WO2018181199A1 - 含水物検出装置、含水物検出方法、およびゴム状重合体の製造方法 - Google Patents

含水物検出装置、含水物検出方法、およびゴム状重合体の製造方法 Download PDF

Info

Publication number
WO2018181199A1
WO2018181199A1 PCT/JP2018/012185 JP2018012185W WO2018181199A1 WO 2018181199 A1 WO2018181199 A1 WO 2018181199A1 JP 2018012185 W JP2018012185 W JP 2018012185W WO 2018181199 A1 WO2018181199 A1 WO 2018181199A1
Authority
WO
WIPO (PCT)
Prior art keywords
crumb
polymer
detection
hydrated
rubber
Prior art date
Application number
PCT/JP2018/012185
Other languages
English (en)
French (fr)
Inventor
昌生 中村
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201880019745.9A priority Critical patent/CN110446920A/zh
Priority to JP2019509819A priority patent/JP7067550B2/ja
Priority to SG11201908917Y priority patent/SG11201908917YA/en
Priority to US16/497,034 priority patent/US11397157B2/en
Publication of WO2018181199A1 publication Critical patent/WO2018181199A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/445Rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C2/00Treatment of rubber solutions
    • C08C2/06Wining of rubber from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content

Definitions

  • the present invention relates to a hydrated substance detection device, a hydrated substance detection method, and a method for producing a rubbery polymer.
  • the rubbery polymer after polymerization and coagulation contains a lot of water. Therefore, the moisture contained in the rubber-like polymer is removed by extruding and drying the rubber-like polymer by extrusion drying or the like, and further heating and drying the crumb of the obtained rubber-like polymer by vibration drying or the like. In addition, it is possible to detect hydrated substances such as crumbs contained in the dried rubbery polymer and remove such hydrated substances from the dried rubbery polymer. May also be performed.
  • Japanese Patent Application Laid-Open No. 59-12339 discloses a technique for detecting moisture contained in crumb rubber by an infrared sensor.
  • the infrared sensor tends to detect the surface of the conveyor as being at a low temperature, it is easily misrecognized as if the surface of the conveyor is hydrated.
  • the amount of the rubber-like polymer is large, only the outermost rubber can be detected, so that the hydrated substance cannot be detected with high accuracy. For this reason, there is a limit to the improvement of product quality in the conventional technology.
  • An object of the present invention is to provide a hydrated substance detection device capable of accurately detecting a hydrated substance in a rubber-like polymer.
  • one aspect of the present invention is a hydrated matter detection device for detecting a hydrated matter in a rubbery polymer, wherein the hydrated matter detecting device conveys the rubbery polymer, and is conveyed by the conveying unit.
  • a detection unit for detecting the rubber-like polymer therein with a temperature sensor the transport unit has a surface with an emissivity of 0.50 or more, and the frame rate of the temperature sensor is 5 to 120 Hz.
  • the detecting unit is a hydrated substance detection device that detects a hydrated substance in the rubber-like polymer from the downstream side of the outlet in the vicinity of the outlet of the conveying part.
  • a hydrated substance detection device capable of accurately detecting a hydrated substance in a rubber-like polymer can be provided.
  • FIG. 1 is a schematic view showing a first embodiment of a hydrated substance detection device according to the present invention.
  • the crumb detection device 100 of this embodiment is a hydrated matter detection device that detects hydrated matter in a rubber-like polymer. As shown in FIG. 1, the rubber-like polymer is processed into a plurality of dried crumbs C.
  • the plurality of crumbs C includes a dry crumb CD containing no water and a water-containing crumb CW containing water. It is included.
  • the crumb detection device 100 is an example of a hydrated matter detection device according to the present invention.
  • the crumb detection device 100 has a conveyor 10 that conveys the crumb C as shown in FIG.
  • the aspect of the conveyor 10 is not particularly limited, and may be, for example, a belt type conveyor or a vibration type conveyor.
  • the vibration type conveyor is likely to cause the crumbs C to be turned upside down during transport, and the detection of each crumb C is facilitated.
  • the material of the conveyor 10 is not particularly limited, but when using a vibrating conveyor, it is preferable to use a stainless steel plate whose surface is coated with Teflon (Teflon is a registered trademark).
  • the conveyor 10 is an example of the conveyance part in the hydrated material detection apparatus of this invention.
  • the conveyor 10 has a surface 11 with an emissivity of 0.50 or more.
  • the emissivity is a numerical value of the degree to which infrared energy is radiated from the surface of the object.
  • the emissivity of the mirror body is 0, and the emissivity of the complete black body is 1.
  • the emissivity of the surface 11 of the conveyor 10 is 0.50 or more, preferably 0.70 or more, and more preferably 0.80 or more. If the emissivity of the surface 11 of the conveyor 10 is excessively low, the reflection of light on the surface 11 of the conveyor 10 increases, so that the detection sensitivity of the sensor 40 may be significantly reduced.
  • the conveyor 10 is made of stainless steel as described above, and the emissivity of the stainless steel is about 0.3. However, since the conveyor 10 is coated with Teflon on the stainless steel surface, the radiation of the surface of the conveyor 10 is The rate is 0.50 or more.
  • the crumb detection device 100 has a sensor 40 for detecting the crumb C as shown in FIG.
  • An infrared camera 41 is mounted on the sensor 40.
  • the infrared camera 41 detects the temperature of the crumb C being conveyed by the conveyor 10.
  • the sensor 40 is an example of the detection part in the hydrated substance detection apparatus of this invention
  • the infrared camera 41 is an example of the temperature sensor of a detection part.
  • an outlet 12 of the conveyor 10 is provided on the downstream side of the conveyor 10, and a sensor 40 is disposed in the vicinity of the outlet 12.
  • the sensor 40 detects the water-containing crumb CW in the crumb C on the surface 11 of the conveyor 10 from the downstream side of the outlet 12 of the conveyor 10 in the vicinity of the outlet 12 of the conveyor 10.
  • the right side (exit 12 side) of the conveyor 10 is downstream, and the left side of the conveyor 10 (side opposite to the outlet 12) is upstream.
  • the sensor 40 is disposed in the vicinity of the outlet 12 on the downstream side of the outlet 12 of the conveyor 10, and the outlet of the conveyor 10 disposed obliquely below as viewed from the sensor 40.
  • the hydrated crumb CW in the crumb C passing through 12 is detected.
  • the vicinity of the outlet 12 of the conveyor 10 also has a surface 11 with an emissivity of 0.50 or more.
  • a heating unit such as a hot air blower or the like is provided as described below.
  • the sensor may malfunction due to the influence of heat.
  • the sensor is installed directly above the conveyor, the crumbs are transported while overlapping vertically when there is a large amount of crumb processing. Therefore, if the sensor is installed directly above the conveyor, the lower crumb that overlaps vertically will be detected. There is a problem that detection accuracy is low.
  • the senor 40 is disposed on the downstream side of the outlet 12 of the conveyor 10 (not disposed directly above the conveyor 10). It is less likely to be affected by the influence of water vapor that diverges or by heat when a heating unit such as a hot air blower is provided as will be described later, and the sensor 40 is less likely to malfunction.
  • the overlap of the crumbs C gradually collapses during the conveyance, and there is a tendency that the overlap of the crumbs C tends to decrease in the vicinity of the outlet 12 of the conveyor 10 where the crumbs C fall. is there. Therefore, even when the amount of crumb C transported is large, a decrease in detection accuracy can be prevented by detecting the hydrated crumb CW in the crumb C in the vicinity of the outlet 12 of the conveyor 10.
  • the surface near the outlet 12 of the conveyor 10 also has a surface 11 with an emissivity of 0.50 or more, the reflection of light on the surface 11 of the outlet 12 of the conveyor 10 is reduced, and the detection sensitivity of the sensor 40 is significantly reduced. Can be prevented.
  • the crumb detection apparatus 100 of this embodiment it is preferable to provide heating parts, such as the warm air blower 20 which heats the conveyor 10. As shown in FIG. If the temperature of the surface 11 of the conveyor 10 is low, the sensor 40 may erroneously detect that the surface 11 of the conveyor 10 is a hydrated crumb CW. Therefore, by providing such a warm air blower 20, it is possible to control the temperature of the surface 11 of the conveyor 10 to be maintained at a constant temperature.
  • the hot air blower 20 is an example of a heating unit in the hydrated matter detection device of the present invention. In addition, such a heating part is not limited to the warm air blower 20, You may use another heating means.
  • the temperature of the surface 11 of the conveyor 10 is preferably maintained at 30 ° C. to 70 ° C., more preferably 40 ° C. to 70 ° C., and even more preferably 50 ° C. to 70 ° C. by heating the hot air blower 20.
  • the detection accuracy of the water-containing crumb CW by the sensor 40 can be improved. If the temperature of the surface 11 of the conveyor 10 is maintained too low, the sensor 40 may be erroneously detected as described above. If the temperature is maintained at an excessively high temperature, measurement during bale molding may occur due to product deterioration or mutual attachment. The accuracy may be reduced.
  • the infrared camera 41 can adjust the frame rate for recording the infrared signal according to the transport speed.
  • the frame rate is the number of frames such as the number of still images and the number of frames that can process a moving image per unit time.
  • the frame rate of the infrared camera 41 is 5 to 120 Hz, preferably 9 Hz to 120 Hz, more preferably 15 Hz to 60 Hz, and further preferably 15 Hz to 33 Hz. If this frame rate is excessively high, a high calculation processing capability is required, and it may take a long time for detection. If it is excessively small, detection of crumb C may be missed.
  • the thermal image resolution required for infrared recording depends on the minimum size of the crumb C to be detected and the distance to the crumb C to be detected. Therefore, it is preferable that the thermal image resolution of the infrared camera 41 is usually 80 ⁇ 60 to 1024 ⁇ 768 in the horizontal and vertical directions, more preferably 160 ⁇ 120 or more, and further preferably 320 ⁇ 240 or more. If the thermal image resolution is excessively low, the hydrated crumb CW having a small size may not be detected. Further, if the thermal image resolution is excessively high, it takes time to process the signal, and there is a possibility that the water-containing crumb CW described later cannot be removed in real time.
  • the crumb detection device 100 is provided with a control device 50 including an arithmetic device such as a personal computer. Further, the control device 50 is further provided with a display device 60.
