WO2018181401A1 - 隙間部の耐塩害性に優れたフェライト系ステンレス鋼管、管端増肉構造体、溶接継ぎ手、及び溶接構造体 - Google Patents

隙間部の耐塩害性に優れたフェライト系ステンレス鋼管、管端増肉構造体、溶接継ぎ手、及び溶接構造体 Download PDF

Info

Publication number
WO2018181401A1
WO2018181401A1 PCT/JP2018/012598 JP2018012598W WO2018181401A1 WO 2018181401 A1 WO2018181401 A1 WO 2018181401A1 JP 2018012598 W JP2018012598 W JP 2018012598W WO 2018181401 A1 WO2018181401 A1 WO 2018181401A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
stainless steel
gap
ferritic stainless
steel pipe
Prior art date
Application number
PCT/JP2018/012598
Other languages
English (en)
French (fr)
Inventor
雅俊 安部
濱田 純一
信彦 平出
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to MX2019011367A priority Critical patent/MX2019011367A/es
Priority to US16/492,527 priority patent/US11215299B2/en
Priority to KR1020197027878A priority patent/KR102272169B1/ko
Priority to JP2019509936A priority patent/JP6741861B2/ja
Priority to CN201880020584.5A priority patent/CN110446799B/zh
Priority to CA3056054A priority patent/CA3056054C/en
Publication of WO2018181401A1 publication Critical patent/WO2018181401A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/22Methods or apparatus for fitting, inserting or repairing different elements by welding or brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints
    • F16L13/0209Male-female welded joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal

