WO2018181040A1 - 多関節ロボット - Google Patents

多関節ロボット Download PDF

Info

Publication number
WO2018181040A1
WO2018181040A1 PCT/JP2018/011825 JP2018011825W WO2018181040A1 WO 2018181040 A1 WO2018181040 A1 WO 2018181040A1 JP 2018011825 W JP2018011825 W JP 2018011825W WO 2018181040 A1 WO2018181040 A1 WO 2018181040A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
arm
end side
articulated robot
hub
Prior art date
Application number
PCT/JP2018/011825
Other languages
English (en)
French (fr)
Inventor
高田 声一
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018181040A1 publication Critical patent/WO2018181040A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/46Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions

Definitions

  • the present invention relates to an articulated robot used for devices requiring high speed, high accuracy, and a wide operation range such as medical devices and industrial devices.
  • Patent Document 1 has a plurality of joint portions including a rotary joint and a linear motion joint.
  • the industrial robot of Patent Document 2 is a combination of two arms that rotate horizontally.
  • a manipulator is attached to a guard rail.
  • Patent Document 1 eliminates or reduces the occurrence of a singular point posture within the movable range by devising the arrangement of the joints.
  • the configuration of the robot arm mechanism of Patent Document 1 can cope with the movement of transporting an object, but it cannot move in a direction perpendicular to the expansion and contraction direction, so that it is difficult to perform a detailed movement, which is like an assembly work. It seems that detailed movement is not possible.
  • the industrial robot of Patent Document 2 has difficulty in dealing with various operations because the direction of taking out an object is one direction below.
  • the work conveyance robot of patent document 3 can perform fine work with a manipulator, it requires a wide space for installing a guardrail.
  • An object of the present invention is to provide an articulated robot that can operate without having a singular point, can obtain a wide movable range in a plan view, and can change the posture of the end effector mounting stage at the tip to an arbitrary angle. That is.
  • the articulated robot includes a first arm that is provided on a support and is rotatable about a vertical axis, a first arm rotation motor that rotates the first arm, and a tip of the first arm.
  • a second arm rotatable around a vertical axis, a second arm rotation motor for rotating the second arm, and a link actuating device provided at a tip of the second arm.
  • the link actuating device the distal end side link hub is connected to the proximal end side link hub via three or more sets of link mechanisms so that the posture can be changed.
  • Each of the link mechanisms includes a proximal end link member having one end rotatably connected to the proximal link hub, and a distal end link having one end rotatably connected to the distal link hub. It has an end link member, and a central link member whose both ends are rotatably connected to the other ends of the end link members on the proximal end side and the distal end side. At least two sets of the three or more sets of link mechanisms are provided with attitude control actuators that arbitrarily change the attitude of the distal end side link hub with respect to the proximal end side link hub. .
  • This multi-joint robot performs work by attaching an end effector to a link hub on the distal end side of a link actuator that is an end effector attachment stage. At that time, the horizontal position of the end effector is changed by rotating the first arm and the second arm, and the attitude of the end effector is changed by operating the link actuator.
  • the first arm and the second arm are provided for changing the horizontal position, it is wide within a radius range obtained by adding the radius of the first arm and the radius of the second arm around the axis of the first arm.
  • the end effector can be moved to the area. Since the mechanism composed of the first arm and the second arm has no singular point, the end effector can be moved to the target position in the shortest time.
  • the link actuating device is composed of a link hub on the base end side, a link hub on the front end side, and three or more sets of link mechanisms.
  • the link hub on the front end side is rotatable about two orthogonal axes with respect to the link hub on the base end side.
  • a two-degree-of-freedom mechanism Although this two-degree-of-freedom mechanism is compact, the movable range of the link hub on the distal end side can be widened. For this reason, the end effector can be changed to an arbitrary posture. Further, since the link operating device is compact, the burden on the first arm and the second arm is small, and the rigidity of these arms and their support portions can be kept low.
  • the second arm may be provided with an elevating mechanism for elevating the link actuating device in the vertical direction. It may replace with this and the raising / lowering mechanism which raises / lowers the said 1st arm to a perpendicular direction may be provided in the said support body. In either case, the vertical height of the end effector can be changed.
  • the first arm is provided with the second arm rotation motor so that the output shaft is horizontal, and the output shaft of the second arm rotation motor and the rotation shaft of the second arm are a pair.
  • a belt transmission mechanism for transmitting the rotation of the second arm rotation motor to the rotation shaft of the second arm may be provided inside the first arm.
  • the second arm rotation motor can be installed at a position near the base end of the first arm. Thereby, the burden of the load concerning a 1st arm can be reduced.
  • a rotation mechanism for rotating the link actuating device around the vertical axis with respect to the second arm.
  • the rotation mechanism is provided, the orientation of the end effector around the vertical axis can be changed.
  • the rotation motor of the rotation mechanism is provided on the second arm so that the output shaft thereof is horizontal, and the output shaft of the rotation motor and the rotation shaft of the link actuator May be directly or indirectly connected via a gear mechanism including a pair of bevel gears.
  • the link actuating device may be provided at the distal end of the second arm so that the proximal end side link hub and the distal end side link hub are horizontally aligned in a neutral state.
  • it is suitable for performing work on a workpiece in a position horizontally facing the link actuating device.
  • the overall configuration can be slim in the vertical direction.
  • FIG. 1 is a diagram illustrating a schematic configuration of an articulated robot according to a first embodiment of the present invention. It is a top view of the articulated robot. It is a front view which abbreviate
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 3. It is the figure which expressed one link mechanism of the parallel link mechanism with a straight line. It is a figure which shows schematic structure of the articulated robot concerning 2nd Embodiment of this invention.
  • FIG. 9 is a partial view of a modified example of the articulated robot shown in FIG. 8. It is a figure which shows schematic structure of the articulated robot concerning 3rd Embodiment of this invention. It is a figure which shows schematic structure of the articulated robot concerning 4th Embodiment of this invention.
  • FIG. 1 is a diagram showing a schematic configuration of the articulated robot according to the first embodiment
  • FIG. 2 is a plan view thereof.
  • the articulated robot 1 includes a support body 2 installed on the ground, a first arm 3 supported on the upper end of the support body 2 so as to be rotatable around an axis O1 in a vertical direction, A second arm 4 rotatably supported around the vertical axis O2 at the tip, a link actuator 5 supported at the tip of the second arm 4, and a vertical axis of the link actuator 5
  • a rotation / lifting mechanism 6 that rotates around O3 and moves up and down along the axis O3 is provided.
  • the support body 2 is installed on the ground, but the support body 2 may be suspended from the ceiling. The same applies to other embodiments described later.
  • the first arm 3 has a base end portion (right end portion in FIG. 1) attached to a rotary shaft 11 having the axis O1.
  • the rotating shaft 11 is provided on the support body 2, and an upper end portion thereof protrudes upward from the upper surface of the support body 2.
  • the first arm 3 is attached to the upper end portion of the rotating shaft 11.
  • a first arm rotary motor 12 and a speed reducer 13 are provided inside the support body 2.
  • the second arm 4 has a base end (right end in FIG. 1) attached to a rotary shaft 14 having the axis O2.
  • the rotating shaft 14 is provided at the tip end (left end in FIG. 1) of the first arm 3, and the lower end portion projects downward from the lower surface of the first arm 3.
  • the second arm 4 is attached to the lower end of the rotating shaft 14.
  • a second arm rotation motor 15 is provided on the top surface of the tip of the first arm 3, and a speed reducer 16 is provided inside the first arm 3.
  • the rotation / lifting mechanism 6 has a rotating shaft 17 that protrudes downward from the distal end portion (left end portion in FIG. 1) of the second arm 4, and the link actuating device 5 is attached to the lower end thereof.
  • the rotating / elevating mechanism 6 includes a rotating mechanism 6 a that rotates the rotating shaft 17 and an elevating mechanism 6 b that moves the rotating shaft 17 up and down.
  • the rotation mechanism 6 a has a rotation motor 18, and the lifting mechanism 6 b has a lifting motor 19.
  • FIG. 3 is a front view in which a part of the link actuating device is omitted.
  • the link operating device 5 includes a parallel link mechanism 30 and a posture control drive source 31 that operates the parallel link mechanism 30.
  • FIGS. 4 and 5 are views showing only the parallel link mechanism 30 taken out and showing different states.
  • the parallel link mechanism 30 connects the link hub 33 on the distal end side to the link hub 32 on the proximal end side through three sets of link mechanisms 34 so that the posture can be changed. In FIG. 3, only one set of link mechanisms 34 is shown. The number of link mechanisms 34 may be four or more.
