と、を有する測光分注ノズルユニット。
  2.  前記ノズルおよび前記分注用シリンダが各々独立して着脱可能に取り付けられて並列に支持されかつ前記吸引吐出用流路の一部領域が内部に形成された流路内蔵支持部材をさらに有する請求項1に記載の測光分注ノズルユニット。
  3.  前記ノズルは、その側壁を貫いて設けられたノズル横孔を有し、前記吸引吐出口は前記シリンダの側壁を貫いて設けられたシリンダ横孔であり、前記吸引吐出用流路の前記一部領域は、前記流路内蔵支持部材に取り付けられた前記ノズルの前記ノズル横孔と、該流路内蔵支持部材に取り付けられた前記分注用シリンダの前記シリンダ横孔との間を連通するように形成された連結流路を有する請求項2に記載の測光分注ノズルユニット。
  4.  前記流路内蔵支持部材は、流路内蔵支持ブロックと、該流路内蔵支持ブロックに穿設されたノズル取付用縦孔およびシリンダ取付用縦孔と、該流路内蔵支持ブロックの内部に形成され前記ノズル取付用縦孔および前記シリンダ取付用縦孔との間を連通する前記連結流路とを有し、前記ノズルは、前記ノズル取付用縦孔に密接して取り付けられ、前記分注用シリンダは、該シリンダ取付用縦孔に密接して取り付けられ、前記連結流路は、取り付けられた前記ノズルのノズル横孔と、取り付けられた前記分注用シリンダの前記シリンダ横孔と連通する請求項3に記載の測光分注ノズルユニット。
  5.  前記ノズルと前記ノズル取付用縦孔との間の各密接面のいずれか、および前記分注用シリンダと前記シリンダ取付用縦孔との間の各密接面のいずれかには、前記シリンダ横孔および前記ノズル横孔を上下位置で挟むようにシール部材が各密接面を上下に仕切るように設けられた請求項4に記載の測光分注ノズルユニット。
  6.  前記ノズルの前記先端開口部と連通する圧力センサをさらに有し、前記ノズルの前記側壁には、該側壁を貫いて第2のノズル横孔が設けられ、該圧力センサは、該第2のノズル横孔を介して前記先端開口部と連通し、前記流路内蔵支持部材の流路内蔵支持ブロックには、前記圧力センサが独立して着脱可能に取り付けられる圧力センサ取付孔がさらに設けられ、かつ取り付けられた前記圧力センサと前記第2のノズル横孔とを連通する圧力センサ用流路が形成された請求項3乃至請求項5のいずれかに記載の測光分注ノズルユニット。
  7.  前記分注用シリンダの前記空洞は、大径の内周面を有する大径領域、および前記大径領域の前記吸引吐出口側に設けられ小径の内周面を有する小径領域を有し、前記プランジャは、前記大径領域を摺動可能に設けられた太軸部、および該太軸部の先端面から前記軸線方向に沿って突出しかつ前記小径領域を摺動可能に設けられた細軸部を有し、前記大径領域と前記小径領域との間には、前記太軸部が前記軸線方向に沿って遊動可能な遊動領域を有し、前記吸引吐出口は、前記小径領域の先の空洞に位置するように設けられた請求項1乃至請求項6のいずれかに記載の測光分注ノズルユニット。
  8.  反応容器、液収容部または分注チップ収容部を各々有する1または2以上の容器群と、
     先端開口部を通して気体の吸引吐出が行われかつ分注チップが装着可能なノズル、内部に空洞を有するシリンダおよび該空洞内を摺動するプランジャが設けられ気体の吸引吐出口を有する分注用シリンダ、および前記ノズルを通り該吸引吐出口と前記先端開口部とを連通する吸引吐出用流路を有する1または2以上の測光分注ノズルユニットと、
     前記ノズルを前記容器群に対して相対的に移動可能とするノズル移動機構と、
     前記分注用シリンダの前記プランジャを上下方向に沿って移動させて前記ノズルに装着した前記分注チップが前記容器群に一斉に液体の吸引吐出を可能とする吸引吐出駆動部と、
     少なくとも受光した光をディジタルデータに変換する光測定器と、
     前記ノズル移動機構、前記吸引吐出駆動部、および前記光測定器に対して、分注処理または測光処理を制御する測光分注処理制御部とを有し、
     前記ノズルは、該ノズルの先端で光の受光または照射可能な導光端部、および前記分注用シリンダを経由せずに前記ノズルを通って該導光端部と光学的に接続される導光路を有し、前記光測定器は、前記導光路と光学的に接続される測光分注装置。