Definitions

  • the present invention relates to a ferritic stainless steel pipe, a pipe end thickening structure, and a welded joint that require corrosion resistance in a gap structure.
  • Ferritic stainless steel is used in a wide range of fields such as home appliances, electronic equipment, and automobiles. Particularly in the automobile field, since it is used in various parts from exhaust manifolds to mufflers, the stainless steel used requires heat resistance and corrosion resistance. In addition, since these parts are mostly welded, the strength, rigidity and corrosion resistance of the welded part are also required.
  • Patent Document 1 for the purpose of securing the strength of the end of the pipe and reducing the weight of the pipe, a process of pressing the roller against the end while rotating the pipe, bending it inward in the radial direction, and then closely contacting with the roller A method is disclosed.
  • Patent Document 2 discloses a construction method for preventing melting during welding by forming a pipe end into a double tubular shape and doubling the wall thickness.
  • Patent Document 3 discloses a patent relating to a raw pipe in order to bend the pipe end and increase the thickness. The inner bead part of the welded part protrudes from the inner face of the pipe, and the protruding amount is 4 to 15 of the plate thickness. %.
  • the pipes with thickened pipe ends described in Patent Documents 1 to 3 have a gap structure with a height of several ⁇ m to several hundreds of ⁇ m at the bent portion.
  • this gap portion is bent inward as in Patent Documents 1 and 2
  • exhaust gas condensed water generated inside the exhaust system components tends to stay in the gap portion.
  • salt water adhering from the outside of the exhaust system component tends to stay in the gap.
  • Corrosion that occurs in this environment is not crevice corrosion, but salt damage corrosion that is promoted by salt water and exhaust gas condensate being easily retained in the crevice environment. Since the corrosion in the gap portion may be accelerated in this manner, the stainless steel used is required to have a steel type that is excellent in salt damage resistance in the gap portion.
  • holes due to corrosion lead to leakage of exhaust gas, so it is important to apply a material with high hole resistance.
  • Patent Document 4 in mass%, C: 0.001 to 0.02%, N: 0.001 to 0.02%, Si: 0.01 to 0.5%, Mn: 0.05 to 1 %, P: 0.04% or less, and S: 0.01% or less, Cr: 12 to 25%, and Ti: 0.02 to 0.5% and Nb: 0.02 to 1%
  • a ferritic stainless steel having excellent crevice corrosion resistance is disclosed, including any one or both of them, further including Sn: 0.005 to 2%, and the balance being Fe and inevitable impurities. .
  • crevice corrosion resistance is improved by adding Sn, but the relationship with the gap interval is not described.
  • Patent Document 5 in mass%, C: ⁇ 0.015%, Si: 0.10 to 0.50%, Mn: 0.05 to 0.50%, P ⁇ 0.050%, S: ⁇ 0.0100%, N: ⁇ 0.015%, Al: 0.020-0.100%, Cr: 10.5-13.05%, Ti: 0.03-0.30% And Nb: either 0.03 to 0.30% or both, Sn: 0.03 to 0.50% and Sb: 0.03 to 0.50% or both Further, the balance consists of Fe and inevitable impurities, and the A value defined by the formula (2) is 15.23 or more, which is excellent in corrosion resistance after heating. Stainless steel is disclosed.
  • Patent Document 6 in mass%, C: ⁇ 0.015%, Si: 0.01 to 0.50%, Mn: 0.01 to 0.50%, P ⁇ 0.050%, S: ⁇ 0.010%, N: ⁇ 0.015%, Al: 0.010 to 0.100%, Cr: 16.5 to 22.5%, and Ti: 0.03 to 0.30% And Nb: 0.03 to 0.30% or any one or both of them, Sn: 0.05 to 1.00%, and the balance consisting of Fe and inevitable impurities
  • the Mo-saving ferritic stainless steel for automobile exhaust system members having excellent post-heating corrosion resistance is disclosed. In the technique described in Patent Document 6, the corrosion resistance after heating is improved by adding Sn, but the corrosion resistance when there is a gap is not described.
  • Patent Document 7 in mass%, C: ⁇ 0.015%, Si: 0.01 to 0.50%, Mn: 0.01 to 0.50%, P ⁇ 0.050%, S: ⁇ 0.010%, N: ⁇ 0.015%, Al: 0.010 to 0.100%, Cr: 16.5 to 22.5%, Ni: 0.5 to 2.0%, Sn: 0.00.
  • Containing 01 to 0.50%, further containing one or both of Ti: 0.03 to 0.30% and Nb: 0.03 to 0.30%, the balance being Fe and inevitable Ferritic stainless steel for automobile exhaust system members characterized by comprising impurities is disclosed.
  • the technique described in Patent Document 7 discloses the corrosion resistance after heating the exhaust system parts, but does not describe the corrosion resistance in a gap environment.
  • Patent Document 8 in mass%, C: 0.0150% or less, Si: 1.0 to 1.5%, Mn: 0.15 to 1.0%, P: 0.050% or less, S: 0.0100% or less, N: 0.0150% or less, Al: 0.010 to 0.200%, Cr: 13.0 to 16.0%, and Sn: 0.002 to 0.050%
  • any one or both of Ti: 0.03-0.30% and Nb: 0.03-0.50% are contained, and the A value defined by the formula (1) is 0.024 or more
  • a ferritic stainless steel for automobile exhaust system members excellent in oxidation resistance and corrosion resistance characterized by satisfying certain circumstances and the balance being Fe and inevitable impurities.
  • Patent Document 8 discloses the corrosion resistance after heating the exhaust system parts, but does not describe the corrosion resistance in a gap environment.
  • the technique described in Patent Document 9 discloses the corrosion resistance after heating the exhaust system parts, but does not describe the corrosion resistance in a gap environment.
  • the present invention provides a solution for improving the corrosion resistance of the gap environment formed at the pipe end of the pipe with the pipe end thickened.
  • the present inventors diligently examined the corrosion resistance of the ferritic stainless steel pipe gap. As a result, it was found that the pitting corrosion depth increases as the stainless steel having a high Cr content in the gap environment. The present inventors have found that there is a relationship between the Cr amount and Sn amount and the critical gap interval at which pitting corrosion grows deeply.
  • a ferritic stainless steel pipe excellent in salt damage resistance of the gap portion according to an aspect of the present invention is C: 0.001 to 0.100%, Si: 0.01 to 2.00% Mn: 0.01 to 2.00% P: 0.001 to 0.05%, S: 0.0001 to 0.005%, Cr: 10.5-20.0%, Sn: 0.001 to 0.600%, Ti: 0.001-1.000%, Al: 0.001 to 0.100%, N: 0.001 to 0.02% is contained, the balance is Fe and inevitable impurities, the tube end is provided with a tube end thickening portion, and the gap interval d ( ⁇ m) formed at the tube end ) Satisfies the relationship of d ⁇ Cr 2 / (1000Sn) (Cr and Sn in the formula indicate the content (mass%) of each element).
  • Ni 0.1 to 1.0% by mass% Mo: 0.1 to 3.0%
  • Cu 0.10 to 3.00%
  • B 0.0001 to 0.0050%
  • Nb 0.001 to 0.300%
  • W 0.001 to 1.00%
  • V 0.001 to 0.50%
  • Sb 0.001 to 0.100%
  • Co 0.001 to 0.500%
  • a pipe end thickening structure is characterized by comprising the ferritic stainless steel pipe according to any one of [1] to [4].
  • a welding joint according to an aspect of the present invention is characterized in that it has a pipe end thickening portion made of the ferritic stainless steel pipe according to any one of [1] to [4].
  • It further has a structure joined to the pipe end thickening portion by welding, and when the thickness of the single pipe portion of the ferritic stainless steel pipe is t, the ferritic stainless steel pipe side of the welded portion
  • a welded structure according to an aspect of the present invention includes the weld joint according to [7].
  • a ferritic stainless steel pipe having excellent resistance to salt damage to the gap (salt damage resistance of the gap), a pipe end thickening structure including the pipe, a welded joint having a pipe end thickening part, And a welded structure having a welded joint.
  • FIG. 2 is an enlarged view of the periphery of a welded portion 3 in FIG. 1, where t is the thickness of a single pipe portion of a ferritic stainless steel pipe, (a) shows a case where the maximum penetration depth is 0.3 t, and (b ) Shows the case where the maximum penetration depth is 1.0 t, (c) shows the case where the maximum penetration depth is 2.0 t, and (d) shows the case where the maximum penetration depth exceeds 2.0 t. Indicates. It is a graph which shows the relationship between Cr amount and Sn amount of a pipe end thickening pipe
  • FIG. 3 shows the relationship between the amount of Cr in the base metal in the amount of Sn in various base metals and the critical gap interval at which corrosion in the gap is suppressed based on the above test results.
  • the oxygen reduction reaction which is a cathode reaction, contributes only to the growth of a small number of pitting corrosion, and each pitting corrosion grows deeply.
  • the cathodic reaction contributes to the generation of a large number of pitting corrosion.
  • C Since C reduces the intergranular corrosion resistance and workability of steel, it is necessary to keep the content low. Therefore, the C content is 0.100% or less. However, since excessively reducing the scouring cost, it is desirable that the C content be 0.001% or more.
  • the C content is more preferably 0.003 to 0.050%, and still more preferably 0.005 to 0.020%.
  • Si is useful as a deoxidizing element, but if added excessively, the material is cured, so its content is made 0.01 to 2.00%.
  • the Si content is more preferably 0.02 to 0.80%, and still more preferably 0.03 to 0.70%.
  • Mn is useful as a deoxidizing element, but if contained excessively, the corrosion resistance deteriorates, so the content is made 0.01 to 2.00%.
  • the Mn content is more preferably 0.02 to 0.80%, and still more preferably 0.03 to 0.70%.
  • P is an element that deteriorates workability, weldability, and corrosion resistance, and its content needs to be limited. Therefore, the P content is 0.05% or less. However, excessively reducing the amount of P increases the refining cost, so the lower limit is made 0.001%.
  • the P content is more preferably 0.003 to 0.04%, and still more preferably 0.005 to 0.03%.
  • S Since S is an element that degrades corrosion resistance, its content needs to be limited. Therefore, the S content is set to 0.005% or less. However, excessively reducing the amount of S increases the refining cost, so the lower limit is made 0.0001%.
  • the S content is more preferably 0.0003 to 0.003%, and still more preferably 0.0005 to 0.001%.
  • Cr is required in an amount of at least 10.5% in order to secure salt corrosion resistance and exhaust gas condensate corrosion resistance. As the Cr content is increased, the corrosion resistance is improved, but the workability and manufacturability are lowered and the cost is increased, so the upper limit is made 20.0% or less.
  • the Cr content is more desirably 11.0 to 19.0%, and further desirably 13.0 to 17.5%.
  • Sn is an element that improves corrosion resistance, and an amount of at least 0.001% or more is required.
  • the Sn content of 0.001 to 0.009% is effective, but the effect is further increased by increasing the Sn content. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.600% or less.
  • the Sn content is more preferably 0.002 to 0.500%, and still more preferably 0.030 to 0.300%. Considering the cost, 0.030 to 0.100% is desirable.
  • Ti is an element useful for improving corrosion resistance, and can be contained in an amount of 0.001% or more. However, the upper limit is made 1.000% in order to increase the cost if added excessively.
  • the Ti content is more preferably 0.002 to 0.500%, and still more preferably 0.003 to 0.200%.
  • Al is an element useful for scouring such as a deoxidation effect, and an amount of at least 0.001% or more is necessary. However, if added excessively, coarse inclusions are formed and the corrosion resistance is lowered, so the upper limit is made 0.100% or less.
  • the Al content is more preferably 0.005 to 0.080%, and still more preferably 0.010 to 0.070%.
  • N Since N deteriorates moldability and corrosion resistance, the N content is set to 0.02% or less. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001%.
  • the N content is more preferably 0.002 to 0.015%, and still more preferably 0.003 to 0.010%.
  • Ni is an element useful for improving the corrosion resistance, and can be contained in an amount of 0.1% or more. However, excessive addition increases the cost, so the upper limit is made 1.0%.
  • the Ni content is more desirably 0.2 to 0.8%, and further desirably 0.3 to 0.5%.
  • Mo is an element useful for improving corrosion resistance, and can be contained in an amount of 0.1% or more. However, excessive addition increases the cost, so the upper limit is made 3.0%.
  • the Mo content is more preferably 0.2 to 2.0%, and still more preferably 0.3 to 1.5%.
  • Cu is an element useful for improving the corrosion resistance, and can be contained in an amount of 0.10% or more. However, excessive addition increases the cost, so the upper limit is made 3.00%.
  • the Cu content is more preferably 0.20 to 2.00%, and still more preferably 0.30 to 1.50%.
  • B is an element useful for improving hot workability, and can be contained in an amount of 0.0001% or more. However, excessive addition reduces corrosion resistance, so the upper limit is made 0.0050% or less.
  • the B content is more preferably 0.0005 to 0.0030%, and still more preferably 0.0010 to 0.0010%.
  • Nb is an element useful for improving corrosion resistance, and is desirably contained in an amount of 0.001% or more. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.300% or less.
  • the Nb content is more preferably 0.005 to 0.200%, and still more preferably 0.010 to 0.100%.
  • W is an element useful for improving corrosion resistance, and is desirably contained in an amount of 0.001% or more. However, excessive addition reduces workability and manufacturability, so the upper limit is made 1.00% or less.
  • the W content is more preferably 0.005 to 0.70%, and still more preferably 0.010 to 0.50%.
  • V is an element useful for improving corrosion resistance, and is desirably contained in an amount of 0.001% or more. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.50% or less.
  • the V content is more preferably 0.005 to 0.40%, and still more preferably 0.010 to 0.30%.
  • Sb is an element useful for improving corrosion resistance, and is preferably contained in an amount of 0.001% or more. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.100% or less.
  • the Sb content is more preferably 0.005 to 0.080%, and still more preferably 0.010 to 0.050%.
  • Co is preferably contained in an amount of 0.001% or more in order to improve secondary workability and toughness. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.500% or less.
  • the Co content is more preferably 0.002 to 0.400%, and still more preferably 0.003 to 0.300%.
  • the total content of one or more of Ni, Mo, Cu, B, Nb, W, V, Sb, and Co is preferably 6% or less from the viewpoint of cost increase.
  • Ca is preferably contained in an amount of 0.0001% or more in order to improve desulfurization and hot workability. However, if added excessively, water-soluble inclusions CaS are generated and the corrosion resistance is lowered, so the upper limit is made 0.0050%.
  • the Ca content is more preferably 0.0002 to 0.0045%, and still more preferably 0.0003 to 0.0040%.
  • Mg is desirably contained in an amount of 0.0001% or more in order to refine the structure and improve workability and toughness. However, if added excessively, the hot workability is lowered, so the upper limit is made 0.0050%.
  • the Mg content is more preferably 0.0003 to 0.0040%, and still more preferably 0.0005 to 0.0030%.
  • Zr is desirably contained in an amount of 0.0001% or more in order to improve the corrosion resistance. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.0300%.
  • the Zr content is more preferably 0.0005 to 0.0200%, and still more preferably 0.0010 to 0.0100%.
  • Ga is desirably contained in an amount of 0.0001% or more for improving corrosion resistance and hydrogen embrittlement resistance. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.0100%.
  • the Ga content is more preferably 0.0005 to 0.0080%, and still more preferably 0.0010 to 0.0050%.
  • Ta is desirably contained in an amount of 0.001% or more in order to improve corrosion resistance. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.050%.
  • the Ta content is more preferably 0.005 to 0.040%, and still more preferably 0.010 to 0.030%.
  • REM is an element useful for scouring because it has a deoxidizing effect and the like, and is preferably contained in an amount of 0.001% or more. However, excessive addition reduces workability and manufacturability, so the upper limit is made 0.100%.
  • the REM content is more preferably 0.005 to 0.080%, and still more preferably 0.010 to 0.050%. Note that REM is a rare earth metal such as Ce, La, Pr, or Nd.
  • the “REM content” means the total value of the contents of all these REM elements. If the total content is within the above range, the same effect can be obtained regardless of whether the type of REM element is one or more.
  • the ferritic stainless steel pipe of this embodiment includes a pipe end thickening portion 1a at the pipe end.
  • the pipe end thickening part 1a means the site
  • the pipe end thickening portion 1a is formed, for example, by folding the end of a steel pipe 180 ° inward or outward. For this reason, the pipe end thickening part 1a has the edge part turned inward or outward.
  • a gap portion 1b exists between the outer portion (outer peripheral portion) and the inner portion (inner peripheral portion) of the stainless steel pipe.
  • the maximum value of the gap interval between the steel pipe and the folded portion of the steel pipe is referred to as a gap interval d ( ⁇ m).
  • the gap interval d ( ⁇ m) existing at the end of the tube satisfies the relationship of d ⁇ Cr 2 / (1000Sn) (Cr and Sn in the formula indicate the content (% by mass) of each element).
  • the pipe end thickening pipe (ferritic stainless steel pipe) of this embodiment is made of a stainless steel plate having the steel components defined in this embodiment, and the method of manufacturing the stainless steel plate is steelmaking-hot rolling-annealing.