  • Each link mechanism 34 includes a base end side end link member 35, a tip end side end link member 36, and a central link member 37, and constitutes a four-joint link mechanism including four rotating pairs.
  • the end link members 35 and 36 on the proximal end side and the distal end side are L-shaped, and one ends thereof are rotatably connected to the link hub 32 on the proximal end side and the link hub 33 on the distal end side, respectively.
  • the center link member 37 is rotatably connected to both ends of the end link members 35 and 36 on the proximal end side and the distal end side.
  • the parallel link mechanism 30 has a structure in which two spherical link mechanisms are combined. That is, the central axis of each rotational pair of the proximal side link hub 32 and the proximal side end link member 35 and the central axis of each rotational pair of the proximal side end link member 35 and the central link member 37 are , At the base end side spherical link center PA (FIG. 3). Similarly, the central axis of each rotational pair of the link hub 33 on the distal end side and the end link member 36 on the distal end side, and the central axis of each rotational pair of the end link member 36 on the distal end side and the central link member 37 are It intersects at the spherical link center PB (FIG. 3) on the side.
  • PB spherical link center
  • the distance from the rotation pair of the base end side link hub 32 and the base end side end link member 35 to the base end side spherical link center PA is the same, and the base end side end link member 35 and The distance from each rotation pair of the central link member 37 to the spherical link center PA on the base end side is also the same.
  • the distance from each rotation pair of the distal end side link hub 33 and the distal end side end link member 36 to the spherical link center PB on the distal end side is the same, and the end link member 36 and the central link member on the distal end side are the same.
  • the distance from each rotation pair 37 to the spherical link center PB on the tip side is the same.
  • the central axis of the rotational pair of the proximal end side link member 35 and the central link member 37 and the central axis of the rotational pair of the distal end end link member 36 and the central link member 37 have a certain crossing angle ⁇ . (FIG. 3) may be provided or parallel.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG.
  • the center axis O1 of each rotation pair of the link hub 32 on the base end side and the end link member 35 on the base end side, and each rotation pair of the center link member 37 and the end link member 35 on the base end side are shown.
  • the relationship between the central axis O2 and the spherical link center PA on the base end side is shown. That is, the point where the central axis O1 and the central axis O2 intersect is the spherical link center PA.
  • the shape and positional relationship of the distal end side link hub 33 and the distal end side end link member 36 are also the same as in FIG. 6 (not shown).
  • the angle ⁇ formed by the base end side end link member 35 (the front end side end link member 36) and the central axis O2 of each rotation pair of the central link member 37 is 90 °, and the angle ⁇ is 90 °. It may be other than °.
  • the three sets of link mechanisms 34 have the same geometric shape. As shown in FIG. 7, the geometrically identical shape is expressed by a geometric model in which each link member 35, 36, 37 is expressed by a straight line, that is, by each rotation pair and a straight line connecting these rotation pairs.
  • the model means that the base end side portion and the tip end side portion are symmetrical with respect to the center portion of the center link member 37.
  • FIG. 7 is a diagram representing a set of link mechanisms 34 by straight lines.
  • the parallel link mechanism 30 of this embodiment is a rotationally symmetric type, and includes a base end side portion composed of a base end side link hub 32 and a base end side end link member 35, a front end side link hub 33 and a front end side.
  • the positional relationship with the distal end side portion constituted by the end link member 36 is rotationally symmetric with respect to the center line C of the center link member 37.
  • the central part of each central link member 37 is located on a common track circle D.
  • the link hub 32 on the proximal end side, the link hub 33 on the distal end side, and the three sets of link mechanisms 34 allow the link hub 33 on the distal end side to rotate about two orthogonal axes with respect to the link hub 32 on the proximal end side.
  • the degree mechanism is configured.
  • the rotation of the link hub 33 on the distal end side with respect to the link hub 32 on the proximal end side is a mechanism whose posture can be freely changed with two degrees of freedom.
  • this two-degree-of-freedom mechanism is compact, the movable range of the link hub 33 on the distal end side with respect to the link hub 32 on the proximal end side can be widened.
  • a straight line that passes through the spherical link center PA on the base end side and intersects the central axis O1 (FIG. 6) of each rotation pair of the link hub 32 on the base end side and the end link member 35 on the base end side at a right angle is the base end. This is the center axis QA of the link hub 32 on the side.
  • a straight line passing through the spherical link center PB on the distal end side and perpendicularly intersecting the central axis O1 (FIG. 6) of each rotation pair of the distal end side link hub 33 and the distal end side end link member 36 is a distal end side link hub. It is assumed that 33 is the central axis QB.
  • the maximum value of the bending angle ⁇ (FIG. 7) between the center axis QA of the link hub 32 on the proximal end side and the center axis QB of the link hub 33 on the distal end side can be about ⁇ 90 °.
  • the turning angle ⁇ (FIG. 7) of the distal end side link hub 33 relative to the proximal end side link hub 32 can be set in a range of 0 ° to 360 °.
  • the bending angle ⁇ is a vertical angle at which the central axis QB of the distal link hub 33 is inclined with respect to the central axis QA of the proximal link hub 32.
  • the turning angle ⁇ is a horizontal angle at which the central axis QB of the distal link hub 33 is inclined with respect to the central axis QA of the proximal link hub 32.
  • the posture change of the distal end side link hub 33 with respect to the proximal end side link hub 32 is performed with an intersection O between the central axis QA of the proximal end side link hub 32 and the central axis QB of the distal end side link hub 33 as a rotation center. Is called.
  • FIG. 4 shows a state where the central axis QA of the link hub 32 on the proximal end side and the central axis QB of the link hub 33 on the distal end side are on the same line.
  • FIG. 5 shows a state in which the central axis QB of the distal end side link hub 33 takes a certain operating angle with respect to the central axis QA of the proximal end side link hub 32. Even if the posture changes, the distance L (FIG. 7) between the spherical link center PA on the proximal end side and the spherical link center PB on the distal end side does not change.
  • the parallel link mechanism 30 functions as a constant velocity universal joint that rotates at a constant speed with the same rotation angle on the proximal end side and the distal end side when transmitting rotation from the proximal end side to the distal end side.
  • the center axis O2 of the rotational pair of the end link member 35 (tip end link member 36) on the end side and the central link member 37 is the spherical link center PA on the base end side (spherical link center PB on the tip end side). Cross at.
  • the link hub 32 on the base end side includes a base end member 40 and three rotary shaft connecting members 41 provided integrally with the base end member 40.
  • the base end member 40 is formed with a circular through hole 40a (FIG. 3) in the center, and three rotary shaft connecting members 41 are arranged at equal intervals in the circumferential direction around the through hole 40a.
  • the center of the through hole 40a is located on the central axis QA of the link hub 32 on the proximal end side.
  • a rotating shaft 42 (FIGS. 4 and 5) is rotatably connected to each rotating shaft connecting member 41.
  • the axis of the rotary shaft 42 intersects the central axis QA of the link hub 32 on the proximal end side.
  • One end of an end link member 35 on the base end side is connected to the rotating shaft 42.
  • the rotating shaft 42 is rotatably supported by the rotating shaft connecting member 41 through two bearings 43.
  • the bearing 43 is, for example, a ball bearing such as a deep groove ball bearing or an angular ball bearing.
  • the bearing 43 is installed in a fitted state in an inner diameter hole 44 provided in the rotary shaft connecting member 41, and is fixed by a method such as press fitting, bonding, or caulking. The same applies to the types and installation methods of the bearings provided in other rotating pairs.
  • a base end side end link member 35 and a fan-shaped bevel gear 45 are coupled to the rotating shaft 42 so as to rotate integrally with the rotating shaft 42.
  • the fan-shaped bevel gear 45 constitutes a part of an axis orthogonal reduction gear 77 described later.
  • a notch 46 is formed at one end of the base end side end link member 35, and the rotation shaft connecting member is provided between the inner and outer rotation shaft support portions 47 and 48, which are both sides of the notch 46. 41 is arranged.
  • the bevel gear 45 is disposed in contact with the inner surface of the inner rotary shaft support portion 47.
  • the rotation shaft 42 includes a through hole formed in the bevel gear 45, a through hole formed in the inner rotation shaft support portion 47, an inner ring of the bearing 43, and a through hole formed in the outer rotation shaft support portion 48. It is inserted in order.
  • the bevel gear 45, the inner and outer rotary shaft support portions 47 and 48, and the inner ring of the bearing 43 are sandwiched between the head 42a of the rotary shaft 42 and the nut 50 screwed to the screw portion 42b of the rotary shaft 42.