  9.  前記1または2以上の組の測光分注ノズルユニットについて、前記各ノズルおよび前記各分注用シリンダが独立して着脱可能に取り付けられて並列に支持されかつ前記各吸引吐出用流路の一部領域が内部に形成された流路内蔵支持体をさらに有する請求項8に記載の測光分注装置。
  10.  前記ノズルは、その側壁を貫いて設けられたノズル横孔を有し、前記吸引吐出口は前記シリンダの側壁を貫いて設けられたシリンダ横孔であり、前記吸引吐出用流路の前記一部領域は、前記流路内蔵支持体に取り付けられて支持された前記ノズルの前記ノズル横孔と、該流路内蔵支持体に取り付けられて前記ノズル横孔に対向するように支持された前記分注用シリンダの前記シリンダ横孔との間を連通する連結流路である請求項9に記載の測光分注装置。
  11.  前記流路内蔵支持体は、流路内蔵支持ブロックと、該流路内蔵支持ブロックに穿設された1または2以上の組のノズル取付用縦孔およびシリンダ取付用縦孔と、該流路内蔵支持ブロックの内部に形成され各組において前記ノズル取付用縦孔および前記シリンダ取付用縦孔との間を連通する前記連結流路とを有し、前記ノズルは、前記ノズル取付用縦孔に密接して取り付けられ、前記分注用シリンダは、該シリンダ取付用縦孔に密接して取り付けられ、前記連結流路は、取り付けられた前記ノズルのノズル横孔と、取り付けられた前記分注用シリンダの前記シリンダ横孔と連通可能に設けられた請求項8乃至請求項10のいずれかに記載の測光分注装置。
  12.  前記流路内蔵支持体の流路内蔵支持ブロックには、前記各ノズルの前記先端開口部と連通する圧力センサをさらに有し、前記ノズルの前記側壁には、該側壁を貫いて第2のノズル横孔が設けられ、該圧力センサは、該第2のノズル横孔を介して前記各先端開口部と連通し、前記流路内蔵支持ブロックには、前記圧力センサが独立して着脱可能に取り付けられる圧力センサ取付孔がさらに設けられ、かつ取り付けられた圧力センサと前記第2のノズル横孔とを連通する圧力センサ用流路が形成された請求項8乃至請求項11のいずれかに記載の測光分注装置。
  13.  前記分注用シリンダの空洞は、大径の内周面を有する大径領域、および前記大径領域の前記吸引吐出口側に設けられ小径の内周面を有する小径領域を有し、前記プランジャは前記大径領域を摺動可能に設けられた太軸部、および該太軸部の先端面から前記軸線方向に沿って突出しかつ前記小径領域を摺動可能に設けられた細軸部を有し、前記大径領域と前記小径領域との間には、前記太軸部が前記軸線方向に沿って遊動可能な遊動領域を設け、前記吸引吐出口は前記小径領域の先の空洞に位置し、前記測光分注処理制御部は、前記分注チップに対する所定量の液体の吸引吐出の指示があった場合に、該所定量が微小量か大量かを判別し、該判別結果が微小量の場合には、前記分注用シリンダのプランジャの細軸部が小径領域内を摺動可能な微小量吸引吐出区間内に位置させて前記所定量に応じた移動距離を移動させ、前記判別結果が大量の場合には、前記プランジャの太軸部が大径領域内を摺動可能な大量吸引吐出区間内に位置させて前記所定量に応じた移動距離を移動させるように前記吸引吐出駆動部に対して指示する微小量・大量判別指示手段を有する請求項8乃至請求項12のいずれかに記載の測光分注装置。
  14.  反応容器、液収容部または分注チップ収容部を各々有する1または2以上の容器群に対して、先端開口部を通して気体の吸引吐出が行われかつ分注チップが装着可能なノズル、内部に空洞を有するシリンダおよび該空洞内を摺動するプランジャが設けられ気体の吸引吐出口を有する分注用シリンダ、および前記ノズルを通り該吸引吐出口と前記先端開口部とを連通する吸引吐出用流路を有する1または2以上の測光分注ノズルユニットの前記ノズルを、前記ノズル移動機構によって相対的に移動する移動工程と、
     前記ノズル移動機構によって前記ノズルに分注チップを装着する装着工程と、
     前記吸引吐出駆動部によって、前記分注チップに対して前記容器群に収容されている液体の吸引吐出を一斉に行う吸引吐出工程と、
     前記分注チップを前記ノズルから除去する除去工程と、