  • the sensor 40 is connected to the control device 50, and a signal detected by the sensor 40 is transmitted to the control device 50 and processed by the control device 50.
  • the processing method may be detected from a simple image. However, in order to avoid the detection of duplication of the crumb C, it is preferable to carry out the image processing by detecting the movement and size of the crumb C.
  • the processed image can be displayed on the display device 60.
  • the signal and processed image data captured by the control device 50 can be recorded in a memory (not shown) built in the control device 50 so as to be input / output.
  • the sensor 40 preferably includes a MOS (MetalMetaOxide Semiconductor) sensor 42 such as a digital camera that captures an actual image of the water-containing crumb CW.
  • the sensor 40 includes the water-containing crumb imaged by the MOS sensor 42. It is preferably controlled to detect the size and position of the CW. Since the actual image is captured in this manner, the size and position of the hydrated crumb CW can be specified, so that the detection accuracy of the hydrated crumb CW can be improved.
  • the MOS sensor 42 is an example of an imaging unit included in the detection unit in the hydrated substance detection device of the present invention.
  • an imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) sensor or a CCD (Charge Coupled Device) may be used for such an imaging unit.
  • a sensor is preferably used.
  • the frame rate and the number of pixels of the MOS sensor 42 are larger than those of the infrared camera 41 from the viewpoint of performing more precise detection. Further, from the viewpoint of performing more precise detection, it is preferable to irradiate uniform and less flickering such as a white LED (not shown) when photographing a real image.
  • such an imaging unit such as the MOS sensor 42 is an infrared ray. It is preferable to use in combination with a temperature sensor such as the camera 41.
  • FIG. 2 is a schematic view of a crumb detection apparatus 100 showing a second embodiment of the hydrated substance detection apparatus according to the present invention.
  • an inclined surface 13 that is inclined downward is provided on the outlet 12 side of the conveyor 10.
  • the inclined surface 13 also has the surface 11 whose emissivity is 0.50 or more.
  • the sensor 40 detects the hydrated crumb CW in the crumb C on the inclined surface 13. That is, in the crumb detection device 100 shown in FIG. 2, the crumb C falls along the inclined surface 13 from the outlet 12 of the conveyor 10, and the falling crumb C is detected by the sensor 40.
  • the inclined surface 13 By providing such an inclined surface 13, the overlap of the crumbs C is eliminated, and the water-containing crumbs CW in the crumbs C can be reliably detected.
  • the inclined surface 13 also has the surface 11 having an emissivity of 0.50 or more, reflection of light on the surface 11 of the inclined surface 13 is reduced, and the detection sensitivity of the sensor 40 can be prevented from being significantly lowered.
  • FIG. 3 is a view of the crumb detection device 100 shown in FIG. 2 as viewed from the downstream side to the upstream side of the conveyor 10.
  • a process for forming a bale also referred to as a rubber bale
  • the quality of the bale is deteriorated. Therefore, the detected water-containing crumb CW is preferably recovered.
  • the method for collecting the hydrated crumb CW is not limited, and examples include a method of blowing the hydrated crumb CW with air, a method of grabbing with a robot arm, and a method of removing it with an openable chute.
  • the crumb C is often indeterminate, and unlike a resin pellet, it may become a large lump, so that it is preferable to have an openable chute structure.
  • the crumb detection device 100 with a collection box 70 for collecting the hydrated crumb CW.
  • the collection box 70 can collect the water-containing crumb CW detected when the sensor 40 detects the water-containing crumb CW from the crumb C.
  • the collection box 70 is disposed downstream of the conveyor 10 (below the outlet 12 of the conveyor 10 in FIGS. 1 and 2).
  • the recovery box 70 preferably includes a storage portion 71 that stores the recovered crumb C, and a flap 72 that opens and closes when the crumb C is recovered in the storage portion 71.
  • the collection box 70 is an example of a collection unit in the hydrated substance detection apparatus of the present invention, and the flap 72 is an example of an opening / closing door of the collection unit.
  • the flap 72 of the collection box 70 is opened, and the hydrated crumb CW is collected in the storage unit 71. Is controlled to do. Further, when the sensor 40 does not detect the hydrated crumb CW from the crumb C, the flap 72 of the collection box 70 is closed, and the crumb C is dropped onto the conveyor 30 and conveyed to the process of forming a bale.
  • the opening / closing of the flap 72 of the collection box 70 can be controlled by the control device 50 based on a signal from the sensor 40.
  • the crumb C including the hydrated crumb CW accommodated in the accommodating portion 71 of the collection box 70 can be returned to the upstream of the step of drying the crumb C.
  • a conveyor (not shown) that conveys the crumb C upstream from the collection box 70 may be provided to control the crumb C to return upstream.
  • the crumb C containing the hydrated crumb CW collected in the collection box 70 is dried again and the sensor 40 detects it, whereby the hydrated crumb CW contained in the crumb C after the drying process can be further reduced.
  • Control for returning the crumb C recovered by the recovery box 70 to the upstream side can be performed by the control device 50.
  • the collection box 70 is controlled so that the flap 72 is opened and closed in accordance with the size and position of the hydrated crumb CW detected by the sensor 40. Control for opening and closing the flap 72 can also be performed by the control device 50.
  • the flap 72 of the collection box 70 is composed of five flaps (flaps 72A to 72E) as shown in FIG.
  • the control device 50 calculates the size of the hydrated crumb CW and the position in the width direction of the conveyor 10, and based on this calculation result, The flaps 72A to 72E open and close.
  • the flaps 72A to 72E individually correspond to the dimensions of the water-containing crumbs CW1 to CW5 and the position in the width direction of the conveyor 10.
  • the hydrated crumbs CW1 to CW5 are respectively collected in the accommodating portion 71 of the collection box 70.
  • the crumb detection device 100 of the present embodiment can accurately detect the hydrated crumb CW in the crumb C. Further, by collecting the water-containing crumb CW detected in this way, the quality of the rubber product obtained from the crumb C can be improved.
  • the crumb detection method of this embodiment is a hydrated substance detection method for detecting a hydrated crumb CW from a plurality of crumbs C, and the above-described crumb detection device 100 can be used.
  • a plurality of crumbs C are conveyed by the conveyor 10, the crumb C being conveyed by the conveyor 10 is detected by the sensor 40, and the sensor 40 is a conveyor on which the crumb C falls.
  • the water-containing crumb CW in the crumb C is detected from the downstream side of the outlet 12 in the vicinity of the ten outlets 12 (see FIG. 1).
  • the inclined surface 13 which inclines below may be provided in the exit 12 side of the conveyor 10, and the water-containing crumb CW in the crumb C may be detected by the inclined surface 13 (refer FIG. 2).
  • the conveyor 10 has a surface with an emissivity of 0.50 or more, and the emissivity of the surface 11 of the conveyor 10 is preferably 0.70 or more, and more preferably 0.80 or more.
  • the conveyor 10 is preferably heated by the hot air blower 20.
  • an infrared camera 41 can be used (see FIG. 1).
  • the frame rate of the temperature sensor is 5 to 120 Hz, preferably 9 Hz to 120 Hz, more preferably 15 Hz to 60 Hz, and further preferably 15 Hz to 33 Hz.
  • the sensor 40 is preferably provided with a MOS sensor 42 that captures an actual image of the hydrated crumb CW, and the size and position of the hydrated crumb CW captured by the MOS sensor 42 are preferably detected.
  • a recovery box 70 for recovering the detected water-containing crumb CW is provided, and when the sensor 40 detects the water-containing crumb CW in the crumb C, it is recovered in this recovery box 70.
  • the collection box 70 is preferably provided with a storage portion 71 and a flap 72 that opens and closes when the crumb C is recovered in the storage portion 71.
  • the flap 72 is preferably composed of a plurality of flaps 72A to 72E, and opens and closes the flaps 72A to 72E corresponding to the detected size and position of the water-containing crumb CW.
  • the crumb detection method of the present embodiment By detecting the hydrated crumb CW in the crumb C using the crumb detection method of the present embodiment, the effect of using the crumb detection device 100 of the present embodiment can be obtained. That is, the water-containing crumb CW in the crumb C can be detected with high accuracy. Further, by collecting the water-containing crumb CW detected in this way, the quality of the rubber product obtained from the crumb C can be improved.
  • the crumb detection method of this embodiment is an example of the hydrated substance detection method of this invention.
  • FIG. 4 is a flowchart showing an example of a method for producing a rubbery polymer according to an embodiment of the present invention.
  • the method for producing a rubber-like polymer of this embodiment includes a polymerization step S1, a coagulation step S2, a dehydration step S3, an extrusion drying step S4, a vibration drying step S5, and a molding step S6.
  • the manufacturing method of this embodiment is an example of the manufacturing method of the rubber-like polymer of this invention.
  • a rubber raw material such as butadiene is polymerized by a polymerization reaction such as solution polymerization or emulsion polymerization to obtain a polymer solution or latex of a rubber-like polymer.
  • a rubber-like polymer slurry is prepared by removing a solvent or a polymer solution of a rubber-like polymer by a steam stripping method or by salt coagulation.
  • coagulation process S2 is an example of the coagulation process in the manufacturing method of the rubber-like polymer of this invention.
  • the rubber-like polymer slurry is dehydrated using a dehydrator such as an extruder-type squeezer to obtain a crumb having a predetermined moisture content.
  • the extrusion drying step S4 the dehydrated rubber polymer crumb C is extrusion dried using an extrusion dryer.
  • the dehydration step S3 and the extrusion drying step S4 are examples of the dehydration step and the crumbization step in the method for producing a rubbery polymer of the present invention.
  • the crumb C that has passed through the extrusion drying step S4 is placed on a moving vibration belt and heated while being vibrated to be dried (hereinafter sometimes referred to as heat drying).
  • the weight of the crumb C that has undergone the vibration drying step S5 is measured and formed into a bale having a predetermined size using a forming machine.