  • Spacers 51 and 52 are interposed between the inner and outer rotary shaft support portions 47 and 48 and the bearing 43, and a preload is applied to the bearing 43 when the nut 50 is screwed.
  • the rotation shaft 55 is coupled to the other end of the end link member 35 on the base end side.
  • the rotary shaft 55 is rotatably connected to one end of the central link member 37 via two bearings 53.
  • a notch 56 is formed at the other end of the end link member 35 on the base end side, and a central link is provided between the inner and outer rotary shaft support portions 57 and 58 that are both sides of the notch 56.
  • One end of the member 37 is disposed.
  • the rotation shaft 55 is inserted from the outside in the order of a through hole formed in the outer rotation shaft support portion 58, an inner ring of the bearing 53, and a through hole formed in the inner rotation shaft support portion 57.
  • the inner and outer rotary shaft support portions 57 and 58 and the inner ring of the bearing 53 are sandwiched between the head portion 55a of the rotary shaft 55 and the nut 60 screwed to the screw portion 55b of the rotary shaft 55, and are coupled to each other.
  • Spacers 61 and 62 are interposed between the inner and outer rotary shaft support portions 57 and 58 and the bearing 53, and a preload is applied to the bearing 53 when the nut 60 is screwed.
  • the link hub 33 on the distal end side has a distal end member 70 and three rotary shaft coupling members 71 provided on the inner surface of the distal end member 70 at equal intervals in the circumferential direction. is doing.
  • the center of the circumference where the rotation shaft connecting member 71 is arranged is located on the center axis QB of the link hub 33 on the distal end side.
  • a rotary shaft 73 is rotatably connected to the rotary shaft connecting member 71.
  • the axis of the rotation shaft 73 intersects the center axis QB of the link hub 33 on the distal end side.
  • One end of an end link member 36 on the distal end side is connected to the rotation shaft 73 of the link hub 33 on the distal end side.
  • a rotating shaft 75 is connected to the other end of the end link member 36 on the front end side.
  • the rotating shaft 75 is rotatably connected to the other end of the central link member 37.
  • the rotary shaft 73 of the link hub 33 on the distal end side and the rotary shaft 75 of the central link member 37 are similar to the rotary shafts 42 and 55 described above, via the two shaft bearings (not shown), and the rotary shaft connecting member 71 and The other end of the central link member 37 is rotatably connected.
  • the attitude control drive source 31 for operating the parallel link mechanism 30 is installed on the base end member 40.
  • the output shaft 31a of the attitude control drive source 31 is parallel to the central axis QA of the link hub 32 on the proximal end side.
  • the number of posture control drive sources 31 is three, which is the same as the number of link mechanisms 34.
  • the attitude control drive source 31 is a rotary actuator.
  • a bevel gear 76 is attached to the output shaft 31 a of the attitude control drive source 31.
  • the bevel gear 76 meshes with a fan-shaped bevel gear 45 attached to the rotating shaft 42 of the link hub 32 on the proximal end side.
  • the pair of bevel gears 76 and 45 constitutes an axis orthogonal reduction device 77 in which the input side shaft and the output side shaft are orthogonal to each other.
  • the attitude control drive source 31 and the axis orthogonal reduction gear 77 are arranged on the inner diameter side of the rotating pair of the base end side link hub 32 and the base end side end link member 35.
  • the same number of posture control drive sources 31 as the link mechanisms 34 are provided, but if at least two of the three sets of link mechanisms 34 are provided with the posture control drive sources 31, The attitude of the link hub 33 on the distal end side with respect to the link hub 32 on the end side can be determined.
  • the link actuating device 5 actuates the parallel link mechanism 30 by rotationally driving each attitude control drive source 31. Specifically, when the attitude control drive source 31 is rotationally driven, the rotation is transmitted to the rotary shaft 42 via the axis orthogonal reduction gear 77 composed of a pair of bevel gears 76 and 45. As a result, the angle of the end link member 35 on the base end side with respect to the link hub 32 on the base end side changes. As a result, the attitude of the distal end side link hub 33 with respect to the proximal end side link hub 32 is determined.
  • the axis orthogonal reduction gear 77 includes a pair of bevel gears 76 and 45, but is not limited thereto, for example, a mechanism using a worm gear and a pinion gear, a mechanism using a hypoid gear (trade name), and the like. It may be.
  • the multi-joint robot 1 performs work by attaching an end effector (not shown) to the link hub 33 on the distal end side of the link operating device 5. That is, the link hub 33 on the distal end side constitutes an end effector mounting stage. At that time, the horizontal position of the end effector is changed by rotating the first arm 3 and the second arm 4 around the vertical axes O1 and O2, respectively. Furthermore, the attitude
  • FIG. Further, the rotation / elevating mechanism 6 rotates the link actuating device 5 around the vertical axis O3 and moves it up and down along the axis O3, thereby adjusting the direction and height of the end effector.
  • the link actuating device 5 is provided so that the link hub 33 on the distal end side is located on the lower side. For this reason, it is suitable for performing work on a workpiece positioned below the link actuating device 5.
  • the first arm 3 and the second arm 4 are used for changing the horizontal position. Therefore, as shown in FIG. 2, a wide area within the range of the radius (R1 + R2) obtained by adding the radius R1 of the first arm 3 and the radius R2 of the second arm 4 with the axis O1 of the first arm 3 as the center.
  • the end effector can be moved. Since the mechanism composed of the first arm 3 and the second arm 4 has no singular point, the end effector can be moved to the target position in the shortest time.
  • the link actuating device 5 is a two-degree-of-freedom mechanism that can widen the movable range of the link hub 33 on the tip side. For this reason, the end effector can be changed to an arbitrary posture. Further, since the link actuating device 5 is compact, the burden on the first arm 3 and the second arm 4 is small, and the rigidity of these can be kept low.
  • FIG. 8 shows a second embodiment.
  • the support 2 is provided with a lifting mechanism 7 that lifts and lowers the first arm 3.
  • the first arm 3 is provided on an elevating body 8 that can be moved up and down with respect to the support body 2.
  • the second arm 4 is provided with a rotation mechanism 9 that simply rotates the link actuating device 5 around the axis O3 in place of the rotation / lifting mechanism 6 in the first embodiment.
  • the link actuating device 5 can be rotated around the vertical axis O3 and moved up and down along the axis O3, as in the first embodiment.
  • the second arm rotary motor 15 is provided on the upper surface of the first arm 3, and the output shaft 15a of the second arm rotary motor 15 is set to be horizontal. .
  • the output shaft 15 a of the second arm rotation motor 15 and the input shaft 16 a of the speed reducer 16 are connected via a gear mechanism 23 including a pair of bevel gears 21 and 22.
  • the input shaft 16 a of the speed reducer 16 is arranged coaxially with the rotary shaft 14 of the second arm 4.
  • the output shaft 15 a of the second arm rotation motor 15 and the rotation shaft 14 of the second arm 4 are connected via a gear mechanism 23.
  • the 2nd arm rotation motor 15 is provided so that the output shaft 15a may become horizontal, the height of the articulated robot 1 can be restrained low.
  • the rotation motor 24 of the rotation mechanism 9 is also provided on the second arm 4 and is set so that the output shaft 24a is horizontal.
  • the output shaft 24 a of the rotating motor 24 and the input shaft 25 a of the speed reducer 25 are connected via a gear mechanism 28 including a pair of bevel gears 26 and 27.
  • the input shaft 25 a of the speed reducer 25 is arranged coaxially with the rotary shaft 17 of the link operating device 5.
  • the output shaft 24 a of the rotation motor 24 and the rotation shaft 17 of the link actuator 5 are connected via a gear mechanism 28. Also in this case, the height of the articulated robot 1 can be kept low.
  • the second arm rotation motor 15 and the gear mechanism 23 may be provided inside the first arm 3 as shown in FIG. 9. In this case, the height of the articulated robot 1 can be further reduced.
  • FIG. 10 shows a third embodiment.
  • the multi-joint robot 1 of the third embodiment rotates the second arm rotation motor 15 via the belt transmission device 29 provided inside the first arm 3. Is transmitted to the rotary shaft 14.
  • the second arm rotation motor 15 can be installed at a position closer to the base end (right end in FIG. 10) of the first arm 3, and the load on the first arm 3 can be reduced.
  • FIG. 11 shows a fourth embodiment.
  • the articulated robot 1 of the fourth embodiment is provided with a link operating device 5 at the distal end (left end in FIG. 11) of the second arm 4, and in the neutral state, the link hub on the proximal end side 32 and the distal end side link hub 33 are set horizontally.
  • the neutral state refers to a state where the central axis QA of the link hub 32 on the proximal end side and the central axis QB of the link hub 33 on the distal end side are on the same line.
  • the link actuating device 5 shown in FIG. 11 is rotated around a horizontal axis O4 by a rotation motor 24 provided in the second arm 4.
  • the link actuating device 5 is arranged in this way, it is suitable for performing work on a workpiece in a position horizontally facing the link actuating device 5. Also, the overall configuration can be slim in the vertical direction. Also in the fourth embodiment, the second arm rotation motor 15 and the gear mechanism 23 may be provided inside the first arm 3 as shown in FIG. Also in this case, the height of the articulated robot 1 can be further reduced.