     前記ノズル移動機構によって前記ノズルの先端部を前記反応容器の開口部に直接的または間接的に連係し、前記ノズルに設けた導光端部および前記分注用シリンダを経由せずに前記ノズルを通って前記導光端部と光学的に接続する導光路を介して光測定器と反応容器を光学的に接続して測定を行う光測定工程とを有する測光分注処理方法。
  15.  前記1または2以上の組の測光分注ノズルユニットについて、前記各ノズルおよび前記各分注用シリンダが独立して着脱可能に取り付けられて並列に支持されかつ前記各吸引吐出用流路の一部領域が内部に形成された流路内蔵支持体が設けられ、該流路内蔵支持体に前記ノズルおよび前記分注用シリンダを取り付けるノズルユニット取付工程をさらに有する請求項14に記載の測光分注処理方法。
  16.  前記分注用シリンダの前記空洞は、大径の内周面を有する大径領域、および前記大径領域の前記吸引吐出口側に設けられ小径の内周面を有する小径領域を有し、前記プランジャは、前記大径領域を摺動可能に設けられた太軸部、および該太軸部の先端面から前記軸線方向に沿って突出しかつ前記小径領域を摺動可能に設けられた細軸部を有し、前記大径領域と前記小径領域との間には、前記太軸部が前記軸線方向に沿って遊動可能な遊動領域を設け、前記吸引吐出口は、前記小径領域の先の空洞に位置するように設けられ、
     前記分注チップへの所定量の液体の吸引または吐出の指示があった場合には、所定量が微小量か大量かを判別する判別工程をさらに有し、
     前記装着工程は、前記所定量が微小量と判別された場合には、微小量用分注チップを装着し、前記所定量が大量と判別された場合には、大量用分注チップを前記ノズルに装着し、
     前記吸引吐出工程は、前記所定量が微小量と判別された場合には、前記分注用シリンダのプランジャの細軸部が小径領域内を摺動可能な微小量吸引吐出区間内に位置させて前記所定量に応じた距離を摺動させることで前記分注チップに対して前記微少量の液体を吸引吐出させる微小量吸引吐出工程と、
     前記所定量が大量と判別された場合には、前記プランジャの太軸部が大径領域内を摺動可能な大量吸引吐出区間内に位置させて前記所定量に応じた距離を摺動させることで、前記分注チップに対して前記大量の液体を吸引吐出させる大量吸引吐出工程とを有する請求項14または請求項15に記載の測光分注処理方法。
PCT/JP2018/012779 2017-03-28 2018-03-28 測光分注ノズルユニット、測光分注装置、および測光分注処理方法 WO2018181481A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019509978A JP7201241B2 (ja) 2017-03-28 2018-03-28 測光分注ノズルユニット、測光分注装置、および測光分注処理方法
US16/496,723 US11498064B2 (en) 2017-03-28 2018-03-28 Photometric dispensing nozzle unit, photometric dispensing apparatus, and photometric dispensing method
CN201880020780.2A CN110573886B (zh) 2017-03-28 2018-03-28 测光分注喷嘴组件、测光分注装置及测光分注处理方法
EP18777725.5A EP3605112B1 (en) 2017-03-28 2018-03-28 Photometric dispensing nozzle unit, photometric dispensing apparatus, and photometric dispensing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-063737 2017-03-28
JP2017063737 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018181481A1 true WO2018181481A1 (ja) 2018-10-04