  • -It consists of each process of pickling-cold rolling-annealing, and the manufacturing conditions of each process are not particularly specified.
  • steelmaking a method in which steel containing the essential components and components added as necessary is melted in a converter and then subjected to secondary refining is preferable.
  • the molten steel is made into a slab according to a known casting method (continuous casting).
  • the slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling.
  • the annealing process after hot rolling may be omitted, and in cold rolling after pickling, rolling may be performed with either a normal Sendzimir mill or a tandem mill, but considering the bendability of the steel pipe, Is preferable.
  • roll roughness, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature, etc. may be appropriately selected within a general range.
  • Intermediate annealing may be put in the middle of cold rolling, and the intermediate and final annealing may be batch annealing or continuous annealing.
  • the annealing atmosphere if necessary, bright annealing or annealing in the air in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas may be performed.
  • the product plate may be lubricated to further improve press molding, and the type of lubricating film may be appropriately selected.
  • temper rolling or leveler may be applied for shape correction after the final annealing, it is desirable not to apply these because it causes a decrease in work hardening ability.
  • the manufacturing method of the steel pipe may be appropriately selected, and is not limited to the welding method, and may be appropriately selected such as ERW (resistance welding), laser welding, TIG welding (tungsten inert gas welding). Moreover, what is necessary is just to determine the size of a steel pipe according to a use.
  • the pipe end thickening process from the steel pipe is preferably a pipe end spinning process or a forging process, but these methods are not particularly specified.
  • the case where the meat is formed outside the pipe and the case where the meat is formed inside the pipe are conceivable. However, when the meat is formed outside the pipe, the inner diameter of the meat building portion is the same as that of the raw pipe.
  • the outer diameter of the meat building portion is the same as that of the raw tube.
  • spinning is preferable, and it is preferable to adopt a method of bending the pipe end once and closely adhering it in the next step.
  • a ferritic stainless steel pipe that can provide a pipe end thickening structure excellent in resistance to gap portion salt damage can be realized.
  • ferritic stainless steel pipes that satisfy the above-mentioned composition and relational expressions, especially as automobile parts and motorcycle parts, it is possible to reduce the thickness, and to improve the fuel efficiency of automobiles and motorcycles that are efficiently manufactured and applied. It becomes possible.
  • the ferritic stainless steel pipe satisfying the above-described composition and relational expression it is possible to provide a welded joint or welded structure having a pipe end thickening portion that is excellent in resistance to gap portion salt damage.
  • the ferritic stainless steel pipe of this embodiment has a composition containing C, Si, Mn, P, S, Cr, Sn, Ti, Al, N in an amount within a specified range, It is a stainless steel pipe for a tube end thickening structure which is made of meat or is built on the inside of the pipe.
  • the pipe end thickening structure of this embodiment has the ferritic stainless steel pipe of this embodiment.
  • the pipe end thickening structure refers to a structure having a steel pipe and a pipe end thickening portion provided on the steel pipe.
  • the gap interval d ( ⁇ m) formed at the tube end is d ⁇ Cr 2 / (1000 Sn) (Cr and Sn in the formula indicate the content (mass%) of each element).
  • a pipe end thickening structure having a relationship can be provided. If it is this pipe end thickening structure, it has the characteristic excellent in the salt damage resistance of a crevice part.
  • the welded joint of this embodiment has a pipe end thickening portion made of the ferritic stainless steel pipe of this embodiment. That is, this weld joint has a pipe end thickening portion of the ferritic stainless steel pipe of this embodiment.
  • the welding joint of this embodiment has the ferritic stainless steel pipe of this embodiment, and a pipe end thickening portion is provided on this steel pipe.
  • the welded joint of this embodiment has a pipe end thickening portion that is excellent in resistance to salt damage at the gap portion.
  • FIG. 1 shows a joint A in which another steel pipe 2 is joined to a pipe end thickening structure 1 made of the above-described ferritic stainless steel pipe by welding.
  • a pipe end thickening portion 1a is formed by providing a pipe end portion of the pipe end thickening structure 1 that is folded back inward. That is, the pipe end thickening part 1a of FIG. 1 is formed by folding the end part of the steel pipe inward by 180 °.
  • a steel pipe 2 is joined to the outside of the pipe end thickening portion 1a by a welded portion 3.
  • a gap 1b is formed between the outer portion and the inner portion of the stainless steel pipe in the pipe end thickening portion 1a.
  • a gap 1b having a gap d satisfying the above relational expression is formed in accordance with the above-described composition of the ferritic stainless steel pipe. Thereby, the outstanding clearance gap salt damage resistance can be obtained.
  • any welding method may be adopted in the same manner as described above.
  • a steel pipe etc. are mentioned as a structure.
  • a single ferritic stainless steel pipe When joining a structure to the pipe end thickening part of a ferritic stainless steel pipe by welding (when the weld joint further has a structure joined by welding to the pipe end thickening part), a single ferritic stainless steel pipe When the plate thickness of the portion is t, the maximum penetration depth on the ferritic stainless steel tube side in the welded portion is preferably 0.3 t to 2.0 t. The maximum penetration depth is measured by the following method.
  • FIG. 2 shows an enlarged view around the welded portion 3 of FIG. 2 (a) shows the case where the maximum penetration depth is 0.3t, and FIG. 2 (b) shows that the maximum penetration depth is 1 when the thickness of the single pipe portion of the ferritic stainless steel pipe is t.
  • FIG. 2C shows the case where the maximum penetration depth is 2.0 t, and
  • FIG. 2D shows the case where the maximum penetration depth exceeds 2.0 t.
  • 1 and 2 show a case where a welded portion 3 is formed by performing welding with an electrode / arc approaching the outer peripheral surface side of the tube end thickened portion.
  • the outer peripheral surface of the tube end thickened portion becomes the electrode / arc side surface
  • the inner peripheral surface of the tube end thickened portion becomes the surface (back surface) opposite to the electrode / arc side surface.
  • the distance (depth) from the outer peripheral surface of the pipe end thickening portion to the maximum penetration portion is the maximum penetration depth. As shown in FIG. 2, when the maximum penetration portion does not reach the inner peripheral surface of the pipe end thickening portion, the maximum penetration depth is less than 2.0 t. When the maximum penetration part has just reached the inner peripheral surface of the pipe end thickening part, the maximum penetration depth is 2.0 t.
  • the maximum penetration depth is more than 2.0 t. That is, the case where the maximum penetration depth exceeds 2.0 t is a case where a melted portion exists on the surface (back surface) opposite to the electrode / arc side surface during welding.
  • the maximum penetration depth is set to 0.3 t or more, the strength of the welded portion is ensured (ensured), and a welded joint having a pipe end thickening portion with excellent resistance to salt damage to the gap portion and welding described later. A structure is obtained.
  • the maximum penetration depth exceeds 2.0 t, the shape of the welded portion becomes non-uniform, which may lead to various problems such as a decrease in strength, deterioration in corrosion resistance, and leakage of exhaust gas.
  • the reason why it is possible to obtain a welded joint having a pipe end thickening portion excellent in the salt damage resistance of the gap is shown below.
  • the maximum penetration depth is preferably more than 1.0 t.
  • the gap inside the pipe end thickening pipe is also closed, and the gap structure that can become a corrosion starting point is further reduced.
  • the ferritic stainless steel pipe contains Sn in an amount of 0.001 to 0.600% in the steel.
  • the pipe end thickening portion has many gap structures. That is, the pipe end thickening portion has a structure in which many gaps exist. For this reason, it is preferable to perform an appropriate shield with an inert gas.
  • Ar is most desirable as the shielding gas.
  • the amount of CO 2 or O 2 is desirably 5% by volume or less. That is, the method for manufacturing a welded joint according to the present embodiment includes a step of welding the pipe end thickening portion of the ferritic stainless steel pipe according to the present embodiment and the structure.
  • the shielding gas include an inert gas such as Ar, and a mixed gas of one or both of CO 2 and O 2 and an inert gas.
  • the amount of CO 2 and O 2 in the mixed gas is preferably 5% by volume or less.
  • the welding method is TIG welding, MIG welding, or mag welding, it is preferable to perform welding while supplying a shielding gas to the welded portion.
  • the shielding gas need not be supplied.
  • the welded structure of the present embodiment has the welded joint of the present embodiment, and the welded joint further includes a structure joined by welding to the pipe end thickened portion, and is a single pipe portion of a ferritic stainless steel pipe. If the plate thickness is t, the maximum penetration depth on the ferritic stainless steel tube side in the welded portion is 0.3 to 2.0 t. According to the ferritic stainless steel pipe satisfying the above-described composition and relational expression, it is possible to provide a welded joint or welded structure having a pipe end thickening portion that is excellent in salt damage resistance of the gap portion. And by using these welded joints and welded structures, especially as automotive parts and motorcycle parts, it is possible to reduce the thickness of parts, and to improve the fuel efficiency of automobiles and motorcycles that are efficiently manufactured and applied. It becomes.
  • Example 1 Steels having the compositions shown in Tables 1 and 2 were melted.
  • Sn was set at five levels of 0.005, 0.01, 0.03, 0.10%, and 0.30% in order to investigate the effect.
  • the molten steel was hot-rolled to a plate thickness of 4 mm, annealed at 1050 ° C. for 1 minute, and pickled. Thereafter, cold rolling was performed to a plate thickness of 0.8 mm.
  • This CCT test piece was evaluated by the corrosion test method for the appearance of automobile parts of JASO-M610-92. The number of cycles was set to 100. After the test, the spot weld was cut out to separate the two plates so that the maximum pitting depth in the gap could be evaluated. After removing the rust, the pitting corrosion depth of the test piece above and below the gap was measured at 10 points, and the deepest pitting corrosion value was defined as the maximum pitting corrosion depth of the steel type. Samples with a maximum pitting depth of less than 500 ⁇ m were evaluated as “ ⁇ ” (good), and samples with a maximum pitting depth of 500 ⁇ m or more were evaluated as “x” (poor).
  • Table 3 shows the calculation results of the (Cr 2 / (1000 Sn)) values (Cr and Sn indicate the content (mass%) of each element) of the stainless steels having the compositions shown in Tables 1 and 2.
  • the value of the gap distance d ( ⁇ m), the maximum pitting corrosion depth ( ⁇ m) according to the corrosion test method for external appearance of automobile parts (JASO-M610-92), and the determination result are also shown.
  • the value of the gap interval d between B7, B5, and B10 was a value below the chain line with a small interval.
  • Sample No. with Sn amount of 0.030% With respect to A2, A7, A9, A12, B3, B6, B8, B13, B14, sample No.
  • the value of the gap interval d between A7, A2, A9, and A12 is a value above this solid line.
  • the value of the gap interval d between B13, B3, B8, B14, and B6 was a value below this solid line.
  • Sample No. with Sn amount of 0.010% With respect to A1, A3, A13, B1, B2, and B11, sample Nos.
  • the value of the gap interval d of A1, A13, A3 is a value above the chain line having a large interval.
  • the value of the gap interval d between B1, B2, and B11 was a value below the chain line having a large interval.
  • the maximum pitting corrosion depth was less than 500 ⁇ m.
  • the maximum pitting corrosion depth was 500 ⁇ m or more. Therefore, from the results shown in FIG. 3, in the pipe end thickened structure made of the ferritic stainless steel pipe of this embodiment, the gap interval d ( ⁇ m) is d ⁇ Cr 2 / (1000 Sn) (Cr and Sn in the formula) It can be seen that a tube end thickened structure with a small maximum pitting corrosion depth can be provided by satisfying the relationship of the content (mass%) of each element. Moreover, as shown in FIG.
  • Example 2 Using steel plates having the compositions shown in Tables 1 and 2, steel pipes (pipes) having a diameter of 60 mm were produced by TIG welding. By spinning, the end portion of the steel pipe was turned 180 ° inward to produce a pipe end thickening portion having a length of 50 mm. As described above, a pipe end thickening pipe having a diameter of 60 mm and a length of the end portion (pipe end thickening part) folded back to the inside was produced. Then, the pipe end thickening pipe was cut at a length of 60 mm from the folded portion. In addition, the clearance gap of the clearance gap part in a pipe end thickening part was made into various values by adjusting the conditions of spinning process.
  • a single pipe having a diameter of 62 mm was produced using the same steel plate.
  • Single pipe pipe made from the same steel plate is overlapped on the outside of the pipe end thickening part of the pipe end thickening pipe, and the end part (tube end thickening part) folded inside the pipe end thickening pipe is the welded part.
  • the welding was performed by various methods (TIG welding, MIG welding, mag welding, or laser welding) so that As described above, a CCT test piece having a total length of 100 mm and a welded portion between the single pipe portion (single pipe pipe) and the pipe end thickening portion was prepared in the center.
  • the amount of current was adjusted to adjust the penetration depth of the weld, and the effect of the penetration depth on the corrosion resistance was investigated.
  • welding was performed using various shielding gases, and the influence of the shielding gas on the corrosion resistance was also investigated.
  • the maximum penetration depth was measured by the following method. Welding was performed under the same conditions, and a CCT specimen was separately prepared. The cross section of the welded portion was observed, and the portion that was melted to the deepest in the welded portion was defined as the maximum penetration portion, and the depth was defined as the maximum penetration depth.
  • the outer peripheral surface of the end of the pipe end thickening pipe (the pipe end thickening part) is overlapped with the outer peripheral surface of the pipe end thickening pipe (the pipe end thickening part). Welding was performed with the electrode / arc approaching. For this reason, the outer peripheral surface of the end portion (tube end thickening portion) of the pipe end thickening pipe becomes the electrode / arc side surface, and the inner peripheral surface of the end portion (tube end thickening portion) of the pipe end thickening pipe Is the surface (back surface) opposite to the electrode / arc side surface.
  • the distance (depth) from the outer peripheral surface of the end portion (tube end thickening portion) of the pipe end thickening pipe to the maximum penetration portion is the maximum penetration depth.
  • This CCT test piece was evaluated by the corrosion test method for the appearance of automobile parts of JASO-M610-92. The number of cycles was set to 100. After the test, the welded part was cut to separate the two plates of the pipe end thickened part so that the maximum pitting corrosion depth in the gap could be evaluated. After removing the rust, the pitting corrosion depth of the test piece above and below the gap was measured at 10 points, and the deepest pitting corrosion value was defined as the maximum pitting corrosion depth of the steel type. Samples with a maximum pitting depth of less than 500 ⁇ m were evaluated as “ ⁇ ” (good), and samples with a maximum pitting depth of 500 ⁇ m or more were evaluated as “x” (poor).
  • Table 4 shows the penetration depth of the welds of the test pieces prepared using the stainless steels having the compositions shown in Tables 1 and 2, the welding shield gas, and the corrosion test method for the appearance of automobile parts (JASO-M610-92). The maximum pitting corrosion depth ( ⁇ m) and the determination result are also shown.
  • the maximum pitting corrosion depth is 500 micrometers or more. It can also be seen that when the shielding gas during welding contains CO 2 or O 2 in an amount exceeding 5% by volume, the maximum pitting depth is 500 ⁇ m or more.
  • the present embodiment it is possible to provide a ferritic stainless steel pipe that is excellent in resistance to crevice salt damage. Further, by using the steel pipe to which the present embodiment is applied, particularly as an automobile or a motorcycle part, it is possible to reduce the thickness, and it is possible to efficiently manufacture parts and improve fuel consumption. That is, this embodiment is extremely useful in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