Abstract

多関節ロボット(1)は、鉛直方向の軸心(O1)周りに回転自在な第一アーム(3)と、第一アーム(3)の先端に設けられ鉛直方向の軸心(O2)周りに回転自在な第二アーム(4)と、第二アーム(4)の先端に設けられたリンク作動装置(5)とを備える。リンク作動装置(5)は、基端側のリンクハブ(32)に対し先端側のリンクハブ(33)が3組以上のリンク機構(34)を介して姿勢を変更可能に連結されている。3組以上のリンク機構(34)のうちの2組以上のリンク機構(34)に、基端側のリンクハブ(32)に対して先端側のリンクハブ(33)の姿勢を任意に変更させる姿勢制御用アクチュエータ(31)が設けられている。

Description

多関節ロボット 関連出願
 この出願は、2017年3月29日出願の特願2017-065605の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、例えば、医療機器、産業機器のような高速、高精度、および広範な作動範囲を必要とする機器に用いられる多関節ロボットに関する。
 多関節ロボットに関して、例えば以下の特許文献1~3の提案がある。特許文献1のロボットアーム機構は、回転関節と直動関節を含む複数の関節部を有する。特許文献2の産業用ロボットは、水平に回動する2つのアームが組み合わされている。特許文献3のワーク搬送ロボットは、ガードレールにマニピュレータを取り付けられている。
特開2016-83722号公報 特開平6-262555号公報 特開平8-174449号公報
 特許文献1は、関節部の配置を工夫することで、可動範囲内で特異点姿勢が生じることを解消または減少させている。しかしながら、特許文献1のロボットアーム機構の構成では、物を搬送するような動きには対応できるが、伸縮方向に対して直角方向には動けないことから、細かな動きが難しく、組立作業のような細かな動きはできないと思われる。また、特許文献2の産業用ロボットは、物の取出し方向が下方の一方向であるので、様々な作業に対応することが難しい。さらに、特許文献3のワーク搬送ロボットは、マニピュレータによる細かな作業が可能であるが、ガードレールを設置するための広いスペースが必要である。
 この発明の目的は、特異点を持たずに動作することができ、平面視で広い可動範囲が得られ、先端のエンドエフェクタ取付ステージを任意の角度に姿勢変更が可能な多関節ロボットを提供することである。
 この発明の多関節ロボットは、支持体に設けられ鉛直方向の軸心周りに回転自在な第一アームと、前記第一アームを回転させる第一アーム回転モータと、前記第一アームの先端に設けられ鉛直方向の軸心周りに回転自在な第二アームと、前記第二アームを回転させる第二アーム回転モータと、前記第二アームの先端に設けられたリンク作動装置とを備えている。
 前記リンク作動装置は、基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結されている。前記各リンク機構は、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端が回転可能に連結された中央リンク部材とを有している。前記3組以上のリンク機構のうちの2組以上のリンク機構に、前記基端側のリンクハブに対して前記先端側のリンクハブの姿勢を任意に変更させる姿勢制御用アクチュエータが設けられている。
 この多関節ロボットは、エンドエフェクタ取付ステージであるリンク作動装置の先端側のリンクハブにエンドエフェクタを取り付けて作業を行う。その際、第一アームおよび第二アームを回転させることでエンドエフェクタの水平位置を変更し、リンク作動装置を作動させることでエンドエフェクタの姿勢を変更する。
 水平位置変更用として第一アームと第二アームが設けられたことにより、第一アームの軸心を中心にして、第一アームの半径と第二アームの半径を加算した半径の範囲内の広い領域にエンドエフェクタを移動させることができる。この第一アームと第二アームからなる機構は特異点を持たないので、エンドエフェクタを目的位置まで最短で移動させることができる。
 リンク作動装置は、基端側のリンクハブと、先端側のリンクハブと、3組以上のリンク機構とで、基端側のリンクハブに対し先端側のリンクハブが直交2軸周りに回転自在な2自由度機構を構成する。この2自由度機構は、コンパクトでありながら、先端側のリンクハブの可動範囲を広くとれる。このため、エンドエフェクタを任意の姿勢に変更することができる。また、リンク作動装置はコンパクトであるので、第一アームおよび第二アームにかかる負担が小さく、これらアームおよびその支持部の剛性を低く抑えることができる。
 この発明において、前記第二アームに、前記リンク作動装置を鉛直方向に昇降させる昇降機構が設けられていてもよい。これに代えて、前記支持体に、前記第一アームを鉛直方向に昇降させる昇降機構が設けられていてもよい。いずれの場合も、エンドエフェクタの上下高さを変更することができる。
 この発明において、前記第一アームに、出力軸が水平となるように前記第二アーム回転モータが設けられ、この第二アーム回転モータの前記出力軸と前記第二アームの回転軸とが一対のかさ歯車からなる歯車機構を介して直接または間接的に連結されていてもよい。第二アーム回転モータを出力軸が水平となるように設けることにより、多関節ロボットの高さを低く抑えることができる。
 この発明において、前記第二アーム回転モータの回転を前記第二アームの回転軸に伝達するベルト伝動機構が、前記第一アームの内部に設けられていてもよい。この場合、第二アーム回転モータを第一アームの基端寄りの位置に設置することができる。これにより、第一アームにかかる荷重の負担を軽減することができる。
 この発明において、前記第二アームに対して前記リンク作動装置を鉛直方向の軸心周りに回転させる回転機構が設けられていてもよい。回転機構が設けられていると、エンドエフェクタの鉛直方向の軸心周りの向きを変更することができる。
 前記回転機構が設けられる場合、この回転機構の回転用モータが、その出力軸が水平となるように前記第二アームに設けられ、前記回転用モータの出力軸と前記リンク作動装置の回転軸とが一対のかさ歯車からなる歯車機構を介して直接または間接的に連結されていてもよい。回転用モータを出力軸が水平となるように設けられることにより、多関節ロボットの高さを低く抑えることができる。
 この発明において、前記リンク作動装置が、中立状態において前記基端側のリンクハブと前記先端側のリンクハブとが水平に並ぶように、前記第二アームの先端に設けられていてもよい。この場合、リンク作動装置と水平に対向する位置にあるワークに対して作業を行うのに適する。また、全体的に上下方向にスリムな構成とすることができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1実施形態にかかる多関節ロボットの概略構成を示す図である。 同多関節ロボットの平面図である。 同多関節ロボットのリンク作動装置の一部を省略して示す正面図である。 同リンク作動装置のパラレルリンク機構の一状態を示す正面図である。 同パラレルリンク機構の異なる状態を示す正面図である。 図3のVI-VI断面図である。 同パラレルリンク機構の1つのリンク機構を直線で表現した図である。 この発明の第2実施形態にかかる多関節ロボットの概略構成を示す図である。 図8に示す多関節ロボットの変形例の部分図である。 この発明の第3実施形態にかかる多関節ロボットの概略構成を示す図である。 この発明の第4実施形態にかかる多関節ロボットの概略構成を示す図である。