  • the bale may have a rectangular parallelepiped shape having a predetermined dimension.
  • the vibration drying step S5 and the molding step S6 are examples of the vibration drying step and the molding step in the method for producing a rubber-like polymer of the present invention.
  • the manufacturing method of the rubber-like polymer of the present embodiment further includes a transport process S51, a detection process S52, and a recovery process S54. These steps can be performed using the crumb detection method of the present embodiment described above.
  • a conveying step S51 is performed after the vibration drying step S5.
  • the crumb C dried in the vibration drying step S5 is transported. And it progresses to detection process S52, and the sensor 40 detects the water-containing crumb CW in the crumb C from the downstream of the exit 12 of the conveyor 10 in the vicinity of the exit 12 of the conveyor 10 where the crumb C currently conveyed by the conveyor 10 falls. .
  • the process proceeds to the collection step S54, and the detected hydrated crumb CW is collected.
  • the recovery step includes a step of returning the recovered water-containing crumb CW to the vibration drying step S5 (step from S54 to S5).
  • the recovered water-containing crumb CW is transported to the vibration drying step S5 and again Heated to dry.
  • the transport destination of the collected water-containing crumb CW is not limited to the vibration drying step S5, and may be transported upstream of the vibration drying step S5 that can be heated and dried again.
  • the process proceeds to the molding step S6, and the crumb C is molded into a bale having a predetermined dimension.
  • the effect of using the crumb detection method of the present embodiment can be obtained. That is, the water-containing crumb CW in the crumb C can be detected with high accuracy. Further, by collecting the water-containing crumb CW detected in this way, the quality of the rubber product obtained from the crumb C can be improved.
  • Preliminary test (Detection rate of hydrous crumb)
  • dry crumbs dried crumbs
  • a completely dried crumb and a crumb containing an undried portion were separated from the dried crumb.
  • About 20 kg of crumb pre-warmed in a 90 ° C. oven for 5 minutes was supplied so that the bed thickness was about 5 cm and the bed width was about 30 cm, and detection was performed three times at predetermined detection locations and conditions.
  • the average detection rate was defined as detection rate%.
  • 100 parts of undried rubber having a volatile content of about 20% per about 20 kg of dry rubber and about 5 cm square and about 1 cm thick were added.
  • Detection was carried out through three sections of hot air drying from the extrusion dryer.
  • the drying temperature was 105 ° C in the first section, 90 ° C in the second section, and 90 ° C-80 ° C-50 ° C or 90 ° C-80 ° C-70 ° C in the third section. It was dried with the vibration conveyor of the state.
  • the residence time for each section was 0.5 minutes, 2 minutes, and 2 minutes, respectively.
  • butadiene rubber was obtained by solution polymerization using an organolithium catalyst.
  • the resulting butadiene rubber had a Mooney viscosity of 50, and the 1,2-bond content in butadiene was 9 mol%.
  • the crumb C was obtained by charging this to an extrusion dryer whose rotation speed was controlled so that the die temperature would be 145 ° C. so as to obtain a predetermined dry weight.
  • the obtained crumb C was dried with warm air.
  • the volatile content in the first section-out (set temperature: 100 ° C., residence time: 30 seconds) of hot air drying was 5%.
  • the second section was dried by supplying hot air at 100 ° C. and the third section at 100 ° C., 70 ° C., and 30 to 70 ° C. in three divided temperatures.
  • the crumb C is detected by using an infrared (IR) camera 41 (pixel number: 320 ⁇ 240, frame rate: 33 Hz) on the sensor 40 and vibration drying using a vibration conveyor as a drying method.
  • the detection location was the outlet 12 of the conveyor 10, the emissivity of the surface 11 of the conveyor 10 was set to 0.55, the temperature of the surface 11 of the conveyor 10 was set to 70 ° C., and crumb C was detected.
  • the detection rate of hydrous crumb CW was 83%. Table 1 shows the detection conditions and results.
  • Example 2 Clam C was detected in the same manner as in Example 1 except that the emissivity of the surface 11 of the conveyor 10 was set to 0.96 (see FIG. 1). The detection rate of hydrous crumb CW was 90%. Table 1 shows the detection conditions and results.
  • Example 3 Clam C was detected in the same manner as in Example 2 except that the infrared camera 41 and the MOS sensor 42 were used as the sensor 40 (see FIG. 1). A 1280 ⁇ 720 ⁇ 30 fps real image moving image recording camera (4/3 type MOS sensor) was used as the MOS sensor 42, and white LED light was irradiated as auxiliary light. The detection rate of hydrous crumb CW was 95%. Table 1 shows the detection conditions and results.
  • Example 4 Clam C was detected in the same manner as in Example 3 except that the inclined surface 13 was provided on the exit 12 side of the conveyor 10 and the detection location was the inclined surface 13 (see FIG. 2).
  • the detection rate of hydrous crumb CW was 100%. Table 1 shows the detection conditions and results.
  • Example 5 Clam C was detected in the same manner as in Example 3 except that the temperature of the surface 11 of the conveyor 10 was set to 50 ° C. (see FIG. 2). The detection rate of hydrous crumb CW was 100%. Table 1 shows the detection conditions and results.
  • Example 6 Clam C was detected in the same manner as in Example 3 except that the temperature of the surface 11 of the conveyor 10 was set to 40 ° C. (see FIG. 2). The detection rate of hydrous crumb CW was 98%. Table 1 shows the detection conditions and results.
  • Example 7 Clam C was detected in the same manner as in Example 3 except that the temperature of the surface 11 of the conveyor 10 was set to 30 ° C. (see FIG. 2). The detection rate of hydrous crumb CW was 88%. Table 1 shows the detection conditions and results.
  • Example 8 Clam C was detected in the same manner as in Example 5 except that drying using a belt conveyor instead of vibration drying was performed as a drying method (see FIG. 2). The detection rate of hydrous crumb CW was 100%. Table 1 shows the detection conditions and results.
  • Example 9 Furthermore, crumb C was detected in the same manner as in Example 2 except that the frame rate of the sensor 40 (infrared camera 41) was 9 Hz (see FIG. 1). The detection rate of hydrous crumb CW was 71%. Table 1 shows the detection conditions and results.
  • Example 10 Clam C was detected in the same manner as in Example 9 except that the frame rate of the sensor 40 (infrared camera 41) was 15 Hz (see FIG. 1). The detection rate of hydrous crumb CW was 89%. Table 1 shows the detection conditions and results.
  • Example 11 Clam C was detected in the same manner as in Example 9 except that the frame rate of the sensor 40 (infrared camera 41) was 25 Hz (see FIG. 1). The detection rate of hydrous crumb CW was 100%. Table 1 shows the detection conditions and results.
  • Example 1 The crumb C was prepared in the same manner as in Example 8 except that the infrared sensor 41 was not used as the sensor 40, only the MOS sensor 42 was used, the detection location was directly above the conveyor 10, and the temperature of the surface 11 of the conveyor 10 was set to 90 ° C. Detected (see FIG. 6). The detection rate of hydrous crumb CW was 6%. Table 1 shows the detection conditions and results.
  • Clam C was detected in the same manner as in Example 9 except that the frame rate of the sensor 40 (infrared camera 41) was 1 Hz (see FIG. 6). The detection rate of hydrous crumb CW was 15%. Table 1 shows the detection conditions and results.
  • Example 4 and Example 8 a removal test of the detected hydrated crumb CW was performed.
  • the removal rate averaged 95%.
  • the removal rate is about 30% on average.
  • Example 4 and Example 8 a removal test of the detected hydrated crumb CW was performed.
  • the removal rate averaged 95%.
  • the removal rate is about 30% on average.
  • Examples 12 to 17, Comparative Example 7 Based on the conditions and results of Examples 4 to 6 from Table 1, an actual machine test was conducted. Dry crumbs were detected by an actual machine test, and the drying uniformity of the crumbs after removing the water-containing crumb CW was confirmed (Examples 12 to 17, Comparative Example 7).
  • Example 12 As shown in FIG. 2, an infrared camera 41 and a MOS sensor 42 are used as the sensor 40, vibration drying is performed using a vibration conveyor (conveyance width: 1.5 m) as a drying method, and the resultant is put into an extrusion dryer (actual machine).
  • the rate was set to 7000 kg / h
  • the emissivity of the surface 11 of the conveyor 10 was set to 0.96
  • the temperature of the surface 11 of the conveyor 10 was set to 50 ° C.
  • a recovery box 70 (flap: 1 piece) was used as a crumb removal method. (See FIGS. 2 and 3).
  • the amount of crumb removed was 236 kg / h, and the drying uniformity was 0.1.
  • Table 2 The conditions and results are shown in Table 2.
  • Example 13 Clam C was detected in the same manner as in Example 12 except that the recovery box 70 (flap: 5) was used as the crumb removal method (see FIGS. 2 and 3). The amount of crumb removed was 75 kg / h, and the drying uniformity was 0.1. The conditions and results are shown in Table 2.
  • Example 14 Clam C was detected in the same manner as in Example 13 except that the temperature of the surface 11 of the conveyor 10 was set to 70 ° C. (see FIGS. 2 and 3). The amount of crumb removed was 92 kg / h, and the drying uniformity was 0.0. The conditions and results are shown in Table 2.
  • Example 15 Clam C was detected in the same manner as in Example 14 except that the charging rate into the extrusion dryer (actual machine) was 5000 kg / h (see FIGS. 2 and 3). The amount of crumb removed was 221 kg / h, and the drying uniformity was 0.0. The conditions and results are shown in Table 2.
  • Example 16 Clam C was detected in the same manner as in Example 15 except that a vibrating conveyor (conveyance width: 1.8 m) was used as the drying method and a collection box 70 (flaps: 6) was used as the crumb removal method (FIG. 2). FIG. 3). The amount of crumb removed was 111 kg / h, and the drying uniformity was 0.0. The conditions and results are shown in Table 2.
  • Example 17 Clam C was detected in the same manner as in Example 16 except that the temperature of the surface 11 of the conveyor 10 was set to 40 ° C. (see FIGS. 2 and 3). The amount of crumb removed was 48 kg / h, and the drying uniformity was 1.0. The conditions and results are shown in Table 2.
  • the emissivity of the surface 11 of the conveyor 10 is set to 0.50 or more, and the infrared camera 41 with a frame rate of 5 to 120 Hz is used in the crumb C from the downstream side of the outlet 12 in the vicinity of the outlet 12 of the conveyor 10.
  • the detection rate of water-containing crumb CW was 65% or more (Examples 1 to 11).
  • the detection rate was less than 65% (Comparative Examples 1 to 6).
  • the crumb detection device 100 of the present embodiment it is possible to accurately detect the water content in the rubber-like polymer, and to improve the quality of the obtained rubber-like polymer. understood.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