このフェライト系ステンレス鋼管は、質量%でC:0.001~0.100%、Si:0.01~2.00%、Mn:0.01~2.00%、P:0.001~0.05%、S:0.0001~0.005%、Cr:10.5~20.0%、Sn:0.001~0.600%、Ti:0.001~1.000%、Al:0.001~0.100%、N:0.001~0.02%を含有し、残部がFeおよび不可避的不純物であり、管端部に管端増肉部を具備し、前記管端部に形成される隙間間隔d(μm)は、d≧Cr2/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たす。

Description

隙間部の耐塩害性に優れたフェライト系ステンレス鋼管、管端増肉構造体、溶接継ぎ手、及び溶接構造体
 本発明は、隙間構造部での耐食性が要求されるフェライト系ステンレス鋼管、管端増肉構造体、及び溶接継ぎ手に関する。
 本願は、2017年3月30日に、日本に出願された特願2017-069284号に基づき優先権を主張し、その内容をここに援用する。
 フェライト系ステンレス鋼は、家電製品や電子機器、自動車等の幅広い分野で使用されている。特に自動車分野では、エキゾーストマニホールドからマフラーまで様々な部品で使用されるため、使用されるステンレス鋼には耐熱性や耐食性などが要求される。また、これらの部品では溶接が施される場合がほとんどであるため、溶接部の強度、剛性や耐食性も要求される。
 近年、自動車の軽量化を目的として、各部品に使用される材料の薄肉化を検討する場合が増加している。しかし、溶接部の強度、剛性および溶接性を確保するためには一定の肉厚が必要となる場合があり、非溶接部においても厚肉となり排気システム全体の薄手化の妨げとなる。これに対して、排気管を構成し他部品と溶接で接合される鋼管端部を増肉することにより、溶接箇所を厚肉して強度を増し、剛性および溶接性を確保する技術が知られている。これを管端増肉(鋼管の管端部を増肉すること)と呼ぶ。この場合、非溶接部は薄肉化でき、排気システム全体の薄肉・軽量化が可能となる。
 上記のような管端増肉に関する技術はいくつか開示されている。特許文献1には、パイプ端部の強度を確保し、且つパイプの軽量化を図る目的として、パイプを回転させながら端部にローラーを押し当てて径方向内側に折り曲げ、次いでローラーによって密着させる加工方法が開示されている。特許文献2には、管端を二重管状に成形し肉厚を倍にすることで溶接時の溶け落ちを防ぐための工法が開示されている。特許文献3には、管端を折り返して増肉するために素管に関する特許が開示されており、溶接部の内面ビード部が管内面に突き出しており、その突出量が板厚の4~15%と規定されている。
 特許文献1~3に記載されている管端増肉されたパイプは、折り曲げられた箇所に高さ数μm~数百μmの隙間構造を有することとなる。この隙間部に関して、特許文献1、2のように内側に折り曲げられた場合は排気系部品内部で発生する排ガス凝縮水が隙間部に滞留しやすくなる。特許文献3のように外側に折り曲げられた場合は排気系部品外部から付着する塩水が隙間部に滞留しやすくなる。
 この環境で起こる腐食は、隙間腐食ではなく、隙間環境で塩水や排ガス凝縮水が滞留しやすくなることにより促進される塩害腐食である。このように隙間部での腐食が促進される恐れがあるため、使用されるステンレス鋼としては、隙間部での耐塩害性に優れる鋼種が求められる。特に排気系部品では、腐食による穴あきは排気ガスの漏れに繋がるため、耐穴あき性の高い材料を適用することが重要となる。
 特許文献4には、質量%で、C:0.001~0.02%、N:0.001~0.02%、Si:0.01~0.5%、Mn:0.05~1%、P:0.04%以下、及びS:0.01%以下、Cr:12~25%を含有し、さらにTi:0.02~0.5%及びNb:0.02~1%のうちいずれか一方又は両方を含み、さらにSn:0.005~2%を含み、残部がFeおよび不可避不純物からなることを特徴とする耐すきま腐食性に優れたフェライト系ステンレス鋼が開示されている。特許文献4に記載の技術では、Snを添加することで耐すきま腐食性を向上させているが、隙間間隔との関係について述べられていない。
 特許文献5には、質量%で、C:≦0.015%、Si:0.10~0.50%、Mn:0.05~0.50%、P≦0.050%、S:≦0.0100%、N:≦0.015%、Al:0.020~0.100%、Cr:10.5~13.05%を含有し、さらに、Ti:0.03~0.30%およびNb:0.03~0.30%のうちいずれか一方又は両方、Sn:0.03~0.50%およびSb:0.03~0.50%のうちいずれか一方又は両方を含有し、残部がFeおよび不可避的不純物からなり、式(2)で定義されるA値が15.23以上であることを特徴とする加熱後の耐食性に優れた自動車排気系部材用の省合金型フェライト系ステンレス鋼が開示されている。
 A=[Cr]+[Si]+0.5[Mn]+10[Al]+15([Sn]+[Sb]) ・・・式(2)
 特許文献5に記載の技術では、Sn、Sbを添加することで加熱後の耐食性を向上させているが、隙間が存在する際の耐食性について述べられていない。
 特許文献6には、質量%で、C:≦0.015%、Si:0.01~0.50%、Mn:0.01~0.50%、P≦0.050%、S:≦0.010%、N:≦0.015%、Al:0.010~0.100%、Cr:16.5~22.5%を含有し、更に、Ti:0.03~0.30%およびNb:0.03~0.30%のうちいずれか一方又は両方を含有し、更に、Sn:0.05~1.00%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする加熱後耐食性に優れた自動車排気系部材用の省Mo型フェライト系ステンレス鋼が開示されている。特許文献6に記載の技術では、Snを添加することで加熱後の耐食性を向上させているが、隙間が存在する際の耐食性について述べられていない。
 特許文献7には、質量%で、C:≦0.015%、Si:0.01~0.50%、Mn:0.01~0.50%、P≦0.050%、S:≦0.010%、N:≦0.015%、Al:0.010~0.100%、Cr:16.5~22.5%、Ni:0.5~2.0%、Sn:0.01~0.50%を含有し、更に、Ti:0.03~0.30%およびNb:0.03~0.30%のうちいずれか一方又は両方を含有し、残部がFeおよび不可避的不純物からなることを特徴とする自動車排気系部材用のフェライト系ステンレス鋼が開示されている。特許文献7に記載の技術では、排気系部品の加熱後の耐食性について開示しているが、隙間環境での耐食性について述べられていない。
 特許文献8には、質量%で、C:0.0150%以下、Si:1.0~1.5%、Mn:0.15~1.0%、P:0.050%以下、S:0.0100%以下、N:0.0150%以下、Al:0.010~0.200%、Cr:13.0~16.0%、およびSn:0.002~0.050%を含有し、さらにTi:0.03~0.30%およびNb:0.03~0.50%のうちいずれか一方又は両方を含有し、かつ(1)式で定義するA値が0.024以上であることを満たし、残部がFeおよび不可避的不純物からなることを特徴とする耐酸化性および耐食性に優れた自動車排気系部材用のフェライト系ステンレス鋼が開示されている。
 A=[Si]×[Sn]+0.014[Si] ・・・(1)
 ここで[Si]、[Sn]は、それぞれSi、Snの質量%としての含有量である。
 特許文献8に記載の技術では、排気系部品の加熱後の耐食性について開示しているが、隙間環境での耐食性について述べられていない。
 特許文献9には、質量%で、C:0.0150%以下、Si:0.2~0.7%、Mn:0.2~0.6%、P:0.050%以下、S:0.0100%以下、N:0.0150%以下、Al:0.010~0.20%、Cr:10.5~11.5%、Mo:0.02~0.20%、およびSn:0.005~0.050%を含有し、さらにTi:0.03~0.30%およびNb:0.03~0.50%のうちいずれか一方又は両方を含有し、かつ以下の(1)式で定義するA値が0.00065%以上であることを満たし、残部がFeおよび不可避的不純物からなることを特徴とする耐食性に優れた排気系部材用のフェライト系ステンレス鋼が開示されている。
 A=[Mo]×[Sn] ・・・(1)
 特許文献9に記載の技術では、排気系部品の加熱後の耐食性について開示しているが、隙間環境での耐食性について述べられていない。
 上記のように、従来技術においては、管端増肉されたパイプの管端部に形成される隙間環境で耐食性を改善する方法はまだ提案されていない。
特開2010-234406号公報 特開2013-103250号公報 特開2004-255414号公報 特許第4727601号公報 特許第5297713号公報 特許第5320034号公報 特許第5586279号公報 特許第6006660号公報 特開2014-169491号公報
 本発明は、管端増肉されたパイプの管端部に形成される隙間環境の耐食性を改善する解決手段を提供する。
 上記課題を解決する為に、本発明者らはフェライト系ステンレス鋼管隙間部の耐食性に関して鋭意検討を行った。その結果、隙間環境では高Cr量のステンレス鋼ほど孔食深さが増加することを知見した。そしてCr量、Sn量と、孔食が深く成長する臨界隙間間隔との間にある関係があることを見出した。
 上記課題を解決する為の手段は以下の構成を有する。
〔1〕本発明の一態様に係る隙間部の耐塩害性に優れたフェライト系ステンレス鋼管は、C:0.001~0.100%、
Si:0.01~2.00%、
Mn:0.01~2.00%、
P:0.001~0.05%、
S:0.0001~0.005%、
Cr:10.5~20.0%、
Sn:0.001~0.600%、
Ti:0.001~1.000%、
Al:0.001~0.100%、
N:0.001~0.02%を含有し、残部がFeおよび不可避的不純物であり、管端部に管端増肉部を具備し、前記管端部に形成される隙間間隔d(μm)は、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たすことを特徴とする。
〔2〕さらに質量%で
Ni:0.1~1.0%、
Mo:0.1~3.0%、
Cu:0.10~3.00%、
B:0.0001~0.0050%、
Nb:0.001~0.300%、
W:0.001~1.00%、
V:0.001~0.50%、
Sb:0.001~0.100%、
Co:0.001~0.500%、
のうち何れか1種または2種以上を含有することを特徴とする前記〔1〕に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
〔3〕さらに質量%で
Ca:0.0001~0.0050%、
Mg:0.0001~0.0050%、
Zr:0.0001~0.0300%、
Ga:0.0001~0.0100%、
Ta:0.001~0.050%、
REM:0.001~0.100%、
のうち何れか1種または2種以上を含有することを特徴とする前記〔1〕または〔2〕に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
〔4〕管端増肉構造体に用いられることを特徴とする前記〔1〕~〔3〕のいずれかに記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
〔5〕本発明の一態様に係る管端増肉構造体は、前記〔1〕~〔4〕のいずれかに記載のフェライト系ステンレス鋼管からなることを特徴とする。
〔6〕本発明の一態様に係る溶接継ぎ手は、前記〔1〕~〔4〕のいずれかに記載のフェライト系ステンレス鋼管からなる管端増肉部を有することを特徴とする。
〔7〕前記管端増肉部に溶接で接合された構造体をさらに有し、前記フェライト系ステンレス鋼管の単管部の板厚をtとすると、溶接部のうち、前記フェライト系ステンレス鋼管側の最大溶け込み深さが0.3t~2.0tであることを特徴とする前記〔6〕に記載の溶接継ぎ手。
〔8〕本発明の一態様に係る溶接構造体は、前記〔7〕に記載の溶接継ぎ手を有することを特徴とする。
 本発明一態様によれば、耐隙間部塩害性(隙間部の耐塩害性)に優れたフェライト系ステンレス鋼管、それを備えた管端増肉構造体、管端増肉部を有する溶接継ぎ手、及び溶接継ぎ手を有する溶接構造体を提供することができる。
ステンレス鋼管からなる管端増肉管と他の鋼管との継ぎ手構造を示す断面図である。 図1の溶接部3周辺の拡大図であり、フェライト系ステンレス鋼管の単管部の板厚をtとすると、(a)は、最大溶け込み深さが0.3tである場合を示し、(b)は、最大溶け込み深さが1.0tの場合を示し、(c)は、最大溶け込み深さが2.0tの場合を示し、(d)は、最大溶け込み深さが2.0t超の場合を示す。 実施例において製造した管端増肉管のCr量およびSn量と臨界隙間間隔との関係を示すグラフである。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 管端増肉パイプ(フェライト系ステンレス鋼管)の隙間環境を模擬して耐食性を評価する為に、本発明者らは種々の組成の鋼板を作製した。そして、これらの鋼板からスポット溶接により管端増肉パイプの隙間部を模擬した種々の隙間間隔を有する試験片を作製した。JASO-M610-92の自動車部品の外観の腐食試験方法に従って腐食試験を100サイクル実施して隙間部の塩害腐食性を評価した。評価には最大孔食深さを用い、最大孔食深さが500μm未満の試料を“○”(good)と評価し、最大孔食深さが500μm以上の試料を“×”(poor)と評価した。
 図3は、上述の試験結果に基づいて、種々の母材中のSn量における母材中のCr量と、隙間部での腐食が抑制される臨界隙間間隔との関係を示す。母材中のCrは、一般環境での耐食性を向上させるが、図3より、母材中のCr量が増加するほど、隙間環境での孔食深さは増加することがわかる。そして、鋼板に対するSnの添加量を増加することで(母材中のSn量が増加するほど)、臨界隙間間隔が小さくなることがわかった。
 高Cr量の鋼種の隙間部の腐食形態を観察すると、少数の孔食が深く成長していることがわかった。一方、低Cr量の鋼種の隙間部の腐食形態は、多数の孔食が発生しているが、一つ一つの孔食の深さは、高Cr量の鋼種に比べて浅いことがわかった。