Family

ID=63677838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012779 WO2018181481A1 (ja) 2017-03-28 2018-03-28 測光分注ノズルユニット、測光分注装置、および測光分注処理方法

Country Status (5)

Country Link
US (1) US11498064B2 (ja)
EP (1) EP3605112B1 (ja)
JP (1) JP7201241B2 (ja)
CN (1) CN110573886B (ja)
WO (1) WO2018181481A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747913A (zh) * 2020-12-31 2021-05-04 宁波飞图自动技术有限公司 一种自动化喷雾头检测装置及其检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038019A1 (ja) * 2016-08-22 2018-03-01 ユニバーサル・バイオ・リサーチ株式会社 分注用シリンダ、並びに、それを用いた分注装置および分注処理方法
WO2018132376A1 (en) * 2017-01-13 2018-07-19 Beckman Coulter, Inc. Motion systems for loading tips
JP7019303B2 (ja) * 2017-03-24 2022-02-15 東芝テック株式会社 液滴分注装置
CN112639432A (zh) * 2018-08-31 2021-04-09 株式会社岛津制作所 分析装置、分析方法、微量液体提取装置和微量液体提取方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694584A (ja) 1992-09-14 1994-04-05 Mitsubishi Heavy Ind Ltd シリンジ
JPH0929111A (ja) 1995-07-20 1997-02-04 Aloka Co Ltd ピペット装置
WO1997044671A1 (en) 1996-05-20 1997-11-27 Precision System Science Co., Ltd. Method and apparatus for controlling magnetic particles by pipetting machine
JP2005249521A (ja) 2004-03-03 2005-09-15 Yaskawa Electric Corp 分注装置および分注方法
JP2011163771A (ja) 2010-02-04 2011-08-25 Beckman Coulter Inc シリンジポンプ、分注装置及び自動分析装置
WO2012157685A1 (ja) 2011-05-16 2012-11-22 ユニバーサル・バイオ・リサーチ株式会社 反応容器用光測定装置およびその方法
JP2013250191A (ja) 2012-06-01 2013-12-12 Biotec Kk 分注装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170852A (ja) 1986-01-23 1987-07-27 Hitachi Ltd 分注装置
JP3152727B2 (ja) * 1992-03-31 2001-04-03 株式会社東芝 ノズル型分析装置
JP2706616B2 (ja) 1994-02-04 1998-01-28 株式会社バイオセンサー研究所 液体の光学的測定装置
JPH08338849A (ja) * 1995-04-11 1996-12-24 Precision Syst Sci Kk 液体の吸引判別方法およびこの方法により駆動制御される分注装置
WO1998032002A1 (en) * 1997-01-22 1998-07-23 Biacore Ab Pipette and carrier assembly for a sensor
US20040241872A1 (en) 2003-03-17 2004-12-02 Qiagen Operon, Inc. Optical detection liquid handling robot system
JP4413921B2 (ja) * 2004-04-23 2010-02-10 古河電気工業株式会社 検体の解析装置及び検体の解析方法
JP4720419B2 (ja) * 2005-10-11 2011-07-13 株式会社島津製作所 マイクロチップへの分離バッファ液充填装置とそれを備えたマイクロチップ処理装置
US7498551B2 (en) * 2006-10-06 2009-03-03 Los Alamos National Security, Llc Apparatus and method for tracking a molecule or particle in three dimensions
JP2009075082A (ja) * 2007-08-31 2009-04-09 Olympus Corp 分注装置、分注方法及び自動分析装置
US8227258B2 (en) * 2008-02-11 2012-07-24 New Jersey Institute Of Technology Delivery and sensing of metered amounts of liquid materials
US8232111B2 (en) * 2009-01-29 2012-07-31 Empire Technology Development Llc Micropipette, micropipette system, and method for using micropipette
JP2011112540A (ja) * 2009-11-27 2011-06-09 Beckman Coulter Inc 分注装置および分析システム
CN103237880B (zh) * 2010-10-15 2016-08-03 环球生物研究株式会社 利用多功能分注单元的核酸自动处理装置及其方法
EP2453233A1 (en) * 2010-11-16 2012-05-16 Roche Diagnostics GmbH Method and apparatus for detecting foam on a liquid surface in a vessel
CN103534575B (zh) * 2011-02-04 2016-08-10 环球生物研究株式会社 自动反应/光测定装置及其方法
WO2013060480A2 (de) * 2011-10-28 2013-05-02 Torsten Matthias Vorrichtung und verfahren zur kontrolle eines volumens einer probe
US9556477B2 (en) * 2012-07-17 2017-01-31 Universal Bio Research Co., Ltd. Light measurement apparatus for reaction vessel and light measurement method
KR102158399B1 (ko) * 2012-08-31 2020-09-21 유니바사루 바이오 리사치 가부시키가이샤 변형요소내장 분주팁, 변형요소내장 분주장치 및 변형요소내장 분주처리방법
EP2921861B1 (en) * 2012-11-16 2021-07-21 Universal Bio Research Co., Ltd. Linear movement type reaction processing device and method for same
JP6076108B2 (ja) * 2013-01-31 2017-02-08 株式会社日立ハイテクノロジーズ 自動分析装置
EP3056894A4 (en) * 2013-10-07 2017-06-28 Universal Bio Research Co., Ltd. Chemiluminescence measurement device and method for same
US9221046B2 (en) * 2014-01-30 2015-12-29 Rainin Instrument, Llc Air displacement pipette with enhanced blowout
JP6586413B2 (ja) * 2014-03-20 2019-10-02 ユニバーサル・バイオ・リサーチ株式会社 導光集積検査装置およびその検査方法
US10451643B2 (en) * 2014-05-21 2019-10-22 Hitachi High-Technologies Corporation Sample dispensing device and nozzle tip for sample dispensing device
US10837907B2 (en) * 2015-05-01 2020-11-17 Universal Bio Research Co., Ltd. Multiple reaction parallel measurement apparatus and method for the same
JP6567873B2 (ja) * 2015-05-22 2019-08-28 株式会社日立ハイテクノロジーズ 自動分析装置
US10976253B2 (en) * 2015-12-15 2021-04-13 Universal Bio Research Co., Ltd. Absorbance measuring device and method thereof
EP3222353B1 (en) * 2016-03-23 2019-04-24 Scienion AG Method for single particle deposition
US10883926B2 (en) * 2016-04-08 2021-01-05 Universal Bio Research Co., Ltd. General-purpose optical measuring device and method of same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694584A (ja) 1992-09-14 1994-04-05 Mitsubishi Heavy Ind Ltd シリンジ
JPH0929111A (ja) 1995-07-20 1997-02-04 Aloka Co Ltd ピペット装置
WO1997044671A1 (en) 1996-05-20 1997-11-27 Precision System Science Co., Ltd. Method and apparatus for controlling magnetic particles by pipetting machine
JP2005249521A (ja) 2004-03-03 2005-09-15 Yaskawa Electric Corp 分注装置および分注方法
JP2011163771A (ja) 2010-02-04 2011-08-25 Beckman Coulter Inc シリンジポンプ、分注装置及び自動分析装置
WO2012157685A1 (ja) 2011-05-16 2012-11-22 ユニバーサル・バイオ・リサーチ株式会社 反応容器用光測定装置およびその方法
JP2013250191A (ja) 2012-06-01 2013-12-12 Biotec Kk 分注装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747913A (zh) * 2020-12-31 2021-05-04 宁波飞图自动技术有限公司 一种自动化喷雾头检测装置及其检测方法