ゴム状重合体中の含水物を検出する含水物検出装置であって、ゴム状重合体を搬送する搬送部と、前記搬送部で搬送中の前記ゴム状重合体を温度センサにより検出する検出部とを有し、前記搬送部は、放射率が0.50以上の表面を有し、前記温度センサのフレームレートが、5~120Hzであり、前記検出部は、前記搬送部の出口の近傍で、前記出口の下流側から前記ゴム状重合体中の含水物を検出する、含水物検出装置。

Description

含水物検出装置、含水物検出方法、およびゴム状重合体の製造方法
 本発明は、含水物検出装置、含水物検出方法、およびゴム状重合体の製造方法に関する。
 ゴム状重合体の製造過程では、重合および凝固を経た後のゴム状重合体に水分が多く含まれている。そのため、押出乾燥等により押し出し乾燥を行い、得られたゴム状重合体のクラムを振動乾燥等によりさらに加熱乾燥することで、ゴム状重合体に含まれる水分の除去が行われている。また、乾燥後のゴム状重合体に含まれる未乾燥の(または乾燥が不十分な)クラム等の含水物を検出して、乾燥後のゴム状重合体からこのような含水物を除去することも行われる場合がある。
 例えば、特開昭59-12339号公報には、クラム状のゴムに含まれる水分を赤外線センサにより検出する技術が開示されている。
特開昭59-12339号公報
 しかしながら、従来の技術では、赤外線センサがコンベアの表面を低い温度であるものと検知する傾向があるため、コンベアの表面が含水物であるかのように誤認知され易い。また、ゴム状重合体の処理量が多い場合、最表面のゴムしか検出できないため、含水物を精度よく検出することはできない。そのため、従来の技術では、製品の品質の向上に限界がある。
 本発明の目的は、ゴム状重合体中の含水物を精度よく検出することができる含水物検出装置を提供することにある。
 上記課題を解決するために、本発明の一形態は、ゴム状重合体中の含水物を検出する含水物検出装置であって、ゴム状重合体を搬送する搬送部と、前記搬送部で搬送中の前記ゴム状重合体を温度センサにより検出する検出部とを有し、前記搬送部は、放射率が0.50以上の表面を有し、前記温度センサのフレームレートが、5~120Hzであり、前記検出部は、前記搬送部の出口の近傍で、前記出口の下流側から前記ゴム状重合体中の含水物を検出する、含水物検出装置である。
 本発明の一形態によれば、ゴム状重合体中の含水物を精度よく検出することができる含水物検出装置を提供することができる。
本発明に係る含水物検出装置の第1実施形態を示す概略図である。 本発明に係る含水物検出装置の第2実施形態を示す概略図である。 本発明の含水物検出装置における回収部の一例を示す図である。 本発明に係るゴム状重合体の製造方法の一例を示すフローチャートである。 本発明に係る含水物検出方法の一例を示すフローチャートである。 従来の含水物検出装置を示す概略図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、本実施形態において、各図で共通する部分については、同一の符号または対応する符号を付して説明を省略する。
 図1は、本発明に係る含水物検出装置の第1実施形態を示す概略図である。本実施形態のクラム検出装置100は、ゴム状重合体中の含水物を検出する含水物検出装置である。ゴム状重合体は、図1に示すように、乾燥処理された複数のクラムCに加工されたものであり、複数のクラムCには、水分を含まない乾燥クラムCDと水分を含む含水クラムCWが含まれている。なお、クラム検出装置100は、本発明に係る含水物検出装置の一例である。
 クラム検出装置100は、図1に示すように、クラムCを搬送するコンベア10を有する。コンベア10の態様は、特に限定されず、例えばベルト式のコンベアでも、振動方式のコンベアでもよい。なお、振動方式のコンベアは、搬送中にクラムCの上下反転が起こり易く、各クラムCの検出が容易になる。また、コンベア10の材質は、特に限定されないが、振動コンベアを用いる場合は、表面をテフロンコーティングしたステンレス板を用いるのが好ましい(テフロンは登録商標)。なお、コンベア10は、本発明の含水物検出装置における搬送部の一例である。
 本実施形態では、コンベア10は、放射率が0.50以上の表面11を有する。ここで放射率とは、物体の表面から赤外線エネルギーを放射させる度合いを数値化したものであり、例えば、鏡面体の放射率は0、完全黒体の放射率は1となる。
 本実施形態では、コンベア10の表面11の放射率は、0.50以上であり、好ましくは0.70以上、さらに好ましくは0.80以上である。コンベア10の表面11の放射率が過度に低いと、コンベア10の表面11における光の反射が大きくなるため、センサ40の検出感度が著しく低下するおそれがある。なお、コンベア10は、上述のようにステンレス製であり、ステンレスの放射率は約0.3であるが、コンベア10では、ステンレスの表面にテフロンがコーティングされているため、コンベア10の表面の放射率は0.50以上になっている。
 また、クラム検出装置100は、図1に示すように、クラムCを検出するセンサ40を有する。センサ40には、赤外線カメラ41が搭載されている。センサ40では、この赤外線カメラ41がコンベア10で搬送中のクラムCの温度を検出する。なお、センサ40は、本発明の含水物検出装置における検出部の一例であり、赤外線カメラ41は検出部の温度センサの一例である。
 本実施形態では、コンベア10の下流側にコンベア10の出口12が設けられており、該出口12の近傍にセンサ40が配置されている。センサ40は、コンベア10の出口12の近傍で、コンベア10の出口12の下流側からコンベア10の表面11上のクラムC中の含水クラムCWを検出する。なお、図1において、コンベア10の右側(出口12側)が下流であり、コンベア10の左側(出口12と反対の側)が上流である。
 具体的には、図1に示すように、センサ40は、コンベア10の出口12の下流側の上方で出口12の近傍に配置され、センサ40から見て斜め下方に配置されたコンベア10の出口12を通過するクラムC中の含水クラムCWを検出する。また、コンベア10の出口12付近も、放射率が0.50以上の表面11を有する。
 従来の含水物検出装置では、コンベアの直上にセンサが設けられているため、乾燥処理されて搬送されるクラムから発散する水蒸気の影響や、後述のように温風送風機等の加熱部を設けた場合の熱の影響を受けて、センサが誤作動するおそれがある。また、センサをコンベアの直上に設けると、クラムの処理量が多い場合にクラムが上下に重なりながら搬送されるため、センサをコンベアの直上に設けると、上下に重なった下側のクラムが検出されにくくなり、検出精度が低いという問題がある。
 これに対して、本実施形態のクラム検出装置100では、センサ40が、コンベア10の出口12の下流側に配置されている(コンベア10の直上に配置されていない)ため、センサ40がクラムから発散する水蒸気の影響や後述のように温風送風機等の加熱部を設けた場合の熱の影響を受けにくく、センサ40が誤作動する可能性が少ない。
 また、クラムCの重なりは、搬送中に徐々に崩れ、クラムCが落下するコンベア10の出口12の近傍では、クラムCの重なりが少なくなる傾向があり、この傾向は振動コンベアの場合に顕著である。そのため、クラムCの搬送量が多い場合でも、コンベア10の出口12の近傍でクラムC中の含水クラムCWを検出すことにより、検出精度の低下を防ぐことができる。
 さらに、コンベア10の出口12付近の表面も、放射率が0.50以上の表面11を有するため、コンベア10の出口12の表面11における光の反射が小さくなり、センサ40の検出感度が著しく低下するのを防ぐことができる。
 また、本実施形態のクラム検出装置100では、図1に示すように、コンベア10を加熱する温風送風機20等の加熱部を設けるのが好ましい。コンベア10の表面11の温度が低いと、センサ40がコンベア10の表面11を含水クラムCWであると誤検知するおそれがある。そのため、このような温風送風機20を設けることにより、コンベア10の表面11の温度が一定温度に維持されるように制御することができる。温風送風機20は、本発明の含水物検出装置における加熱部の一例である。なお、このような加熱部は、温風送風機20に限定されるものではなく、他の加熱手段を用いてもよい。
 この温風送風機20の加熱により、コンベア10の表面11の温度は、好ましくは30℃~70℃、より好ましくは40℃~70℃、さらに好ましくは50℃~70℃に維持されている。このような温度範囲に制御することで、センサ40による含水クラムCWの検知精度を向上させることができる。なお、コンベア10の表面11の温度を過度に低く維持すると、上述のようにセンサ40が誤検知するおそれがあり、過度に高い温度に維持すると製品の劣化や互着により、ベール成形時の計量精度が低下するおそれがある。