 高Cr量の鋼種では、不働態皮膜中のCr濃度が高く耐食性が高いため、孔食の発生数が減少したと考えられる。そのため、カソード反応である酸素還元反応が、少数の孔食の成長に対してのみ寄与し、一つ一つの孔食が深く成長したと考えられる。一方、低Cr量の鋼種では、カソード反応が多数の孔食の発生に寄与するため、一つ一つの孔食深さが大きく成長しなかったものと考えられる。
 また、上述の試験により、Snは隙間環境での孔食の発生に対して効果があることが知見された。Snがステンレス鋼の活性溶解を抑制することや耐隙間腐食性を改善することは知られていた。しかし、Snが隙間環境での孔食の発生を抑制し、臨界隙間間隔を小さくすることは今回の試験結果による新たな知見である。
(フェライト系ステンレス鋼管)
 以下に本実施形態で規定される鋼の化学組成についてさらに詳しく説明する。なお、%は質量%を意味する。
 C:Cは、鋼の耐粒界腐食性、加工性を低下させるため、その含有量を低く抑える必要がある。そのため、C含有量を0.100%以下とする。しかしながら、過度に低めることは精練コストを上昇させるため、C含有量を0.001%以上とすることが望ましい。C含有量は、より望ましくは0.003~0.050%、さらに望ましくは0.005~0.020%である。
 Si:Siは脱酸元素として有用であるが、過剰に添加すると材料を硬化させるため、その含有量を0.01~2.00%とする。Si含有量は、より望ましくは0.02~0.80%、さらに望ましくは0.03~0.70%である。
 Mn:Mnは脱酸元素として有用であるが、過剰に含有させると耐食性を劣化させるので、その含有量を0.01~2.00%とする。Mn含有量は、より望ましくは0.02~0.80%、さらに望ましくは0.03~0.70%である。
 P:Pは加工性・溶接性・耐食性を劣化させる元素であり、その含有量を制限する必要がある。そのためP含有量を0.05%以下とする。ただし、過剰にP量を低減することは、精錬コストを増加させるため、その下限値を0.001%とする。P含有量は、より望ましくは0.003~0.04%、さらに望ましくは0.005~0.03%である。
 S:Sは耐食性を劣化させる元素であるため、その含有量を制限する必要がある。そのためS含有量を0.005%以下とする。ただし、過剰にS量を低減することは、精錬コストを増加させるため、その下限値を0.0001%とする。S含有量は、より望ましくは0.0003~0.003%、さらに望ましくは0.0005~0.001%である。
 Cr:Crは耐塩害腐食性及び耐排ガス凝縮水腐食性を確保する上で、少なくとも10.5%以上の量が必要である。Cr含有量を増加させるほど、耐食性は向上するが、加工性、製造性を低下させ、かつコストを増加させるため、上限を20.0%以下とする。Cr含有量は、より望ましくは11.0~19.0%、さらに望ましくは13.0~17.5%である。
 Sn:Snは耐食性を向上させる元素であり、少なくとも0.001%以上の量が必要である。0.001~0.009%のSn含有量で効果があるが、Sn含有量を増やすと更に効果がある。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.600%以下とする。Sn含有量は、より望ましくは0.002~0.500%、さらに望ましくは0.030~0.300%である。コストを考慮すると、0.030~0.100%が望ましい。
 Ti:Tiは耐食性を向上させるのに有用な元素であり、0.001%以上の量で含有させることができる。ただし、過剰に添加するとコストを増加させるため、上限を1.000%とする。Ti含有量は、より望ましくは0.002~0.500%、さらに望ましくは0.003~0.200%である。
 Al:Alは脱酸効果等の精練上有用な元素であり、少なくとも0.001%以上の量が必要である。しかしながら、過剰に添加すると粗大な介在物を形成し耐食性を低下させるため、上限を0.100%以下とする。Al含有量は、より望ましくは0.005~0.080%、さらに望ましくは0.010~0.070%である。
 N:Nは成形性と耐食性を劣化させるため、N含有量を0.02%以下とする。ただし過度な低減は精錬コストの増加に繋がるため、下限を0.001%とする。N含有量は、より望ましくは0.002~0.015%、さらに望ましくは0.003~0.010%である。
 以上が本実施形態のフェライト系ステンレス鋼の基本となる化学組成であるが、本実施形態では、更に、次のような元素を必要に応じて含有させることができる。
 Ni:Niは耐食性を向上させるのに有用な元素であり、0.1%以上の量で含有させることができる。ただし、過剰な添加はコストを増大させるため、その上限を1.0%とする。Ni含有量は、より望ましくは0.2~0.8%、さらに望ましくは0.3~0.5%である。
 Mo:Moは耐食性を向上させるのに有用な元素であり、0.1%以上の量で含有させることができる。ただし、過剰な添加はコストを増大させるため、その上限を3.0%とする。Mo含有量は、より望ましくは0.2~2.0%、さらに望ましくは0.3~1.5%である。
 Cu:Cuは耐食性を向上させるのに有用な元素であり、0.10%以上の量で含有させることができる。ただし、過剰な添加はコストを増大させるため、上限を3.00%とする。Cu含有量は、より望ましくは0.20~2.00%、さらに望ましくは0.30~1.50%である。
 B:Bは熱間加工性を向上させるのに有用な元素であり、0.0001%以上の量で含有させることができる。ただし、過剰な添加は耐食性を低下させるため、上限を0.0050%以下とする。B含有量は、より望ましくは0.0005~0.0030%、さらに望ましくは0.0010~0.0010%である。
 Nb:Nbは耐食性の向上に有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.300%以下とする。Nb含有量は、より望ましくは0.005~0.200%、さらに望ましくは0.010~0.100%である。
 W:Wは耐食性の向上に有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を1.00%以下とする。W含有量は、より望ましくは0.005~0.70%、さらに望ましくは0.010~0.50%である。
 V:Vは耐食性の向上に有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.50%以下とする。V含有量は、より望ましくは0.005~0.40%、さらに望ましくは0.010~0.30%である。
 Sb:Sbは耐食性の向上に有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.100%以下とする。Sb含有量は、より望ましくは0.005~0.080%、さらに望ましくは0.010~0.050%である。
 Co:Coは二次加工性と靭性を向上させる上で、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.500%以下とする。Co含有量は、より望ましくは0.002~0.400%、さらに望ましくは0.003~0.300%である。
 なお、Ni、Mo、Cu、B、Nb、W、V、Sb、Coの1種または2種以上の合計含有量は、コストアップなどの点から6%以下が望ましい。
 Ca:Caは脱硫や熱間加工性を向上させる上で、0.0001%以上の量で含有させることが望ましい。ただし、過剰に添加すると水溶性の介在物CaSが生成して耐食性を低下させるため、上限を0.0050%とする。Ca含有量は、より望ましくは0.0002~0.0045%、さらに望ましくは0.0003~0.0040%である。
 Mg:Mgは組織を微細化し、加工性、靭性を向上させる上で、0.0001%以上の量で含有させることが望ましい。ただし、過剰に添加すると熱間加工性を低下させるため、上限を0.0050%とする。Mg含有量は、より望ましくは0.0003~0.0040%、さらに望ましくは0.0005~0.0030%である。
 Zr:Zrは耐食性を向上させる上で、0.0001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.0300%とする。Zr含有量は、より望ましくは0.0005~0.0200%、さらに望ましくは0.0010~0.0100%である。
 Ga:Gaは耐食性と耐水素脆化性を向上させる上で、0.0001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.0100%とする。Ga含有量は、より望ましくは0.0005~0.0080%、さらに望ましくは0.0010~0.0050%である。
 Ta:Taは耐食性を向上させる上で、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.050%とする。Ta含有量は、より望ましくは0.005~0.040%、さらに望ましくは0.010~0.030%である。
 REM:REMは脱酸効果等を有するので精練上有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.100%とする。REM含有量は、より望ましくは0.005~0.080%、さらに望ましくは0.010~0.050%である。
 なお、REMとはCe、La、Pr、Nd等の希土類金属である。「REMの含有量」とは、これらの全REM元素の含有量の合計値を意味する。全含有量が上記範囲内であれば、REM元素の種類が1種類であっても2種類以上であっても、同様な効果が得られる。
 本実施形態のフェライト系ステンレス鋼管は、図1に示されたように管端部に管端増肉部1aを具備する。管端増肉部1aとは、鋼管の管端部において厚さを増した部位を言う。管端増肉部1aは、例えば鋼管の端部を内側又は外側に180°折り返して形成される。このため、管端増肉部1aは、内側又は外側に折り返された端部を有する。管端増肉部1aにおいて、ステンレス鋼管の外側部分(外周部分)と内側部分(内周部分)との間に隙間部1bが存在する。すなわち、鋼管の管端部において、鋼管と鋼管の折り返された部分との間に隙間部1bが存在する。鋼管と鋼管の折り返された部分との間の隙間間隔の最大値を隙間間隔d(μm)と言う。
 管端部に存在する隙間間隔d(μm)は、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たす。
 本実施形態の管端増肉パイプ(フェライト系ステンレス鋼管)は、本実施形態で規定される鋼成分を有するステンレス鋼板を素材とするが、ステンレス鋼板の製造方法は、製鋼-熱間圧延-焼鈍・酸洗-冷間圧延-焼鈍の各工程よりなり、各工程の製造条件については、特に規定するものでは無い。
 製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉溶製し、次に2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。熱間圧延後の焼鈍工程は省略しても良く、酸洗後の冷間圧延では、通常のゼンジミアミル、タンデムミルのいずれで圧延しても良いが、鋼管の曲げ性を考慮するとタンデムミル圧延の方が望ましい。
 冷間圧延においては、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度などは一般的な範囲内で適宜選択すれば良い。冷間圧延の途中に中間焼鈍を入れても良く、中間および最終焼鈍はバッチ式焼鈍でも連続式焼鈍でも構わない。また、焼鈍の雰囲気に関しては、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でも大気中で焼鈍しても構わない。更に、本製品板に潤滑塗装を施して、更にプレス成形を向上させても良く、潤滑膜の種類は適宜選択すれば良い。最終焼鈍後に形状矯正のために調質圧延やレベラーを付与しても構わないが、加工硬化能の低下を招くことから、これらは付与しないことが望ましい。
 鋼管の製造方法については、適宜選択すれば良く、溶接方法に限定されずERW(抵抗溶接)、レーザー溶接、TIG溶接(タングステン不活性ガス溶接)等適宜選択すれば良い。また、鋼管のサイズについても用途に応じて決定すれば良い。鋼管から管端増肉するプロセスは、管端のスピニング加工あるいは鍛造処理が望ましいが、これらの工法についても特に規定するものでは無い。
 また、管外側に造肉する場合と、管内側に造肉する場合が考えられるが、管外側に造肉する場合は、造肉箇所の内径は素管と同じになる。一方、管内側に造肉する場合は、造肉箇所の外径は素管と同じになる。作業能率や寸法精度を考慮すると、スピニング加工の方が望ましく、管端を一度折り曲げ、次工程にて密着させる工法を採用することが好ましい。
 管端部に形成される隙間間隔dが上記の関係式を満たすことにより、耐隙間部塩害性に優れた管端増肉構造体を提供できるフェライト系ステンレス鋼管を実現できる。
 上述の組成と関係式を満たすフェライト系ステンレス鋼管を、特に自動車部品、二輪用部品として使用することによって、薄肉化が可能となり、効率的な部品の製造および適用した自動車、二輪車の燃費の向上が可能となる。
 また、上述の組成と関係式を満たすフェライト系ステンレス鋼管によれば、耐隙間部塩害性に優れた管端増肉部を有する溶接継ぎ手や溶接構造体を提供することができる。
(管端増肉構造体、溶接継ぎ手、溶接構造体)
 前述の如く本実施形態のフェライト系ステンレス鋼管は、C、Si、Mn、P、S、Cr、Sn、Ti、Al、Nを規定の範囲内の量で含有する組成を有し、管外側に造肉されるか、管内側に造肉される管端増肉構造体用のステンレス鋼管である。
 本実施形態の管端増肉構造体は、本実施形態のフェライト系ステンレス鋼管を有する。管端増肉構造体とは、鋼管を有し、この鋼管に管端増肉部が設けられた構造体を言う。本実施形態では、管端部に形成される隙間間隔d(μm)が、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を有する管端増肉構造体を提供できる。
 この管端増肉構造体であるならば、耐隙間部塩害性に優れた特徴を有する。
 本実施形態の溶接継ぎ手は、本実施形態のフェライト系ステンレス鋼管からなる管端増肉部を有する。すなわち、この溶接継ぎ手は、本実施形態のフェライト系ステンレス鋼管の管端増肉部を有する。言い換えると、本実施形態の溶接継ぎ手は、本実施形態のフェライト系ステンレス鋼管を有し、この鋼管に管端増肉部が設けられている。