Also Published As

Publication number Publication date
US20210106985A1 (en) 2021-04-15
CN110573886A (zh) 2019-12-13
JP7201241B2 (ja) 2023-01-10
CN110573886B (zh) 2023-08-22
EP3605112A1 (en) 2020-02-05
EP3605112A4 (en) 2021-01-20
JPWO2018181481A1 (ja) 2020-02-06
US11498064B2 (en) 2022-11-15
EP3605112B1 (en) 2024-09-04

Similar Documents

Publication Publication Date Title
WO2018181481A1 (ja) 測光分注ノズルユニット、測光分注装置、および測光分注処理方法
JP6134018B2 (ja) 自動反応・光測定装置およびその方法
JP6449017B2 (ja) 直動型反応処理装置およびその方法
JP5991967B2 (ja) 反応容器用光測定装置およびその方法
JP6294823B2 (ja) 反応容器用光測定装置およびその方法
JP6842719B2 (ja) 汎用光測定装置およびその方法
JP5877192B2 (ja) 反応容器およびその製造方法
JPWO2004092710A1 (ja) 分注用シリンダ、大容量分注装置および大容量分注装置の使用方法
US20220187333A1 (en) Specimen processing apparatus and specimen processing method
CN210916022U (zh) 一种核酸提取扩增系统及分子检测装置
WO2017159084A1 (ja) 電気泳動チップ、電気泳動装置、及び電気泳動システム
JPWO2017104693A1 (ja) 吸光度測定装置およびその方法
JP6864377B2 (ja) 分注用シリンダ、並びに、それを用いた分注装置および分注処理方法
JP6959644B2 (ja) 電気泳動全自動処理装置およびその方法
GB2568377A (en) Sample preparation system and cartridge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777725

Country of ref document: EP

Effective date: 20191028