 また、本実施形態では、搬送されるクラムCをより正確に検出するため、赤外線カメラ41において赤外線の信号を記録するフレームレートを搬送速度に応じて調整することができるようになっている。フレームレートは、動画を単位時間あたりに処理できる静止画像数、コマ数等のフレーム数である。赤外線カメラ41のフレームレートは、5~120Hzであり、好ましくは9Hz~120Hz、より好ましくは15Hz~60Hz、さらに好ましくは15Hz~33Hzである。このフレームレートが過度に大きいと高い演算処理能力が要求され、検知に時間がかかるおそれがあり、過度に小さいとクラムCの検出漏れが生じるおそれがある。
 また、赤外線カメラ41では、赤外線の記録に必要な熱画像解像度は、検知するクラムCの最少の大きさと、検出するクラムCまでの距離に依存する。そのため、赤外線カメラ41の熱画像解像度は、通常、横×縦が80×60~1024×768であることが好ましく、より好ましくは160×120以上、さらに好ましくは320×240以上である。熱画像解像度が過度に低いと、寸法が小さい含水クラムCWを検知できないおそれがある。また、熱画像解像度が過度に高いと信号の処理に時間が必要になり、後述する含水クラムCWの除去がリアルタイムでできないおそれがある。
 なお、クラム検出装置100には、パソコン等の演算装置を含む制御装置50が設けられている。また、制御装置50には、さらに表示装置60が設けられている。センサ40は、この制御装置50に接続されており、センサ40が検出した信号は、制御装置50に送信され、制御装置50で処理される。処理方法は単純な画像から検知してもよいが、クラムCの重複検出を避けるため、クラムCの動きと大きさを検知した画像処理により行うことが好ましい。処理された画像は、表示装置60に表示することができる。なお、制御装置50に取り込まれた信号および処理画像のデータは、制御装置50に内蔵された図示しないメモリーに出入力可能に記録することができる。
 また、センサ40には、好ましくは、含水クラムCWの実画像を撮像するデジタルカメラ等のMOS(Metal Oxide Semiconductor)センサ42が含まれており、センサ40は、このMOSセンサ42が撮像した含水クラムCWの寸法および位置を検出するように制御されるのが好ましい。このように実画像を撮像することにより、含水クラムCWの寸法および位置を特定することができるため、含水クラムCWの検出精度を向上させることができる。なお、MOSセンサ42は、本発明の含水物検出装置における検出部に含まれる撮像部の一例である。このような撮像部には、MOSの他にCMOS(Complementary Metal Oxide Semiconductor)センサやCCD(Charge Coupled Device)等の撮像素子を用いても良いが、高速好感度で処理できる観点からCMOSセンサまたはMOSセンサを用いるのが好ましい。
 なお、より精密な検出を行う観点から、MOSセンサ42のフレームレート及び画素数は、赤外線カメラ41より大きなものを用いるのが好ましい。また、さらに精密な検出を行う観点から、実画像の撮影の際には、図示しない白色のLEDなどの均一でちらつきの少ない照射を行うのが好ましい。
 また、含水クラムCWの大きさ、位置、移動速度等を正確に検出することにより、後述のように含水クラムCWを効率よく回収する観点から、このようなMOSセンサ42等の撮像部は、赤外線カメラ41等の温度センサと併用するのが好ましい。
 図2は、本発明に係る含水物検出装置の第2実施形態を示すクラム検出装置100の概略図である。この第2実施形態では、コンベア10の出口12側に、下方に傾斜する傾斜面13が設けられている。また、傾斜面13も、放射率が0.50以上の表面11を有するのが好ましい。そして、センサ40は、傾斜面13でクラムC中の含水クラムCWを検出する。すなわち、図2に示すクラム検出装置100では、クラムCがコンベア10の出口12から傾斜面13に沿って落下し、この落下するクラムCがセンサ40により検出される。
 このような傾斜面13を設けることにより、クラムCの重なりが解消され、クラムC中の含水クラムCWを確実に検出することができる。また、傾斜面13も放射率が0.50以上の表面11を有するため、傾斜面13の表面11における光の反射が小さくなり、センサ40の検出感度が著しく低下するのを防ぐことができる。
 図3は、図2に示すクラム検出装置100をコンベア10の下流から上流に視た図である。含水クラムCWは、そのままベール(ゴムベールともいう)を成形する工程に搬送されると、ベールの品質が低下する原因となるため、検出された含水クラムCWは回収するのが好ましい。含水クラムCWの回収方法は、限定されず、含水クラムCWをエアにより吹き飛ばす方法、ロボットアームによりつかみ取る方法、開閉式シュートにより除去する方法等が挙げられる。クラムCは不定形であることが多く、樹脂のペレットとは異なり大きな塊になることもあるため、開閉式シュート構造によるものがよい。
 このような観点から、本実施形態では、図1~図3に示すように、クラム検出装置100に含水クラムCWを回収する回収ボックス70を設けるのが好ましい。本実施形態では、回収ボックス70は、センサ40がクラムC中から含水クラムCWを検出したときに検出した含水クラムCWを回収することができる。
 回収ボックス70は、コンベア10の下流(図1、図2では、コンベア10の出口12の下方)に配置されている。また、回収ボックス70は、好ましくは、回収したクラムCを収容する収容部71と、収容部71にクラムCを回収する際に開閉するフラップ72とを有する。なお、回収ボックス70は、本発明の含水物検出装置における回収部の一例であり、フラップ72は、該回収部の開閉扉の一例である。
 回収ボックス70では、センサ40がクラムC中から含水クラムCWを検出すると、図1、図2に示すように、回収ボックス70のフラップ72が開いた状態となり、含水クラムCWを収容部71に回収するように制御されている。また、センサ40がクラムC中から含水クラムCWが検出されないとき、回収ボックス70のフラップ72が閉じた状態となり、クラムCがコンベア30に落下してベールを成形する工程へ搬送される。なお、回収ボックス70のフラップ72の開閉は、制御装置50によりセンサ40からの信号に基づいて制御することができる。このような回収ボックス70を設けることにより、乾燥処理後のクラムCに含まれる含水クラムCWをさらに減らすことができる。そのため、クラムCを用いて成形されるベールの品質を高くすることができる。
 また、回収ボックス70の収容部71に収容された含水クラムCWを含むクラムCは、クラムCを乾燥する工程の上流に戻すことができる。この場合、回収ボックス70から上流にクラムCを搬送する図示しないコンベアを設け、クラムCを上流に戻す制御を行ってもよい。このように回収ボックス70に回収された含水クラムCWを含むクラムCを再度乾燥してセンサ40が検出することにより、乾燥処理後のクラムCに含まれる含水クラムCWをさらに減らすことができる。なお、回収ボックス70が回収したクラムCを上流に戻す制御は、制御装置50により行うことができる。
 また、回収ボックス70は、図3に示すように、センサ40が検出した含水クラムCWの寸法および位置に対応してフラップ72が開閉するように制御されている。このフラップ72を開閉する制御も、制御装置50により行うことができる。
 回収ボックス70のフラップ72は、図3に示すように、5枚のフラップ(フラップ72A~72E)で構成されている。回収ボックス70では、センサ40が含水クラムCWの寸法、位置を検出すると、制御装置50が、含水クラムCWの大きさ、コンベア10の幅方向における位置を演算し、この演算結果に基づいて、各フラップ72A~72Eが開閉する。
 具体的には、図3に示すように、センサ40が含水クラムCW1~CW5をそれぞれ検出すると、含水クラムCW1~CW5の各寸法およびコンベア10の幅方向における位置に応じてフラップ72A~72Eが個々に開閉し、含水クラムCW1~CW5がそれぞれ回収ボックス70の収容部71に回収される。
 このように複数のフラップ72A~72Eを開閉することにより、回収ボックス70にはできるだけ含水クラムCWだけを回収して、乾燥クラムCDが回収されないように制御することができる。そのため、本実施形態のクラム検出装置100では、含水クラムCWの回収効率を高めることができる。
 このように、本実施形態のクラム検出装置100は、クラムC中の含水クラムCWを精度よく検出することができる。また、このように検出した含水クラムCWを回収することにより、クラムCから得られるゴム製品の品質を向上させることができる。
 次に、本実施形態に係るクラム検出方法について説明する。本実施形態のクラム検出方法は、複数のクラムCの中から含水クラムCWを検出する含水物検出方法であり、上述のクラム検出装置100を用いることができる。
 具体的には、本実施形態のクラム検出方法では、コンベア10で複数のクラムCを搬送し、コンベア10で搬送中のクラムCをセンサ40が検出し、センサ40は、クラムCが落下するコンベア10の出口12の近傍で、出口12の下流側からクラムC中の含水クラムCWを検出する(図1参照)。また、コンベア10の出口12側に、下方に傾斜する傾斜面13を設け、傾斜面13でクラムC中の含水クラムCWを検出してもよい(図2参照)。