 本実施形態の溶接継ぎ手は、耐隙間部塩害性に優れた管端増肉部を有する。
 本実施形態の溶接継ぎ手を、特に自動車部品、二輪用部品として使用することによって、部品の薄肉化が可能となり、効率的な部品の製造および適用した自動車、二輪車の燃費の向上が可能となる。
 図1は、上述のフェライト系ステンレス鋼管からなる管端増肉構造体1に対し他の鋼管2を溶接により接合した継ぎ手Aを示す。
 管端増肉構造体1の管端部分に内側に折り返した部分が設けられて管端増肉部1aが形成されている。すなわち、図1の管端増肉部1aは、鋼管の端部を内側に180°折り返して形成されている。この管端増肉部1aの外側に鋼管2が溶接部3により接合されている。
 管端増肉部1aにおけるステンレス鋼管の外側部分と内側部分の間に隙間部1bが形成されている。
 図1の構造の継ぎ手Aにおいて、フェライト系ステンレス鋼管の上述の組成に応じて上述の関係式を満たす隙間間隔dを有する隙間部1bが形成されている。これにより、優れた耐隙間部塩害性を得ることができる。
 管端増肉パイプ(フェライト系ステンレス鋼管)を構造体と溶接する際、上記と同様に、どのような溶接方法を採用してもよい。構造体としては、鋼管などが挙げられる。
 フェライト系ステンレス鋼管の管端増肉部に構造体を溶接で接合する場合(溶接継ぎ手が、管端増肉部に溶接で接合された構造体をさらに有する場合)、フェライト系ステンレス鋼管の単管部の板厚をtとすると、溶接部のうち、フェライト系ステンレス鋼管側の最大溶け込み深さが0.3t~2.0tであることが好ましい。
 最大溶け込み深さは、以下の方法により測定される。溶接部の断面を観察し、溶接部において、最も深くまで溶解した箇所を最大溶け込み部とし、その深さを最大溶け込み深さとする。
 図2は、図1の溶接部3周辺の拡大図を示す。フェライト系ステンレス鋼管の単管部の板厚をtとすると、図2(a)は、最大溶け込み深さが0.3tである場合を示し、図2(b)は、最大溶け込み深さが1.0tの場合を示し、図2(c)は、最大溶け込み深さが2.0tの場合を示し、(d)は、最大溶け込み深さが2.0t超の場合を示す。
 図1,2は、管端増肉部の外周面側に電極/アークを近づけて溶接を行って溶接部3が形成された場合を示す。このため、管端増肉部の外周面が、電極/アーク側の面となり、管端増肉部の内周面が、電極/アーク側の面の反対側の面(裏面)となる。管端増肉部の外周面から最大溶け込み部までの距離(深さ)が最大溶け込み深さである。
 図2に示されたように、最大溶け込み部が、管端増肉部の内周面に到達していない場合、最大溶け込み深さは2.0t未満である。最大溶け込み部が、管端増肉部の内周面にちょうど到達している場合、最大溶け込み深さは2.0tである。最大溶け込み部が、管端増肉部の内周面に到達し、内周面にも溶融部が存在する場合、最大溶け込み深さは2.0t超である。すなわち、最大溶け込み深さが2.0tを超える場合とは、溶接時の電極/アーク側の面の反対側の面(裏面)に溶融部が存在する場合である。
 最大溶け込み深さを0.3t以上とすることで、溶接部の強度が担保される(確保される)とともに、耐隙間部塩害性に優れた管端増肉部を有する溶接継ぎ手や後述する溶接構造体が得られる。最大溶け込み深さが2.0tを超えると、溶接部の形状が不均一となり、強度の低下や耐食性の劣化、排気ガスの漏れなどの様々な不具合に繋がる恐れがある。
 耐隙間部塩害性に優れた管端増肉部を有する溶接継ぎ手とすることができる理由を以下に示す。
 最大溶け込み深さを0.3t以上とすることで、管端増肉パイプ(フェライト系ステンレス鋼管)の外側の溶接部の形状が安定化し、腐食起点となりうる隙間構造が形成されなくなる。最大溶け込み深さは、好ましくは1.0t超であり、この場合、管端増肉パイプ(フェライト系ステンレス鋼管)の内側の隙間も塞がれ、腐食起点となりうる隙間構造がさらに減少する。これに加え、フェライト系ステンレス鋼管は、鋼中に0.001~0.600%の量のSnを含有している。このため、万が一、腐食が発生した場合も、溶出したSn2+イオンが溶解表面に吸着し、鋼母材のさらなる溶出を抑制し、溶接部の耐食性の劣化を回避することが可能である。
 このような溶接部を達成するためには、特にシールドガスが必要な溶接においては、選ばれたシールドガスが必要となる。特に管端増肉部は隙間構造が多い。すなわち、管端増肉部は多くの隙間が存在する構造を有する。このため、不活性ガスにより適正なシールドを行うことが好ましい。具体的にはシールドガスとしては、Arが最も望ましい。シールドガスにCOやOを混合する場合は、COやOの量を5体積%以下とすることが望ましい。
 すなわち、本実施形態の溶接継ぎ手の製造方法は、本実施形態のフェライト系ステンレス鋼管の管端増肉部と、構造体とを溶接により接合する工程を有する。溶接による接合工程では、溶接部にシールドガスを供給しながら溶接を行うことが好ましい。シールドガスとしては、Arなどの不活性ガスや、COとOのいずれか一方又は両方と不活性ガスとの混合ガスなどが挙げられる。混合ガス中のCOとOの量は5体積%以下が好ましい。
 特に溶接方法が、TIG溶接、ミグ溶接、又はマグ溶接の場合、溶接部にシールドガスを供給しながら溶接を行うことが好ましい。溶接方法がレーザー溶接の場合、シールドガスを供給しなくともよい。
 本実施形態の溶接構造体は、本実施形態の溶接継ぎ手を有し、この溶接継ぎ手は、管端増肉部に溶接で接合された構造体をさらに有し、フェライト系ステンレス鋼管の単管部の板厚をtとすると、溶接部のうち、フェライト系ステンレス鋼管側の最大溶け込み深さが0.3t~2.0tである。
 上述の組成と関係式を満たすフェライト系ステンレス鋼管によれば、耐隙間部塩害性に優れた管端増肉部を有する溶接継ぎ手や溶接構造体を提供することができる。
 そして、この溶接継ぎ手や溶接構造体を、特に自動車部品、二輪用部品として使用することによって、部品の薄肉化が可能となり、効率的な部品の製造および適用した自動車、二輪車の燃費の向上が可能となる。
 後述する実施例においては、図1の構造の継ぎ手Aなどのこの種の継ぎ手の耐隙間部塩害性について把握するための試験を行い、フェライト系ステンレス鋼管を構成する元素の影響と臨界隙間間隔について試験した。
 以下、実施例に基づいて、本発明をより詳細に説明する。
(実施例1)
 表1,2に示す組成の鋼を溶製した。特にSnはその効果を調べるため0.005、0.01、0.03、0.10%および0.30%の5水準とした。溶製した鋼に板厚4mmまで熱間圧延を施し、1050℃で1分間焼鈍を行い、酸洗を施した。その後、板厚0.8mmまで冷間圧延を施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 そして、表1,2に示す各組成の鋼板から70mm×70mm及び40mm×40mmの試験片を切り出し、同じ成分組成を有する試験片を重ねてスポット溶接することで、管端増肉パイプの隙間部を模擬したCCT試験片を作製した。スポット溶接条件を調整することで種々の隙間間隔のCCT試験片を作製した。
 このCCT試験片をJASO-M610-92の自動車部品の外観の腐食試験方法で評価した。サイクル数を100サイクルとし、試験後にスポット溶接部をくり抜いて二枚の板を分け、隙間内の最大孔食深さを評価できるようにした。錆落とし後に隙間上下の試験片の孔食深さをそれぞれ10点測定し、最も深い孔食の値を、その鋼種の最大孔食深さとした。最大孔食深さが500μm未満の試料を“○”(good)と評価し、最大孔食深さが500μm以上の試料を“×”(poor)と評価した。
 以下の表3に、表1,2に示す各組成のステンレス鋼の(Cr/(1000Sn))の値(Cr及びSnはそれぞれの元素の含有量(質量%)を示す)の計算結果と、隙間間隔dの値(μm)と、自動車部品の外観の腐食試験方法(JASO-M610-92)による最大孔食深さ(μm)と、その判定結果を併せて示す。
Figure JPOXMLDOC01-appb-T000003
 図3のグラフに示すように、横軸を各試料のCr量(質量%)とし、縦軸を各試料の隙間間隔(d:μm)として、表1~3に示す結果をプロットした。また、それぞれの試料のSn量を表示した。
 図3において、間隔の小さな鎖線はSn量が0.10%の場合のd=Cr/(1000Sn)で表される曲線を示す。Sn量が0.10%の試料No.A4、A6、A10、B5、B7、B10に関して、試料No.A4、A10、A6の隙間間隔dの値はこの間隔の小さな鎖線より上の値となり、試料No.B7、B5、B10の隙間間隔dの値はこの間隔の小さな鎖線より下の値となった。
 図3において、実線はSn量が0.030%の場合のd=Cr/(1000Sn)で表される曲線を示す。Sn量が0.030%の試料No.A2、A7、A9、A12、B3、B6、B8、B13、B14に関して、試料No.A7、A2、A9、A12の隙間間隔dの値はこの実線より上の値となり、試料No.B13、B3、B8、B14、B6の隙間間隔dの値はこの実線より下の値となった。
 図3において、間隔の大きな鎖線はSn量が0.010%の場合のd=Cr/(1000Sn)で表される曲線を示す。Sn量が0.010%の試料No.A1、A3、A13、B1、B2、B11に関して、試料No.A1、A13、A3の隙間間隔dの値はこの間隔の大きな鎖線より上の値となり、試料No.B1、B2、B11の隙間間隔dの値はこの間隔の大きな鎖線より下の値となった。
 図3において、太い実線はSn量が0.005%の場合のd=Cr/(1000Sn)で表される曲線を示す。Sn量が0.005%の試料No.A5、A8、A11、B4、B9、B12に関して、試料No.A5、A8、A11の隙間間隔dの値はこの太い実線より上の値となり、試料No.B4、B9、B12の隙間間隔dの値はこの太い実線より下の値となった。
 本発明例の試料No.A1~A14では、最大孔食深さが500μm未満であったが、比較例の試料No.B1~B14では、最大孔食深さが500μm以上であった。
 従って、図3に示す結果から、本実施形態のフェライト系ステンレス鋼管からなる管端増肉構造体では、隙間間隔d(μm)が、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たすことで、最大孔食深さの小さい管端増肉構造体を提供できることがわかる。
 また、図3に示したように、本実施形態に係るフェライト系ステンレス鋼管では、母材Cr量が増加するほど、隙間環境での孔食深さは増加することがわかる。そして、本実施形態に係るフェライト系ステンレス鋼管では、Snを添加することで臨界隙間間隔が小さくなることがわかる。
(実施例2)
 表1,2に示す組成の鋼板を用いて、TIG溶接により直径60mmの鋼管(パイプ)を作製した。スピニング加工により、鋼管の端部を内側に180°折り返して長さ50mmの管端増肉部を作製した。以上により、直径が60mm、内側に折り返した端部(管端増肉部)の長さが50mmの管端増肉パイプを作製した。そして、折り返し部から60mmの長さで管端増肉パイプを切断した。
 なお、管端増肉部における隙間部の隙間間隔は、スピニング加工の条件を調整することで種々の値とした。
 同じ鋼板を用いて直径62mmの単管パイプを作製した。管端増肉パイプの管端増肉部の外側に、同じ鋼板から製造された単管パイプを重ねあわせ、管端増肉パイプの内側に折り返した端部(管端増肉部)が溶接部となるように種々の方法(TIG溶接、ミグ溶接、マグ溶接、又はレーザー溶接)で溶接を行った。以上により、全長が100mmであり、単管部(単管パイプ)と管端増肉部との溶接部が中央に位置するCCT試験片を作製した。
 各種の溶接の際、電流量を調節して溶接部の溶け込み深さを調整し、溶け込み深さの耐食性への影響を調べた。またシールドガスを用いる溶接の場合、様々なシールドガスを用いて溶接を行い、シールドガスの耐食性への影響も調べた。
 なお、最大溶け込み深さは、以下の方法により測定した。同一の条件で溶接を施し、CCT試験片を別途、作製した。溶接部の断面を観察し、溶接部において、最も深くまで溶解した箇所を最大溶け込み部とし、その深さを最大溶け込み深さとした。詳細には、管端増肉パイプの端部(管端増肉部)の外周面と単管パイプとを重ねあわせ、管端増肉パイプの端部(管端増肉部)の外周面側に電極/アークを近づけて溶接を行った。このため、管端増肉パイプの端部(管端増肉部)の外周面が、電極/アーク側の面となり、管端増肉パイプの端部(管端増肉部)の内周面が、電極/アーク側の面の反対側の面(裏面)となる。管端増肉パイプの端部(管端増肉部)の外周面から最大溶け込み部までの距離(深さ)が最大溶け込み深さである。
 このCCT試験片をJASO-M610-92の自動車部品の外観の腐食試験方法で評価した。サイクル数を100サイクルとし、試験後に溶接部を切断して管端増肉部の二枚の板を分け、隙間内の最大孔食深さを評価できるようにした。錆落とし後に隙間上下の試験片の孔食深さをそれぞれ10点測定し、最も深い孔食の値を、その鋼種の最大孔食深さとした。最大孔食深さが500μm未満の試料を“○”(good)と評価し、最大孔食深さが500μm以上の試料を“×”(poor)と評価した。
 表4に、表1,2に示す各組成のステンレス鋼を用いて作製した試験片の溶接部の溶け込み深さと、溶接シールドガスと、自動車部品の外観の腐食試験方法(JASO-M610-92)による最大孔食深さ(μm)と、その判定結果を併せて示す。
Figure JPOXMLDOC01-appb-T000004
 管端増肉パイプの単管部の板厚をtとすると、表4の結果から、溶接部の溶け込み深さが0.3t未満または2.0t超となった場合、最大孔食深さが500μm以上となることが分かる。また溶接時のシールドガスにCOまたはOが5体積%超の量で含有されている場合、最大孔食深さが500μm以上となることが分かる。
 本実施形態によれば、耐隙間部塩害性に優れたフェライト系ステンレス鋼管を提供することが可能である。また、本実施形態を適用した鋼管を、特に自動車、二輪用部品として使用することによって薄肉化が可能となり、効率的な部品製造および燃費向上が可能となる。
 即ち、本実施形態は産業上極めて有益である。
 A:継ぎ手、1:管端増肉構造体、1a:管端増肉部、1b:隙間部、2:鋼管、3:溶接部。