 以下、図面と共にこの発明の実施形態を説明する。
[第1実施形態]
 図1は第1実施形態にかかる多関節ロボットの概略構成を示す図、図2はその平面図である。この多関節ロボット1は、地面に設置された支持体2と、この支持体2の上端に鉛直方向の軸心O1周りに回転自在に支持された第一アーム3と、この第一アーム3の先端に鉛直方向の軸心O2周りに回転自在に支持された第二アーム4と、この第二アーム4の先端に支持されたリンク作動装置5と、このリンク作動装置5を鉛直方向の軸心O3周りに回転させ、かつ前記軸心O3に沿って昇降させる回転・昇降機構6とを備える。この実施形態では、支持体2が地面に設置されているが、支持体2は天井から吊り下げられていてもよい。後で説明する他の実施形態についても同様である。
 第一アーム3は、その基端部(図1の右端部)が、前記軸心O1を有する回転軸11に取り付けられている。回転軸11は支持体2に設けられ、その上端部が支持体2の上面から上方に突出している。この回転軸11の上端部に、第一アーム3が取り付けられている。支持体2の内部には、第一アーム回転モータ12および減速機13が設けられている。
 第二アーム4は、その基端部(図1の右端部)が、前記軸心O2を有する回転軸14に取り付けられている。回転軸14は、第一アーム3の先端(図1の左端)に設けられ、その下端部が第一アーム3の下面から下方に突出している。この回転軸14の下端部に、第二アーム4を取り付けている。第一アーム3の先端部の上面に、第二アーム回転モータ15が設けられ、第一アーム3の内部に減速機16が設けられている。
 回転・昇降機構6は、第二アーム4の先端部(図1の左端部)から下方に突出する回転軸17を有し、その下端にリンク作動装置5が取り付けられている。回転・昇降機構6は、回転軸17を回転させる回転機構6aと、回転軸17を昇降させる昇降機構6bとを有している。回転機構6aは回転用モータ18を有し、昇降機構6bは昇降用モータ19を有している。
[リンク作動装置]
 図3はリンク作動装置の一部を省略した正面図である。なお、図3では、図1に示す設置状態と上下反転して示されている。リンク作動装置5は、パラレルリンク機構30と、このパラレルリンク機構30を作動させる姿勢制御用駆動源31とを有している。
 図4および図5は、パラレルリンク機構30のみを取り出して示した図であり、互いに異なる状態を示している。パラレルリンク機構30は、基端側のリンクハブ32に対し先端側のリンクハブ33を3組のリンク機構34を介して姿勢変更可能に連結する。なお、図3では、1組のリンク機構34のみが示されている。リンク機構34の数は、4組以上であってもよい。
 各リンク機構34は、基端側の端部リンク部材35、先端側の端部リンク部材36、および中央リンク部材37で構成され、4つの回転対偶からなる4節連鎖のリンク機構を構成する。基端側および先端側の端部リンク部材35,36はL字状をなし、一端がそれぞれ基端側のリンクハブ32および先端側のリンクハブ33に回転自在に連結されている。中央リンク部材37は、両端に基端側および先端側の端部リンク部材35,36の他端が回転自在に連結されている。
 パラレルリンク機構30は、2つの球面リンク機構を組み合わせた構造である。つまり、基端側のリンクハブ32と基端側の端部リンク部材35の各回転対偶の中心軸、および基端側の端部リンク部材35と中央リンク部材37の各回転対偶の中心軸が、基端側の球面リンク中心PA(図3)で交差している。同様に、先端側のリンクハブ33と先端側の端部リンク部材36の各回転対偶の中心軸、および先端側の端部リンク部材36と中央リンク部材37の各回転対偶の中心軸が、先端側の球面リンク中心PB(図3)で交差している。
 また、基端側のリンクハブ32と基端側の端部リンク部材35の各回転対偶から基端側の球面リンク中心PAまでの距離は同じであり、基端側の端部リンク部材35と中央リンク部材37の各回転対偶から基端側の球面リンク中心PAまでの距離も同じである。同様に、先端側のリンクハブ33と先端側の端部リンク部材36の各回転対偶から先端側の球面リンク中心PBまでの距離は同じであり、先端側の端部リンク部材36と中央リンク部材37の各回転対偶から先端側の球面リンク中心PBまでの距離も同じである。基端側の端部リンク部材35と中央リンク部材37との回転対偶の中心軸と、先端側の端部リンク部材36と中央リンク部材37との回転対偶の中心軸とは、ある交差角γ(図3)を持っていてもよいし、平行であってもよい。
 図6は図3のVI-VI断面図である。同図に、基端側のリンクハブ32と基端側の端部リンク部材35の各回転対偶の中心軸O1と、中央リンク部材37と基端側の端部リンク部材35の各回転対偶の中心軸O2と、基端側の球面リンク中心PAとの関係が示されている。つまり、中心軸O1と中心軸O2とが交差する点が球面リンク中心PAである。先端側のリンクハブ33および先端側の端部リンク部材36の形状ならびに位置関係も図6と同様である(図示せず)。
 図6では、基端側のリンクハブ32(先端側のリンクハブ33)と基端側の端部リンク部材35(先端側の端部リンク部材36)との各回転対偶の中心軸O1と、基端側の端部リンク部材35(先端側の端部リンク部材36)と中央リンク部材37との各回転対偶の中心軸O2とが成す角度αが90°であるが、前記角度αは90°以外であってもよい。
 3組のリンク機構34は、幾何学的に同一形状をなす。幾何学的に同一形状とは、図7に示すように、各リンク部材35,36,37を直線で表現した幾何学モデル、すなわち各回転対偶と、これら回転対偶間を結ぶ直線とで表現したモデルが、中央リンク部材37の中央部に対する基端側部分と先端側部分が対称を成す形状であることをいう。
 図7は、一組のリンク機構34を直線で表現した図である。この実施形態のパラレルリンク機構30は回転対称タイプで、基端側のリンクハブ32および基端側の端部リンク部材35で構成される基端側部分と、先端側のリンクハブ33および先端側の端部リンク部材36で構成される先端側部分との位置関係が、中央リンク部材37の中心線Cに対して回転対称となる。各中央リンク部材37の中央部は、共通の軌道円D上に位置している。
 基端側のリンクハブ32と先端側のリンクハブ33と3組のリンク機構34とで、基端側のリンクハブ32に対し先端側のリンクハブ33が直交2軸回りに回転自在な2自由度機構が構成されている。言い換えると、基端側のリンクハブ32に対する先端側のリンクハブ33の回転が、2自由度で姿勢変更自在な機構である。この2自由度機構は、コンパクトでありながら、基端側のリンクハブ32に対する先端側のリンクハブ33の可動範囲を広くとれる。
 例えば、基端側の球面リンク中心PAを通り、基端側のリンクハブ32と基端側の端部リンク部材35の各回転対偶の中心軸O1(図6)と直角に交わる直線を基端側のリンクハブ32の中心軸QAとする。また、先端側の球面リンク中心PBを通り、先端側のリンクハブ33と先端側の端部リンク部材36の各回転対偶の中心軸O1(図6)と直角に交わる直線を先端側のリンクハブ33の中心軸QBとする。この場合、基端側のリンクハブ32の中心軸QAと先端側のリンクハブ33の中心軸QBとの折れ角θ(図7)の最大値を約±90°とすることができる。