 また、コンベア10は、放射率が0.50以上の表面を有し、コンベア10の表面11の放射率は、好ましくは0.70以上、さらに好ましくは0.80以上である。また、コンベア10は、温風送風機20により加熱するのが好ましい。
 センサ40には、赤外線カメラ41を用いることができる(図1参照)。また、温度センサのフレームレートは5~120Hzであり、好ましくは9Hz~120Hz、より好ましくは15Hz~60Hz、さらに好ましくは15Hz~33Hzである。さらに、センサ40には、含水クラムCWの実画像を撮像するMOSセンサ42を設け、MOSセンサ42が撮像した含水クラムCWの寸法および位置を検出するのが好ましい。
 さらに、検出した含水クラムCWを回収する回収ボックス70を設け、センサ40がクラムC中に含水クラムCWを検出したときに、この回収ボックス70に回収する。回収ボックス70には、収容部71と、収容部71にクラムCを回収する際に開閉するフラップ72を設けるのが好ましい。フラップ72は、好ましくは、複数のフラップ72A~72Eで構成し、検出した含水クラムCWの寸法および位置に対応してフラップ72A~72Eを開閉する。
 本実施形態のクラム検出方法を用いてクラムC中の含水クラムCWを検出することにより、本実施形態のクラム検出装置100を用いた場合の効果が得られる。すなわち、クラムC中の含水クラムCWを精度よく検出することができる。また、このように検出した含水クラムCWを回収することにより、クラムCから得られるゴム製品の品質を向上させることができる。なお、本実施形態のクラム検出方法は、本発明の含水物検出方法の一例である。
 本実施形態に係るゴム状重合体の製造方法について説明する。図4は、本発明の実施形態に係るゴム状重合体の製造方法の一例を示すフローチャートである。図4に示すように、本実施形態のゴム状重合体の製造方法は、重合工程S1、凝固工程S2、脱水工程S3、押出乾燥工程S4、振動乾燥工程S5、成形工程S6を含む。なお、本実施形態の製造方法は、本発明のゴム状重合体の製造方法の一例である。
 重合工程S1では、ブタジエン等のゴム原料を溶液重合、乳化重合等の重合反応により重合してゴム状重合体の重合体溶液やラテックスを得る。凝固工程S2では、ゴム状重合体の重合体溶液やラテックスをスチームストリッピング法により脱溶媒して、あるいは塩凝固させてゴム状重合体のスラリーを調製する。なお、凝固工程S2は、本発明のゴム状重合体の製造方法における凝固工程の一例である。
 脱水工程S3では、ゴム状重合体のスラリーを押出機型スクイザー等の脱水機を用いて脱水し、所定の含水率を有するクラムを得る。押出乾燥工程S4では、脱水したゴム状重合体のクラムCを、押出乾燥機を用いて押出乾燥する。なお、脱水工程S3および押出乾燥工程S4は、本発明のゴム状重合体の製造方法における脱水工程およびクラム化工程の一例である。
 振動乾燥工程S5では、押出乾燥工程S4を経たクラムCを、移動する振動ベルトに載せ、振動させながら加熱して乾燥する(以下、加熱乾燥という場合がある)。成形工程S6では、振動乾燥工程S5を経たクラムCの重量を測定し、成形機を用いて所定の寸法のベールに成形する。ベールは、例えば、所定の寸法を有する直方体形状とすることができる。なお、振動乾燥工程S5および成形工程S6は、本発明のゴム状重合体の製造方法における振動乾燥工程および成形工程の一例である。
 本実施形態のゴム状重合体の製造方法は、さらに、搬送工程S51、検出工程S52、および回収工程S54を含む。これらの工程は、上述した本実施形態のクラム検出方法を用いての実施することができる。
 本実施形態のゴム状重合体の製造方法では、図5に示すように、振動乾燥工程S5の後に搬送工程S51を実施する。搬送工程S51では、振動乾燥工程S5で乾燥したクラムCを搬送する。そして、検出工程S52に進み、コンベア10で搬送中のクラムCが落下するコンベア10の出口12の近傍で、センサ40がコンベア10の出口12の下流側からクラムC中の含水クラムCWを検出する。
 検出工程S52で、センサ40がクラムC中に含水クラムCWを検出すると(S53)、回収工程S54に進み、検出した含水クラムCWを回収する。また回収工程には、回収された含水クラムCWを振動乾燥工程S5に戻す工程(S54からS5に進む工程)が含まれており、回収した含水クラムCWは、振動乾燥工程S5に搬送され、再度加熱乾燥される。なお、回収した含水クラムCWの搬送先は、振動乾燥工程S5に限定されるものではなく、再度加熱乾燥が可能な振動乾燥工程S5の上流に搬送してもよい。
 また、検出工程S52で、含水クラムCWを検出しなかった場合は(S53)、成形工程S6に進み、クラムCが所定の寸法のベールに成形される。
 本実施形態のゴム状重合体の製造方法によれば、本実施形態のクラム検出方法を用いた場合の効果が得られる。すなわち、クラムC中の含水クラムCWを精度よく検出することができる。また、このように検出した含水クラムCWを回収することにより、クラムCから得られるゴム製品の品質を向上させることができる。
 以下、本実施形態について、さらに実施例を用いて具体的に説明する。なお、以下において、「部」および「%」は、特に断りのない限り、重量基準である。各種の試験および評価は、下記の方法にしたがって行った。
 [予備試験(含水クラムの検出率)]
 乾燥後のクラム(以下、乾燥クラムという)について、予備試験を行った。具体的には、まず、乾燥クラムから完全に乾燥しているクラムと未乾燥部分を含むクラムを分別した。90℃のオーブンで5分あらかじめ温めたクラムを、ベッド厚みが約5cm、ベッド幅が約30cmになるように約20kg供給し、所定の検出場所と条件で検出を3回行った。平均の検出割合を検出率%とした。なお、乾燥ゴム約20kg当たり未乾燥のゴムは揮発分が約20%あり、約5cm四方で厚み約1cmのものを100個投入した。
 [含水クラムの除去試験]
 検出した含水クラムCWの除去試験を行った。除去方法は、回収ボックス70を用いてクラムCを回収する方法(図1~図3参照)、エアガンで吹き飛ばす方法をそれぞれ行った。
 [乾燥均一性の評価]
 得られたクラムCを成形したベールを1時間連続的に検査して、各ベールの表面に10mm以上のウェットスポットがあるか確認し、確認されたウェットスポットの数を数えた。これを2回行い、100ベール当りの平均値を算出した。合計2時間で全くウェットスポットが確認されない場合は、さらに600ベールを継続して検査して、合計1000ベールまで検査し、100ベール当りの値に換算した。得られた値から乾燥均一性を評価した。なお、この平均値が1以下の場合は乾燥均一性に優れるものと評価し、平均値が1を超える場合は乾燥均一性に劣るものと評価した。
 [実機試験(クラムの乾燥方法)]
 溶液重合でスチレン含有量21%、ブタジエン中のビニル量63モル%、ムーニー粘度45の溶液重合スチレンブタジエンゴムを常法で得た。フェノール系老化防止剤を0.2部添加したのち、スチームスチリッピング法で脱溶媒し、連続回転スクリュー押出機で脱水し、含水率15%、残留シクロヘンキサン量が1.5%のゴム状重合体のクラムを得た。得られたクラムを14インチ径の押出乾燥機(実機)に所定の投入レートで投入した。ダイ温度を160℃に維持して乾燥した。押出乾燥機から温風乾燥の3つのセクションを経て検出を行った。乾燥温度は第1セクションで105℃、第2セクションで90℃、第3セクションは90℃-80℃-50℃または90℃-80℃-70℃のように徐々に温風温度を低下させた状態の振動コンベアで乾燥させた。各セクションの滞留時間は、それぞれ0.5分、2分、2分であった。
 以下、実施例及び比較例について説明する。まず実施例1~12及び比較例1~6について、予備試験を行った。
 [実施例1]
 有機リチウム触媒を用い溶液重合によりブタジエンゴムを得た。得られたブタジエンゴムのムーニー粘度は50であり、ブタジエン中の1,2-結合量は9モル%であった。これをスチームストリッピング法で脱溶媒し、連続スクリュー脱水機を用いて12%の揮発分のものを得た。これをダイ温度145℃になるように回転数を制御した押出乾燥機へ所定の乾燥重量になるように投入してクラムCを得た。得られたクラムCを温風乾燥した。温風乾燥の第1セクションアウト(設定温度100℃、滞留時間30秒)における揮発分は5%であった。第2セクションを100℃、第3セクションを100℃、70℃、30~70℃と3分割の温度で温風を供給して乾燥した。また、クラムCの検出条件は、図1に示すように、センサ40に赤外線(IR)カメラ41(画素数:320×240、フレームレート:33Hz)、乾燥方式として振動コンベアを用いた振動乾燥を行い、検出場所をコンベア10の出口12とし、コンベア10の表面11の放射率を0.55とし、コンベア10の表面11の温度を70℃に設定して、クラムCを検出した。含水クラムCWの検出率は83%であった。検出条件および結果を表1に示す。
 [実施例2]
 コンベア10の表面11の放射率を0.96とした以外は、実施例1と同様にクラムCを検出した(図1参照)。含水クラムCWの検出率は90%であった。検出条件および結果を表1に示す。
 [実施例3]