Claims (8)

  1.  質量%で
    C:0.001~0.100%、
    Si:0.01~2.00%、
    Mn:0.01~2.00%、
    P:0.001~0.05%、
    S:0.0001~0.005%、
    Cr:10.5~20.0%、
    Sn:0.001~0.600%、
    Ti:0.001~1.000%、
    Al:0.001~0.100%、
    N:0.001~0.02%を含有し、残部がFeおよび不可避的不純物であり、
     管端部に管端増肉部を具備し、前記管端部に形成される隙間間隔d(μm)は、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たすことを特徴とする隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
  2.  さらに質量%で
    Ni:0.1~1.0%、
    Mo:0.1~3.0%、
    Cu:0.10~3.00%、
    B:0.0001~0.0050%、
    Nb:0.001~0.300%、
    W:0.001~1.00%、
    V:0.001~0.50%、
    Sb:0.001~0.100%、
    Co:0.001~0.500%、
     のうち何れか1種または2種以上を含有することを特徴とする請求項1に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
  3.  さらに質量%で
    Ca:0.0001~0.0050%、
    Mg:0.0001~0.0050%、
    Zr:0.0001~0.0300%、
    Ga:0.0001~0.0100%、
    Ta:0.001~0.050%、
    REM:0.001~0.100%、
     のうち何れか1種または2種以上を含有することを特徴とする請求項1または2に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
  4.  管端増肉構造体に用いられることを特徴とする請求項1~3のいずれか一項に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
  5.  請求項1~4のいずれか一項に記載のフェライト系ステンレス鋼管からなることを特徴とする管端増肉構造体。
  6.  請求項1~4のいずれか一項に記載のフェライト系ステンレス鋼管からなる管端増肉部を有することを特徴とする溶接継ぎ手。
  7.  前記管端増肉部に溶接で接合された構造体をさらに有し、
     前記フェライト系ステンレス鋼管の単管部の板厚をtとすると、溶接部のうち、前記フェライト系ステンレス鋼管側の最大溶け込み深さが0.3t~2.0tであることを特徴とする請求項6に記載の溶接継ぎ手。
  8.  請求項7に記載の溶接継ぎ手を有することを特徴とする溶接構造体。
PCT/JP2018/012598 2017-03-30 2018-03-27 隙間部の耐塩害性に優れたフェライト系ステンレス鋼管、管端増肉構造体、溶接継ぎ手、及び溶接構造体 WO2018181401A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2019011367A MX2019011367A (es) 2017-03-30 2018-03-27 Tubo de acero inoxidable ferritico que tiene excelente tolerancia a la sal en separacion, estructura engrosada en el extremo de tubo, junta de soldadura, y estructura soldada.
US16/492,527 US11215299B2 (en) 2017-03-30 2018-03-27 Ferritic stainless steel pipe having excellent salt tolerance in gap, pipe-end-thickened structure, welding joint, and welded structure
KR1020197027878A KR102272169B1 (ko) 2017-03-30 2018-03-27 간극부의 내염해성이 우수한 페라이트계 스테인리스 강관, 관 단부 두께 증가 구조체, 용접 조인트, 및 용접 구조체
JP2019509936A JP6741861B2 (ja) 2017-03-30 2018-03-27 隙間部の耐塩害性に優れたフェライト系ステンレス鋼管、管端増肉構造体、溶接継ぎ手、及び溶接構造体
CN201880020584.5A CN110446799B (zh) 2017-03-30 2018-03-27 间隙部的耐盐害性优异的铁素体系不锈钢管、管端增厚结构体、焊接接头及焊接结构体
CA3056054A CA3056054C (en) 2017-03-30 2018-03-27 Ferritic stainless steel pipe having excellent salt tolerance in gap, pipe-end-thickened structure, welding joint, and welded structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-069284 2017-03-30
JP2017069284 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181401A1 true WO2018181401A1 (ja) 2018-10-04