 また、基端側のリンクハブ32に対する先端側のリンクハブ33の旋回角φ(図7)を0°~360°の範囲に設定できる。折れ角θは、基端側のリンクハブ32の中心軸QAに対して先端側のリンクハブ33の中心軸QBが傾斜した垂直角度である。旋回角φは、基端側のリンクハブ32の中心軸QAに対して先端側のリンクハブ33の中心軸QBが傾斜した水平角度である。
 基端側のリンクハブ32に対する先端側のリンクハブ33の姿勢変更は、基端側のリンクハブ32の中心軸QAと先端側のリンクハブ33の中心軸QBとの交点Oを回転中心として行われる。図4は、基端側のリンクハブ32の中心軸QAと先端側のリンクハブ33の中心軸QBが同一線上にある状態を示す。図5は、基端側のリンクハブ32の中心軸QAに対して先端側のリンクハブ33の中心軸QBが或る作動角をとった状態を示す。姿勢が変化しても、基端側の球面リンク中心PAと先端側の球面リンク中心PB間の距離L(図7)は変化しない。
 各リンク機構34が以下の条件1~5を満たす場合、幾何学的対称性から基端側のリンクハブ32および基端側の端部リンク部材35で構成される基端側部分と、先端側のリンクハブ33および先端側の端部リンク部材36で構成される先端側部分とは同じに動く。よって、パラレルリンク機構30は、基端側から先端側へ回転伝達を行う場合、基端側と先端側は同じ回転角になって等速で回転する等速自在継手として機能する。
(条件1)各リンク機構34における基端側のリンクハブ32(先端側のリンクハブ33)と基端側の端部リンク部材35(先端側の端部リンク部材36)との回転対偶の中心軸O1の角度および長さが等しい。
(条件2)基端側のリンクハブ32(先端側のリンクハブ33)と基端側の端部リンク部材35(先端側の端部リンク部材36)との回転対偶の中心軸O1、および基端側の端部リンク部材35(先端側の端部リンク部材36)と中央リンク部材37との回転対偶の中心軸O2が、基端側の球面リンク中心PA(先端側の球面リンク中心PB)で交差する。
(条件3)基端側の端部リンク部材35と先端側の端部リンク部材36の幾何学的形状が等しい。
(条件4)中央リンク部材37における基端側部分と先端側部分の幾何学的形状が等しい。
(条件5)中央リンク部材37の対称面に対して、中央リンク部材37と基端側の端部リンク部材35との角度位置関係と、中央リンク部材37と先端側の端部リンク部材36との角度位置関係が同じである。
 図3~図5に示すように、基端側のリンクハブ32は、基端部材40と、この基端部材40と一体に設けられた3個の回転軸連結部材41とを有している。基端部材40は、中央部に円形の貫通孔40a(図3)が形成され、この貫通孔40aの周囲に3個の回転軸連結部材41が円周方向に等間隔で配置されている。貫通孔40aの中心は、基端側のリンクハブ32の中心軸QA上に位置する。各回転軸連結部材41に、回転軸42(図4、図5)が回転自在に連結されている。回転軸42の軸心は、基端側のリンクハブ32の中心軸QAと交差する。この回転軸42に、基端側の端部リンク部材35の一端が連結されている。
 図6に示すように、回転軸42は、2個の軸受43を介して回転軸連結部材41に回転自在に支持されている。軸受43は、例えば、深溝玉軸受、アンギュラ玉軸受等の玉軸受である。軸受43は、回転軸連結部材41に設けられた内径孔44に嵌合状態で設置され、圧入、接着、加締め等の方法で固定されている。他の回転対偶部に設けられる軸受の種類および設置方法も同様である。
 回転軸42に、基端側の端部リンク部材35の一端と扇形のかさ歯車45とが、回転軸42と一体に回転するように結合されている。扇形のかさ歯車45は、後述の軸直交型減速機77の一部を構成する。詳しくは、基端側の端部リンク部材35の一端に切欠き部46が形成されており、この切欠き部46の両側部分である内外の回転軸支持部47,48間に回転軸連結部材41が配置されている。かさ歯車45は、内側の回転軸支持部47の内側面に当接して配置される。
 回転軸42が内側から、かさ歯車45に形成された貫通孔、内側の回転軸支持部47に形成された貫通孔、軸受43の内輪、外側の回転軸支持部48に形成された貫通孔の順に挿通される。この状態で、回転軸42の頭部42aと回転軸42のねじ部42bに螺着したナット50とで、かさ歯車45、内外の回転軸支持部47,48および軸受43の内輪が挟持され、互いに結合されている。内外の回転軸支持部47,48と軸受43との間にスペーサ51,52が介在されており、ナット50の螺着時に軸受43に予圧が付与されている。
 基端側の端部リンク部材35の他端に、回転軸55が結合されている。回転軸55は、2個の軸受53を介して中央リンク部材37の一端に回転自在に連結されている。詳しくは、基端側の端部リンク部材35の他端に切欠き部56が形成されており、この切欠き部56の両側部分である内外の回転軸支持部57,58間に、中央リンク部材37の一端が配置されている。
 回転軸55が外側から、外側の回転軸支持部58に形成された貫通孔、軸受53の内輪、内側の回転軸支持部57に形成された貫通孔の順に挿通される。この状態で、回転軸55の頭部55aと回転軸55のねじ部55bに螺着したナット60とで、内外の回転軸支持部57,58および軸受53の内輪が挟持され、互いに結合されている。内外の回転軸支持部57,58と軸受53との間にスペーサ61,62が介在されており、ナット60の螺着時に軸受53に予圧が付与されている。
 図4、図5に示すように、先端側のリンクハブ33は、先端部材70と、この先端部材70の内面に円周方向等配で設けられた3個の回転軸連結部材71とを有している。回転軸連結部材71が配置される円周の中心は、先端側のリンクハブ33の中心軸QB上に位置する。回転軸連結部材71に、回転軸73が回転自在に連結されている。回転軸73の軸心は、先端側のリンクハブ33の中心軸QBと交差する。この先端側のリンクハブ33の回転軸73に、先端側の端部リンク部材36の一端が連結されている。
 先端側の端部リンク部材36の他端に、回転軸75が連結されている。回転軸75は、中央リンク部材37の他端に回転自在に連結されている。先端側のリンクハブ33の回転軸73および中央リンク部材37の回転軸75は、前述の回転軸42,55と同様に、2個の軸受(図示せず)を介して回転軸連結部材71および中央リンク部材37の他端にそれぞれ回転自在に連結されている。
 図3に示すように、パラレルリンク機構30を作動させる姿勢制御用駆動源31は、基端部材40に設置されている。姿勢制御用駆動源31の出力軸31aは、基端側のリンクハブ32の中心軸QAと平行である。姿勢制御用駆動源31の数は、リンク機構34と同数の3個である。姿勢制御用駆動源31はロータリアクチュエータからなる。姿勢制御用駆動源31の出力軸31aに、かさ歯車76が取り付けられている。このかさ歯車76と、基端側のリンクハブ32の回転軸42に取り付けられた扇形のかさ歯車45とが噛み合っている。これら一対のかさ歯車76,45により、入力側軸と出力側軸とが互いに直交した軸直交型減速機77が構成されている。