 センサ40として赤外線カメラ41とMOSセンサ42を用いた以外は、実施例2と同様にクラムCを検出した(図1参照)。なお、MOSセンサ42として、1280×720・30fpsの実画像動画記録カメラ(4/3型MOSセンサー)を用い、補助光として白色LEDライトを照射した。含水クラムCWの検出率は95%であった。検出条件および結果を表1に示す。
 [実施例4]
 コンベア10の出口12側に傾斜面13を設け、検出場所を傾斜面13とした以外は、実施例3と同様にクラムCを検出した(図2参照)。含水クラムCWの検出率は100%であった。検出条件および結果を表1に示す。
 [実施例5]
 コンベア10の表面11の温度を50℃に設定した以外は、実施例3と同様にクラムCを検出した(図2参照)。含水クラムCWの検出率は100%であった。検出条件および結果を表1に示す。
 [実施例6]
 コンベア10の表面11の温度を40℃に設定した以外は、実施例3と同様にクラムCを検出した(図2参照)。含水クラムCWの検出率は98%であった。検出条件および結果を表1に示す。
 [実施例7]
 コンベア10の表面11の温度を30℃に設定した以外は、実施例3と同様にクラムCを検出した(図2参照)。含水クラムCWの検出率は88%であった。検出条件および結果を表1に示す。
 [実施例8]
 乾燥方式として振動乾燥の代わりにベルトコンベアを用いた乾燥を行った以外は、実施例5と同様にクラムCを検出した(図2参照)。含水クラムCWの検出率は100%であった。検出条件および結果を表1に示す。
 [実施例9]
 さらにセンサ40(赤外線カメラ41)のフレームレートを9Hzとした以外は、実施例2と同様にクラムCを検出した(図1参照)。含水クラムCWの検出率は71%であった。検出条件および結果を表1に示す。
 [実施例10]
 センサ40(赤外線カメラ41)のフレームレートを15Hzとした以外は、実施例9と同様にクラムCを検出した(図1参照)。含水クラムCWの検出率は89%であった。検出条件および結果を表1に示す。
 [実施例11]
 センサ40(赤外線カメラ41)のフレームレートを25Hzとした以外は、実施例9と同様にクラムCを検出した(図1参照)。含水クラムCWの検出率は100%であった。検出条件および結果を表1に示す。
 [比較例1]
 センサ40として赤外線カメラ41を用いずMOSセンサ42のみを用い、検出場所をコンベア10の直上とし、コンベア10の表面11の温度を90℃に設定した以外は、実施例8と同様にクラムCを検出した(図6参照)。含水クラムCWの検出率は6%であった。検出条件および結果を表1に示す。
 [比較例2]
 検出場所をコンベア10の直上とし、コンベア10の表面11の温度を90℃に設定した以外は、実施例8と同様にクラムCを検出した(図6参照)。含水クラムCWの検出率は59%であった。検出条件および結果を表1に示す。
 [比較例3]
 センサ40として赤外線カメラ41のみを用い、検出場所をコンベア10の直上とし、コンベア10の表面11の温度を90℃に設定した以外は、実施例8と同様にクラムCを検出した(図6参照)。含水クラムCWの検出率は55%であった。検出条件および結果を表1に示す。
 [比較例4]
 コンベア10の表面11の放射率を0.12とした以外は、実施例1と同様にクラムCを検出した(図6参照)。含水クラムCWの検出率は61%であった。検出条件および結果を表1に示す。
 [比較例5]
 コンベア10の表面11の放射率を0.31とした以外は、実施例1と同様にクラムCを検出した(図6参照)。含水クラムCWの検出率は63%であった。検出条件および結果を表1に示す。
 [比較例6]
 センサ40(赤外線カメラ41)のフレームレートを1Hzとした以外は、実施例9と同様にクラムCを検出した(図6参照)。含水クラムCWの検出率は15%であった。検出条件および結果を表1に示す。
 なお、実施例4及び実施例8では、さらに検出した含水クラムCWの除去試験を行った。回収ボックス70を用いた除去試験では、平均95%の除去率となった。一方、エアガンによる方法では、エアが当たっても殆どが回転するだけで除去できず、周辺のより小さなクラムが排出する傾向があり、除去率は平均約30%であった。
Figure JPOXMLDOC01-appb-T000001
 なお、実施例4及び実施例8では、さらに検出した含水クラムCWの除去試験を行った。回収ボックス70を用いた除去試験では、平均95%の除去率となった。一方、エアガンによる方法では、エアが当たっても殆どが回転するだけで除去できず、周辺のより小さなクラムが排出する傾向があり、除去率は平均約30%であった。
 表1から実施例4~6の条件及び結果をもとに実機試験を行った。実機試験により乾燥したクラムを検出し、含水クラムCWを除去した後のクラムについて乾燥均一性を確認した(実施例12~17、比較例7)。
 [実施例12]
 図2に示すように、センサ40として赤外線カメラ41とMOSセンサ42を用い、乾燥方式として振動コンベア(搬送幅:1.5m)を用いた振動乾燥を行い、押出乾燥機(実機)への投入レートを7000kg/hとし、コンベア10の表面11の放射率を0.96とし、コンベア10の表面11の温度を50℃とし、クラムの除去方式として回収ボックス70(フラップ:1個)を用いた(図2、図3参照)。クラムの除去量は236kg/hで、乾燥均一性は0.1であった。条件および結果を表2に示す。
 [実施例13]
 クラムの除去方式として回収ボックス70(フラップ:5個)を用いた以外は、実施例12と同様にクラムCを検出した(図2、図3参照)。クラムの除去量は75kg/hで、乾燥均一性は0.1であった。条件および結果を表2に示す。
 [実施例14]
 コンベア10の表面11の温度を70℃に設定した以外は、実施例13と同様にクラムCを検出した(図2、図3参照)。クラムの除去量は92kg/hで、乾燥均一性は0.0であった。条件および結果を表2に示す。
 [実施例15]
 押出乾燥機(実機)への投入レートを5000kg/hとした以外は、実施例14と同様にクラムCを検出した(図2、図3参照)。クラムの除去量は221kg/hで、乾燥均一性は0.0であった。条件および結果を表2に示す。
 [実施例16]
 乾燥方式として振動コンベア(搬送幅:1.8m)を用い、クラムの除去方式として回収ボックス70(フラップ:6個)を用いた以外は、実施例15と同様にクラムCを検出した(図2、図3参照)。クラムの除去量は111kg/hで、乾燥均一性は0.0であった。条件および結果を表2に示す。
 [実施例17]
 コンベア10の表面11の温度を40℃に設定した以外は、実施例16と同様にクラムCを検出した(図2、図3参照)。クラムの除去量は48kg/hで、乾燥均一性は1.0であった。条件および結果を表2に示す。
 [比較例7]
 押出乾燥機への投入レートを7000kg/hとし、クラムの検出および除去を行わなかった以外は、実施例17と同様にクラムCを検出した。乾燥均一性は52.0であった。条件および結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1から、コンベア10の表面11の放射率を0.50以上とし、フレームレートが5~120Hzの赤外線カメラ41により、コンベア10の出口12の近傍で、出口12の下流側からクラムC中の含水クラムCWを検出した場合、含水クラムCWの検出率は65%以上となった(実施例1~11)。
 一方、コンベア10の表面11の放射率を0.50以上とする条件、赤外線カメラ41のフレームレートが5~120Hzの条件、赤外線カメラ41により、コンベア10の出口12の近傍で、出口12の下流側からクラムC中の含水クラムCWを検出する条件の全てを満たさない場合、検出率が65%未満となった(比較例1~6)。
 また、表2から、センサとして赤外線カメラ41とMOSセンサ42を用い、コンベア10の傾斜面13でクラムCを検出し、検出した含水クラムCWを回収ボックス70に回収した場合、乾燥均一性に優れるものとなった(実施例12~17)。これに対して、クラムCの検出も含水クラムCWの回収も行わない場合は乾燥均一性が劣るものとなった(比較例7)。
 これらの結果から、本実施形態のクラム検出装置100を用いることにより、ゴム状重合体中の含水物を精度よく検出することができ、得られるゴム状重合体の品質を向上させることができることが判った。
 以上、本発明の実施形態について説明したが、本発明は特定の実施形態、実施例に限定されるものではなく、請求の範囲に記載された発明の範囲内において、種々の変形、変更が可能である。
 本国際出願は、2017年3月30日に出願された日本国特許出願2017-69253号に基づく優先権を主張するものであり、その全内容をここに援用する。
 100 クラム検出装置
 10 コンベア
 11 表面
 12 出口
 13 傾斜面
 20 温風送風機
 40 センサ
 41 赤外線カメラ
 42 MOSセンサ
 50 制御装置
 60 表示装置
 70 回収ボックス
 71 収容部
 72 フラップ
 C クラム
 CD 乾燥クラム
 CW 含水クラム