Family

ID=63676268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012598 WO2018181401A1 (ja) 2017-03-30 2018-03-27 隙間部の耐塩害性に優れたフェライト系ステンレス鋼管、管端増肉構造体、溶接継ぎ手、及び溶接構造体

Country Status (7)

Country Link
US (1) US11215299B2 (ja)
JP (1) JP6741861B2 (ja)
KR (1) KR102272169B1 (ja)
CN (1) CN110446799B (ja)
CA (1) CA3056054C (ja)
MX (1) MX2019011367A (ja)
WO (1) WO2018181401A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050930A (ja) * 2018-09-28 2020-04-02 日鉄ステンレス株式会社 ステンレス鋼管、管端増肉構造体及び溶接構造体
JP2020050931A (ja) * 2018-09-28 2020-04-02 日鉄ステンレス株式会社 フェライト系ステンレス鋼、フェライト系ステンレス鋼管、管端増肉構造体及び溶接構造体
JP7465955B2 (ja) 2019-09-17 2024-04-11 ポスコホールディングス インコーポレーティッド 拡管加工性が向上した低Crフェライト系ステンレス鋼板及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801538B (zh) * 2018-03-27 2023-05-11 日商日鐵不銹鋼股份有限公司 肥粒鐵系不鏽鋼及其製造方法、肥粒鐵系不鏽鋼板及其製造方法、以及燃料電池用構件
KR20210125669A (ko) * 2020-04-09 2021-10-19 현대자동차주식회사 에어컨 배관 시스템
CN114457289A (zh) * 2022-01-27 2022-05-10 上海大学 一种核能用含锡耐热铁素体不锈钢合金材料及其制备方法
KR102410654B1 (ko) 2022-03-04 2022-06-22 유성목 가상 현실 및 증강 현실용 인풋 디바이스

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234406A (ja) * 2009-03-31 2010-10-21 Sc Pipe Solutions Co Ltd パイプ加工方法
JP2015206078A (ja) * 2014-04-21 2015-11-19 新日鐵住金株式会社 フェライト系耐熱鋼管
JP2016169418A (ja) * 2015-03-12 2016-09-23 新日鐵住金ステンレス株式会社 塗装かつ犠牲防食効果を利用した耐穴あき性に優れた自動車用部材および自動車用給油管

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4727601Y1 (ja) 1967-03-08 1972-08-22
HU167950B (ja) 1973-07-26 1976-01-28
JPS606660B2 (ja) 1977-02-14 1985-02-19 帝人株式会社 無菌人工臓器の製造方法
JP2004255414A (ja) 2003-02-26 2004-09-16 Sango Co Ltd 折り返し反転加工用溶接鋼管
JP4727601B2 (ja) 2007-02-06 2011-07-20 新日鐵住金ステンレス株式会社 耐すきま腐食性に優れたフェライト系ステンレス鋼
JP5297713B2 (ja) 2008-07-28 2013-09-25 新日鐵住金ステンレス株式会社 加熱後耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼
JP5320034B2 (ja) 2008-11-14 2013-10-23 新日鐵住金ステンレス株式会社 加熱後耐食性に優れた自動車排気系部材用省Mo型フェライト系ステンレス鋼
JP5586279B2 (ja) 2010-03-15 2014-09-10 新日鐵住金ステンレス株式会社 自動車排気系部材用フェライト系ステンレス鋼
JP2012012005A (ja) * 2010-06-03 2012-01-19 Nippon Steel & Sumikin Stainless Steel Corp 給油管およびその製造方法
EP2722411B1 (en) * 2011-06-16 2020-04-08 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel plate which has excellent ridging resistance and method of production of same
JP5932302B2 (ja) 2011-11-14 2016-06-08 フタバ産業株式会社 管端成形方法
JP6006660B2 (ja) 2013-02-26 2016-10-12 新日鐵住金ステンレス株式会社 耐酸化性および耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼
JP6169863B2 (ja) 2013-03-05 2017-07-26 新日鐵住金ステンレス株式会社 耐食性に優れた排気系部材用フェライト系ステンレス鋼
KR20180114240A (ko) * 2014-01-08 2018-10-17 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스강 및 그 제조 방법
JP6412596B2 (ja) 2015-02-10 2018-10-24 新日鐵住金ステンレス株式会社 廉価で塩害耐食性に優れた自動車用部材および給油管
JP6598478B2 (ja) * 2015-03-12 2019-10-30 日鉄ステンレス株式会社 塩害耐食性に優れかつ外観劣化を抑制した自動車用給油管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234406A (ja) * 2009-03-31 2010-10-21 Sc Pipe Solutions Co Ltd パイプ加工方法
JP2015206078A (ja) * 2014-04-21 2015-11-19 新日鐵住金株式会社 フェライト系耐熱鋼管
JP2016169418A (ja) * 2015-03-12 2016-09-23 新日鐵住金ステンレス株式会社 塗装かつ犠牲防食効果を利用した耐穴あき性に優れた自動車用部材および自動車用給油管

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050930A (ja) * 2018-09-28 2020-04-02 日鉄ステンレス株式会社 ステンレス鋼管、管端増肉構造体及び溶接構造体
JP2020050931A (ja) * 2018-09-28 2020-04-02 日鉄ステンレス株式会社 フェライト系ステンレス鋼、フェライト系ステンレス鋼管、管端増肉構造体及び溶接構造体
JP7094188B2 (ja) 2018-09-28 2022-07-01 日鉄ステンレス株式会社 ステンレス鋼管、管端増肉構造体及び溶接構造体
JP7213650B2 (ja) 2018-09-28 2023-01-27 日鉄ステンレス株式会社 フェライト系ステンレス鋼管、管端増肉構造体及び溶接構造体
JP7465955B2 (ja) 2019-09-17 2024-04-11 ポスコホールディングス インコーポレーティッド 拡管加工性が向上した低Crフェライト系ステンレス鋼板及びその製造方法

Also Published As

Publication number Publication date
JPWO2018181401A1 (ja) 2020-03-26
CN110446799B (zh) 2021-04-02
US11215299B2 (en) 2022-01-04
US20210140569A1 (en) 2021-05-13
CA3056054A1 (en) 2018-10-04
CA3056054C (en) 2022-08-30
JP6741861B2 (ja) 2020-08-19
MX2019011367A (es) 2019-11-18
KR102272169B1 (ko) 2021-07-05
KR20190122735A (ko) 2019-10-30
CN110446799A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2018181401A1 (ja) 隙間部の耐塩害性に優れたフェライト系ステンレス鋼管、管端増肉構造体、溶接継ぎ手、及び溶接構造体
JP4727601B2 (ja) 耐すきま腐食性に優れたフェライト系ステンレス鋼
JP5050863B2 (ja) 温水器用フェライト系ステンレス鋼板
EP1930461B1 (en) Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe
RU2443796C1 (ru) Ферритная нержавеющая сталь с превосходной жаростойкостью и вязкостью
US10793930B2 (en) Ferritic-austenitic two-phase stainless steel material and method for manufacturing same
JP6576675B2 (ja) 自動車排気系部品締結部品と自動車排気系部品との組み合わせ構造
JP2009091654A (ja) 溶接性に優れたフェライト系ステンレス鋼
US10400318B2 (en) Ferritic stainless steel
JP2019178364A (ja) 耐塩害腐食性に優れたフェライト系ステンレス鋼
JP2007290033A (ja) 溶込み形状および加工性に優れたフェライト系ステンレス鋼溶接金属
JP2021161470A (ja) フェライト系ステンレス鋼板及び溶接構造体
JP6814678B2 (ja) 管端増肉加工用フェライト系ステンレス鋼管および自動車排気系部品用フェライト系ステンレス鋼管
JP5000472B2 (ja) 拡管加工性に優れるフェライト系ステンレス鋼溶接管及びその製造方法
JP7213650B2 (ja) フェライト系ステンレス鋼管、管端増肉構造体及び溶接構造体
JP2001140040A (ja) 耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管
JP3937369B2 (ja) フェライト系ステンレス鋼管の加工方法
JP4465066B2 (ja) フェライト・オーステナイト二相系ステンレス鋼用溶接材料
JP7094188B2 (ja) ステンレス鋼管、管端増肉構造体及び溶接構造体
JP7296705B2 (ja) フェライト系ステンレス鋼管、管端増肉構造体及び溶接構造体
JP4822248B2 (ja) 自動車構造用マルテンサイト系ステンレス鋼板
JP2005029882A (ja) 耐溶接軟化性に優れた構造用高強度電縫鋼管の製造方法
JP4286055B2 (ja) 溶接部の耐粒界腐食性に優れた自動車用クロム含有鋼
JP2005256018A (ja) 造管時のビードカット性に優れた溶融アルミニウムめっき電縫鋼管用素材
JP2023145223A (ja) オーステナイト系ステンレス鋼材、鋼板、および鋼管ならびにその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3056054

Country of ref document: CA

Ref document number: 2019509936

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027878

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775490

Country of ref document: EP

Kind code of ref document: A1