 図6に示すように、姿勢制御用駆動源31および軸直交型減速機77は、基端側のリンクハブ32と基端側の端部リンク部材35との回転対偶部よりも内径側に配置されている。この実施形態では、リンク機構34と同数の姿勢制御用駆動源31が設けられているが、3組のリンク機構34のうち少なくとも2組に姿勢制御用駆動源31が設けられていれば、基端側のリンクハブ32に対する先端側のリンクハブ33の姿勢を確定することができる。
 リンク作動装置5は、各姿勢制御用駆動源31を回転駆動することで、パラレルリンク機構30を作動させる。詳しくは、姿勢制御用駆動源31を回転駆動すると、その回転が一対のかさ歯車76,45からなる軸直交型減速機77を介して回転軸42に伝達される。これにより、基端側のリンクハブ32に対する基端側の端部リンク部材35の角度が変更する。その結果、基端側のリンクハブ32に対する先端側のリンクハブ33の姿勢が決まる。この実施形態では、軸直交型減速機77が、一対のかさ歯車76,45からなるが、これに限定されず、例えば、ウォームギヤとピニオンギヤを用いた機構、ハイポイドギヤ(商標名)を用いた機構等であってもよい。
 この多関節ロボット1は、リンク作動装置5の先端側のリンクハブ33にエンドエフェクタ(図示せず)を取り付けて作業を行う。つまり、先端側のリンクハブ33がエンドエフェクタ取付ステージを構成する。その際、第一アーム3および第二アーム4を鉛直方向の軸心O1,O2の周りにそれぞれ回転させることで、エンドエフェクタの水平位置が変更される。さらに、リンク作動装置5を作動させることで、エンドエフェクタの姿勢が変更される。また、回転・昇降機構6により、リンク作動装置5を鉛直方向の軸心O3周りに回転させ、かつ軸心O3に沿って昇降させることで、エンドエフェクタの向きおよび高さが調整される。この実施形態では、先端側のリンクハブ33が下側に位置するようにリンク作動装置5が設けられている。このため、リンク作動装置5の下方に位置するワークに対して作業を行うのに適する。
 水平位置変更用として第一アーム3と第二アーム4とを有する。したがって、図2に示すように、第一アーム3の軸心O1を中心とし、第一アーム3の半径R1と第二アーム4の半径R2を加算した半径(R1+R2)の範囲内の広い領域にエンドエフェクタを移動させることができる。この第一アーム3と第二アーム4からなる機構は特異点を持たないので、エンドエフェクタを目的位置まで最短で移動させることができる。
 リンク作動装置5は、先端側のリンクハブ33の可動範囲を広くとれる2自由度機構である。このため、エンドエフェクタを任意の姿勢に変更することができる。また、リンク作動装置5はコンパクトであるので、第一アーム3および第二アーム4にかかる負担が小さく、これらの剛性を低く抑えることができる。
[第2実施形態]
 図8は第2実施形態を示す。第2実施形態の多関節ロボット1は、支持体2に、第一アーム3を昇降させる昇降機構7が設けられている。第一アーム3は、支持体2に対して昇降可能な昇降体8に設けられている。第二アーム4には、第1実施形態における回転・昇降機構6に代えて、単にリンク作動装置5を軸心O3周りに回転させる回転機構9が設けられている。第2実施形態の構成でも、第1の実施形態と同様に、リンク作動装置5を鉛直方向の軸心O3周りに回転させ、かつ軸心O3に沿って昇降させることができる。
 第2実施形態では、第1実施形態と異なり、第二アーム回転モータ15が第一アーム3の上面に設けられ、第二アーム回転モータ15の出力軸15aが水平となるように設定されている。第二アーム回転モータ15の出力軸15aと減速機16の入力軸16aとが、一対のかさ歯車21,22からなる歯車機構23を介して連結されている。減速機16の入力軸16aは、第二アーム4の回転軸14と同軸上に配置されている。減速機16を設けない場合、第二アーム回転モータ15の出力軸15aと第二アーム4の回転軸14とが、歯車機構23を介して連結される。このように、出力軸15aが水平となるように第二アーム回転モータ15を設けると、多関節ロボット1の高さを低く抑えることができる。
 回転機構9の回転用モータ24も、第二アーム回転モータ15と同様に、第二アーム4の上に設けられ、出力軸24aが水平となるように設定されている。この回転用モータ24の出力軸24aと減速機25の入力軸25aとが、一対のかさ歯車26,27からなる歯車機構28を介して連結されている。減速機25の入力軸25aは、リンク作動装置5の回転軸17と同軸上に配置されている。減速機25を設けない場合、回転用モータ24の出力軸24aとリンク作動装置5の回転軸17とが、歯車機構28を介して連結される。この場合も、多関節ロボット1の高さを低く抑えることができる。
 図8の構成に代えて、図9に示すように、第二アーム回転モータ15および歯車機構23を第一アーム3の内部に設けてもよい。この場合、多関節ロボット1の高さをより一層低く抑えることができる。
[第3実施形態]
 図10は第3実施形態を示す。第3実施形態の多関節ロボット1は、第2実施形態と異なり、第二アーム回転モータ15の回転が、第一アーム3の内部に設けられたベルト伝動装置29を介して、第二アーム4の回転軸14に伝達されている。この場合、第二アーム回転モータ15を第一アーム3の基端(図10の右端)寄りの位置に設置することができ、第一アーム3にかかる荷重の負担を軽減することができる。
[第4実施形態]
 図11は第4実施形態を示す。第4実施形態の多関節ロボット1は、第1~3実施形態と異なり、リンク作動装置5が第二アーム4の先端(図11に左端)に設けられ、中立状態において基端側のリンクハブ32と先端側のリンクハブ33とが水平に並ぶように設定されている。中立状態とは、図4のように、基端側のリンクハブ32の中心軸QAと先端側のリンクハブ33の中心軸QBが同一線上にある状態を指す。図11に示すリンク作動装置5は、第二アーム4の内部に設けられた回転用モータ24により、水平方向の軸心O4の周りに回転させられる。
 このようにリンク作動装置5を配置すると、リンク作動装置5と水平に対向する位置にあるワークに対して作業を行うのに適する。また、全体的に上下方向にスリムな構成とすることができる。第4の実施形態においても、図9のように、第二アーム回転モータ15および歯車機構23を第一アーム3の内部に設けてもよい。この場合も、多関節ロボット1の高さをより一層低く抑えることができる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1…多関節ロボット
2…支持体
3…第一アーム
4…第二アーム
5…リンク作動装置
6…回転・昇降機構
6a…回転機構
6b…昇降機構
7…昇降機構
9…回転機構
12…第一アーム回転モータ
14…第二アームの回転軸
15…第二アーム回転モータ
15a…第二アーム回転モータの出力軸
17…リンク作動装置の回転軸
21,22…かさ歯車
23…歯車機構
24…回転用モータ
24a…出力軸
26,27…かさ歯車
28…歯車機構
29…ベルト伝動機構
31…姿勢制御用アクチュエータ
32…基端側のリンクハブ
33…先端側のリンクハブ
34…リンク機構
35…基端側の端部リンク部材
36…先端側の端部リンク部材
37…中央リンク部材
O1,O2,O3…鉛直方向の軸心