Claims (14)

  1.  ゴム状重合体中の含水物を検出する含水物検出装置であって、
     ゴム状重合体を搬送する搬送部と、
     前記搬送部で搬送中の前記ゴム状重合体を温度センサにより検出する検出部とを有し、
     前記搬送部は、放射率が0.50以上の表面を有し、
     前記温度センサのフレームレートが、5~120Hzであり、
     前記検出部は、前記搬送部の出口の近傍で、前記出口の下流側から前記ゴム状重合体中の含水物を検出する、含水物検出装置。
  2.  前記搬送部の出口側に、前記表面を有して下方に傾斜する傾斜面が設けられており、
     前記検出部は、前記傾斜面で前記ゴム状重合体中の含水物を検出する、請求項1に記載の含水物検出装置。
  3.  前記搬送部を加熱する加熱部が設けられている、請求項1または2に記載の含水物検出装置。
  4.  前記検出部は、前記含水物の実画像を撮像する撮像部を含み、前記撮像部が撮像した前記含水物の寸法および位置を検出する、請求項1乃至3のいずれか1項に記載の含水物検出装置。
  5.  前記温度センサが前記ゴム状重合体中に含水物を検出したときに検出した前記含水物を回収する回収部が設けられている、請求項1乃至4のいずれか1項に記載の含水物検出装置。
  6.  前記回収部には、複数の開閉扉が設けられており、
     前記検出部が検出した前記含水物の寸法および位置に対応して前記開閉扉が開閉する、請求項5に記載の含水物検出装置。
  7.  ゴム状重合体中の含水物を検出する含水物検出方法であって、
     放射率が0.50以上の表面を有する搬送部でゴム状重合体を搬送し、
     前記搬送部で搬送中の前記ゴム状重合体を、フレームレートが5~120Hzの温度センサが検出し、
     前記温度センサは、前記搬送部の出口の近傍で、前記出口の下流側から前記ゴム状重合体中の含水物を検出する、含水物検出方法。
  8.  前記搬送部の出口側に、前記表面を有して下方に傾斜する傾斜面が設けられており、
     前記傾斜面で前記ゴム状重合体中の含水物を検出する、請求項7に記載の含水物検出方法。
  9.  前記搬送部を加熱する、請求項7または8に記載の含水物検出方法。
  10.  さらに前記含水物の実画像を撮像し、撮像した前記含水物の寸法および位置を検出する、請求項7乃至9のいずれか1項に記載の含水物検出方法。
  11.  前記温度センサが前記ゴム状重合体中に含水物を検出したときに、検出した前記含水物を回収部に回収する、請求項7乃至10のいずれか1項に記載の含水物検出方法。
  12.  前記回収部には、複数の開閉扉が設けられており、
     検出した前記含水物の寸法および位置に対応して前記開閉扉が開閉する、請求項11に記載の含水物検出方法。
  13.  ゴム状重合体の重合体溶液を凝固させてゴム状重合体のスラリーを調製する凝固工程と、
     前記スラリーを脱水する脱水工程と、
     前記脱水工程で脱水したゴム状重合体をクラムにするクラム化工程と、
     クラムにしたゴム状重合体を乾燥する乾燥工程とを有する、ゴム状重合体の製造方法であって、
     放射率が0.50以上の表面を有する搬送部で前記乾燥工程で乾燥したゴム状重合体を搬送する搬送工程と、
     前記搬送部の出口の近傍で、フレームレートが5~120Hzの温度センサが前記出口の下流側から前記ゴム状重合体中の含水物を検出する検出工程とを有し、
     前記温度センサが前記ゴム状重合体中に含水物を検出したときに、検出した前記含水物を回収する回収工程とを有する、ゴム状重合体の製造方法。
  14.  前記回収工程は、回収された前記含水物を少なくとも前記乾燥工程に戻す工程を含む、請求項13に記載のゴム状重合体の製造方法。
PCT/JP2018/012185 2017-03-30 2018-03-26 含水物検出装置、含水物検出方法、およびゴム状重合体の製造方法 WO2018181199A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880019745.9A CN110446920A (zh) 2017-03-30 2018-03-26 含水物检测装置、含水物检测方法以及橡胶状聚合物的制造方法
JP2019509819A JP7067550B2 (ja) 2017-03-30 2018-03-26 含水物検出装置、含水物検出方法、およびゴム状重合体の製造方法
SG11201908917Y SG11201908917YA (en) 2017-03-30 2018-03-26 Water-containing substance detection device, water-containing substance detection method, and method of manufacturing rubbery polymer
US16/497,034 US11397157B2 (en) 2017-03-30 2018-03-26 Water-containing substance detection device, water-containing substance detection method, and method of manufacturing rubbery polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017069253 2017-03-30
JP2017-069253 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181199A1 true WO2018181199A1 (ja) 2018-10-04

Family

ID=63677040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012185 WO2018181199A1 (ja) 2017-03-30 2018-03-26 含水物検出装置、含水物検出方法、およびゴム状重合体の製造方法

Country Status (5)

Country Link
US (1) US11397157B2 (ja)
JP (1) JP7067550B2 (ja)
CN (1) CN110446920A (ja)
SG (1) SG11201908917YA (ja)
WO (1) WO2018181199A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054574A1 (ja) * 2018-09-10 2020-03-19 宇部興産株式会社 検査方法および検査装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257155B (zh) * 2020-03-23 2022-11-04 浙江理工大学 一种检测印花助剂在汽蒸条件下的吸湿性能的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267432A (ja) * 2001-03-14 2002-09-18 Nishimatsu Constr Co Ltd トンネル覆工面の損傷検出方法
JP2005106748A (ja) * 2003-10-01 2005-04-21 Kawasaki Heavy Ind Ltd 発熱監視方法および装置
JP2009031099A (ja) * 2007-07-26 2009-02-12 Nippon Zeon Co Ltd 粒状エラストマー重合体の検査方法および検査装置
JP2010164407A (ja) * 2009-01-15 2010-07-29 East Japan Railway Co 撚り合わせ電線用温度検知具及びそれを用いた温度検知方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912339A (ja) 1982-07-13 1984-01-23 Japan Synthetic Rubber Co Ltd 高水分含有部分の検出方法及び装置
JPH02209419A (ja) * 1989-02-10 1990-08-20 Nissan Motor Co Ltd 非調質鋼の冷却装置
JP2711910B2 (ja) * 1989-08-31 1998-02-10 マルマス機械株式会社 粒状物の色彩選別装置
JPH0745192Y2 (ja) * 1991-04-22 1995-10-18 株式会社フロンティアエンジニアリング 練り製品の加熱温度適否判定処理装置
JPH07333144A (ja) * 1994-06-07 1995-12-22 Iseki & Co Ltd 近赤外分光分析装置
DE19736567C1 (de) * 1997-08-22 1998-11-26 Select Ingenieurgesellschaft F Einrichtung zu einer merkmalsbezogenen Sortierung von Produkten und Verfahren zu deren Betrieb
JP3075064U (ja) 2000-06-23 2001-02-09 信之 唐澤 Mgダイカスト用インゴット予熱装置
JP2004020192A (ja) * 2002-06-12 2004-01-22 Nippon Zeon Co Ltd ゴムの水分含有率測定方法
WO2008131107A1 (en) * 2007-04-17 2008-10-30 Eriez Manufacturing Co. Multiple zone and multiple materials sorting
CN101943642B (zh) * 2010-08-12 2012-05-23 华东交通大学 基于红外热成像技术的脐橙表面烘干监控方法及装置
JP2014153055A (ja) 2013-02-04 2014-08-25 Toyota Motor Corp 気泡検査装置および気泡検査方法
JP5920277B2 (ja) * 2013-04-11 2016-05-18 Jfeスチール株式会社 温度測定装置および温度測定方法
JP6570899B2 (ja) 2015-06-30 2019-09-04 アンリツインフィビス株式会社 物品検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267432A (ja) * 2001-03-14 2002-09-18 Nishimatsu Constr Co Ltd トンネル覆工面の損傷検出方法
JP2005106748A (ja) * 2003-10-01 2005-04-21 Kawasaki Heavy Ind Ltd 発熱監視方法および装置
JP2009031099A (ja) * 2007-07-26 2009-02-12 Nippon Zeon Co Ltd 粒状エラストマー重合体の検査方法および検査装置
JP2010164407A (ja) * 2009-01-15 2010-07-29 East Japan Railway Co 撚り合わせ電線用温度検知具及びそれを用いた温度検知方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054574A1 (ja) * 2018-09-10 2020-03-19 宇部興産株式会社 検査方法および検査装置

Also Published As

Publication number Publication date
SG11201908917YA (en) 2019-10-30
JP7067550B2 (ja) 2022-05-16
US11397157B2 (en) 2022-07-26
CN110446920A (zh) 2019-11-12
JPWO2018181199A1 (ja) 2020-05-14
US20200378913A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2018181199A1 (ja) 含水物検出装置、含水物検出方法、およびゴム状重合体の製造方法
JP6519034B2 (ja) 粉率測定装置および粉率測定システム
CN112902639B (zh) 一种组合式智能茶叶干燥方法及干燥机
KR101879087B1 (ko) 이송되는 원료 입도 측정 장치
CN110108106A (zh) 一种连续式自动烘干装置及方法
CN105347061A (zh) 一种烟丝结构检测器自动匀料进给装置
KR102046229B1 (ko) 이송되는 원료의 입도 및 건습 측정 장치 및 혼합 원료의 입도 측정 장치
CN105158128A (zh) 制粒流化床颗粒直径分布在线检测装置
KR102069835B1 (ko) 불완전하게 건조된 원료의 검출, 제거, 이송 및 회수 시스템
CN102827984A (zh) 高炉炉料粒度视频检测装置及其检测方法
KR102516475B1 (ko) 검사 방법 및 검사 장치
CN106040612A (zh) 一种喷嘴高度可调的色选机
JP4068867B2 (ja) ペレット粒径制御方法
CN205965760U (zh) 一种碎屑少、变形少的摇摆式颗粒机
KR102258693B1 (ko) 원료의 수분을 측정하기 위한 수분 측정 자동화 시스템
CN207238520U (zh) 一种不合格胶囊的回收装置
CN207207170U (zh) 一种包装薄膜生产线
JP2006126061A (ja) 粉粒体の粒度分布計測方法および装置
CN214268971U (zh) 皮带输送机及其煤质监测系统
JP7062077B2 (ja) 異物除去方法および仕分けシステム
CN209580160U (zh) 一种造粒机后端橡胶颗粒防沾粘机构
CN108507945A (zh) 一种新型工业相机防护装置
CN115482404A (zh) 一种炉料异物识别系统及方法
WO2018117537A2 (ko) 이송되는 원료의 입도 및 건습 측정 장치 및 혼합 원료의 입도 측정 장치
JP2022149401A (ja) 状態判定装置、状態判定方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775098

Country of ref document: EP

Kind code of ref document: A1