Claims (8)

  1.  支持体に設けられ鉛直方向の軸心周りに回転自在な第一アームと、
     前記第一アームを回転させる第一アーム回転モータと、
     前記第一アームの先端に設けられ鉛直方向の軸心周りに回転自在な第二アームと、
     前記第二アームを回転させる第二アーム回転モータと、
     前記第二アームの先端に設けられたリンク作動装置と、を備え、
     前記リンク作動装置は、基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、
     前記各リンク機構は、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端が回転可能に連結された中央リンク部材とを有し、
     前記3組以上のリンク機構のうちの2組以上のリンク機構に、前記基端側のリンクハブに対して前記先端側のリンクハブの姿勢を任意に変更させる姿勢制御用アクチュエータが設けられている多関節ロボット。
  2.  請求項1に記載の多関節ロボットにおいて、前記第二アームに、前記リンク作動装置を鉛直方向に昇降させる昇降機構が設けられている多関節ロボット。
  3.  請求項1に記載の多関節ロボットにおいて、前記支持体に、前記第一アームを鉛直方向に昇降させる昇降機構が設けられている多関節ロボット。
  4.  請求項1から請求項3のいずれか1項に記載の多関節ロボットにおいて、前記第一アームに、出力軸が水平となるように前記第二アーム回転モータが設けられ、
     前記第二アーム回転モータの前記出力軸と前記第二アームの回転軸とが一対のかさ歯車からなる歯車機構を介して直接または間接的に連結されている多関節ロボット。
  5.  請求項1から請求項3のいずれか1項に記載の多関節ロボットにおいて、前記第二アーム回転モータの回転を前記第二アームの回転軸に伝達するベルト伝動機構が、前記第一アームの内部に設けられている多関節ロボット。
  6.  請求項1から請求項3のいずれか1項に記載の多関節ロボットにおいて、前記第二アームに対して前記リンク作動装置を鉛直方向の軸心周りに回転させる回転機構が設けられている多関節ロボット。
  7.  請求項6に記載の多関節ロボットにおいて、前記回転機構の回転用モータが、その出力軸が水平となるように前記第二アームに設けられ、
     前記回転用モータの出力軸と前記リンク作動装置の回転軸とが一対のかさ歯車からなる歯車機構を介して直接または間接的に連結されている多関節ロボット。
  8.  請求項1に記載の多関節ロボットにおいて、前記リンク作動装置が、中立状態において前記基端側のリンクハブと前記先端側のリンクハブとが水平に並ぶように、前記第二アームの先端に設けられている多関節ロボット。
PCT/JP2018/011825 2017-03-29 2018-03-23 多関節ロボット WO2018181040A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-065605 2017-03-29
JP2017065605A JP2018167350A (ja) 2017-03-29 2017-03-29 多関節ロボット

Publications (1)

Publication Number Publication Date
WO2018181040A1 true WO2018181040A1 (ja) 2018-10-04

Family

ID=63677032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011825 WO2018181040A1 (ja) 2017-03-29 2018-03-23 多関節ロボット

Country Status (2)

Country Link
JP (1) JP2018167350A (ja)
WO (1) WO2018181040A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014417A (zh) * 2019-04-15 2019-07-16 华北理工大学 基于3自由度并联工业机械手的机械搬运装置
WO2020097293A1 (en) * 2018-11-07 2020-05-14 Covidien Lp Surgical robotic systems
JP2021053707A (ja) * 2019-09-26 2021-04-08 株式会社スギノマシン 多軸ロボット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597523B (zh) * 2019-03-22 2024-03-15 Ntn株式会社 平行连杆机构和连杆致动装置
JP2022082090A (ja) * 2020-11-20 2022-06-01 Ntn株式会社 作業装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180794A (ja) * 1984-02-29 1985-09-14 ぺんてる株式会社 ロボツトの姿勢制御装置
JPH01301082A (ja) * 1988-02-15 1989-12-05 Amada Co Ltd 溶接ロボット
JPH02243289A (ja) * 1989-03-14 1990-09-27 Mitsubishi Electric Corp 産業用ロボット
JPH04217479A (ja) * 1990-12-18 1992-08-07 Toshiba Corp 産業用ロボット
JP2000141272A (ja) * 1998-09-10 2000-05-23 Fanuc Ltd 産業用ロボット
JP2001096480A (ja) * 1999-09-28 2001-04-10 Tatsumo Kk 水平多関節型産業用ロボット
JP2016012736A (ja) * 2015-09-30 2016-01-21 川崎重工業株式会社 基板搬送ロボット
JP2016147351A (ja) * 2015-02-13 2016-08-18 Ntn株式会社 リンク作動装置を用いた多関節ロボット
JP2016147350A (ja) * 2015-02-13 2016-08-18 Ntn株式会社 リンク作動装置を用いた多関節ロボット

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180794A (ja) * 1984-02-29 1985-09-14 ぺんてる株式会社 ロボツトの姿勢制御装置
JPH01301082A (ja) * 1988-02-15 1989-12-05 Amada Co Ltd 溶接ロボット
JPH02243289A (ja) * 1989-03-14 1990-09-27 Mitsubishi Electric Corp 産業用ロボット
JPH04217479A (ja) * 1990-12-18 1992-08-07 Toshiba Corp 産業用ロボット
JP2000141272A (ja) * 1998-09-10 2000-05-23 Fanuc Ltd 産業用ロボット
JP2001096480A (ja) * 1999-09-28 2001-04-10 Tatsumo Kk 水平多関節型産業用ロボット
JP2016147351A (ja) * 2015-02-13 2016-08-18 Ntn株式会社 リンク作動装置を用いた多関節ロボット
JP2016147350A (ja) * 2015-02-13 2016-08-18 Ntn株式会社 リンク作動装置を用いた多関節ロボット
JP2016012736A (ja) * 2015-09-30 2016-01-21 川崎重工業株式会社 基板搬送ロボット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097293A1 (en) * 2018-11-07 2020-05-14 Covidien Lp Surgical robotic systems
CN110014417A (zh) * 2019-04-15 2019-07-16 华北理工大学 基于3自由度并联工业机械手的机械搬运装置
CN110014417B (zh) * 2019-04-15 2023-10-03 华北理工大学 基于3自由度并联工业机械手的机械搬运装置
JP2021053707A (ja) * 2019-09-26 2021-04-08 株式会社スギノマシン 多軸ロボット

Also Published As

Publication number Publication date
JP2018167350A (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2018181040A1 (ja) 多関節ロボット
WO2017183505A1 (ja) 作業装置および双腕型作業装置
JP5403303B2 (ja) パラレル機構
JP6502115B2 (ja) リンク作動装置を用いた多関節ロボット
JP6602620B2 (ja) 組合せ型リンク作動装置
WO2018088447A1 (ja) 作業装置および双腕型作業装置
JP6576646B2 (ja) リンク作動装置を用いた多関節ロボット
JP6883073B2 (ja) リンク作動装置を用いた多関節ロボット
WO2017026468A1 (ja) パラレルリンク機構を備える作業装置
WO2018088445A1 (ja) 作業装置および双腕型作業装置
JP2018194056A (ja) リンク作動装置
WO2016084685A1 (ja) パラレルリンク機構を用いた作業装置
JP2020078839A (ja) パラレルリンクロボット
WO2013015165A1 (ja) 等速自在継手およびリンク作動装置
WO2018088446A1 (ja) 作業装置および双腕型作業装置
WO2015182557A1 (ja) パラレルリンク機構およびリンク作動装置
US11420324B2 (en) Parallel link robot
JP2019171506A (ja) リンク作動装置を用いた複合作業装置
JP2018167365A (ja) ロボットアーム
JP7260987B2 (ja) 双腕型の作業装置
JP2016153159A (ja) パラレルリンク機構を用いた作業装置
WO2016080472A1 (ja) パラレルリンク機構を用いた作業装置
WO2019189198A1 (ja) リンク作動装置を用いた複合作業装置
WO2019078283A1 (ja) 双腕型の作業装置
JPH04354682A (ja) 産業用ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775214

Country of ref document: EP

Kind code of ref document: A1